



# element

**Radio Test Report**  
**Application for a Permissive Change of Equipment Authorization**  
**FCC Part 24 and IC RSS-133**  
**[1930MHz – 1995MHz]**

**FCC Part 27, IC RSS-139**  
**[2110MHz – 2200MHz]**

**FCC ID: VBNAHFII-01**  
**IC ID: 661W-AHFII**

**Nokia Solutions and Networks**  
**Airscale Base Transceiver Station Remote Radio Head**  
**Model: AHFII**

**Report: NOKI0050.0, Issue Date: November 9, 2022**



# CERTIFICATE OF TEST



Last Date of Test: October 18, 2022

Nokia of America Corporation

EUT: AirScale Base Transceiver Station Remote Radio Head Model AHFII

## Radio Equipment Testing

### Standards

| Specification                                                                                                                                                                                                                                                                                                                                                                                           | Method                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Code of Federal Regulations (CFR) Title 47 Part 2 (Radio Standards Specification) RSS-Gen Issue 5<br>CFR Title 47 Part 24 Subpart E – Broadband PCS<br>RSS-133 Issue 6 - January 18, 2018 – 2GHz Personal Communications Services<br>CFR Title 47 Part 27<br>RSS-139 Issue 4 – September 29, 2022– Advanced Wireless Services (AWS)<br>SRSP-513 issue 4 Sept 29, 2022<br>SRSP-519 issue 2 Sept 29, 2022 | ANSI C63.26-2015 with<br>FCC KDB 971168 D01 v03r01<br>FCC KDB 971168 D03 v01<br>FCC KDB 662911D01 v02r01<br>FCC KDB 662911D02 v01 |

### Results

| Test Description                            | Applied | Results | Comments       |
|---------------------------------------------|---------|---------|----------------|
| Output Power                                | Yes     | Pass    |                |
| Occupied Bandwidth                          | Yes     | Pass    |                |
| Frequency Stability                         | No      | N/A     | Not requested. |
| Average Power                               | Yes     | Pass    |                |
| Peak to Average Power (PAPR)CCDF            | Yes     | Pass    |                |
| Power Spectral Density and EIRP Calculation | Yes     | Pass    |                |
| Band Edge Compliance                        | Yes     | Pass    |                |
| Spurious Conducted Emissions                | Yes     | Pass    |                |

### Deviations From Test Standards

None

### Approved By:

Adam Bruno, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

# REVISION HISTORY



| Revision Number | Description | Date<br>(yyyy-mm-dd) | Page Number |
|-----------------|-------------|----------------------|-------------|
| 00              | None        |                      |             |

# ACCREDITATIONS AND AUTHORIZATIONS

## United States

**FCC** - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

**A2LA** - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

## Canada

**ISED** - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

## European Union

**European Commission** – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

## United Kingdom

**BEIS** – Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

## Australia/New Zealand

**ACMA** - Recognized by ACMA as a CAB for the acceptance of test data.

## Korea

**MSIT / RRA** - Recognized by KCC's RRA as a CAB for the acceptance of test data.

## Japan

**VCCI** - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

## Taiwan

**BSMI** – Recognized by BSMI as a CAB for the acceptance of test data.

**NCC** - Recognized by NCC as a CAB for the acceptance of test data.

## Singapore

**IDA** – Recognized by IDA as a CAB for the acceptance of test data.

## Israel

**MOC** – Recognized by MOC as a CAB for the acceptance of test data.

## Hong Kong

**OFCA** – Recognized by OFCA as a CAB for the acceptance of test data.

## Vietnam

**MIC** – Recognized by MIC as a CAB for the acceptance of test data.

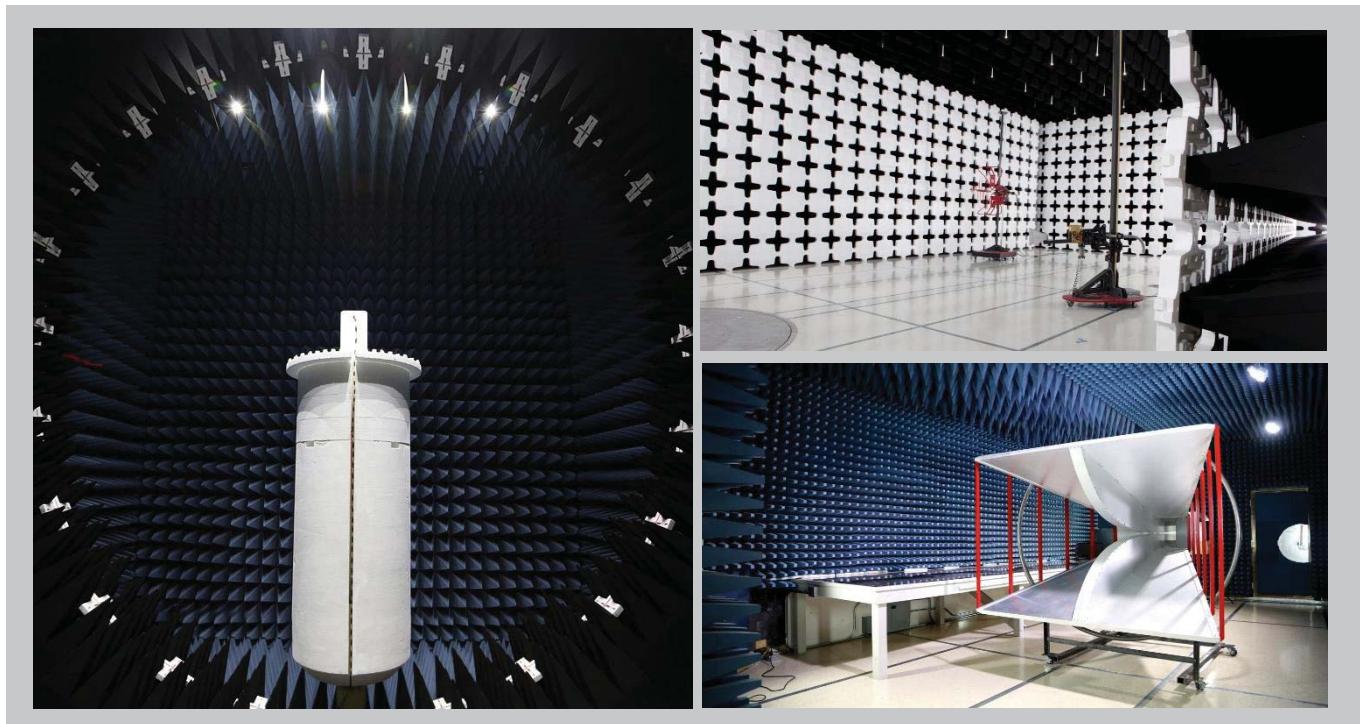
## SCOPE

For details on the Scopes of our Accreditations, please visit:

[California](#)

[Minnesota](#)

[Oregon](#)


[Texas](#)

[Washington](#)

