

166 South Carter, Genoa City, WI 53128

Company: CompX Timberline
Model Evaluated: TP-101
Exhibit: RF Exposure Compliance
Project Number: 13118
Report Number: 28785 rev1.1

RF EXPOSURE STATEMENT OF COMPLIANCE

FCC Title 47 CFR Part 1.1307(b)(3)(i)(A)
FCC Title 47 CFR Part 2.1093(c)(1)

THE FOLLOWING MEETS THE ABOVE TEST SPECIFICATION
for

1 mW Blanket Exemption – Portable Device – General Population

FCC ID: VC RTP-101

(Handheld use with antenna distance to external surface of device < 5 mm)

Formal Name:	Stealth Lock Transmitter Pad
Kind of Equipment:	Wireless electronic lock DSC: Remote Control Transmitter
Frequency Range:	315 MHz
Assessment Method:	SAR Exemption based on output power lower than the 1 mW blanket exemption level
Model Number:	TP-101
Dates of Assessment:	September 9, and October 3, 2024
Conducted For:	CompX Timberline 715 Center Street Grayslake, IL 60030, USA

NOTICE: This report contains test data, and/or other information regarding only the sample provided by the client for testing and assessment. This test report shall not be used to claim product approval or endorsement by any governmental, regulatory, or accrediting agency. Please see the "Description of Device" page listed inside of this report.

© Copyright 1983 - 2024 D.L.S. Electronic Systems, Inc.

COPYRIGHT NOTICE

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.

166 South Carter, Genoa City, WI 53128

Company: CompX Timberline
Model Evaluated: TP-101
Exhibit: RF Exposure Compliance
Project Number: 13118
Report Number: 28785 rev1.1

SIGNATURE PAGE

Report By:

Craig Brandt
Test Engineer

Reviewed By:

Brian Mattson
General Manager

Approved By:

Brian Mattson
General Manager

166 South Carter, Genoa City, WI 53128

Company: CompX Timberline
Model Evaluated: TP-101
Exhibit: RF Exposure Compliance
Project Number: 13118
Report Number: 28785 rev1.1

Table of Contents

i.	Cover Page	1
ii.	Signature Page	2
iii.	Table of Contents.....	3
iv.	ANAB Certificate of Accreditation	4
1.0	Transmitter Information.....	5
2.0	Rule Part.....	5
3.0	Assessment Procedure	6
4.0	SAR Test Exemption Limit	6
5.0	Output Power	6
6.0	Assessment Results.....	7
7.0	Test Equipment	7
8.0	Conclusion	8
	Section A – Measurement Data	9
	Section B – Available Output Power Information.....	9
	Section C – Chipset Manufacturer’s Transmitter Specifications.....	10
	Section D – Measurement Uncertainty	31

166 South Carter, Genoa City, WI 53128

Company: CompX Timberline
Model Evaluated: TP-101
Exhibit: RF Exposure Compliance
Project Number: 13118
Report Number: 28785 rev1.1

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

DLS Electronic Systems, Inc.

**1250 Peterson Drive
Wheeling, IL 60090**

(and satellite locations as shown on the scope)

Fulfills the requirements of

ISO/IEC 17025:2017

and

**U.S. Federal Communication Commission (FCC) EMC and Telecommunications (EC&T)
Testing Designation Program**

and

**Recognition of Telecommunications Testing - Innovation, Science, and Economic Development
(ISED) Canada**

and

**FDA Accreditation Scheme for Conformity Assessment (ASCA) Pilot Program -Basic Safety
and Essential Performance of Medical Electrical Equipment, Medical Electrical Systems, and
Laboratory Medical Equipment**

In the field of

TESTING

This certificate is valid only when accompanied by a current scope of accreditation document.
The current scope of accreditation can be verified at www.anab.org

Jason Stine, Vice President
Expiry Date: 23 April 2026
Certificate Number: AT-1859

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory
quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SATELLITE SITE

DLS Electronic Systems, Inc. (OATS Site)

166 South Carter
Genoa City, Wisconsin 53128
www.dlsemc.com

166 South Carter, Genoa City, WI 53128

Company: CompX Timberline
Model Evaluated: TP-101
Exhibit: RF Exposure Compliance
Project Number: 13118
Report Number: 28785 rev1.1

1.0 Transmitter Information

Maximum Effective Radiated Power ERP (measured)	-22.45 dBm
Antenna Type:	PCB Trace Loop
Antenna Gain:	Unknown
Maximum Available Power delivered to antenna (per transmitter chipset manufacturer's published specifications document)	-3.8 dBm
Manufacturer's declared RF output tolerance due to production and tune-up procedures	+/- 1.0 dBm
Maximum EIRP derived from maximum available power plus maximum tolerances:	-2.8 dBm EIRP
Transmit Frequency:	315 MHz

2.0 Rule Part

Title 47 CFR Part 1.1307(b)(3)(i)(A)
Title 47 CFR Part 2.1093(c)(1)
FCC KDB 447498 D04 Interim General RF Exposure Guidance v01

166 South Carter, Genoa City, WI 53128

Company: CompX Timberline
Model Evaluated: TP-101
Exhibit: RF Exposure Compliance
Project Number: 13118
Report Number: 28785 rev1.1

3.0 Assessment Procedure

Exemption based on maximum output power under 1 mW

FCC KDB 447498 D04 Interim General RF Exposure Guidance v01

- 2.1.1 General RF Exposure Test Exemption Considerations
- 2.1.2 1 mW Test Exemption
- Appendix B Exemptions for Single RF Sources
- B.2 1 mW Blanket Exemption

ANSI C63.10-2020

Section 6.3.3 Radiated total peak emission level
(RBW \geq 6 dB Emission Bandwidth)

Section G.5.3 EUT power measured in a radiated test configuration using signal
(antenna) substitution

4.0 SAR Test Exemption Limit

Per FCC Title 47 CFR Part 1.1307(b)(3)(i)(A), the device is exempt from SAR testing if the available maximum time-averaged output power is less than **1 mW**, regardless of separation distance.

5.0 Output Power

Measured Radiated Power:

The maximum Effective Radiated Power (ERP) measured -22.45 dBm = **0.006 mW** ERP.

166 South Carter, Genoa City, WI 53128

Company: CompX Timberline
Model Evaluated: TP-101
Exhibit: RF Exposure Compliance
Project Number: 13118
Report Number: 28785 rev1.1

5.0 Output Power – continued

Maximum Available Power:

The maximum available output power delivered to the antenna is -3.8 dBm. See Section B of this report to see how this number was derived.

The manufacturer's declared RF output power tolerance due to component, tune-up and production is +/-1.0 dBm. When including this tolerance, the calculated maximum EIRP derived from the maximum available power delivered to the antenna is calculated as follows:

$$-3.8 \text{ dBm} + 1.0 \text{ dBm tolerance} = -2.8 \text{ dBm EIRP}$$

A -2.8 dBm EIRP (by correcting for the -2.15 dB gain of a half-wave dipole) calculates to an Effective Radiated Power of -4.95 dBm ERP, referenced to a half-wave dipole. Converting to mW, -4.95 dBm ERP = **0.32 mW** ERP.

6.0 Assessment Results

The maximum available output power (including maximum tolerances) of 0.32 mW, and the maximum peak output power (measured ERP) of 0.006 mW, are under the 1 mW test exemption level.

SAR measurement is not necessary.

7.0 Test Equipment

D.L.S. Wisconsin – Radiated Fundamental – Site 2 – Test Equipment:

Description	Manufacturer	Model Number	Serial Number	Frequency Range	Cal Dates	Cal Due Dates
Receiver	Rohde & Schwarz	ESW-44	103075	2 Hz - 44 GHz	3-29-23	3-29-25
Antenna	EMCO	3146	1604	200 MHz - 1 GHz	3-13-24	3-13-26
Cable	Coleman Cable	991079	CBL-122	9 kHz - 1 GHz	4-7-24	4-7-25
Test Software	ETS Lindgren	TILE	v7.8.1.7	N/A	N/A	N/A
Signal Generator	Rohde & Schwarz	SMT03	825012/012	5 kHz - 3 GHz	3-28-23	3-28-25
Cable	Coleman Cable	991079	CBL-030	9 kHz - 1 GHz	4-7-24	4-7-25
Tuned Dipole	Com-Power	AD-100	40139	180 MHz – 400 MHz	N/A	9-7-25

166 South Carter, Genoa City, WI 53128

Company: CompX Timberline
Model Evaluated: TP-101
Exhibit: RF Exposure Compliance
Project Number: 13118
Report Number: 28785 rev1.1

8.0 Conclusion

With a minimum separation distance less than 5 mm, this is a *portable* device as defined by FCC KDB 447498 D04 Interim General RF Exposure Guidance v01. The CompX Timberline Stealth Lock Transmitter Pad, model TP-101, meets the SAR test exemption based on the worst-case maximum effective radiated power (ERP) of the device. The maximum available output power of the transmitter is lower than the 1 mW blanket exemption level for portable devices operating in a general population environment.

This device complies with the RF exposure requirements of FCC Title 47 CFR Part 1.1307(b)(3)(i)(A) and Part 2.1093(c)(1).

