

33241RUS2		
Nokia Siemens Networks 6000 Connection Drive Irving, TX 75039 USA		
EXTB		
VBNEXTB-01		
CFR 47, Part 22, Subpart H Cellular Base Stations		
Nemko USA, Inc. 802 N. Kealy Lewisville, TX 75057-3136		
DATE: 06 October 2009 TWireless Engineer		
DATE: 28 October 2009		

Number of Pages: 53

Nemko USA, Inc.

EQUIPMENT: **EXTB**

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

Table of Contents

Section 1.	Summary of Test Results	3
	General Equipment Specification	
Section 3.	RF Power Output	6
Section 4.	Occupied Bandwidth	8
Section 5.	Spurious Emissions at Antenna Terminals	11
Section 6.	Field Strength of Spurious	40
Section 7.	Frequency Stability	41
Section 8.	Test Equipment List	43
ANNEX A - T	EST DETAILS	44
ANNEX B - T	EST DIAGRAMS	50

Nemko USA, Inc.

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

EQUIPMENT: EXTB

Section 1. Summary of Test Results

Manufacturer: Nokia Siemens Networks

Model No.: EXTB

abla

Serial No.: L9093200200

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 22, Subpart H.

New Submission	Production Unit
Class II Permissive Change	Pre-Production Uni

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary Of Test Data

NAME OF TEST	PARA.	SPEC.	RESULT
RF Power Output	NO. 22.913(a)	1640 W	Complies
•			Complies
Occupied Bandwidth	22.917	Not defined	Complies
Spurious Emissions at Antenna Terminals	22.917	-13 dBm	Complies
Field Strength of Spurious Emissions	22.917	-13 dBm E.R.P.	Complies
Frequency Stability	22.355	1.5 ppm	Complies

Footnotes For N/A's:

Nemko USA, Inc.

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

EQUIPMENT: EXTB

Section 2. General Equipment Specification

Supply Voltage Input:	-48 Vdc nominal
Frequency Band:	869 to 894 MHz
Type of Modulation and Designator:	GSM EDGE 300KGXW 300KG7W
Maximum No. of Carriers:	1
Output Impedance:	50 ohms
RF Output (Rated):	50.0 W GMSK: Combiner Bypass 89.0 W GMSK: Double Combining 31.6 W 8PSK: Combiner Bypass 56.2 W 8PSK: Double Combining
Band Selection:	Software Duplexer Fullband

System Description

The EXTB is an 850 MHz Base Station Transceiver. The configurations tested consisted of 3 modules: System Module, Dual Duplex filter module, Dual Transceiver module, and Wideband combiner module (needed for double power). Two types of RF outputs were measured: Combiner Bypass and Double Power Combining. Combiner Bypass consisted of a single carrier and Double Power Combining consisted of two carriers on the same channel combined with phase adjustment in order to increase the transmitted RF output power.

Nemko USA, Inc.

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

EQUIPMENT: **EXTB**

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

TESTED BY: David Light DATE: 02 October 2009

Test Results: Complies.

Measurement Data: Refer to table on next page.

Equipment Used: 1036-1082-1054-1064-1065

Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

Relative Humidity: 35 %

Test Data – RF Power Output

Double Power Combining Mode

Modulation Type	Frequency	Measured Output Power	Measured Output Power
	(MHz)	(dBm)	(W)
GMSK	869.2	30.4	1.1
GMSK	869.4	48.3	67.6
GMSK	881.6	49.5	<mark>89.0</mark>
GMSK	893.8	34.5	2.8
GMSK	893.6	48.6	72.4
8PSK	869.2	35.5	3.5
8PSK	869.4	47.3	53.7
8PSK	881.6	47.5	<mark>56.2</mark>
8PSK	893.8	41.6	14.5
8PSK	893.6	47.5	56.2

Combiner Bypass Mode

Modulation Type	Frequency	Measured Output Power	Measured Output Power
	(MHz)	(dBm)	(W)
GMSK	869.2	31.5	1.4
GMSK	869.4	45.5	35.5
GMSK	881.6	47.0	<mark>50.0</mark>
GMSK	893.8	32.5	1.8
GMSK	893.6	44.5	28.2
8PSK	869.2	37.4	5.5
8PSK	869.4	45.0	31.6
8PSK	881.6	45.0	<mark>31.6</mark>
8PSK	893.8	37.7	5.9
8PSK	893.6	45.0	31.6

Note: The peak power needs to be lowered at the lowest and highest frequencies per above to ensure compliance at the band edges. Refer to band edge plots in section 5.

Supply voltage was varied +/- 15%. No fluctuation in output power resulted.

Nemko USA, Inc.

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

EQUIPMENT: **EXTB**

Section 4. Occupied Bandwidth

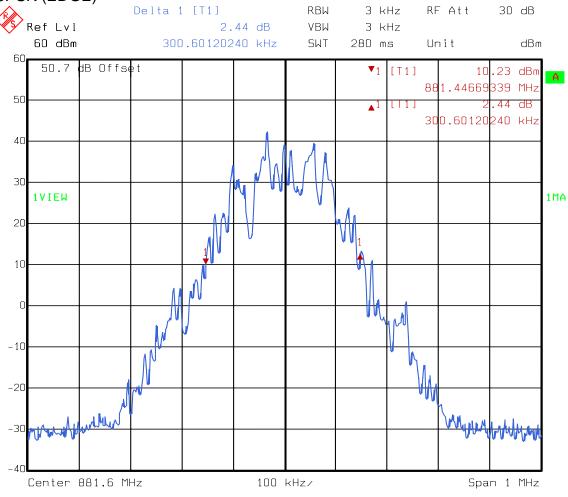
NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

TESTED BY: David Light DATE: 02 October 2009

Test Results: Complies.

Test Data: See attached plot(s).