# FACILITIES



| California                                                                            | Minnesota                                                                         | Oregon                                                                               | Texas                                                                  | Washington                                                                            |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Labs OC01-17<br>41 Tesla<br>Irvine, CA 92618<br>(949) 861-8918                        | Labs MN01-11<br>9349 W Broadway Ave.<br>Brooklyn Park, MN 55445<br>(612) 638-5136 | Labs EV01-12<br>6775 NE Evergreen Pkwy #400<br>Hillsboro, OR 97124<br>(503) 844-4066 | Labs TX01-09<br>3801 E Plano Pkwy<br>Plano, TX 75074<br>(469) 304-5255 | Labs NC01-05<br>19201 120 <sup>th</sup> Ave NE<br>Bothell, WA 98011<br>(425) 984-6600 |
| <b>A2LA</b>                                                                           |                                                                                   |                                                                                      |                                                                        |                                                                                       |
| Lab Code: 3310.04                                                                     | Lab Code: 3310.05                                                                 | Lab Code: 3310.02                                                                    | Lab Code: 3310.03                                                      | Lab Code: 3310.06                                                                     |
| <b>Innovation, Science and Economic Development Canada</b>                            |                                                                                   |                                                                                      |                                                                        |                                                                                       |
| 2834B-1, 2834B-3                                                                      | 2834E-1, 2834E-3                                                                  | 2834D-1                                                                              | 2834G-1                                                                | 2834F-1                                                                               |
| <b>BSMI</b>                                                                           |                                                                                   |                                                                                      |                                                                        |                                                                                       |
| SL2-IN-E-1154R                                                                        | SL2-IN-E-1152R                                                                    | SL2-IN-E-1017                                                                        | SL2-IN-E-1158R                                                         | SL2-IN-E-1153R                                                                        |
| <b>VCCI</b>                                                                           |                                                                                   |                                                                                      |                                                                        |                                                                                       |
| A-0029                                                                                | A-0109                                                                            | A-0108                                                                               | A-0201                                                                 | A-0110                                                                                |
| <b>Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA</b> |                                                                                   |                                                                                      |                                                                        |                                                                                       |
| US0158                                                                                | US0175                                                                            | US0017                                                                               | US0191                                                                 | US0157                                                                                |



# MEASUREMENT UNCERTAINTY



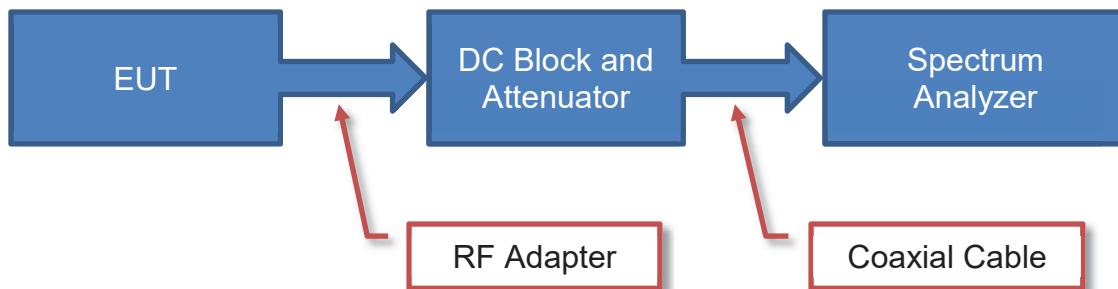
## Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

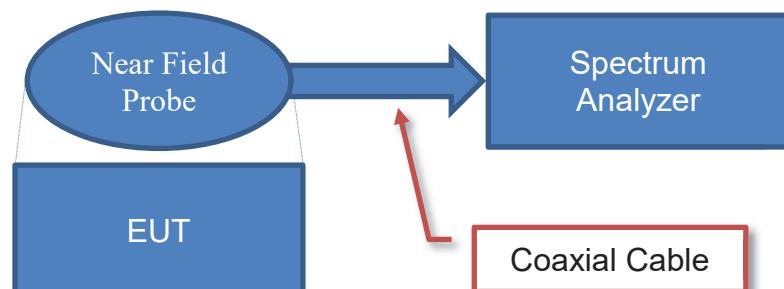
| Test                                  | + MU    | - MU     |
|---------------------------------------|---------|----------|
| Frequency Accuracy                    | 0.0007% | -0.0007% |
| Amplitude Accuracy (dB)               | 1.2 dB  | -1.2 dB  |
| Conducted Power (dB)                  | 1.2 dB  | -1.2 dB  |
| Radiated Power via Substitution (dB)  | 0.7 dB  | -0.7 dB  |
| Temperature (degrees C)               | 0.7°C   | -0.7°C   |
| Humidity (% RH)                       | 2.5% RH | -2.5% RH |
| Voltage (AC)                          | 1.0%    | -1.0%    |
| Voltage (DC)                          | 0.7%    | -0.7%    |
| Field Strength (dB)                   | 5.1 dB  | -5.1 dB  |
| AC Powerline Conducted Emissions (dB) | 3.1 dB  | -3.1 dB  |


# TEST SETUP BLOCK DIAGRAMS

## Measurement Bandwidths

| Frequency Range (MHz) | Peak Data (kHz) | Quasi-Peak Data (kHz) | Average Data (kHz) |
|-----------------------|-----------------|-----------------------|--------------------|
| 0.01 - 0.15           | 1.0             | 0.2                   | 0.2                |
| 0.15 - 30.0           | 10.0            | 9.0                   | 9.0                |
| 30.0 - 1000           | 100.0           | 120.0                 | 120.0              |
| Above 1000            | 1000.0          | N/A                   | 1000.0             |

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

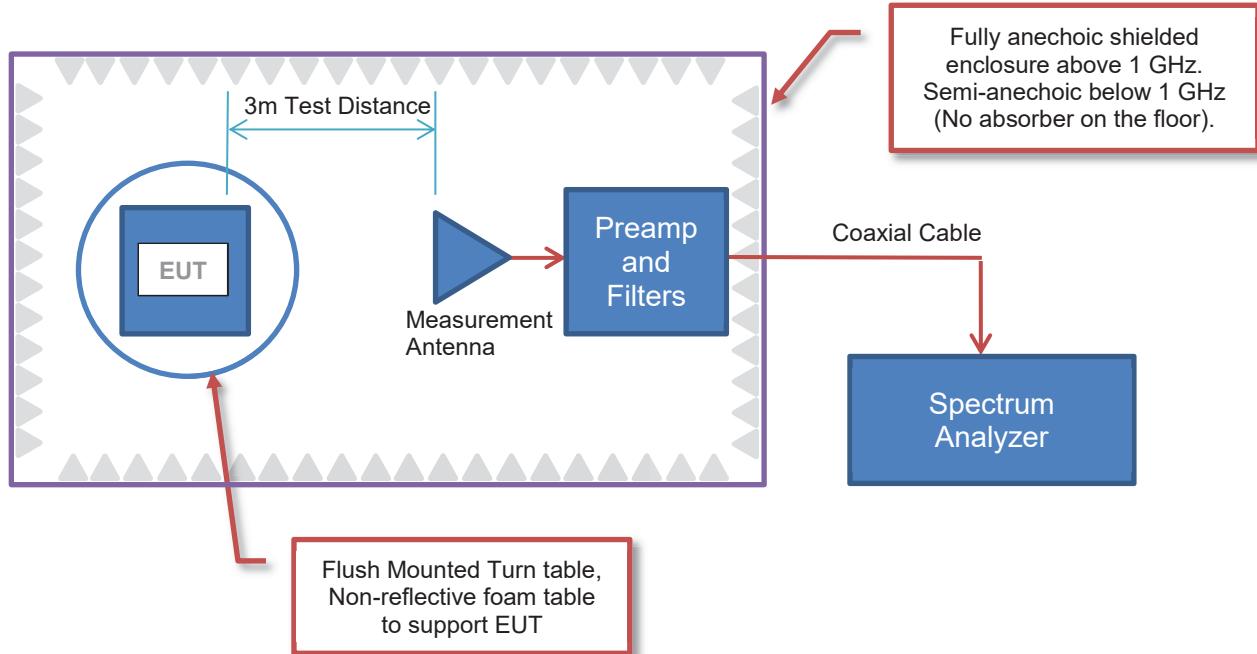

## Antenna Port Conducted Measurements



## Sample Calculation (logarithmic units)

$$\begin{array}{rcl} \text{Measured Value} & = & \text{Measured Level} \\ 71.2 & = & 42.6 \\ & + & \text{Reference Level Offset} \\ & & 28.6 \end{array}$$