166 South Carter, Genoa City, WI 53128

Company: CompX Timberline
 Model Evaluated: TP-101
 Exhibit: RF Exposure Compliance
 Project Number: 13118
 Report Number: 28785 rev1.1

Section A – Measurement Data

Company: CompX
 Operator: cbrandt
 Date of test: 09-09-2024
 Temperature: 72 deg. F
 Humidity: 46% R.H.
 DLS Proj. #13118
 DLS OATS Site 2
 NOTE: Detector Bandwidth: 120 kHz

ERP - Substitution Method - Detector: MAX-PEAK

Model: Stealth Lock Transmitter Pad, Model: TP-101							
Channel: 315 MHz							
Frequency and Polarization (MHz)	Max. Field Strength of EUT @ 3 meters (dBuV/m)	Output of Signal Generator when field strength equals that of EUT (dBm)	Correction factor for cable between Signal Gen. and subst. antenna (dB)	Gain of subst. antenna (dBi)	Strength of emission [ERP] (dBm)	Limit (dBm)	Margin (dB)
315.06 Vertical	73.92	-18.5	3.95	2.15	-22.45	N/A	N/A
315.06 Horizontal	75.51	-20.7	3.95	2.15	-24.65	N/A	N/A

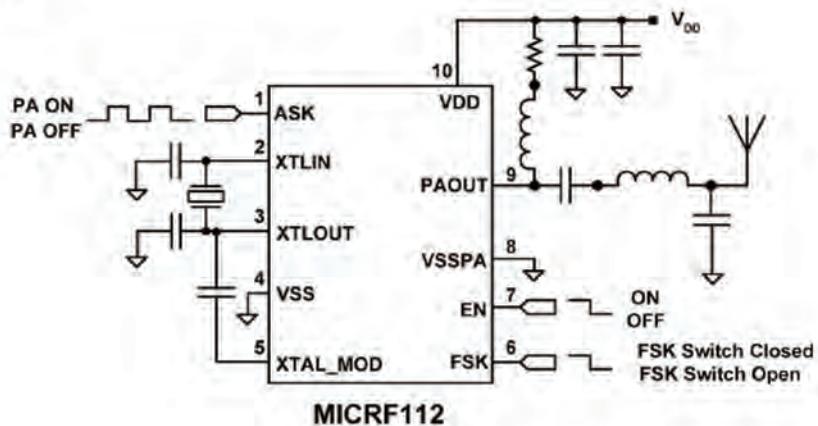
Section B – Available Output Power Information

The available output power level of -3.8 dBm used in this assessment is derived from the chipset manufacturer's published documentation when the circuit design uses a 1,000 Ohm external power control resistor (see Section C of this report).

Resistor R7 in the test circuit corresponds to resistor R14 of the EUT circuit (compare schematic diagram of chip manufacturer's test circuit shown in Figure 4 on page 13 (Section C of this report) with the resistor R14 in the EUT schematic diagram exhibit).

Table 2 on page 13 of the chipset manufacturer's specifications document indicates an output power of -3.8 dBm when a 1,000 Ohm resistor is used for the Power Control Resistor (R7).

General Description


The MICRF112 is a high-performance, easy to use, true "Data-In, RF-Out," ASK/FSK, phase-locked loop (PLL) based, transmitter IC for applications in the 300MHz to 450MHz frequency range. These applications include remote keyless entry (RKE) and tire pressure monitoring (TPMS). The device needs only a low-cost crystal to precisely set the desired RF frequency, and a few external components for matching the power amplifier output to the antenna.

The MICRF112 operates over the 1.8V to 3.6V operating range and delivers +10dBm (CW) output power into a 50Ω load, while consuming 11.5mA of supply current from a 3.0V power supply. In ASK mode, the device consumes 6.9mA of supply current at a data rate of 1kbps (Manchester 50%). It features a low-power shutdown mode in which the device typically consumes 50nA of supply current. This makes it an ideal solution for battery powered applications.

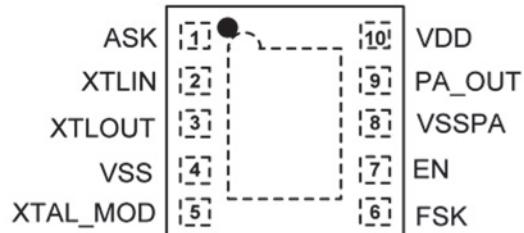
The MICRF112 is rated for the -40°C to +125°C temperature range, and is available in 10-pin MSOP and 10-pin Ultra-Thin DFN packages. For automotive applications, where AEC-Q100 qualification is required, consider the MAQRF112. For ASK-only applications that do not require shutdown, consider the MICRF113 in SOT23-6.

Datasheets and support documentation can be found on Micrel's website at: www.micrel.com.

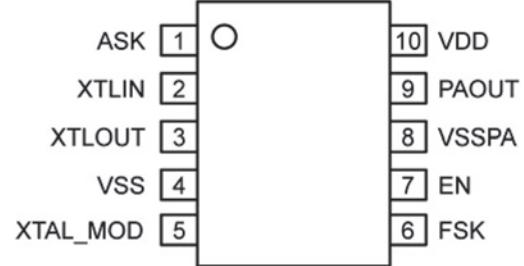
Typical Application

Features

- 1.8V to 3.6V supply voltage range
- Up to +10dBm output power (CW)
- 6.9mA supply current at 1kbps ASK (50% Manchester)
- 11.5mA supply current at +10dBm (FSK/CW)
- 1µA shutdown supply current
- Data rates up to 50kbps ASK, 10kbps FSK
- Crystal or ceramic resonators sets RF frequency
- -40°C to +125°C temperature range
- 10-pin MSOP (3.0mm x 4.9mm)
- 10-pin Ultra-Thin DFN (2mm x 2mm x 0.4mm)


Applications

- Remote keyless entry systems (RKE)
- Remote control (STB, HVAC, and appliances)
- Garage door openers (GDO)
- Tire pressure monitor systems (TPMS)
- Outdoor weather stations
- Security/Alarm systems
- Lighting and fan remote controls
- Doorbells
- Irrigation control


Ordering Information

Part Number	Top Mark	Temp. Range	Package
MICRF112YMM	RF112YMM	-40°C to +125°C	10-Pin MSOP
MICRF112YMU	12B	-40°C to +125°C	10-Pin UDFN

Pin Configuration

10-Pin Ultra-Thin DFN (MU)
(2mm x 2mm x 0.4mm)
Top View

10-Pin MSOP (MM)
Top View

Note: The Pin1 marking symbol could be a circle, triangle, or other symbol.

Pin Description

Pin Number	Pin Name	Pin Function
1	ASK	ASK Data input
2	XTLIN	Reference oscillator input connection
3	XTLOUT	Reference oscillator output connection
4	VSS	Ground
5	XTAL_MOD	Reference oscillation modulation port for FSK operation
6	FSK	FSK Data input
7	EN	Chip enable, active high
8	VSSPA	PA ground
9	PAOUT	PA output
10	VDD	Positive power supply

Absolute Maximum Ratings⁽¹⁾

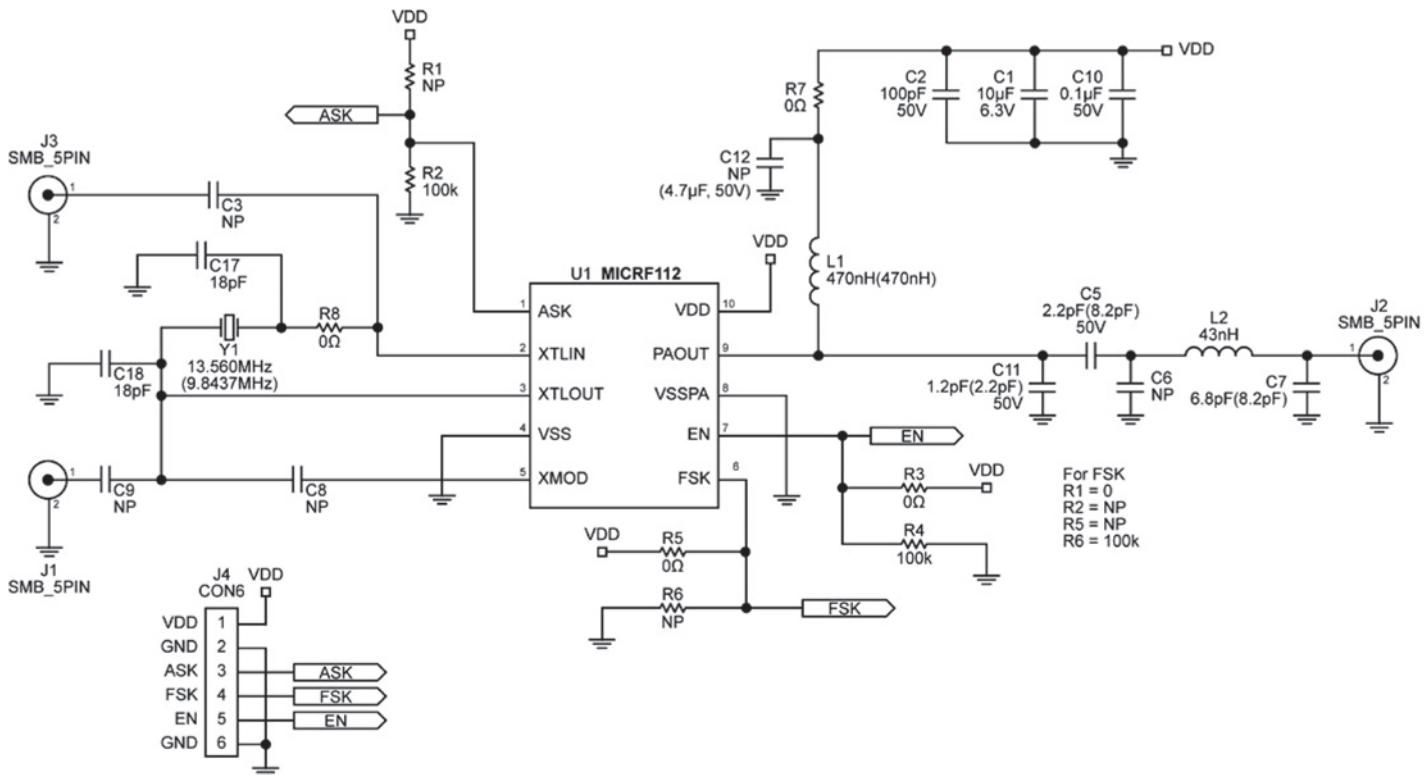
Supply Voltage (VDD).....	+4.3V
Voltage on PAOUT.....	+7.2V
Voltage on I/O Pins	VSS – 0.3 to VDD + 0.3
Lead Temperature (soldering, 10s).....	+300°C
Storage Temperature (T _S).....	–65°C to +150°C
ESD Rating.....	Note 3

Operating Ratings⁽²⁾

Supply Voltage (VDD).....	1.8V to 3.6V
Ambient Operating Temperature (T _A)	–40°C to +125°C
Transmitter Frequency Range	300MHz to 450MHz