Equipment Used: 1036-1054-1082-1065-1064

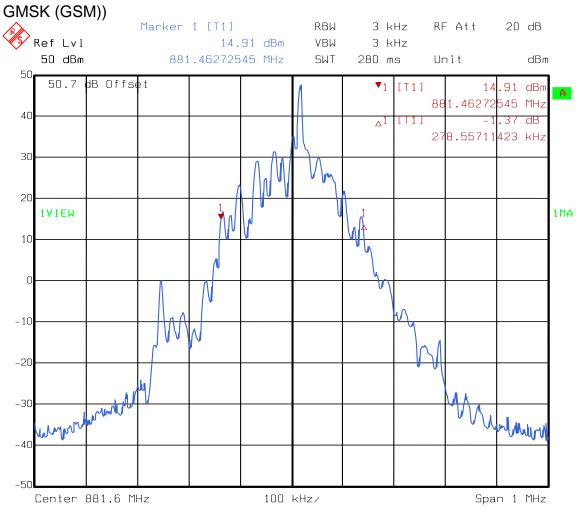

Measurement Uncertainty: +/- 1.6 dB

Temperature: 22 °C

Relative Humidity: 35 %

Test Data - Occupied Bandwidth

8PSK (EDGE)


Date: 02.0CT.2009 09:03:50

Date:

02.0CT.2009 10:04:18

EQUIPMENT: EXTB

Test Data - Occupied Bandwidth

Nemko USA, Inc.

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

EQUIPMENT: EXTB

Section 5. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna PARA. NO.: 2.1051

Terminals

TESTED BY: David Light DATE: 02 October 2009

Test Results: Complies.

Test Data: Refer to plots below

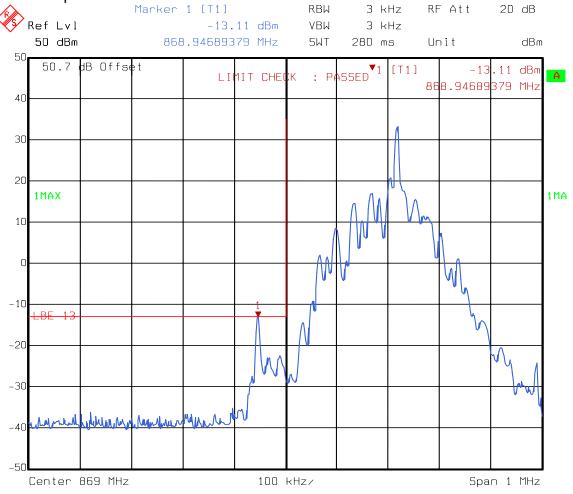
Equipment Used: 1036-1082-1064-1065-1054-1054-1058

Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

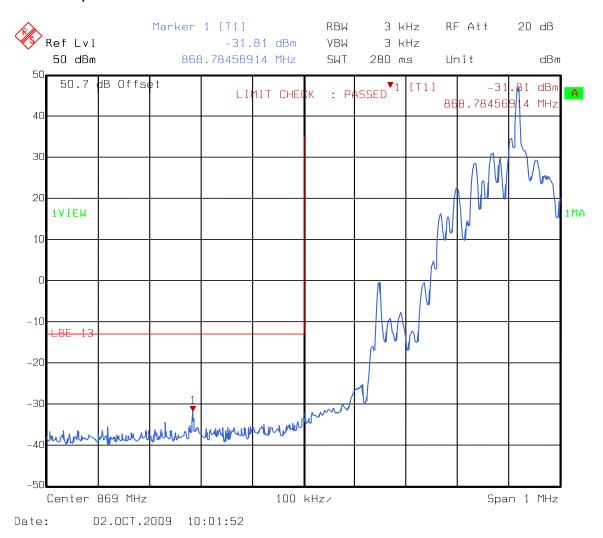
Relative Humidity: 35 %

Test Data – Spurious Emissions

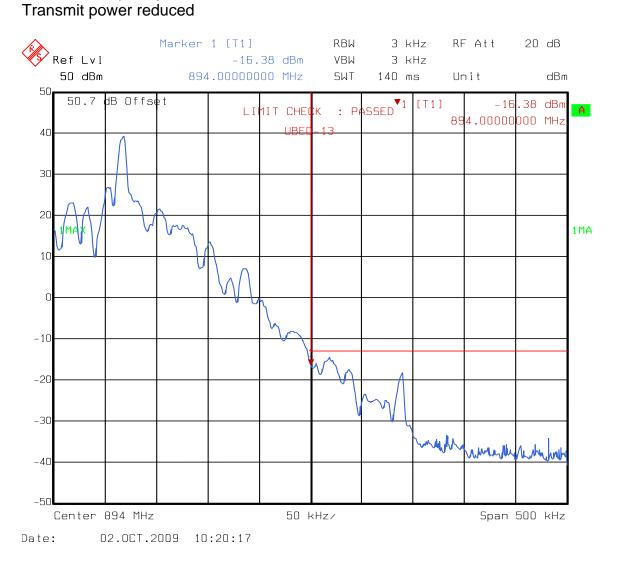

Low Band Edge 8PSK (EDGE)

Double Power Combining Mode Transmit Frequency: 869.2 MHz

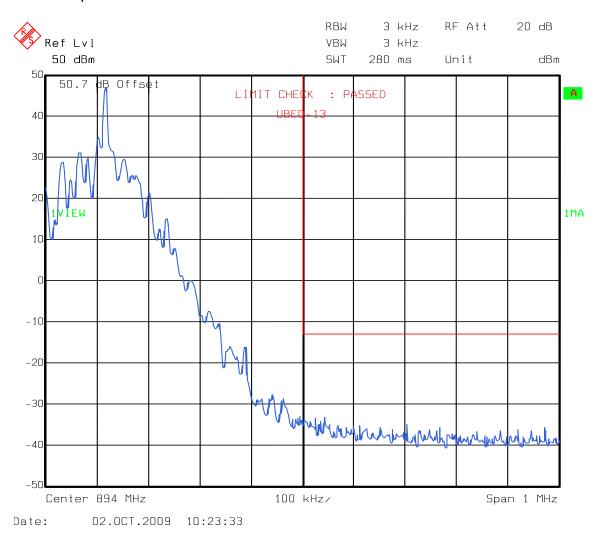
02.0CT.2009 09:57:25


Date:

Transmit power reduced

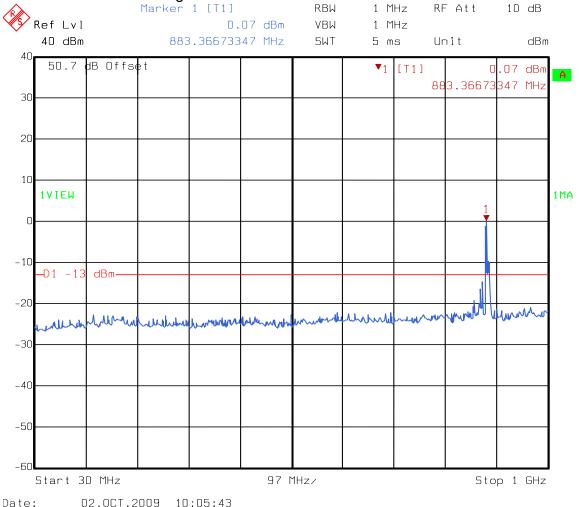

Test Data – Spurious Emissions

Low Band Edge 8PSK (EDGE) Double Power Combining Mode Transmit Frequency: 869.4 MHz Transmit power maximum


Test Data - Spurious Emissions

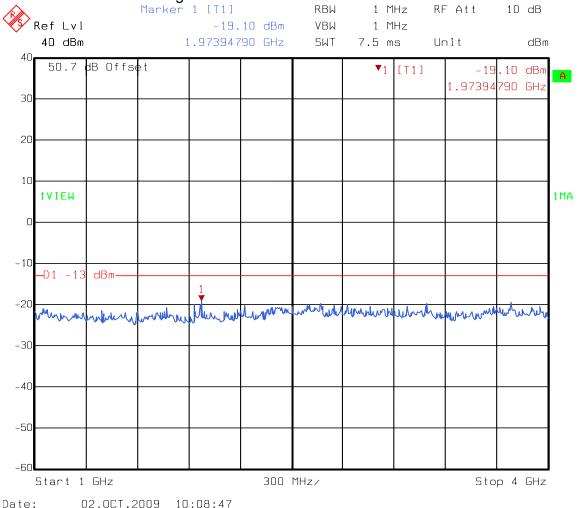
Upper Band Edge 8PSK (EDGE) Double Power Combining Mode Transmit Frequency: 893.8 MHz

Test Data - Spurious Emissions


Upper Band Edge 8PSK (EDGE) Double Power Combining Mode Transmit Frequency: 893.6 MHz Transmit power maximum

Test Data – Spurious Emissions

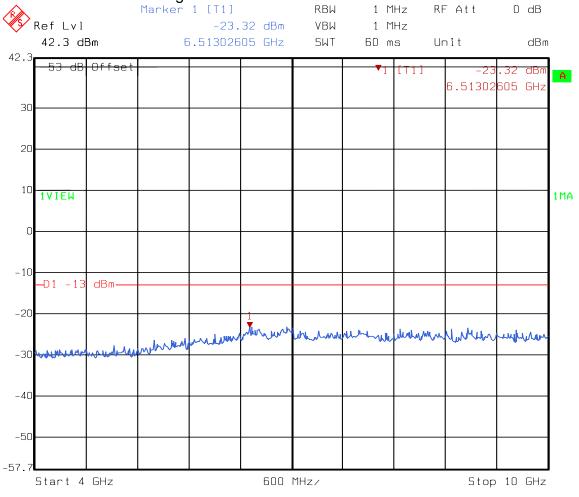
8PSK (EDGE)


Spurs

Test Data – Spurious Emissions

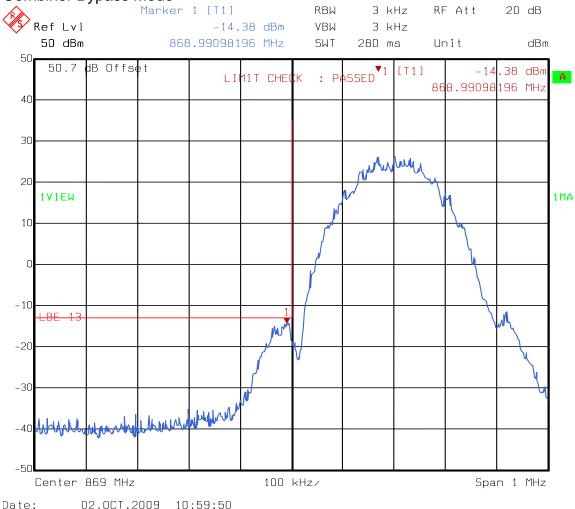
8PSK (EDGE)

Spurs

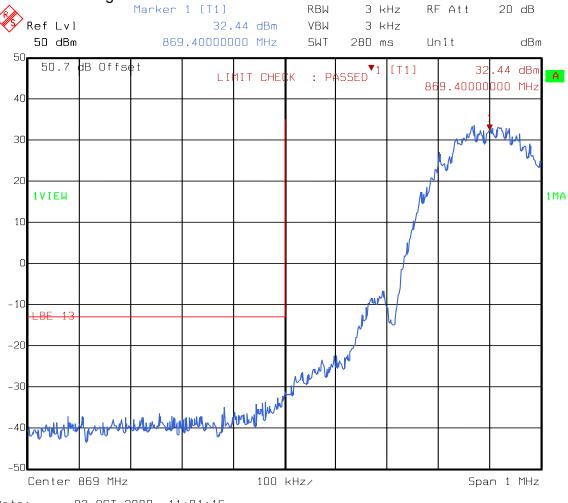

Test Data – Spurious Emissions

8PSK (EDGE)