## Near Field Test Fixture Measurements




## Sample Calculation (logarithmic units)

$$\begin{array}{rcl} \text{Measured Value} & = & \text{Measured Level} \\ 71.2 & = & 42.6 \\ & + & \text{Reference Level Offset} \\ & & 28.6 \end{array}$$

# TEST SETUP BLOCK DIAGRAMS

## Emissions Measurements



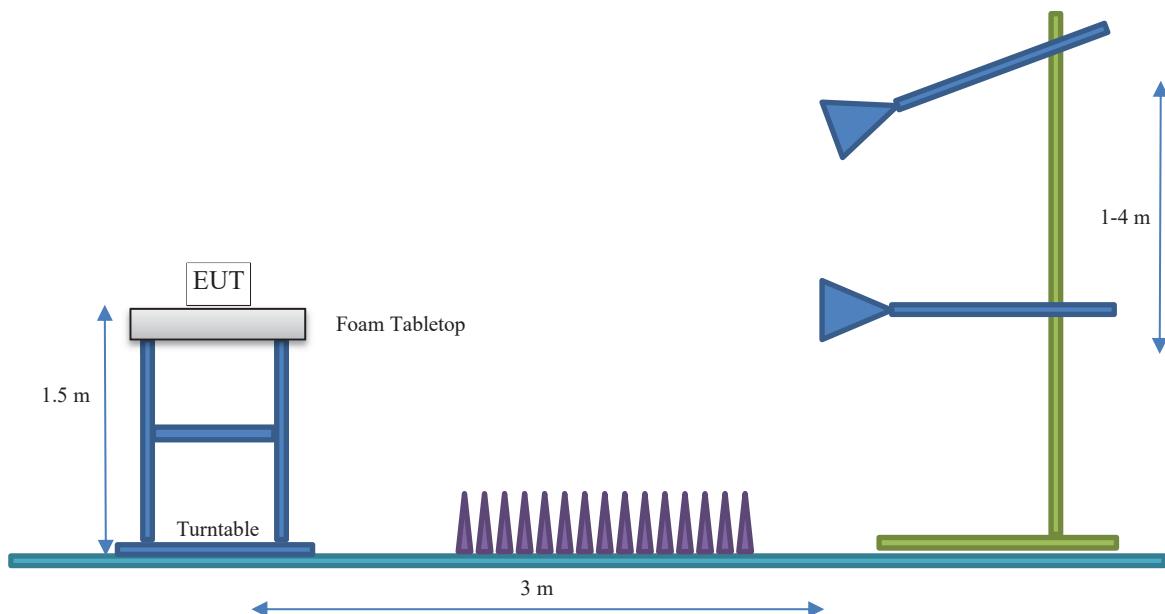
## Sample Calculation (logarithmic units)

### Radiated Emissions:

| Factor                     |                |              |                |                            |                      |                |
|----------------------------|----------------|--------------|----------------|----------------------------|----------------------|----------------|
| Measured Level (Amplitude) | Antenna Factor | Cable Factor | Amplifier Gain | Distance Adjustment Factor | External Attenuation | Field Strength |
| 42.6                       | 28.6           | 3.1          | - 40.8         | 0.0                        | 0.0                  | = 33.5         |

### Conducted Emissions:

| Factor                     |                   |              |                      |                |
|----------------------------|-------------------|--------------|----------------------|----------------|
| Measured Level (Amplitude) | Transducer Factor | Cable Factor | External Attenuation | Adjusted Level |
| 26.7                       | 0.3               | 0.1          | 20.0                 | = 47.1         |


### Radiated Power (ERP/EIRP) – Substitution Method:

|                                                          |      |   |                                   |     |   |                             |      |   |                               |
|----------------------------------------------------------|------|---|-----------------------------------|-----|---|-----------------------------|------|---|-------------------------------|
| Measured Level into Substitution Antenna (Amplitude dBm) | 10.0 | + | Substitution Antenna Factor (dBi) | 6.0 | - | EIRP to ERP (if applicable) | 2.15 | = | Measured power (dBm ERP/EIRP) |
|                                                          |      |   |                                   |     |   |                             |      |   | 13.9/16.0                     |

# TEST SETUP BLOCK DIAGRAMS

## Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.



# PRODUCT DESCRIPTION



## Client and Equipment under Test (EUT) Information

|                                 |                                                                 |
|---------------------------------|-----------------------------------------------------------------|
| <b>Company Name:</b>            | Nokia of America Corporation                                    |
| <b>Address:</b>                 | 3201 Olympus Blvd                                               |
| <b>City, State, Zip:</b>        | Dallas, TX 75019                                                |
| <b>Test Requested By:</b>       | Steve Mitchell                                                  |
| <b>EUT:</b>                     | AirScale Base Transceiver Station Remote Radio Head Model AHFII |
| <b>First Date of Test:</b>      | October 12, 2022                                                |
| <b>Last Date of Test:</b>       | October 18, 2022                                                |
| <b>Receipt Date of Samples:</b> | October 12, 2022                                                |
| <b>Equipment Design Stage:</b>  | Production                                                      |
| <b>Equipment Condition:</b>     | No Damage                                                       |
| <b>Purchase Authorization:</b>  | Verified                                                        |

## Information Provided by the Party Requesting the Test

### Functional Description of the EUT:

A permissive change on the original filing is being pursued to add 5G NR (new radio) carriers to the AirScale Base Transceiver Station Remote Radio Head Model AHFII FCC and ISED radio certifications. The original test effort includes testing for 4G LTE technologies. Please refer to the test report on the original certification for details on all required testing.

All conducted RF testing performed for the original certification testing has been repeated using 5G NR carriers for this permissive change per correspondence/guidance from Nemko TCB. The same test methodology used in the original certification testing was used in this permissive change test effort. Tests performed under the change effort include RF power, PSD, CCDF, emission bandwidth (99% and 26 dB down), band edge spurious emissions, and conducted spurious emissions.

The testing was performed on the same hardware version (AHFII) as the original certification test. The base station and remote radio head software for this testing is an updated release that includes 5G NR carrier support.

The radiated emissions and frequency stability measurements performed in the original certification were not repeated under this effort per TCB guidance. The radiated emission and frequency stability/accuracy results from the original certification had enough margin to preclude requiring additional testing. The same frequency stability/accuracy radio design is the same for all radio technologies/modulation types.