Electrical Characteristics⁽⁴⁾

Specifications apply for VDD = 3.0V, T_A = 25°C, Freq_{REFOSC} = 13.560MHz, EN = VDD. 1Kbps data rate, 50% duty cycle. R_L 50Ω load (matched)

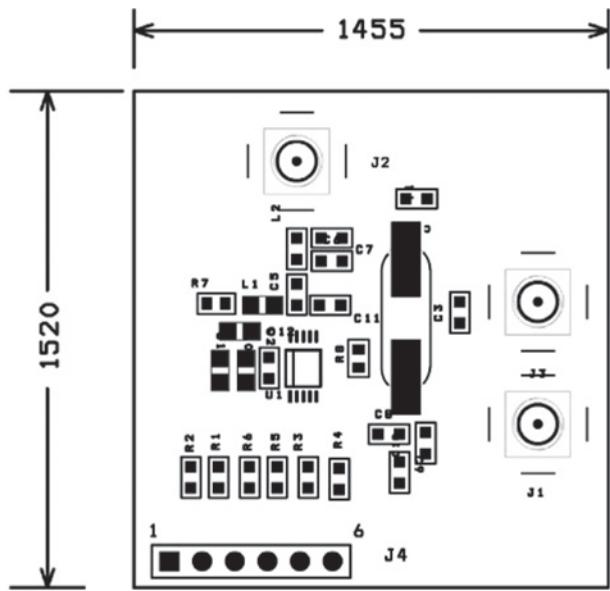

Parameter	Condition	Min.	Typ.	Max.	Units
Power Supply					
Standby Supply Current, I _Q	EN = V _{SS}		0.05	1	µA
Mark Supply Current I _{ON}	@ 315MHz, P _{OUT} = +10dBm		11.5		mA
	@ 433.92MHz, P _{OUT} = +10dBm		11.6		mA
SPACE Supply Current, I _{OFF}	@ 315MHz		2.4		mA
	@ 433.92MHz		2.7		mA
RF Output Section and Modulation Limits:					
Output Power Level, P _{OUT} FSK or ASK "Mark"	@ 315MHz ⁽⁴⁾		10		dBm
	@ 433.92MHz ⁽⁴⁾		10		dBm
Harmonics output for 315MHz	@ 630MHz ⁽⁴⁾ 2nd harm.		–53		dBc
	@ 945MHz ⁽⁴⁾ 3rd harm.		–53		dBc
Harmonics Output for 433.92MHz	@ 867.84MHz ⁽⁴⁾ 2nd harm.		–51		dBc
	@ 1301.76MHz ⁽⁴⁾ 3rd harm.		–65		dBc
Extinction Ratio for ASK			80		dBc
FSK Modulation					
Frequency Deviation	Load capacitor = 10pF, crystal type = HC49/U		22		kHz
Data Rate				10	Kbps
ASK Modulation					
Data Rate				50	Kbps
Occupied Bandwidth	@ 315MHz ⁽⁵⁾		<700		kHz
	@ 433.92MHz ⁽⁵⁾		<1000		kHz
VCO Section					
315MHz Single Side Band Phase Noise	@ 100kHz from Carrier		–76		dBc/Hz
	@ 1000kHz from Carrier		–79		dBc/Hz
433.92MHz Single Side Band Phase Noise	@ 100kHz from Carrier		–72		dBc/Hz
	@ 1000kHz from Carrier		–81		dBc/Hz
Reference Oscillator Section					
XTLIN, XTLOUT, XTLMOD	Pin capacitance		2		pF
External Capacitance	See Schematic C17 & C18		18		pF
Oscillator Start-Up Time ⁽⁶⁾	Crystal: HC49S		400		µs

Parameter	Condition	Min.	Typ.	Max.	Units
Digital/Control Section					
Output Blanking	STDBY transition from low to high		500		μs
Digital Input (EN, ASK, and FSK)	High (V_{IH})	$0.8 \times V_{DD}$			V
	Low (V_{IL})			$0.2 \times V_{DD}$	V
Digital Input Leakage Current (EN, ASK, and FSK Pins)	High (V_{IH})		0.05		μA
	Low (V_{IL})		0.05		μA
Undervoltage Lock Out (UVLO)			1.6		V

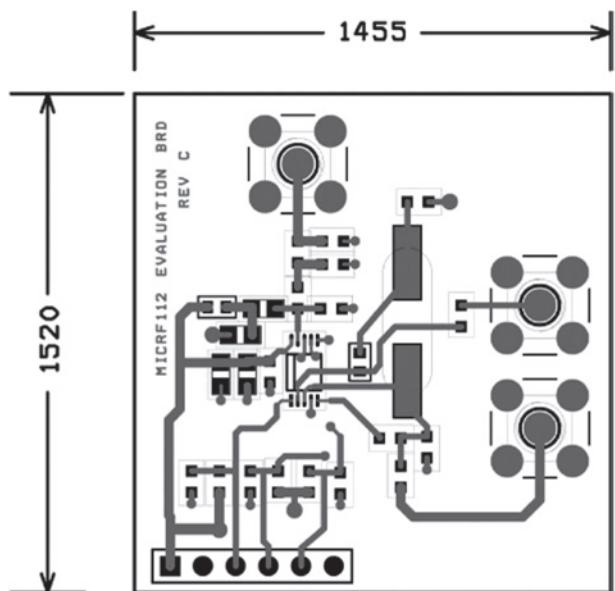
Notes:

1. Exceeding the absolute maximum rating may damage the device.
2. The device is not guaranteed to function outside its operating ratings.
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
4. Measured using the circuit shown in the "Test Circuit" section.
5. RBW = 100kHz, OBW measured at -20dBc.
6. Dependent on crystal.

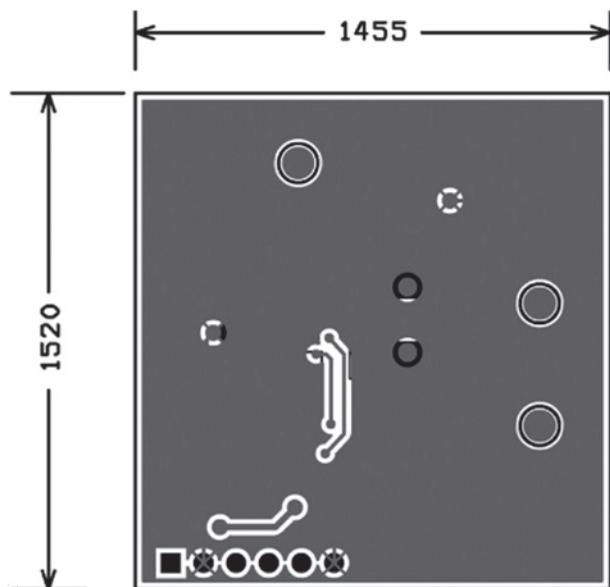
Test Circuit



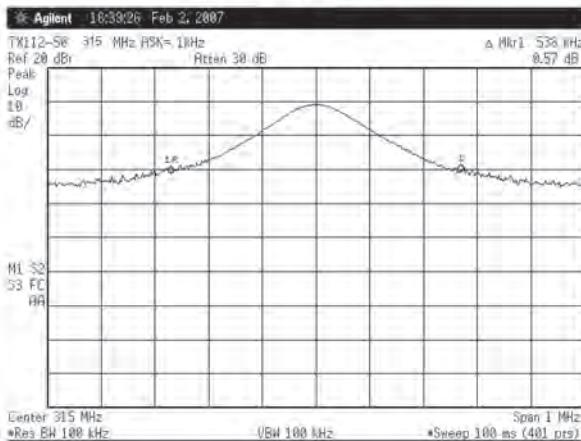
MICRF112 Test Circuit with 50Ω Output (MSOP)

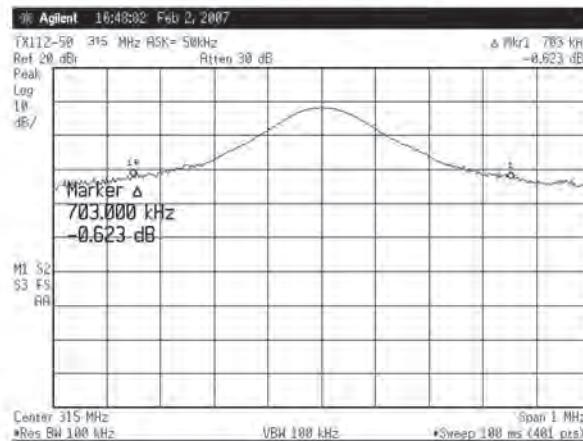

Notes:

1. Values without parenthesis are for 433.92MHz and values in parenthesis are for 315MHz.
2. C9 = 100pF for external REF-OSC.
3. For FSK R1 = 0Ω, R2 = NP, R5 = NP, and R6 = 100k.