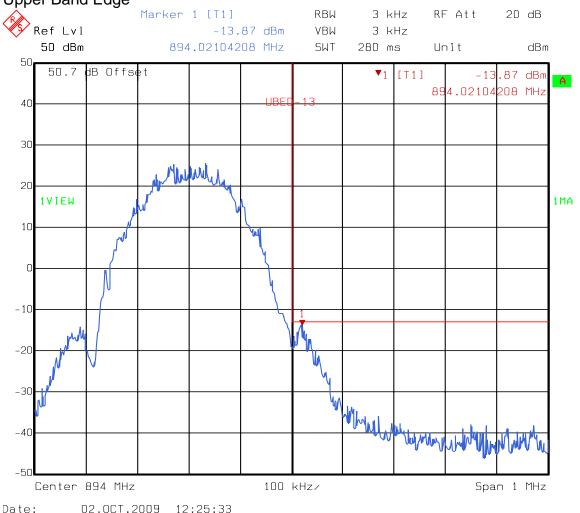
Spurs


Date:

02.0CT.2009 10:11:57


Test Data - Spurious Emissions

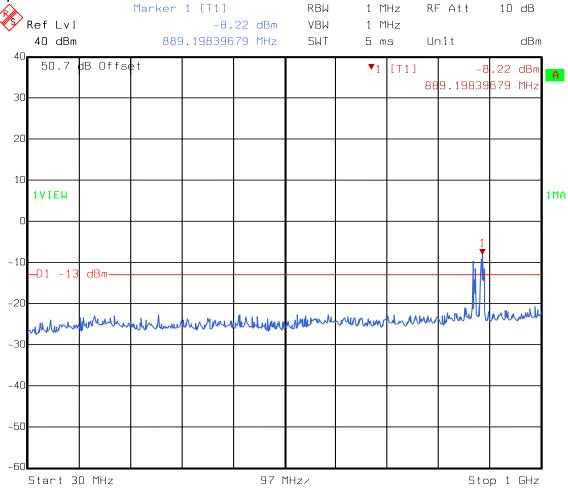
8PSK (EDGE) Low Power Mode Combiner Bypass Mode


Test Data – Spurious Emissions

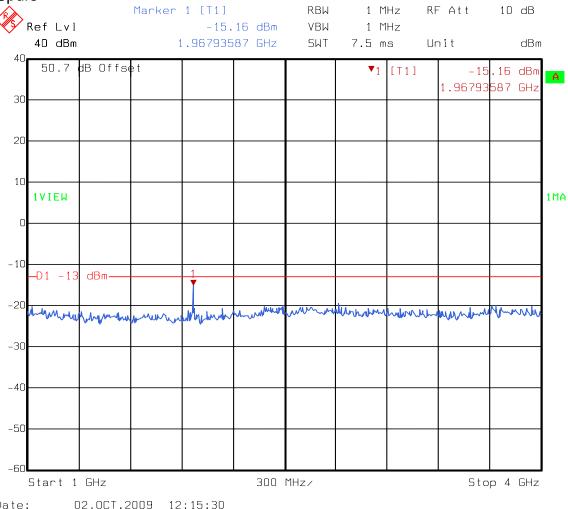
8PSK (EDGE) Combiner Bypass Mode Lower Band Edge

Test Data – Spurious Emissions

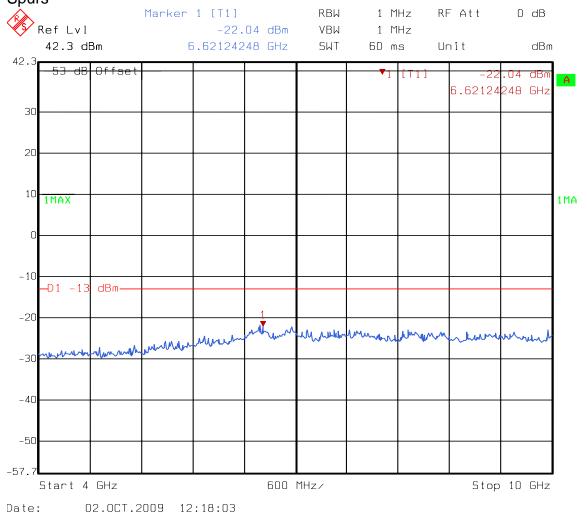
8PSK (EDGE) Combiner Bypass Mode Upper Band Edge