Nokia Solutions and Networks AirScale Base Transceiver Station (BTS) Remote Radio Head (RRH) module, model AHFII is being developed under this effort. The AHFII remote radio head is a multi-standard multi-carrier radio module designed to support GSM/EDGE, WCDMA, LTE, LTE Narrow Band Internet of Things (NB IoT) operations (in-band, guard band, standalone) and 5G NR. The scope of testing in this effort is for the addition of 40MHz bandwidth in 5G NR FDD operations.

The AHFII RRH has four transmit/four receive antenna ports (4TX/4RX for Band n25 and 4TX/4RX for Band n66). Each antenna port supports 3GPP frequency band n25 (BTS Rx: 1850 to 1915 MHz/BTS TX: 1930 to 1995 MHz) and 3GPP frequency band n66 (BTS Rx: 1710 to 1780 MHz/BTS TX: 2110 to 2200 MHz). The maximum RF output power of the RRH is 480 Watts (120 watts per port x 4 ports). The maximum power per band (Band n25 or Band n66) is 80 watts. The maximum single carrier power level is 80 watts. The TX and RX instantaneous bandwidth cover the full operational RRH bandwidth. Multi-carrier operation is supported.

The RRH can be operated as a 4x4 MIMO, 2x2 MIMO or as non-MIMO for 5G NR FDD. The RRH supports 5, 10, 15, 20, 30 and now 40MHz 5G NR bandwidths. The RRH supports four 5G NR downlink modulation types (QPSK, 16QAM, 64QAM and 256QAM). The 5G NR carriers/modulation types for this testing are setup according to 3GPP TS 38.141-1 Test Models and are NR-FR1-TM 1.1 (QPSK modulation type), NR-FR1-TM 3.2 (16QAM modulation type), NR-FR1-TM 3.1 (64QAM modulation type), and NR-FR1-TM 3.1a (256QAM modulation type).

# PRODUCT DESCRIPTION



The RRH has external interfaces including DC power (DC In), ground, transmit/receive (ANT), external alarm (EAC), optical (OPT) and remote electrical tilt (RET). The RRH with applicable installation kit may be pole or wall mounted.

Single carriers are tested at the bottom, middle and top channels provided frequency channel tables. Multicarrier testing is performed at maximum port/carrier power.

## Multiband/Multicarrier Test Configurations

Test Case 3 (AWS Multiband/Multicarrier LBE): In the AWS band 66 \_ Two NR 40MHz carriers (with minimum spacing between carrier frequencies) at the lower band edge (2130.0 & 2170.0MHz). PCS Band 25 carrier at the middle channel 1962.5MHz. The largest channel bandwidth is selected to maximize carrier OBW. The carriers are operated with a maximum power (~40W per carrier) which gives a total port power of 80 watts on Band 66 and 40watts on Band 25. Total port power is 120 watts.

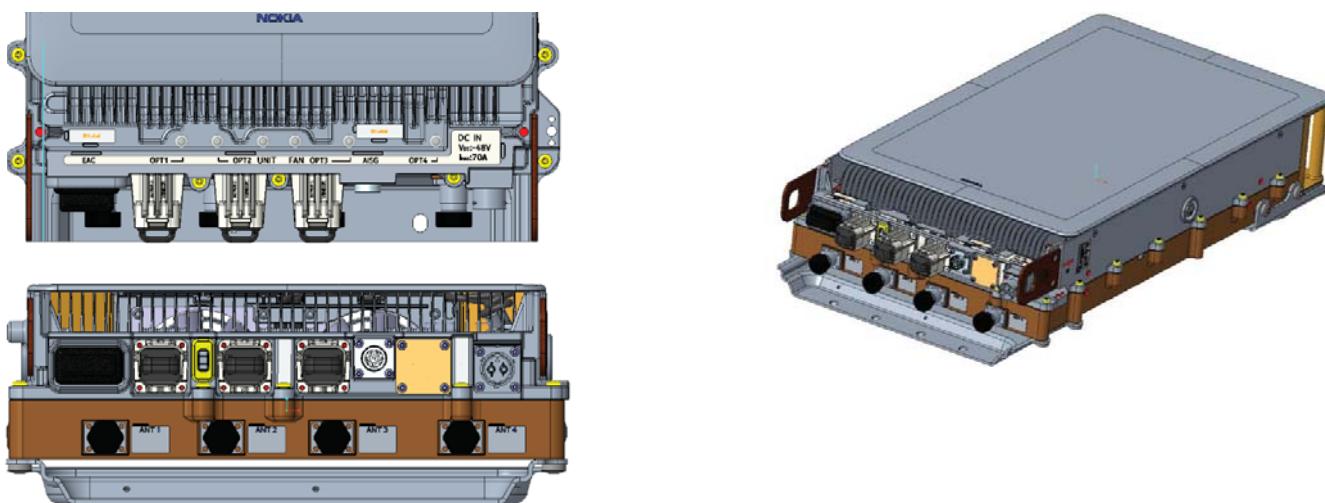
Test Case 4 (AWS Multiband/Multicarrier UBE): In the AWS band 66 \_ Two NR 40MHz carriers (with minimum spacing between carrier frequencies) at the upper band edge (2140.0 & 2180.0MHz). PCS Band 25 carrier at middle channel 1962.5MHz. The largest channel bandwidth is selected to maximize carrier OBW. The carriers are operated with a maximum power (~40W per carrier) which gives total a port power of 80 watts on Band 66 and 40watts on Band 25. Total port power is 120 watts.

The PCS Band 5G NR channel bandwidths are 5, 10, 15, 20, 30 and 40MHz. The downlink channel numbers are provided below. 40MHz is the only bandwidth tested here, others are simply for reference of previously tested bandwidths on this radio.

| AHFII Band n25 (Ant 1 through 4) | Downlink 5G NR NR-ARFCN | Downlink Frequency (MHz) | 5G NR Channel Bandwidth |             |             |             |             |             |
|----------------------------------|-------------------------|--------------------------|-------------------------|-------------|-------------|-------------|-------------|-------------|
|                                  |                         |                          | 5 MHz                   | 10 MHz      | 15 MHz      | 20 MHz      | 30 MHz      | 40 MHz      |
|                                  | 386000                  | 1930.0                   | Band Edge               | Band Edge   | Band Edge   | Band Edge   | Band Edge   | Band Edge   |
|                                  | 386500                  | 1932.5                   | Bottom Ch               |             |             |             |             |             |
|                                  | 387000                  | 1935.0                   |                         | Bottom Ch   |             |             |             |             |
|                                  | 387500                  | 1937.5                   |                         |             | Bottom Ch   |             |             |             |
|                                  | 388000                  | 1940.0                   |                         |             |             | Bottom Ch   |             |             |
|                                  | 389000                  | 1945.0                   |                         |             |             |             | Bottom Ch   |             |
|                                  | 390000                  | 1950.0                   |                         |             |             |             |             | Bottom Ch   |
|                                  | 392500                  | 1962.5                   | Middle Ch               | Middle Ch   | Middle Ch   | Middle Ch   | Middle Ch   | Middle Ch   |
|                                  | 395000                  | 1975.0                   |                         |             |             |             |             | Top Channel |
|                                  | 396000                  | 1980.0                   |                         |             |             |             | Top Channel |             |
|                                  | 397000                  | 1985.0                   |                         |             |             | Top Channel |             |             |
|                                  | 397500                  | 1987.5                   |                         |             | Top Channel |             |             |             |
|                                  | 398000                  | 1990.0                   |                         | Top Channel |             |             |             |             |
|                                  | 398500                  | 1992.5                   | Top Channel             |             |             |             |             |             |
|                                  | 399000                  | 1995.0                   | Band Edge               | Band Edge   | Band Edge   | Band Edge   | Band Edge   | Band Edge   |