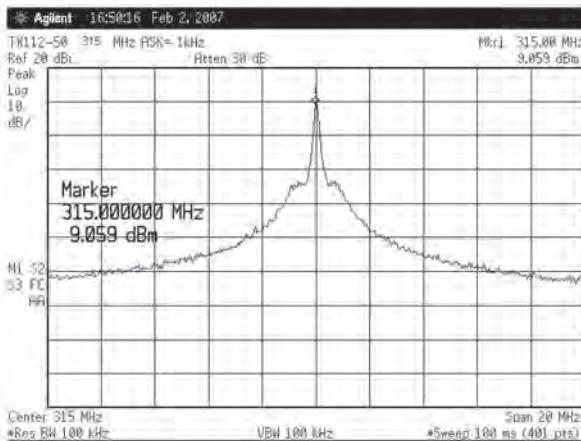

50Ω Evaluation Board PCB Layout

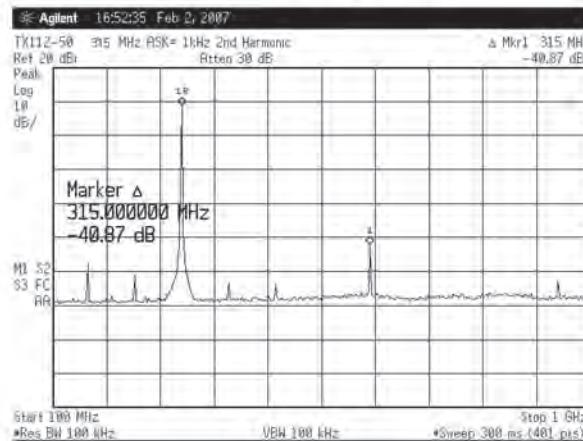
Assembly Drawing
MICRF112 50Ω Evaluation Board (MSOP)

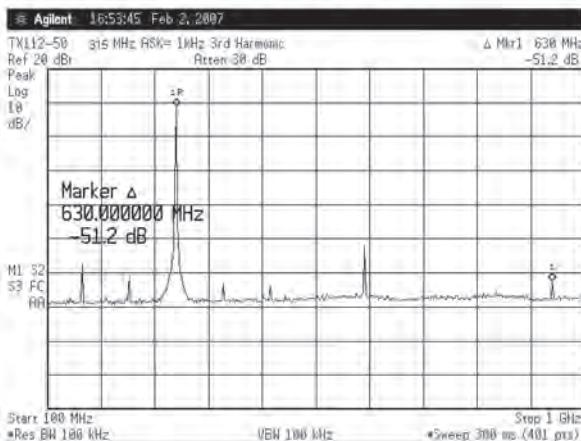

Top Layer
MICRF112 50Ω Evaluation Board (MSOP)

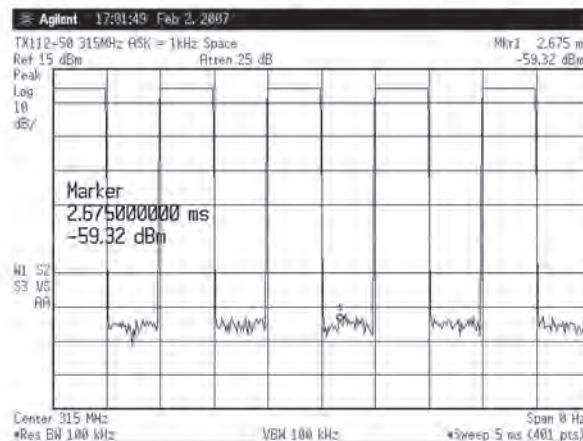

Bottom Layer
MICRF112 50Ω Evaluation Board (MSOP)

Typical Characteristics Using MICRF112, 50Ω Evaluation Board (MSOP)


315MHz OBW, ASK = 1kHz

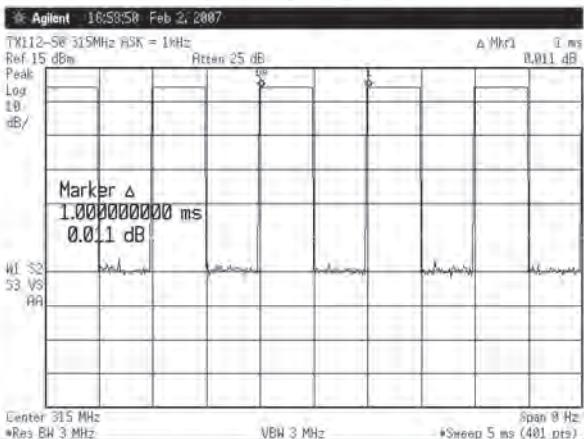

315MHz OBW, ASK = 50kHz


CW Max Power @ 3V_D, 315MHz, ASK = 1kHz⁽¹⁾

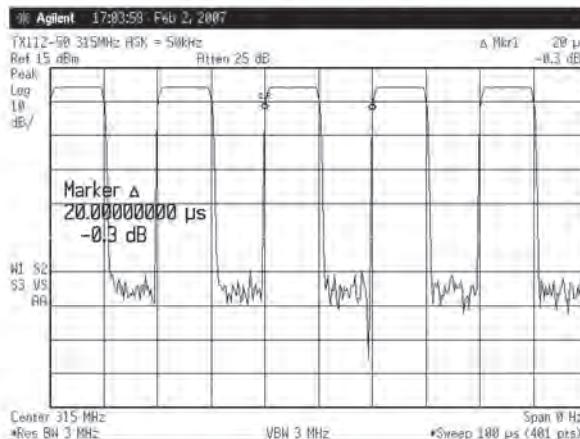
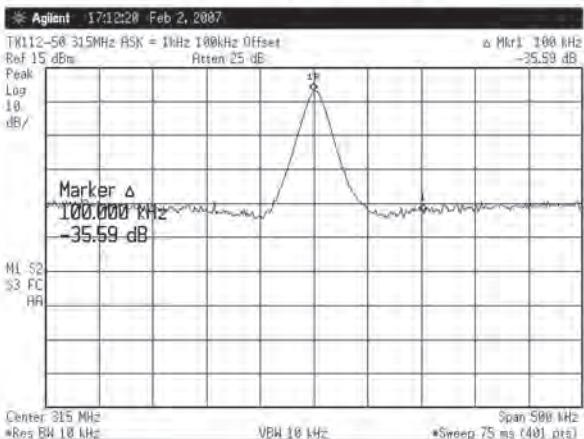
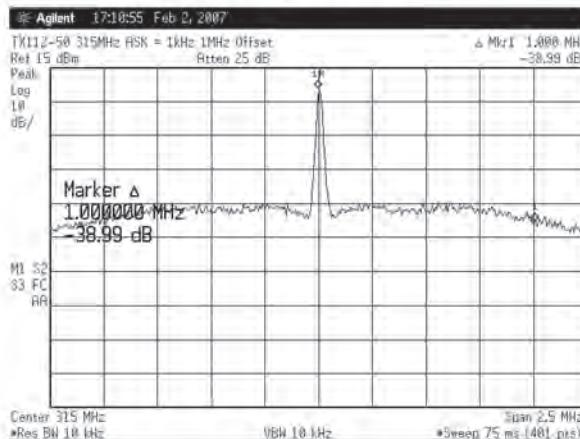
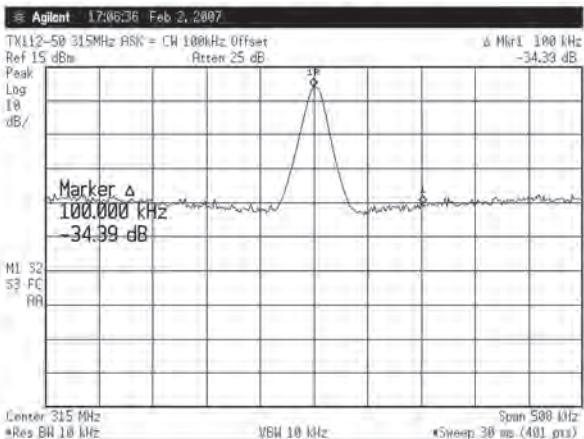
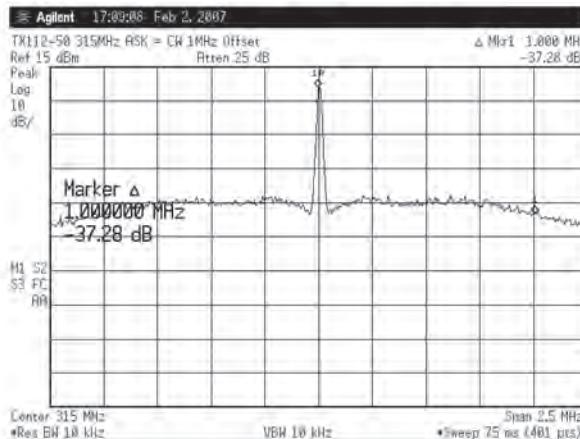

RF Spectrum 2nd Harmonic; Fundamental at 315MHz

RF Spectrum 3rd Harmonic; Fundamental at 315MHz

315MHz, Power Level at Space, VDD = 3.0V, ASK = 1kHz

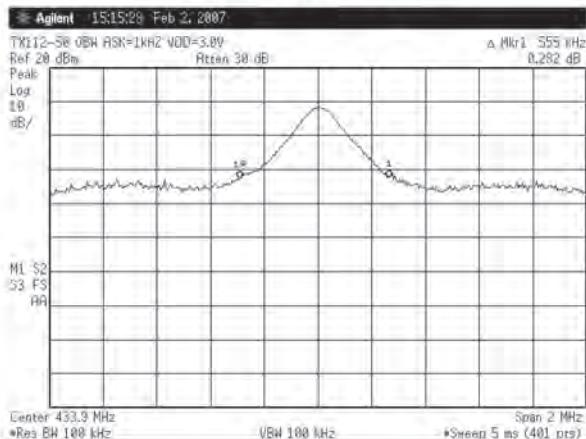


Note:

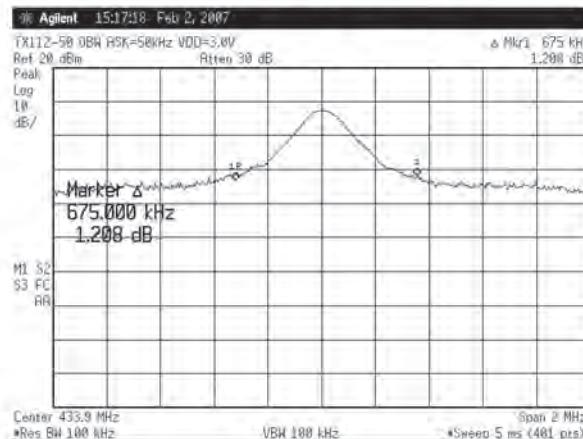
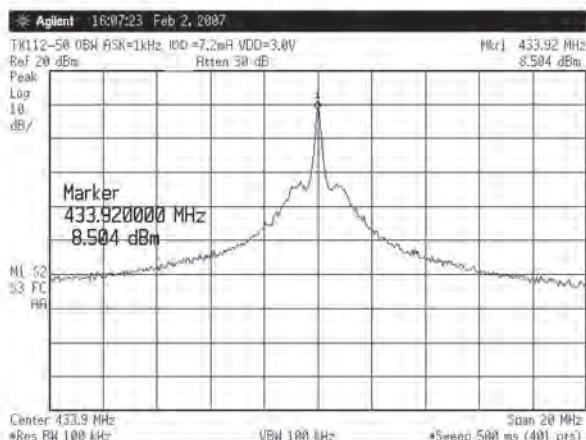
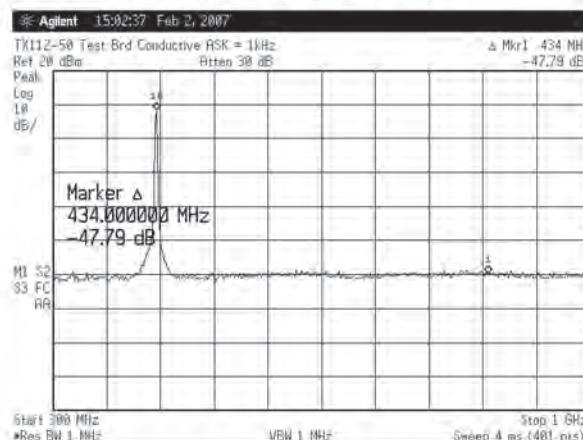
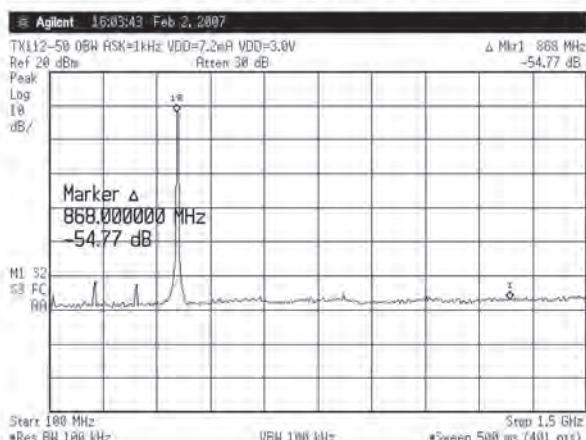





1. 1.2dB cable loss.

Typical Characteristics Using MICRF112, 50Ω Evaluation Board (MSOP) (Continued)

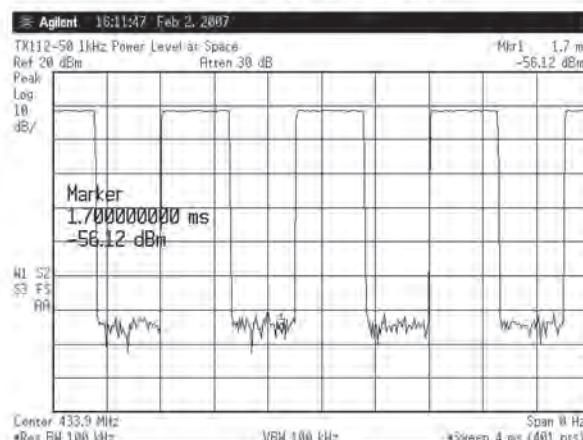
315MHz, Zero Span, ASK = 1kHz



315MHz, Zero Span, ASK = 50kHz





315MHz, Phase Noise, ASK = 1kHz,
100kHz Offset, -75.59dBc/Hz315MHz, Phase Noise, ASK = 1kHz,
1MHz Offset, -78.99dBc/Hz315MHz, Phase Noise, ASK = CW,
100kHz Offset, -74.39dBc/Hz315MHz, Phase Noise, ASK = CW,
1MHz Offset, -77.28dBc/Hz

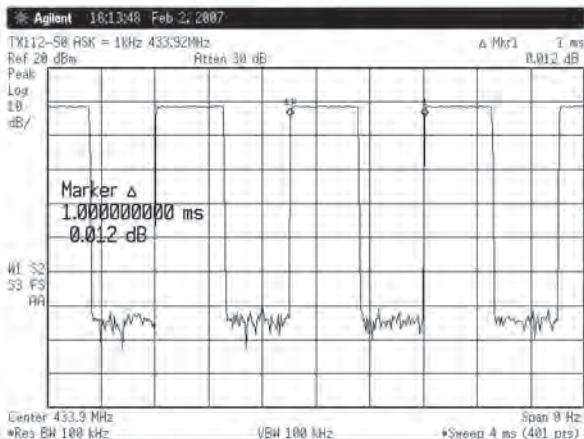
Typical Characteristics Using MICRF112, 50Ω Evaluation Board (MSOP) (Continued)


433.92MHz OBW, ASK = 1kHz

433.92MHz OBW, ASK = 50kHz

433.92MHz, CW Max Power @ 3V, ASK = 1kHz⁽¹⁾RF Spectrum 2nd Harmonic; Fundamental at 433.92MHzRF Spectrum 3rd Harmonic; Fundamental at 433.92MHz

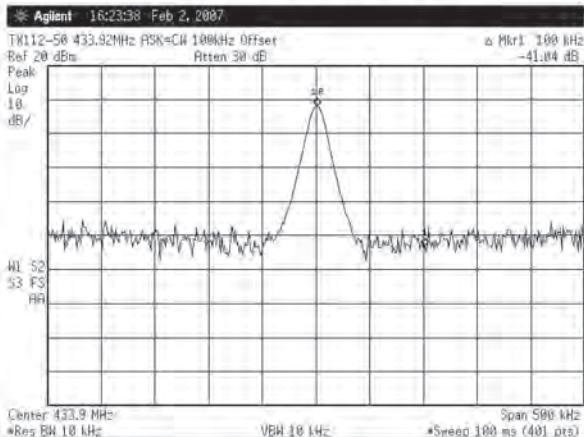
433.92MHz, Power Level at Space, VDD = 3.0V, ASK = 1kHz



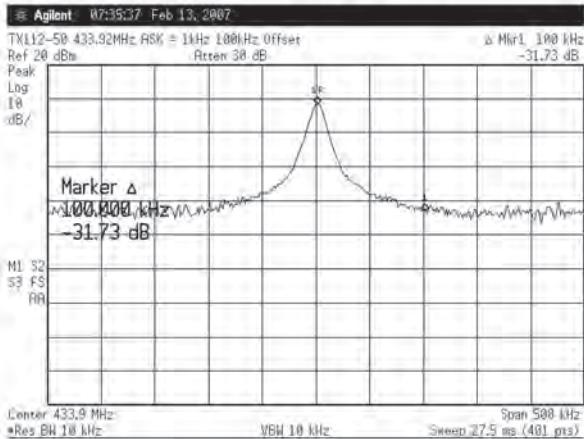
Note:

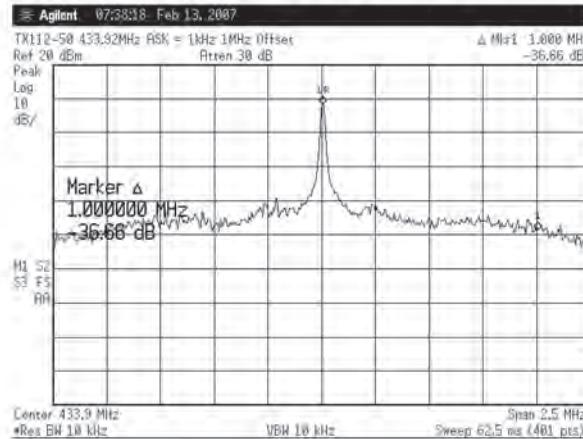
- 1.3dB cable loss.

Typical Characteristics Using MICRF112, 50Ω Evaluation Board (MSOP) (Continued)


433.92MHz Zero Span, 1kHz


433.92ASK Zero Span at 50kHz


433.92MHz Phase Noise, ASK = CW, 100kHz Offset, -81.04dBc/Hz


433.92MHz Phase Noise, ASK = CW, 1MHz Offset, -78.76dBc/Hz

433.92MHz Phase Noise, ASK = 1kHz, 100kHz Offset, -71.73dBc/Hz

433.92MHz Phase Noise, ASK = 1kHz, 1MHz Offset, -81.04dBc/H

Functional Diagram

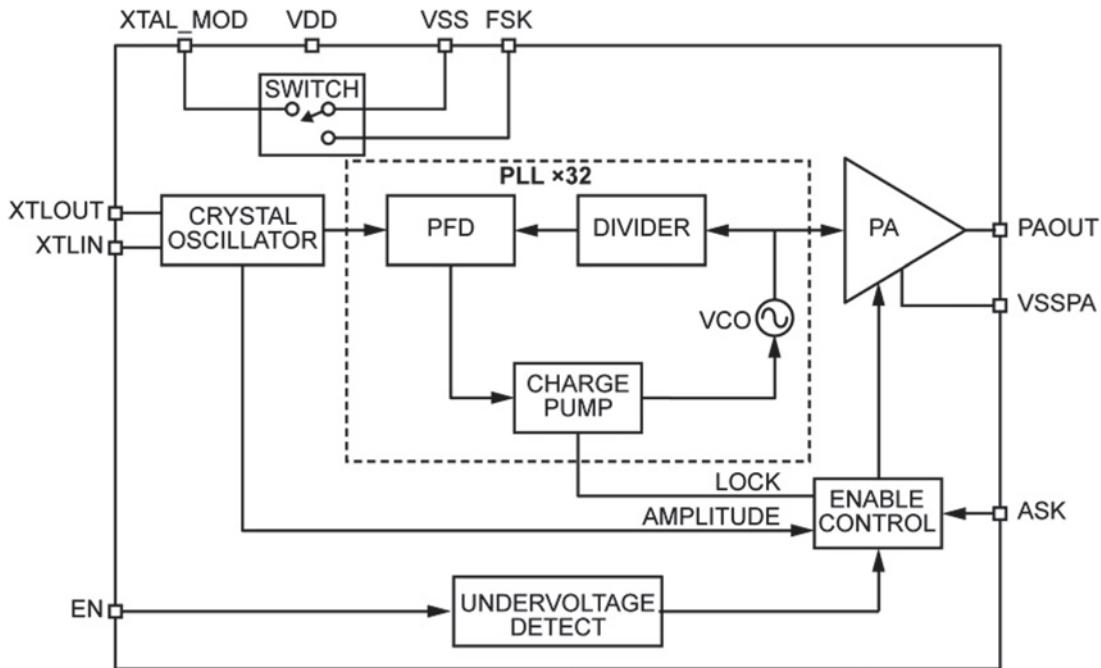


Figure 1. Functional Block Diagram MICRF112 10 Pin ASK/FSK Version

Functional Description

Figure 1 shows a functional block diagram of the MICRF112 transmitter. The MICRF112 can be best described as a phase-locked transmitter. The system can be partitioned into six functional blocks: crystal oscillator, PLL \times 32, power amplifier, enable control, undervoltage detect, and open-drain switch for FSK operation.