Test Data - Spurious Emissions

8PSK (EDGE)
Combiner Bypass Mode

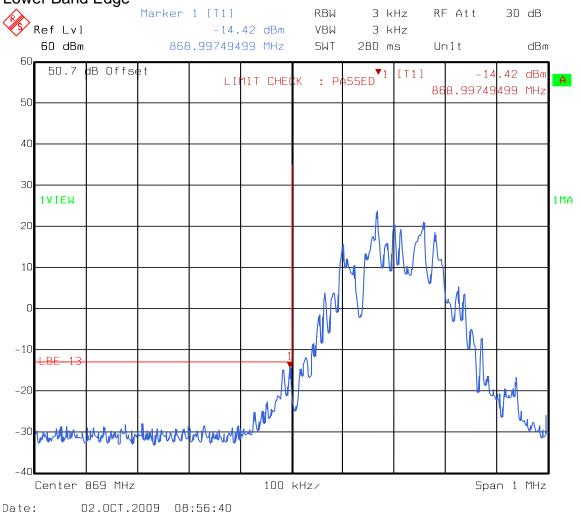

Test Data - Spurious Emissions

8PSK (EDGE) Combiner Bypass Mode Spurs

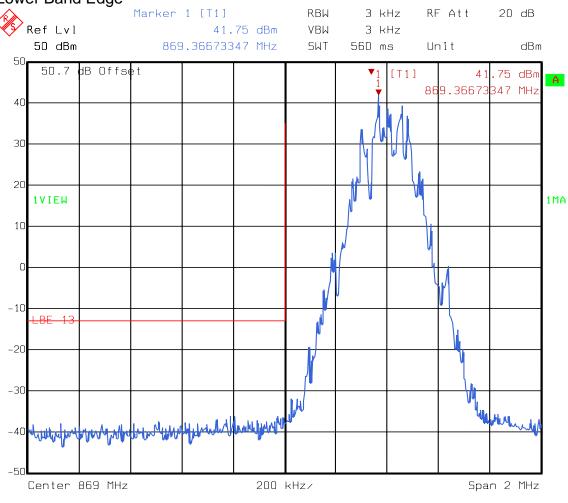

Test Data - Spurious Emissions

8PSK (EDGE) Combiner Bypass Mode Spurs

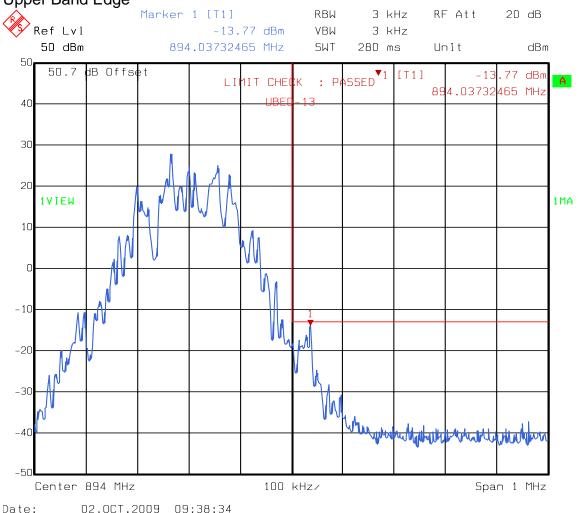
Test Data - Spurious Emissions


8PSK (EDGE) Combiner Bypass Mode Spurs

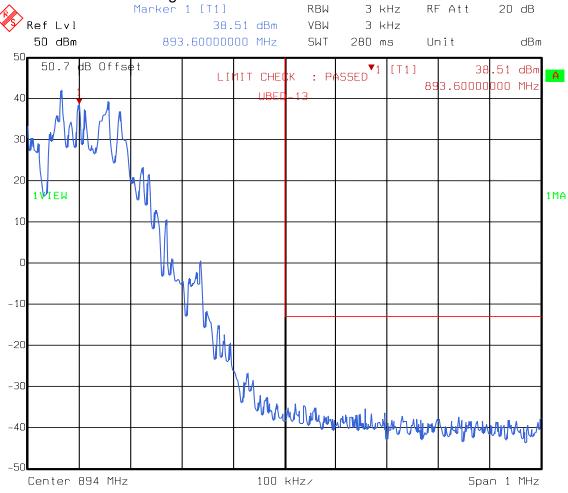
Page 25 of 53


Test Data – Spurious Emissions

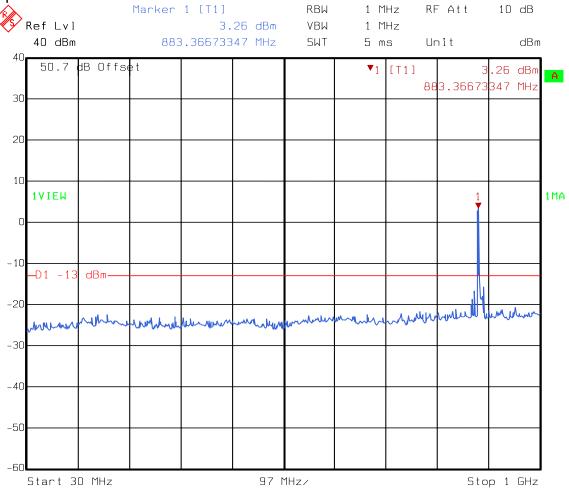
GMSK (GSM)
Double Power Combining Mode
Lower Band Edge


Test Data – Spurious Emissions

GMSK (GSM) Double Power Combining Mode Lower Band Edge


Test Data – Spurious Emissions

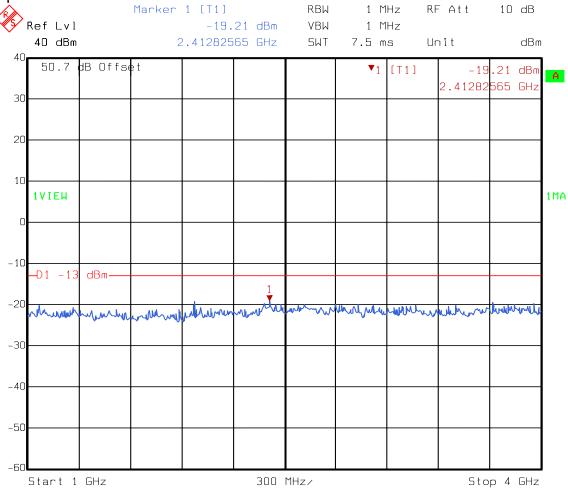
GMSK (GSM) Double Power Combining Mode Upper Band Edge


Test Data – Spurious Emissions

GMSK (GSM)