AHFII Downlink Band Edge 5G NR Band n25 Frequency Channels

# PRODUCT DESCRIPTION




The AWS Band 5G NR channel bandwidths are 5, 10, 15, 20, 30 and 40MHz. The downlink channel numbers are provided below. 40MHz is the only bandwidth tested here, others are simply for reference of previously tested bandwidths on this radio.

|                                        | Downlink<br>5G NR<br>NR-<br>ARFCN | Downlink<br>Frequency<br>(MHz) | 5G NR Channel Bandwidth |             |                |                |                |                |
|----------------------------------------|-----------------------------------|--------------------------------|-------------------------|-------------|----------------|----------------|----------------|----------------|
|                                        |                                   |                                | 5 MHz                   | 10 MHz      | 15 MHz         | 20 MHz         | 30 MHz         | 40 MHz         |
| AHFII 5G NR Band n66 (Ant 1 through 4) | 422000                            | 2110.0                         | Band Edge               | Band Edge   | Band Edge      | Band Edge      | Band Edge      | Band Edge      |
|                                        | 422500                            | 2112.5                         | Bottom Ch               |             |                |                |                |                |
|                                        | 423000                            | 2115.0                         |                         | Bottom Ch   |                |                |                |                |
|                                        | 423500                            | 2117.5                         |                         |             | Bottom Ch      |                |                |                |
|                                        | 424000                            | 2120.0                         |                         |             |                | Bottom Ch      |                |                |
|                                        | 425000                            | 2125.0                         |                         |             |                |                | Bottom Ch      |                |
|                                        | 426000                            | 2130.0                         |                         |             |                |                |                | Bottom Ch      |
|                                        | 431000                            | 2155.0                         | Middle Ch               | Middle Ch   | Middle Ch      | Middle Ch      | Middle Ch      |                |
|                                        | 436000                            | 2180.0                         |                         |             |                |                |                | Top<br>Channel |
|                                        | 437000                            | 2185.0                         |                         |             |                |                | Top<br>Channel |                |
|                                        | 438000                            | 2190.0                         |                         |             |                | Top<br>Channel |                |                |
|                                        | 438500                            | 2192.5                         |                         |             | Top<br>Channel |                |                |                |
|                                        | 439000                            | 2195.0                         |                         | Top Channel |                |                |                |                |
|                                        | 439500                            | 2197.5                         | Top Channel             |             |                |                |                |                |
|                                        | 440000                            | 2200.0                         | Band Edge               | Band Edge   | Band Edge      | Band Edge      | Band Edge      | Band Edge      |

AHFII Downlink Band Edge 5G NR Band n66 Frequency Channels

AHFII Connector Layout



# PRODUCT DESCRIPTION

| Name  | Qty | Connector Type           | Purpose (and Description)                   |
|-------|-----|--------------------------|---------------------------------------------|
| DC In | 1   | APPG Amphenol            | 2-pole Power Input Terminal                 |
| GND   | 1   | Screw lug (2xM5/1xM8)    | Ground                                      |
| ANT   | 4   | 4.3-10                   | RF signal for Transmitter/Receiver (50 Ohm) |
| Unit  | 1   | LED                      | Unit Status LED                             |
| EAC   | 1   | MDR26                    | External Alarm Interface                    |
| OPT   | 3   | SFP                      | Optical Interfaces                          |
| RET   | 1   | 8-pin circular connector | AISG 3.0 to external devices_ RET RS-485    |

## EUT External Interfaces

### Testing Objective:

A permissive change on the original filing is being pursued to add 5G NR (new radio) 40 MHz carrier operations to the Nokia Solutions and Networks AirScale Base Transceiver Station (BTS) Remote Radio Head (RRH) model AHFII FCC and ISED radio certifications.

# CONFIGURATIONS



## Configuration NOKI0050- 1

### Test Configuration 1

| Software/Firmware Running during test |                                |
|---------------------------------------|--------------------------------|
| Description                           | Version                        |
| Radio Module Software                 | RF.FRM6.22R4.20220822.003      |
| BTS Software Version (22R4)           | SBTS22R4_ENB_0000_000319_00000 |

| Equipment being tested (include Peripherals) |                              |                   |               |
|----------------------------------------------|------------------------------|-------------------|---------------|
| Description                                  | Manufacturer                 | Model/Part Number | Serial Number |
| AMIA (BTS System Module)                     | Nokia Solutions and Networks | 473098.204        | UK222201001   |
| ASIB (BTS System Module)                     | Nokia Solutions and Networks | 473764A.102       | K9214331950   |
| ABIO (BTS System Module)                     | Nokia Solutions and Networks | 475266A.103       | L1220100015   |
| ABIO (BTS System Module)                     | Nokia Solutions and Networks | 475266A.103       | L1214403575   |
| AHFII (Radio Module Model)                   | Nokia Solutions and Networks | 475656A.101       | YK214000035   |
| Low Pass Filter 1.0GHz/100W                  | Microwave Circuits,Inc.      | L1G006G1          | SN3971-01     |
| Attenuator 150W/20dB                         | AeroflexWeinschel            | 66-20-33          | BZ1165        |
| SFP- 9.8G,300M,850NM                         | Nokia                        | 462265            | VF20180015S   |
| SFP+ 9.8G,300M,850NM                         | Nokia                        | 462265            | FR214716966   |
| SFP+ 9.8G,300M,850NM                         | Nokia                        | 462265            | VF20180016Z   |
| SFP+ 9.8G,300M,850NM                         | Nokia                        | 462265            | FR214716965   |
| HP ProBook 6470b                             | HP                           | B2G14EC#ABA       | CNU246B8XP    |
| HP- DC System power supply                   | HP                           | 6032A             | 3440A-10308   |
| FPAC (DC-pwr supply)                         | Nokia                        | 472438A.101       | G7111007146   |
| 1 Meter RF cable                             | Huber+suhner                 | SUCOFLEX 104      | SN 551432 /4  |
| 6 Meter RF cable                             | Huber+suhner                 | SUCOFLEX 106      | SN 528836 /6  |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC866         |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC864         |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC865         |
| Fiber Optic cable 25m                        | Occfiber.com                 | BX002DAIS         | 334280        |
| CAT5e data cable                             | BELKIN                       | #R7J304           | E178882       |
| CAT5e data cable                             | LEONI L                      | 64867m            | 146180        |
| CAT5e data cable                             | LEONI L                      | 64867m            | 146180        |
| FYGB GPS receiver                            | Nokia                        | 472748A           | 71231431      |
| Cat-5e cable                                 | CSA                          | LL73189           | E151955       |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297387      |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297386      |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297388      |

| Cables (Peripheral)     |              |            |               |                             |                          |
|-------------------------|--------------|------------|---------------|-----------------------------|--------------------------|
| Description             | Shield (Y/N) | Length (m) | Ferrite (Y/N) | Connection 1                | Connection 2             |
| Fiber Optic cable       | N            | 2 meters   | N             | ABIO                        | AHFII                    |
| Cat-5e cable (CSA)      | Y            | 100 meters | N             | ASIB                        | FYGB GPS receiver        |
| Cat-5e cable            | Y            | 25 meters  | N             | ASIB                        | WebEM- PC                |
| Times Microwave Systems | Y            | 6 meters   | N             | EUT [RRH] Ant ports 1, 2, 4 | 40MHz/ 250W -50ohm -Load |