Crystal Oscillator

The reference oscillator is a crystal-based Pierce configuration. It is designed to accept crystals with frequencies from 9.375MHz to 14.0625MHz.

Crystal Oscillator Parameters for ASK Operation

Figure 2 shows a reference oscillator circuit configuration for ASK operation. The reference oscillator can drive crystals with an ESR range from 20Ω to 300Ω .

When the ESR of the crystal is at 20Ω , the crystal parameter limits are:

ESR	20Ω
C_{PAR}	2 to 10pF
C_{MO}	10 to 40fF

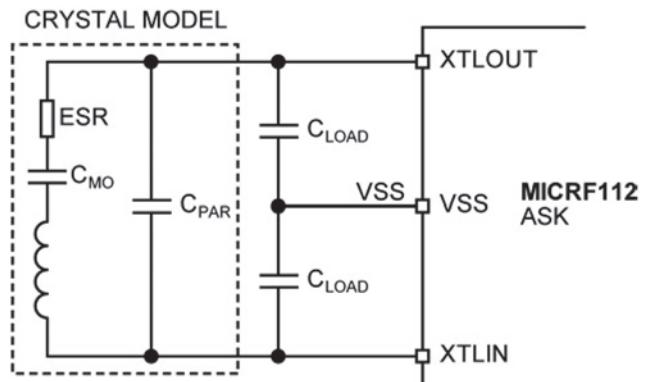


Figure 2. Reference Oscillator ASK Operation

When the ESR of the crystal is at 300Ω , the crystal parameter limits are:

ESR	300Ω
C_{PAR}	2 to 5pF
C_{MO}	10 to 40fF
C_{LOAD}	10 to 30pF

Crystal Oscillator for FSK Operation

Figure 3 shows the reference oscillator circuit configuration for FSK operation. To operate the MICRF112 in FSK mode, one additional capacitor is needed between XTLOUT pin and the XTAL_MOD pin. Crystal parameters for FSK operation are the same as for ASK operation except:

- When the ESR of crystal is at 20Ω , $C_{FSK} + C_{LOAD}$ must not exceed 70pF .
- When the ESR of crystal is at 300Ω , $C_{FSK} + C_{LOAD}$ must not exceed 30pF .

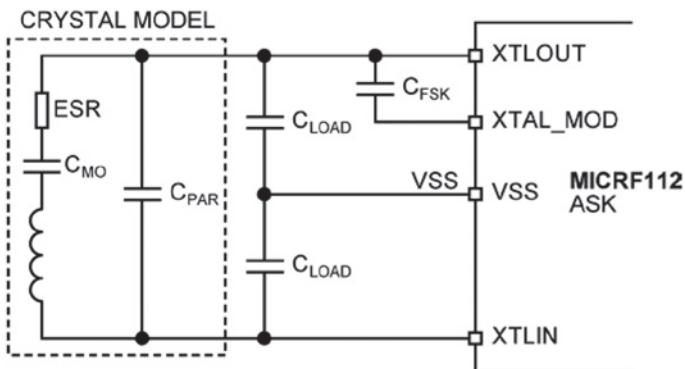


Figure 3. Reference Oscillator FSK Operation

PLLx32

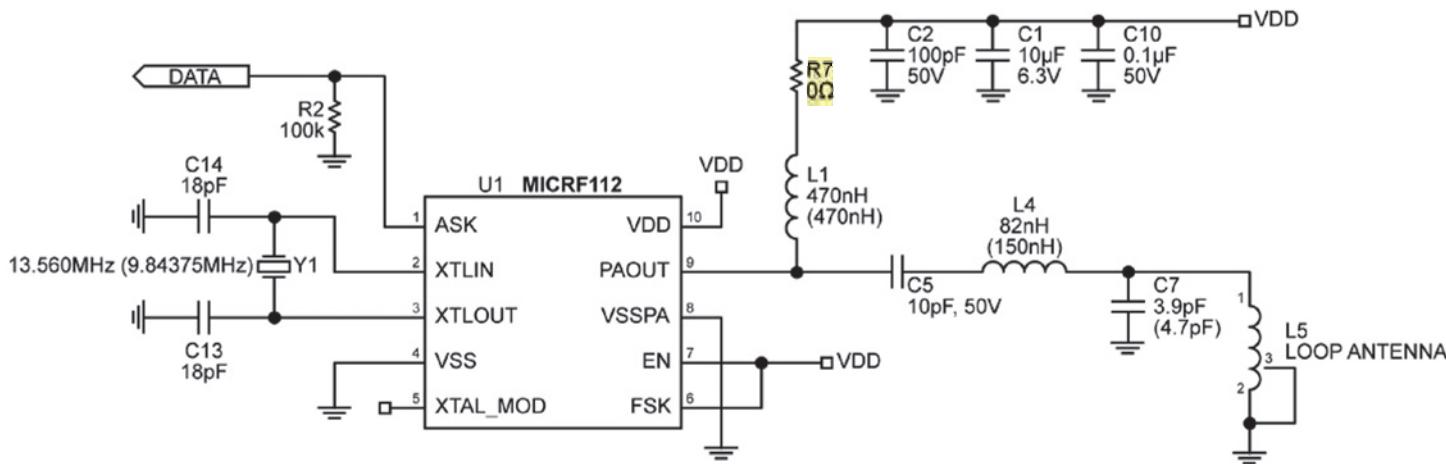
The function of PLLx32 is to provide a stable carrier frequency for transmission. It is a “divided by 32” phase-locked oscillator.

Power Amplifier

The power amplifier serves two purposes: to buffer the VCO from external elements and to amplify the phase-locked signal. The power amplifier can produce $+10\text{dBm}$ at 3V (typical).

Enable Control

The enable control gates the ASK data. It only allows transmission when Lock, Amplitude, and Undervoltage Detect conditions are valid.


Undervoltage Detect

The undervoltage detect block senses operating voltage. If the operating voltage falls below 1.6V, the undervoltage detect block sends a signal to the enable control block to disable the PA.

Open-Drain Switch

The open-drain switch is used for FSK operation. FSK data is fed into the FSK pin. The FSK pin is connected to the gate of the open-drain switch. The open collector is connected to the XTAL_MOD pin. In Figure 3, a capacitor is shown connected from the XTAL_MOD pin to XTLOUT. When the FSK pin goes high, the capacitor between XTAL_MOD and XTLOUT pulls the frequency of REFOSC low.

Application Information

Figure 4. ASK 433.92MHz and 315MHz (MSOP)

Note: Values in parenthesis are for 315MHz.

The MICRF112 is ideal for driving a 50Ω source monopole or a loop antenna. Figure 4 is an example of a loop antenna configuration. Figure 4 also shows both 315MHz and 433.92MHz ASK configurations for a loop antenna. In addition to using a different crystal, modified values are needed for certain frequencies. These are listed in Table 1.

Frequency (MHz)	L1 (nH)	C5 (pF)	L4 (nH)	C7 (pF)	Y1 (MHz)
315.0	470	10	150	6.8	9.84375
433.92	680	10	82	4.7	13.5600

Table 1. Modified Frequency Values

The reference design shown in Figure 4 has an antenna optimized for using the matching network, as described in Table 1.

Power Control Using an External Resistor

R7 is used to adjust the RF output levels that may be needed to meet compliance. As an example, Tables 2 and 3 list typical values of conducted RF output levels and corresponding R7 resistor values for the 50Ω test board shown in the Test Circuit.

R7, Ω	Output Power, dBm	IDD, mA
0	10	6.7
75	8.5	6.3
100	8.0	6.2
500	1.6	4.13
1000	-3.8	4.87

Table 2. ASK Output Power at 1Kbps (Manchester) vs. External Resistor at 315MHz

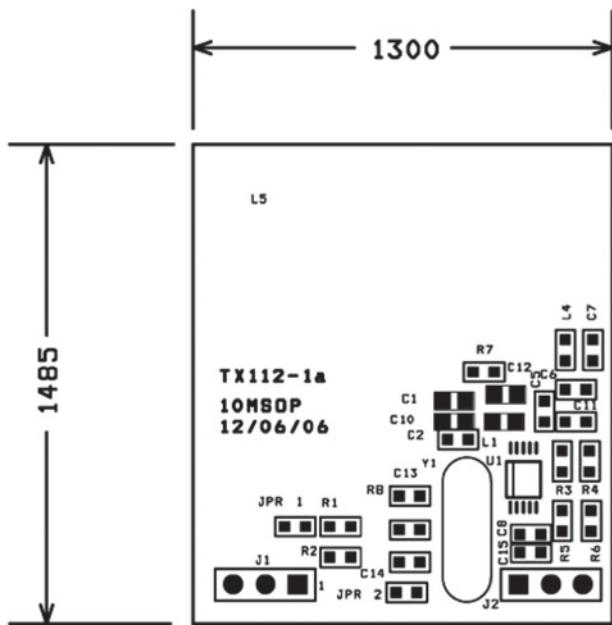
R7, Ω	Output Power, dBm	IDD, mA
0	8.68	7.5
75	8.34	7.33
100	8.02	7.3
500	4.34	6.3
1000	0.42	5.5

Table 3. ASK Output Power at 1Kbps (Manchester) vs. External Resistor at 433.92MHz

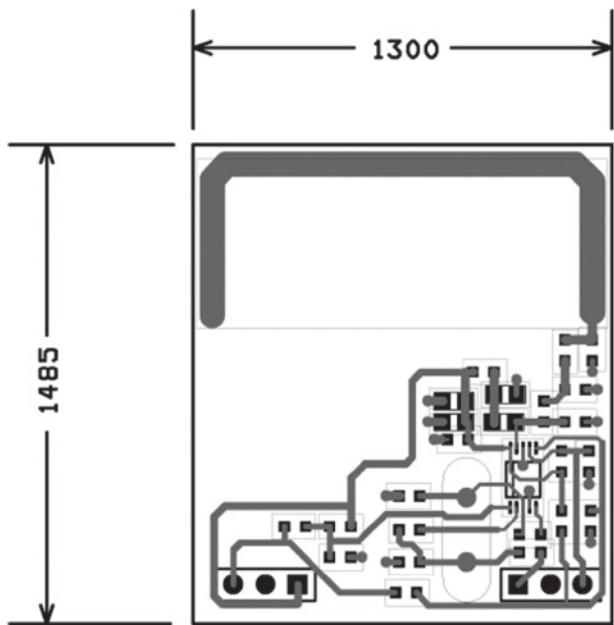
Output Matching Network

Part of the function of the output network is to attenuate the second and third harmonics. When matching to a transmit frequency, be sure not only to optimize for maximum output power but to attenuate unwanted harmonics.