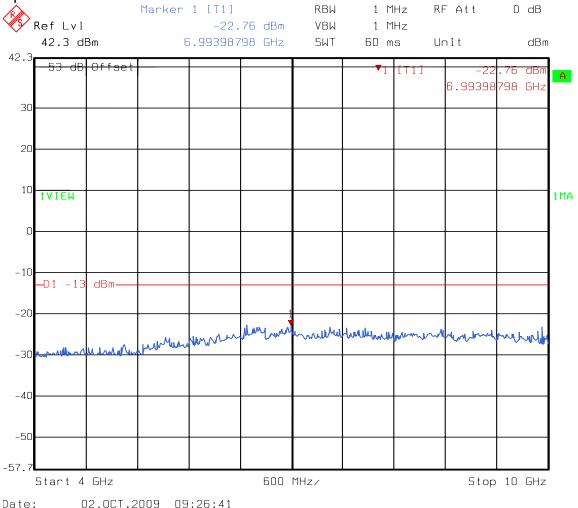
Test Data - Spurious Emissions

GMSK (GSM) Double Power Combining Mode Spurs



02.0CT.2009 09:09:20

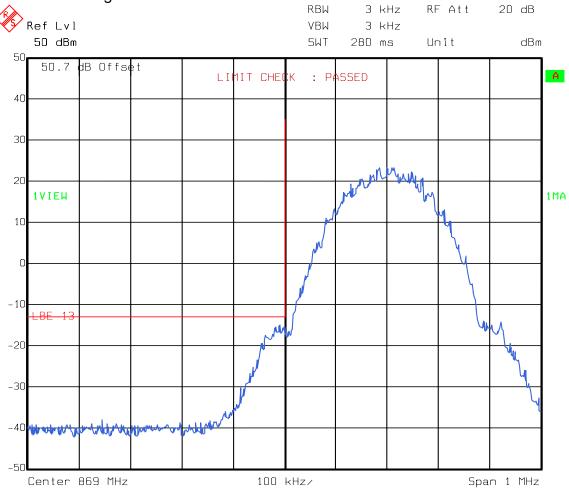
Date:


Test Data - Spurious Emissions

GMSK (GSM) Double Power Combining Mode Spurious

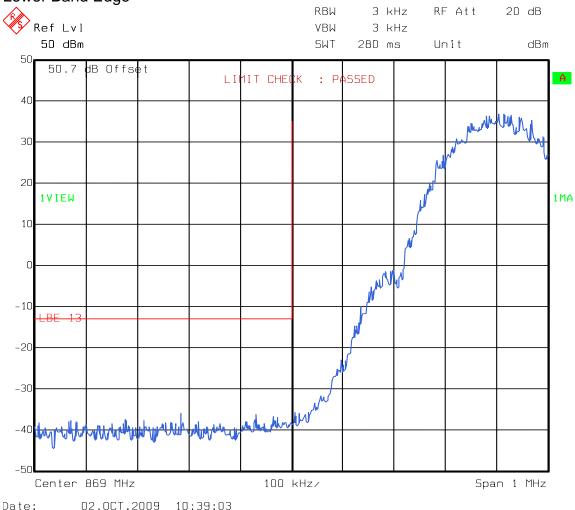
Test Data - Spurious Emissions

GMSK (GSM) Double Power Combining Mode Spurs

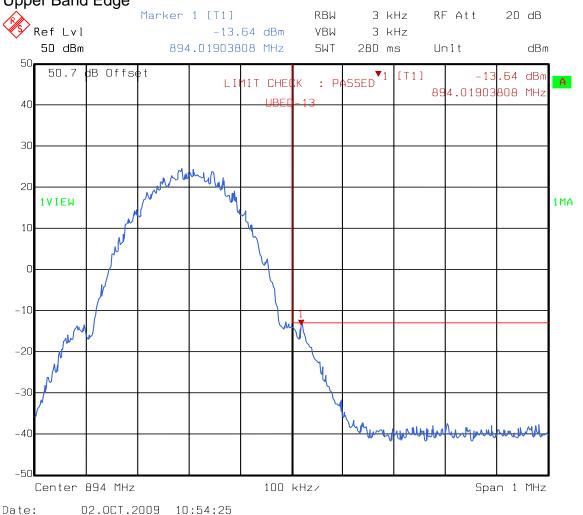


Test Data – Spurious Emissions

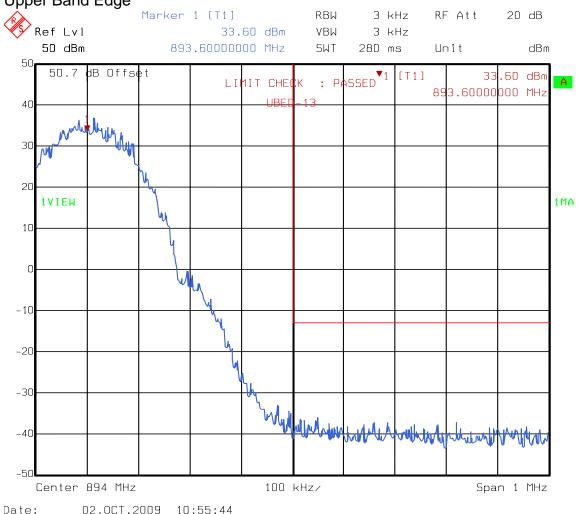
02.0CT.2009 10:36:49


Date:

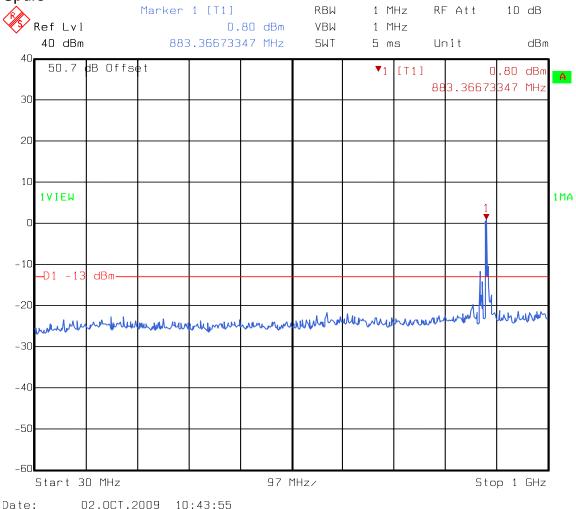
GMSK (GSM) Combiner Bypass Mode Lower band Edge