| Cables                        |              |            |               |                                |                               |
|-------------------------------|--------------|------------|---------------|--------------------------------|-------------------------------|
| Description                   | Shield (Y/N) | Length (m) | Ferrite (Y/N) | Connection 1                   | Connection 2                  |
| HS-SUCOFLEX_106               | Y            | 6 meters   | N             | EUT [AHFII]<br>Ant port #3     | Attenuator 150W/40dB [BZ1165] |
| Attenuator 150W/40dB [BZ1165] | N            | NA         | N             | RF cable HS-SUCOFLEX_106       | LowPass filter 1.0GHz/100W    |
| Low Pass Filter 1.0G/100W     | N            | NA         | N             | Attenuator 150W/40dB [BZ21165] | RF cable HS-SUCOFLEX_104      |
| HS-SUCOFLEX_104               | Y            | 1 meter    | N             | Low Pass Filter 1.0GHz/100W    | Analyzer                      |

# CONFIGURATIONS



## RF Test Setup Diagram:



## Configuration NOKI0050- 2

### Test Configuration 2

| Software/Firmware Running during test |                                |
|---------------------------------------|--------------------------------|
| Description                           | Version                        |
| Radio Module Software                 | RF.FRM6.22R4.20220822.003      |
| BTS Software Version (22R4)           | SBTS22R4_ENB_0000_000319_00000 |

| Equipment being tested (include Peripherals) |                              |                   |               |
|----------------------------------------------|------------------------------|-------------------|---------------|
| Description                                  | Manufacturer                 | Model/Part Number | Serial Number |
| AMIA (BTS System Module)                     | Nokia Solutions and Networks | 473098A.203       | RK182307104   |
| ASIB (BTS System Module)                     | Nokia Solutions and Networks | 474021A.101       | L1183529610   |
| ABIO (BTS System Module)                     | Nokia Solutions and Networks | 474020A.102       | L1183605740   |
| AHFII (Radio Module Model)                   | Nokia Solutions and Networks | 474216A.101       | K9181401111   |
| Attenuator 150W/40dB                         | AeroflexWeinschel            | 58-40-43          |               |
| SFP+ 9.8G,300NM,850NM                        | Nokia                        | 462265            | VF20180015S   |
| SFP+ 9.8G,300NM,850NM                        | Nokia                        | 462265            | FR214716966   |
| SFP+ 9.8G,300NM,850NM                        | Nokia                        | 462265            | VF20180016Z   |
| SFP+ 9.8G,300NM,850NM                        | Nokia                        | 462265            | FR214716965   |
| HP ProBook 6470b                             | HP                           | B2G14EC#ABA       | CNU246B8XP    |
| HP- DC System power supply                   | HP                           | 6032A             | 3440A-10308   |
| FPAC (DC-pwr supply)                         | Nokia                        | 472438A.101       | G7111007146   |
| 1 Meter RF cable                             | Huber+suhner                 | SUCOFLEX 104      | SN 551432 /4  |
| 6 Meter RF cable                             | Huber+suhner                 | SUCOFLEX 106      | SN 528836 /6  |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC866         |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC864         |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC865         |
| Fiber Optic cable 25m                        | Occfiber.com                 | BX002DAIS         | 334280        |
| CAT5e data cable                             | BELKIN                       | #R7J304           | E178882       |
| CAT5e data cable                             | LEONI L                      | 64867m            | 146180        |
| CAT5e data cable                             | LEONI L                      | 64867m            | 146180        |
| FYGB GPS receiver                            | Nokia                        | 472748A           | 71231431      |
| Cat-5e cable                                 | CSA                          | LL73189           | E151955       |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297387      |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297386      |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297388      |

| Cables (Peripheral)     |              |            |               |                             |                   |
|-------------------------|--------------|------------|---------------|-----------------------------|-------------------|
| Description             | Shield (Y/N) | Length (m) | Ferrite (Y/N) | Connection 1                | Connection 2      |
| Fiber Optic cable       | N            | 2 meters   | N             | ABIO                        | AHFII             |
| Cat-5e cable (CSA)      | Y            | 100 meters | N             | ASIB                        | FYGB GPS receiver |
| Cat-5e cable            | Y            | 25 meters  | N             | ASIB                        | WebEM- PC         |
| Times Microwave Systems | Y            | 2 meters   | N             | EUT [RRH] Ant ports 1, 2, 4 | 250W -50ohm -Load |

# CONFIGURATIONS

| Cables                       |              |            |               |                              |                              |
|------------------------------|--------------|------------|---------------|------------------------------|------------------------------|
| Description                  | Shield (Y/N) | Length (m) | Ferrite (Y/N) | Connection 1                 | Connection 2                 |
| HS-SUCOFLEX_106              | Y            | 6 meters   | N             | EUT [AHFII] Ant port #3      | Attenuator 150W/40dB [TC909] |
| Attenuator 150W/40dB [TC909] | N            | NA         | N             | RF cable HS-SUCOFLEX_106     | HS-SUCOFLEX_104              |
| HS-SUCOFLEX_104              | Y            | 1 meter    | N             | Attenuator 150W/40dB [TC909] | Analyzer                     |

## RF Test Setup Diagram:



## Configuration NOKI0050- 3

### Test Configuration 3

| Software/Firmware Running during test |                                |
|---------------------------------------|--------------------------------|
| Description                           | Version                        |
| Radio Module Software                 | RF.FRM6.22R4.20220822.003      |
| BTS Software Version (22R4)           | SBTS22R4_ENB_0000_000319_00000 |

| Equipment being tested (include Peripherals) |                              |                   |                |
|----------------------------------------------|------------------------------|-------------------|----------------|
| Description                                  | Manufacturer                 | Model/Part Number | Serial Number  |
| AMIA (BTS System Module)                     | Nokia Solutions and Networks | 473098A.203       | RK182307104    |
| ASIB (BTS System Module)                     | Nokia Solutions and Networks | 474021A.101       | L1183529610    |
| ABIO (BTS System Module)                     | Nokia Solutions and Networks | 474020A.102       | L1183605740    |
| AHFII (Radio Module Model)                   | Nokia Solutions and Networks | 474216A.101       | K9181401111    |
| High Pass Filter 2.5GHz/2W                   | RLC Electronics.             | 0028              | F-100-3000-5-R |
| Attenuator 150W/20dB                         | AeroflexWeinschel            | 66-20-33          | BZ1165         |
| SFP+ 9.8G,300M,850NM                         | Nokia                        | 462265            | VF20180015S    |
| SFP+ 9.8G,300M,850NM                         | Nokia                        | 462265            | FR214716966    |
| SFP+ 9.8G,300M,850NM                         | Nokia                        | 462265            | VF20180016Z    |
| SFP+ 9.8G,300M,850NM                         | Nokia                        | 462265            | FR214716965    |
| HP ProBook 6470b                             | HP                           | B2G14EC#ABA       | CNU246B8XP     |
| HP- DC System power supply                   | HP                           | 6032A             | 3440A-10308    |
| FPAC (DC-pwr supply)                         | Nokia                        | 472438A.101       | G7111007146    |
| 1 Meter RF cable                             | Huber+suhner                 | SUCOFLEX 104      | SN 551432 /4   |
| 6 Meter RF cable                             | Huber+suhner                 | SUCOFLEX 106      | SN 528836 /6   |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC866          |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC864          |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC865          |
| Fiber Optic cable 25m                        | Occfiber.com                 | BX002DAIS         | 334280         |
| CAT5e data cable                             | BELKIN                       | #R7J304           | E178882        |
| CAT5e data cable                             | LEONI L                      | 64867m            | 146180         |
| CAT5e data cable                             | LEONI L                      | 64867m            | 146180         |
| FYGB GPS receiver                            | Nokia                        | 472748A           | 71231431       |
| Cat-5e cable                                 | CSA                          | LL73189           | E151955        |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297387       |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297386       |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297388       |