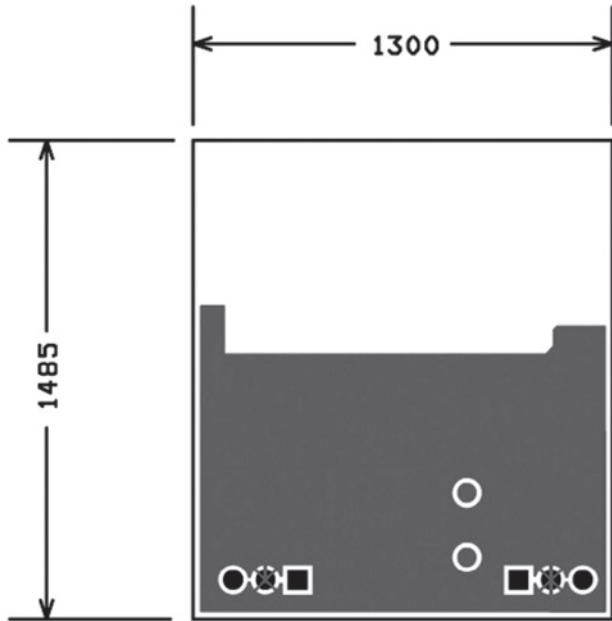
Layout Issues


PCB layout is extremely important to achieve optimum performance and consistent manufacturing results. Be careful with the orientation of the components to ensure that they do not couple or decouple the RF signal. PCB trace length should be short, to minimize parasitic inductance (1in ~ 20nH). For example, depending on inductance values, a 0.5in trace can change the

inductance by as much as 10%. To reduce parasitic inductance, the use of wide traces and a ground plane under signal traces is recommended. Use vias with low value inductance for components requiring a connection to ground.


Antenna Layout

The antenna trace layout affects directivity. No ground plane should be under the antenna trace. For consistent performance, do not place components inside the loop of the antenna. Gerbers for the Evaluation Board PCB, with a suggested layout are available on the Micrel web site at: www.micrel.com.


Demo Board PCB Layout

Assembly Drawing
MICRF112 Evaluation Board (MSOP)

Top Layer
MICRF112 Evaluation Board (MSOP)

Bottom Layer
MICRF112 Evaluation Board (MSOP)

Evaluation Board Schematic

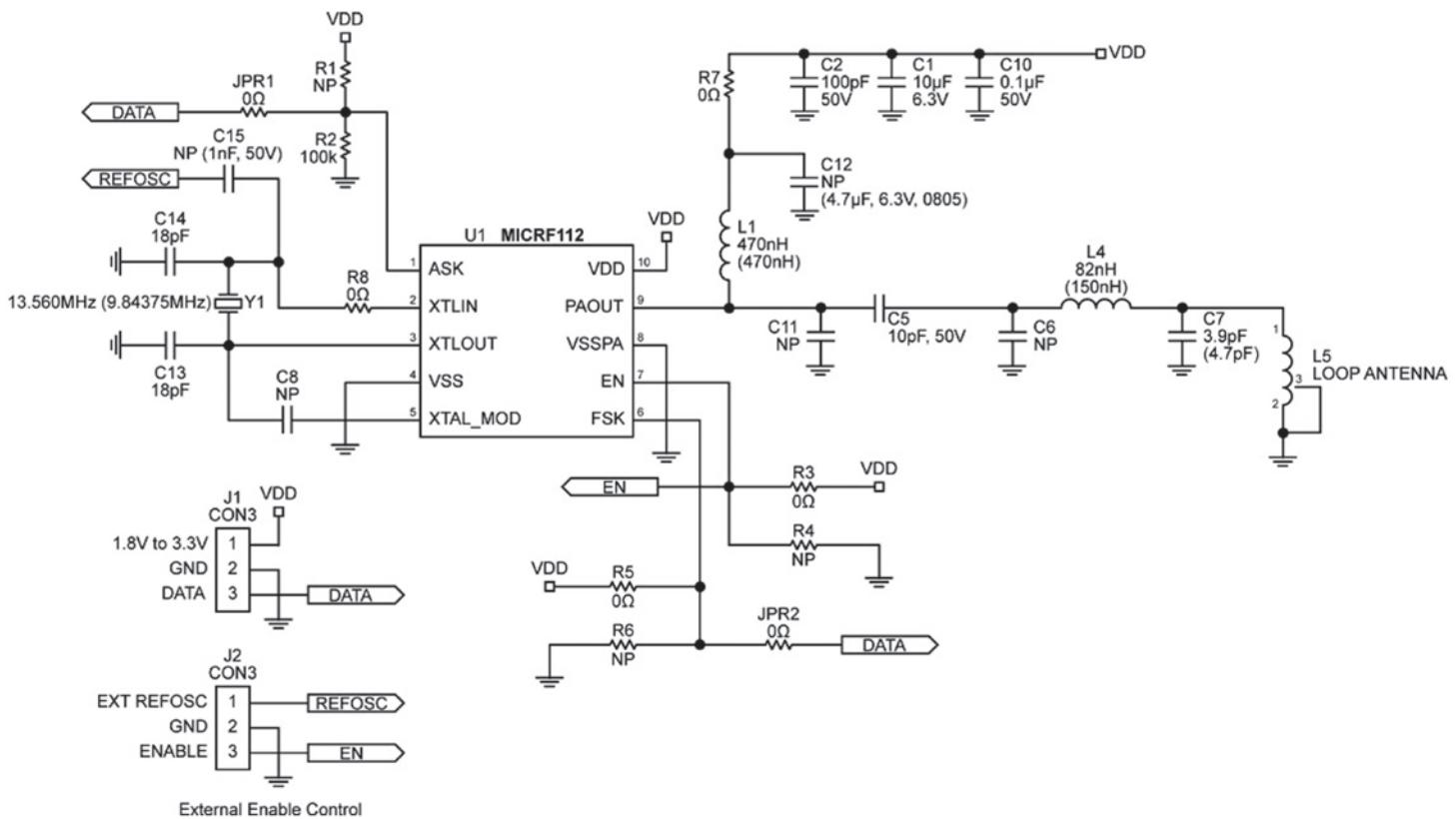


Figure 5. TX112-1 Evaluation Board Schematic (MSOP)

Note: Configuration is for ASK operation. Values in parenthesis are for 315MHz.

Functional Description of the TX112-1 Evaluation Board

The layout of the TX112-1 Evaluation Board PCB is shown on page 15. Figure 5 is a detailed schematic of the TX112-1. Components labeled "NP" use different configurations for FSK operation. Table 2 describes each header pin connector used in the evaluation board.

Pin	Function Name	Functional Description
J1-1	VDD	1.8V to 3.6V
J1-2	Ground	VSS
J1-3	ASK INPUT	Modulating Data Input, ASK or FSK
J2-1	REF-OSC	External Reference Input
J2-2	GROUND	VSS
J2-3	ENABLE	Enable Input, Active High

Table 4. Header Pin Connectors

TX112-1-433.92 ASK Bill of Materials

Item	Part Number	Manufacturer	Description	Qty.
C1	GRM21BR60J106KE01L	Murata ⁽¹⁾	10µF Capacitor, 0805	1
C2	GRM1885C1H101JA01D	Murata	100pF Capacitor, 0603	1
C5	GRM1885C1H100JA01D	Murata	10pF Capacitor, 0603	1
R1,R4,R6				3
C6,C8,C11,C12,C15				5
C7	GRM1885C1H4R7JA01D	Murata	4.7pF Capacitor, 0603	1
C10	GRM188F51H104ZA01D	Murata	0.1µF Capacitor, 0603	1
C13,C14	GRM1885C1H180JA01D	Murata	18pF Capacitor, 0603	2
J1,J2	TSHR-114-S-02-A-GT		CON3	2
L1	0805CS-680XJB	Coilcraft ⁽²⁾	470nH Inductor, 0805	1
L4	0603CS-082NXJB	Coilcraft	150nH Inductor, 0603	1
L5	ANTENNA LOOP, Part of PCB		Antenna	1
R2	CRCW0603100KFKEA	Vishay ⁽³⁾	100kΩ Resistor, 0603	1
R3,R5,R7 R8,JPR1,JPR2	CRC06030000Z0EA	Vishay	0Ω Resistor, 0603	6
U1	MICRF112YMM	Micrel⁽⁴⁾	300MHz to 450MHz, +10dBm ASK/FSK Transmitter with Shutdown	1
Y1	SA-13.5600-F-10-C-3-3	HIB ⁽⁵⁾	13.560MHz XTAL	1

Notes:

1. Murata Tel: www.murata.com.
2. Coilcraft: www.coilcraft.com.
3. Vishay Tel: www.vishay.com
4. **Micrel, Inc.:** www.micrel.com.
5. HIB: www.hib.com.br.