Test Data - Spurious Emissions

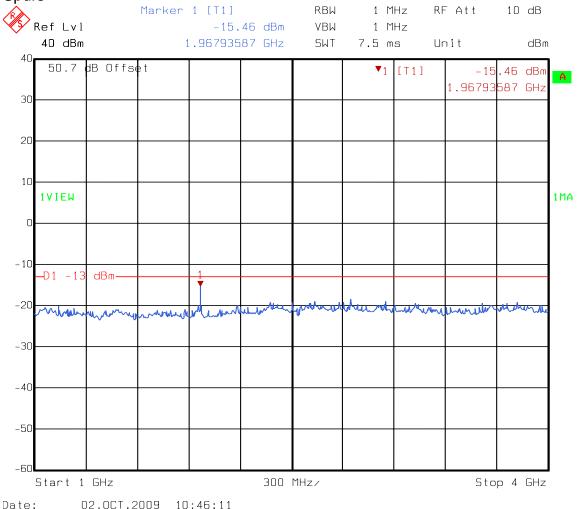
GMSK (GSM) Combiner Bypass Mode Lower Band Edge


Test Data - Spurious Emissions

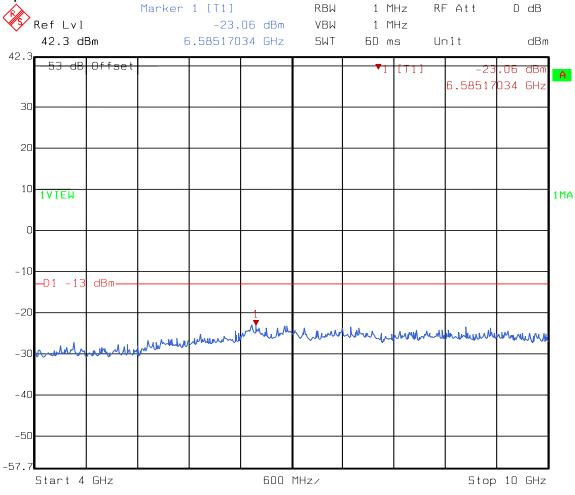
GMSK (GSM) Combiner Bypass Mode Upper Band Edge


Test Data - Spurious Emissions

GMSK (GSM) Combiner Bypass Mode Upper Band Edge


Test Data - Spurious Emissions

GMSK (GSM) Combiner Bypass Mode Spurs


Test Data – Spurious Emissions

GMSK (GSM) Combiner Bypass Mode Spurs

Test Data - Spurious Emissions

GMSK (GSM) Combiner Bypass Mode Spurs

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

EQUIPMENT: EXTB

Section 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious Emissions PARA. NO.: 2.1051

TESTED BY: David Light DATE: 05 October 2009

Test Results: Complies.

Test Data: The spectrum was searched from 30 MHz to the tenth

harmonic of the carrier. There were no emissions detected above the noise floor which was at least 20

dB below the specification limit.

RBW/VBW=100 kHz < 1000 MHz RBW/VBW=1 MHz > 1000 MHz

Detector = Peak Sweep Time = Auto

.

Equipment Used: 1783-1763-791-1016-993-1767

Measurement Uncertainty: +/- 1.7 dB

Temperature: 23 °C

Relative Humidity: 40 %

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

EQUIPMENT: EXTB

Section 7. Frequency Stability

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

TESTED BY: David Light DATE: 05 October 2009

Test Results: Complies

Measurement Data: Standard Test Frequency: 1960 MHz

Standard Test Voltage: -48 Vdc

Equipment Used: 1036-1082-1064-1065-283

Measurement Uncertainty: +/- 1.7 dB

Temperature: 23 °C

Relative Humidity: 40 %

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

EQUIPMENT: **EXTB**

Test Data - Frequency Stability

Measurement Uncertainty:	1x10 ⁻¹⁷ ppm	Standard Tes	st Frequency	881.6	667696	MHz
Temp (°C	Measured Frequency (MHz)	Test Voltage	Freqeuncy Error (Hz)	Limit (+/-Hz)	Error (ppm)	Comment
20	881.667696	-48	0	1322.5	0	
20	881.667696	-40.8	0	1322.5	0.0	
20	881.667696	-50.2	0	1322.5	0.0	
50	881.667721	-48	25	1322.5	0.0	
40	881.667721	-48	25	1322.5	0.0	
30	881.667691	-48	-5	1322.5	0.0	
10	881.667695	-48.0	-1	1322.5	0.0	
0	881.667691	-48.0	-5	1322.5	0.0	
-10	881.667691	-48.0	-5	1322.5	0.0	
-20	881.667681	-48	-15	1322.5	0.0	
-30	881.667691	-48	-5	1322.5	0.0	
Notes	:	-				-

Section 8. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
1036	SPECTRUM ANALYZER	ROHDE & SCHWARZ FSEK30	830844/006	01/19/09	01/20/11
1082	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	CBU	N/A
1064	ATTENUATOR	NARDA 776B-20	NONE	CBU	N/A
1065	ATTENUATOR	NARDA 776B-10	NONE	CBU	N/A
1054	DUAL DIRECTIONAL COUPLER	NARDA 3020A	34366	CBU	N/A
1055	DUAL DIRECTIONAL COUPLER	NARDA 3022	73393	CBU	N/A
1058	DUAL DIRECTIONAL COUPLER	HEWLETT PACKARD 11692D	1212A03366	CBU	N/A
1783	Cable	Nemko? 0	0	10/02/09	10/02/10
1763	Bilog Antenna	Schaffner CBL 6111D	22926	11/04/08	11/04/09
791	PREAMP, 25dB	Nemko USA, Inc. LNA25	398	05/28/09	05/28/10
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	06/23/09	06/23/10
993	Horn antenna	A.H. Systems SAS-200/571	XXX	09/09/09	09/09/11
1767	MI Test Receiver 20Hz - 26.5 GHz - 150 - +30 dBm LC	ROHDE & SCHWARZ ESIB26	837491/0002	10/20/07	10/20/09
283	Environmental Chamber with controller # 1189006	ENVIROTRONICS SH27 & 2030-22844	129010083	06/07/09	06/07/10

EQUIPMENT: **EXTB**

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

ANNEX A - TEST DETAILS

EQUIPMENT: **EXTB**

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard: Para. No. 22.913(a). The maximum effective radiated power

(ERP) of base transmitters and cellular repeaters must not

exceed 500 watts.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter. Power output is measured with the maximum rated input level.