# CONFIGURATIONS

| Cables (Peripheral)     |              |            |               |                             |                   |
|-------------------------|--------------|------------|---------------|-----------------------------|-------------------|
| Description             | Shield (Y/N) | Length (m) | Ferrite (Y/N) | Connection 1                | Connection 2      |
| Fiber Optic cable       | N            | 2 meters   | N             | ABIO                        | AHFII             |
| Cat-5e cable (CSA)      | Y            | 100 meters | N             | ASIB                        | FYGB GPS receiver |
| Cat-5e cable            | Y            | 25 meters  | N             | ASIB                        | WebEM- PC         |
| Times Microwave Systems | Y            | 2 meters   | N             | EUT [RRH] Ant ports 1, 2, 4 | 250W -50ohm -Load |

| Cables                     |              |            |               |                               |                               |
|----------------------------|--------------|------------|---------------|-------------------------------|-------------------------------|
| Description                | Shield (Y/N) | Length (m) | Ferrite (Y/N) | Connection 1                  | Connection 2                  |
| HS-SUCOFLEX_106            | Y            | 6 meters   | N             | EUT [RRH] RF port #3          | Attenuator 150W/20dB [BZ1165] |
| Attenuator 150W/20dB       | N            | NA         | N             | HS-SUCOFLEX_106               | High Pass Filter 2.5GHz       |
| High Pass Filter 2.5GHz/2W | N            | NA         | N             | Attenuator 150W/20dB [BZ1165] | RF cable HS-SUCOFLEX_104      |
| HS-SUCOFLEX_104            | Y            | 1 meter    | N             | High Pass Filter 2.5GHz/2W    | Analyzer                      |

## RF Test Setup Diagram:



# CONFIGURATIONS



## Configuration NOKI0050- 4

### Test Configuration 4

| Software/Firmware Running during test |                                |
|---------------------------------------|--------------------------------|
| Description                           | Version                        |
| Radio Module Software                 | RF.FRM6.22R4.20220822.003      |
| BTS Software Version (22R4)           | SBTS22R4_ENB_0000_000319_00000 |

| Equipment being tested (include Peripherals) |                              |                   |               |
|----------------------------------------------|------------------------------|-------------------|---------------|
| Description                                  | Manufacturer                 | Model/Part Number | Serial Number |
| AMIA (BTS System Module)                     | Nokia Solutions and Networks | 473098A.203       | RK182307104   |
| ASIB (BTS System Module)                     | Nokia Solutions and Networks | 474021A.101       | L1183529610   |
| ABIO (BTS System Module)                     | Nokia Solutions and Networks | 474020A.102       | L1183605740   |
| AHFII (Radio Module Model)                   | Nokia Solutions and Networks | 474216A.101       | K9181401111   |
| High Pass Filter 8-40GHz/15Watt              | RF-Lambda                    | RHPF23G08G40      | 1710200018    |
| Attenuator 50W/30dB                          | Narda                        | 776B-30           | 776B-30       |
| SFP+ 9.8G,300M,850NM                         | Nokia                        | 462265            | VF20180015S   |
| SFP- 9.8G,300M,850NM                         | Nokia                        | 462265            | FR214716966   |
| SFP+ 9.8G,300M,850NM                         | Nokia                        | 462265            | VF20180016Z   |
| SFP+ 9.8G,300M,850NM                         | Nokia                        | 462265            | FR214716965   |
| HP ProBook 6470b                             | HP                           | B2G14EC#ABA       | CNU246B8XP    |
| HP- DC System power supply                   | HP                           | 6032A             | 3440A-10308   |
| FPAC (DC-pwr supply)                         | Nokia                        | 472438A.101       | G7111007146   |
| 1 Meter RF cable                             | Huber+suhner                 | SUCOFLEX 104      | SN 551432 /4  |
| 6 Meter RF cable                             | Huber+suhner                 | SUCOFLEX 106      | SN 528836 /6  |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC866         |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC864         |
| 250W -50ohm -Terminating Load                | API Weinschel inc            | 1433-3-LIM        | TC865         |
| Fiber Optic cable 25m                        | Occfiber.com                 | BX002DAIS         | 334280        |
| CAT5e data cable                             | BELKIN                       | #R7J304           | E178882       |
| CAT5e data cable                             | LEONI L                      | 64867m            | 146180        |
| CAT5e data cable                             | LEONI L                      | 64867m            | 146180        |
| FYGB GPS receiver                            | Nokia                        | 472748A           | 71231431      |
| Cat-5e cable                                 | CSA                          | LL73189           | E151955       |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297387      |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297386      |
| 2 Meter RF cable                             | Huber + Suhner, Inc.         | HS-SUCOFLEX_106   | SN297388      |

| Cables (Peripheral)     |              |            |               |                             |                   |
|-------------------------|--------------|------------|---------------|-----------------------------|-------------------|
| Description             | Shield (Y/N) | Length (m) | Ferrite (Y/N) | Connection 1                | Connection 2      |
| Fiber Optic cable       | N            | 25 meters  | N             | ABIO                        | AHFII             |
| Cat-5e cable (CSA)      | Y            | 100 meters | N             | ASIB                        | FYGB GPS receiver |
| Cat-5e cable            | Y            | 25 meters  | N             | ASIB                        | WebEM- PC         |
| Times Microwave Systems | Y            | 2 meters   | N             | EUT [RRH] Ant ports 1, 2, 4 | 250W -50ohm -Load |

# CONFIGURATIONS

| Cables                       |              |            |               |                              |                          |
|------------------------------|--------------|------------|---------------|------------------------------|--------------------------|
| Description                  | Shield (Y/N) | Length (m) | Ferrite (Y/N) | Connection 1                 | Connection 2             |
| HS-SUCOFLEX_106              | Y            | 6 meters   | N             | EUT [AHFII] Ant port #3      | Attenuator 100W/3dB      |
| Attenuator 100W/3dB          | N            | NA         | N             | RF cable HS-SUCOFLEX_106     | Attenuator 50W/30dB      |
| Attenuator 50W/30dB          | N            | NA         | N             | Attenuator 100W/3dB          | High Pass Filter 8-40GHz |
| High Pass Filter 8-40GHz/15W | N            | NA         | N             | Attenuator 50W/30dB          | RF cable HS-SUCOFLEX_104 |
| HS-SUCOFLEX_104              | Y            | 1 meter    | N             | High Pass Filter 8-40GHz/15W | Analyzer                 |

RF Test Setup Diagram:



# MODIFICATIONS



## Equipment Modifications

| Item | Date       | Test                         | Modification                         | Note                                                                | Disposition of EUT                          |
|------|------------|------------------------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------|
| 1    | 2022-10-17 | Occupied Bandwidth           | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 2    | 2022-10-17 | Band Edge Compliance         | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 3    | 2022-10-18 | Power Spectral Density       | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 4    | 2022-10-18 | Output Power                 | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 5    | 2022-10-18 | Peak to Average Power        | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 6    | 2022-10-18 | Spurious Conducted Emissions | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | Scheduled testing was completed.            |

# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n25



XMIT 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model  | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|--------|-----|------------|------------|
| Block - DC                   | Fairview Microwave | SD3239 | ANC | 2022-03-02 | 2023-03-02 |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A | AFQ | 2022-01-17 | 2023-01-17 |
| Generator - Signal           | Agilent            | N5173B | TIW | 2020-07-17 | 2023-07-17 |

## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission power spectral density was measured using the channels and modes as called out on the following data sheets.