Tx112-1-315MHz ASK Bill of Materials

Item	Part Number	Manufacturer	Description	Qty.
C1	GRM21BR60J106KE01L	Murata ⁽¹⁾	10µF Capacitor, 0805	1
C2	GRM1885C1H101JA01D	Murata	100pF Capacitor, 0603	1
C5	GRM1885C1H1000JA01D	Murata	10pF Capacitor, 0603	1
R1,R4,R6				3
C6,C8,C11,C12,C15				5
C7	GRM1885C1H6R8JA01D	Murata	4.7pF Capacitor, 0603	1
C10	GRM188F51H104ZA01D	Murata	0.1µF Capacitor, 0603	1
C13,C14	GRM1885C1H180JA01D	Murata	18pF Capacitor, 0603	2
J1,J2	TSHR-114-S-02-A-GT		CON3	2
L1	0805CS-470XJB	Coilcraft ⁽²⁾	470nH Inductor, 0805	1
L4	0603CS-R15XJB	Coilcraft	150nH Inductor, 0603	1
L5	ANTENNA LOOP, Part of PCB		Antenna	1
R2	CRCW0603100KFKEA	Vishay ⁽³⁾	100kΩ Resistor, 0603	1
R3,R5,R7 R8,JPR1,JPR2	CRC06030000Z0EA	Vishay	0Ω Resistor, 0603	6
U1	MICRF112YMM	Micrel⁽⁴⁾	300MHz to 450MHz, +10dBm ASK/FSK Transmitter with Shutdown	1
Y1	SA-9.84375-F-10-C-3-3	HIB ⁽⁵⁾	9.84375MHz XTAL	1

Notes:

1. Murata Tel: www.murata.com.
2. Coilcraft: www.coilcraft.com.
3. Vishay Tel: www.vishay.com.
4. Micrel, Inc.: www.micrel.com.
5. HIB: www.hib.com.br.

FSK Operation

The Bill of Materials tables describe the components needed for ASK operation for 433.92MHz and 315MHz.

Table 5 lists the component values that change between ASK and FSK operation. Note that use of a high FSK data rate may excite parasitic resonant modes with some crystal types. Recommended crystals from the Bill of Materials tables are good for both ASK and FSK.

Mode	R1	R2	R5	R6	JPR1	JPR2	C8
ASK	NP	100kΩ	0Ω	NP	0Ω	NP	NP
FSK	0Ω	NP	NP	100kΩ	NP	0Ω	3.3pF ⁽¹⁾ 10pF ⁽²⁾

Notes:

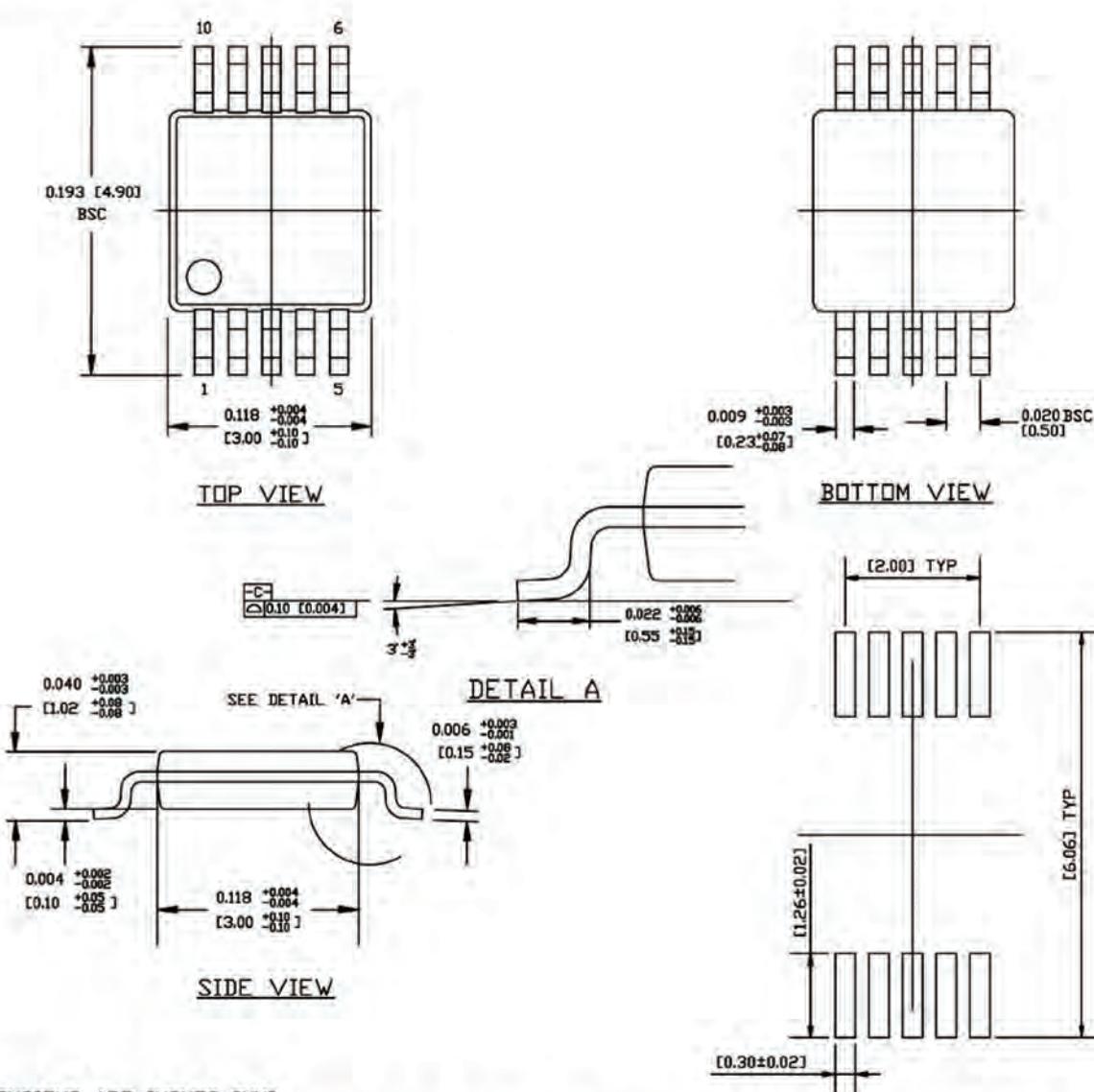
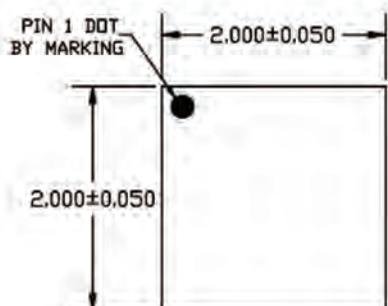
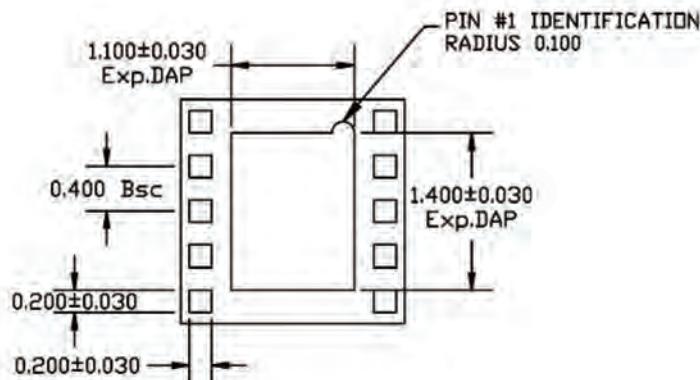

1. C8 = 3.3pF for 1kHz using HC49/U or HC49US type crystals.
2. C8= 10pF for 10kHz using HC49/U, (high profile) only.

Table 5. ASK and FSK Settings

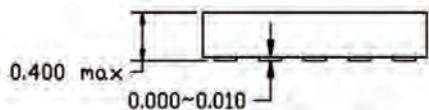
	R3	R4
Constant ON	0Ω	NP
External Standby Control	NP	100kΩ

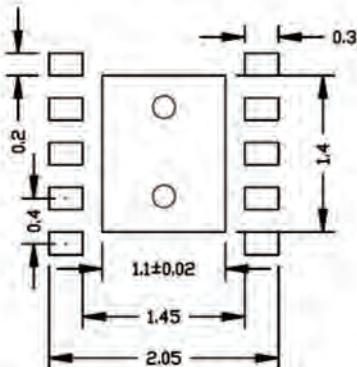
Table 6. Enable Control (Shutdown)


Package Information⁽¹⁾


10-Pin MSOP Package Type (YMM)

Note: The Pin1 marking symbol could be a circle, triangle, or other symbol. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.


Package Information⁽¹⁾ (Continued)


TOP VIEW
NOTE: 1,2,3,4

BOTTOM VIEW
NOTE: 1,2,3,4

SIDE VIEW
NOTE: 1,2,3,4

RECOMMENDED LAND PATTERN

NOTE: 5

10-Pin Ultra-Thin DFN 2mm x 2mm x 0.4mm (MU)

Note: The Pin1 marking symbol could be a circle, triangle, or other symbol. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB <http://www.micrel.com>

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2013 Micrel, Incorporated.

166 South Carter, Genoa City, WI 53128

Company: CompX Timberline
Model Evaluated: TP-101
Exhibit: RF Exposure Compliance
Project Number: 13118
Report Number: 28785 rev1.1

Section D – Measurement Uncertainty

Radiated Emission 30 MHz to 18 GHz Uncertainty

		Uncertainty (+ / - dB)									
Contribution	Probability Distribution	3M	3M	3M	3M	3M	3M	10M	10M	10M	10M
		30-100MHz.	100-700MHz	700-1000MHz.	1- 4.5Ghz	4.5 - 7Ghz	7 - 18Ghz	30-100MHz.	100-700MHz.	700-1000MHz.	
Combined Standard Uncertainty	Normal	1.70	1.62	1.66	2.13	2.48	2.85	1.64	1.58	1.66	
Expanded Uncertainty	Normal (k=2)	3.40	3.23	3.33	4.26	4.95	5.69	3.29	3.16	3.31	

166 South Carter, Genoa City, WI 53128

Company: CompX Timberline
Model Evaluated: TP-101
Exhibit: RF Exposure Compliance
Project Number: 13118
Report Number: 28785 rev1.1

END OF REPORT

Revision #	Date	Comments	By
1.0	10-10-2024	Initial Release.	CB
1.1	01-20-2025	Changed Model Name from TP-100 to TP-101	CB