Integral Antenna:

The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to a dipole. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting erp is the signal level fed to the reference antenna corrected for gain referenced to a dipole.

EQUIPMENT: EXTB

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

Minimum Standard: Not defined

Method Of Measurement:

CDMA

Spectrum analyzer settings: RBW=VBW=30 kHz

Span: 5 MHz Sweep: Auto

GSM / EDGE

RBW=VBW= 3 kHz

Span: 1 MHz Sweep: Auto

TDMA

RBW=VBW= 1 kHz

Span: 1 MHz Sweep: Auto

W-CDMA

RBW=VBW= 100 kHz

Span: 10 MHz Sweep: Auto

EQUIPMENT: EXTB

CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

NAME OF TEST: Spurious Emission at Antenna PARA. NO.: 2.1051

Terminals

Minimum Standard: Para. No. 22.917(e). The mean power of emissions

must be attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least 43 + 10 log P. This is equivalent to -13 dBm absolute

power.

Method Of Measurement:

Method Of Measurement:

Spectrum analyzer settings:

<u>CDMA</u> <u>GSM / EDGE</u>

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 30 kHz (< 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge)

 $VBW: \ge RBW$ $VBW: \ge RBW$ Sweep: Auto Sweep: Auto

Video Avg: 6 Sweeps Video Avg: Disabled

<u>TDMA</u> <u>W-CDMA</u>

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge) RBW: 100 kHz (< 1 MHz from Band Edge)

 $\begin{array}{ll} \mathsf{VBW:} \ \geq \mathsf{RBW} & \mathsf{VBW:} \ \geq \mathsf{RBW} \\ \mathsf{Sweep:} \ \mathsf{Auto} & \mathsf{Sweep:} \ \mathsf{Auto} \end{array}$

Video Avg: Disabled Video Avg: 6 Sweeps

CFR 47, PART 22, SUBPART H **CELLULAR BASE STATIONS EQUIPMENT: EXTB** PROJECT NO.: 33241RUS2

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.1053

Minimum Standard: Para. No. 22.917(e). The mean power of emissions

> must be attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least 43 + 10 log P. This is equivalent to -13 dBm absolute

power.

Method of Measurement TIA/EIA-603-1992

The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to a dipole. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting erp is the signal level fed to the reference antenna corrected for gain referenced to a dipole.

CELLULAR BASE STATIONS PROJECT NO.: 33241RUS2

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Minimum Standard: Para. No. 22.355. The transmitter carrier frequency

shall remain within the tolerances given in Table C-1.

CFR 47, PART 22, SUBPART H

Table C-1

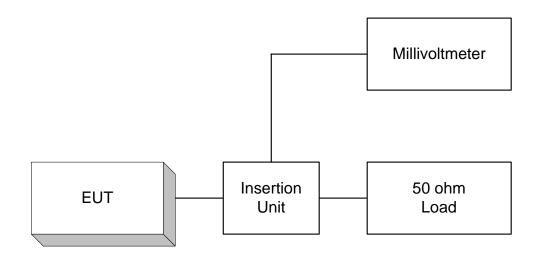
Freq. Range (MHz)	Base, fixed	Mobile > 3 W	Mobile ≤ 3 W
821 to 896	1.5	2.5	2.5

Method Of Measurement:

Frequency Stability With Voltage Variation:

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10 MHz ref, in of the signal generator. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

Frequency Stability With Temperature Variation:

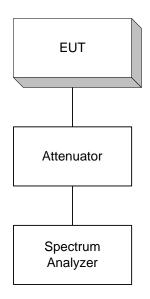

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

EQUIPMENT: **EXTB**

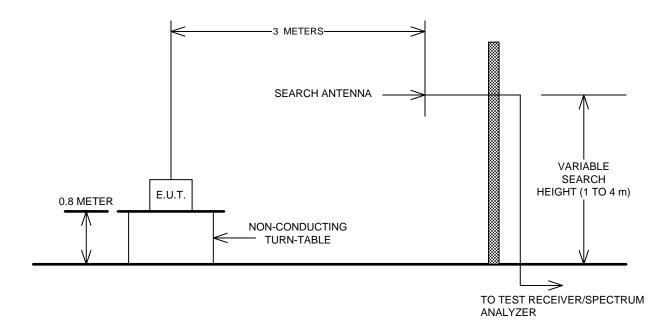
CFR 47, PART 22, SUBPART H
CELLULAR BASE STATIONS
PROJECT NO.: 33241RUS2

ANNEX B - TEST DIAGRAMS

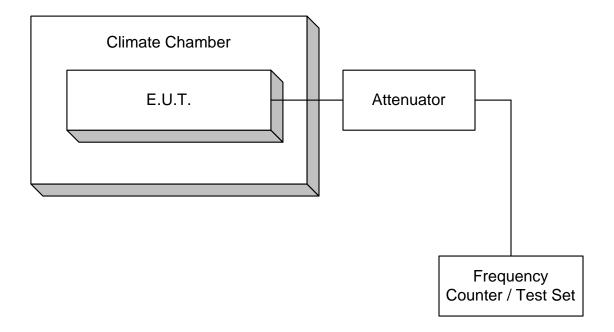
Para. No. 2.985 - R.F. Power Output



Para. No. 2.989 - Occupied Bandwidth



EQUIPMENT: EXTB PROJECT NO.: 33241RUS2


Para. No. 2.991 Spurious Emissions at Antenna Terminals

Para. No. 2.993 - Field Strength of Spurious Radiation

Para. No. 2.995 - Frequency Stability