The method of ANSI C63.26-2015 section 5.2.4.5 was used to make this measurement.

The RF conducted emission testing was performed on one port. The AHFII antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in the "Output Power - All Ports" report section) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i, and 6.4.

The total PSD for all antenna ports (at the radio output) were determined per ANSI C63.26-2015 paragraph 6.4.3.2.4. The EIRP calculations are based upon ANSI C63.26-2015 paragraphs 6.4 for a four port MIMO base station.

EIRP Requirements:

### FCC Requirements: Part 24.232 Power and antenna height limits.

(a)(2) Base stations with an emission bandwidth greater than 1 MHz are limited to 1640 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b) below.

a)(3) Base station antenna heights may exceed 300 meters HAAT with a corresponding reduction in power; see Tables 1 and 2 of this section.

b)(2) Base stations that are located in counties with population densities of 100 persons or fewer per square mile, based upon the most recently available population statistics from the Bureau of the Census, with an emission bandwidth greater than 1 MHz are limited to 3280 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT.

### ISED Requirements RSS-133 Section 6.4/SRSP-510 section 5.1.1:

#### SRSP-510 section 5.1 Radiated power and antenna height limits for base stations

For base stations with a channel bandwidth greater than 1 MHz, the maximum e.i.r.p. is limited to 3280 watts/MHz e.i.r.p. (i.e., no more than 3280 watts e.i.r.p. in any 1 MHz band segment) with an antenna height above average terrain (HAAT) up to 300 metres. Fixed or base stations operating in urban areas are limited to a maximum allowable e.i.r.p. of 1640 watts/MHz e.i.r.p. Base station antenna heights above average terrain may exceed 300 metres with a corresponding reduction in e.i.r.p. according to the following table:

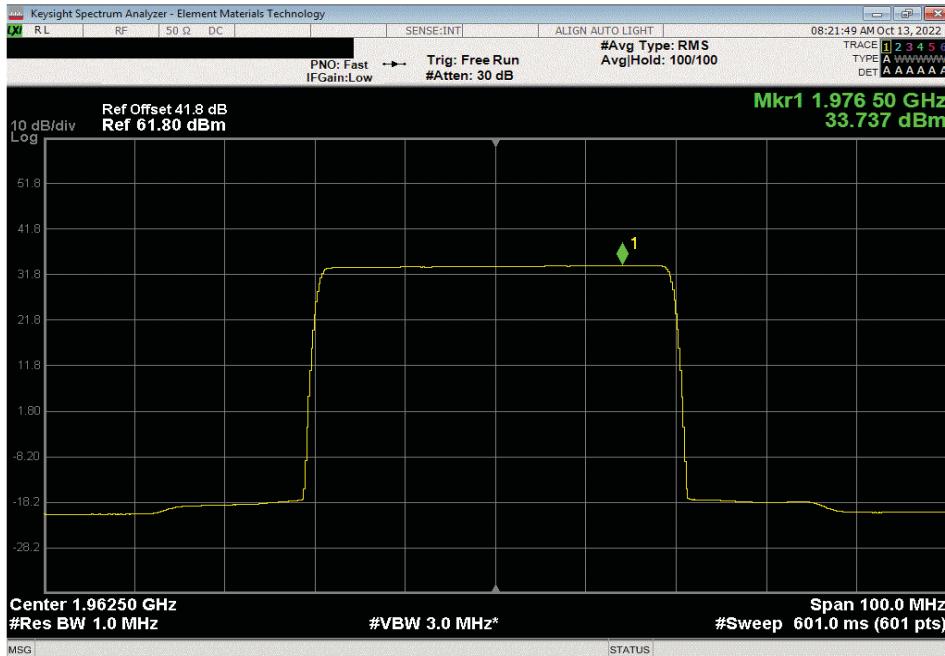
# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n25



TbTx 2022.06.03.0 XMi 2022.02.07.0


| EUT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AHFII (FCC/SED C2PC)         |           | Work Order:              | NOKI0050                  |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|--------------------------|---------------------------|-------------------------------|------|-----------------------|--------|---|------|------|------|--|-------------------------|--------|---|------|------|------|--|------------------------|--------|---|------|------|------|-------|-----------------------|--------|---|------|------|------|--|-------------------------|--------|---|------|------|------|--|------------------------|--------|---|------|------|------|-------|-----------------------|--------|---|------|------|------|--|-------------------------|--------|---|------|------|------|--|------------------------|--------|---|------|------|------|--------|-----------------------|--------|---|------|------|------|--|-------------------------|--------|---|------|------|------|--|------------------------|--------|---|------|------|------|
| Serial Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K9181401111                  |           | Date:                    | 18-Oct-22                 |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| Customer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nokia of America Corporation |           | Temperature:             | 21.4 °C                   |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| Attendees:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mitchell Hill                |           | Humidity:                | 29.9% RH                  |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None                         |           | Barometric Pres.:        | 1030 mbar                 |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| Tested by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Brandon Hobbs                | Power:    | 54 VDC                   | Job Site:                 | TX07                          |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| TEST SPECIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |           | Test Method              |                           |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| FCC 24E:2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |           | ANSI C63.26:2015         |                           |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| RSS-133 Issue 6:2013+A1:2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |           | ANSI C63.26:2015         |                           |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |           |                          |                           |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| <p>All measurement path losses were accounted for in the reference level offset including any attenuators, filters and DC blocks. Band n25 carriers are enabled at maximum power (80 watts/carrier). The PSD was measured while transmitting one carrier on Port 1. The total PSD for multiport (2x2 MIMO, 4x4 MIMO) operation was determined based upon ANSI 63.26 clause 6.4.3.2.4 (10 Log Nout). The total PSD for two port operation is single port PSD +3dB [i.e. 10 Log(2)]. The total PSD for four port operation is single port PSD +6dB [i.e. 10 Log(4)].</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |           |                          |                           |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| DEVIATIONS FROM TEST STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |           |                          |                           |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |           |                          |                           |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| Configuration #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                            | Signature |                          |                           |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |           | Initial Value<br>dBm/MHz | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| Two Port (2x2 MIMO)<br>dBm/MHz == PSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |           |                          |                           |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| Four Port (4x4 MIMO)<br>dBm/MHz == PSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |           |                          |                           |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz<br>40 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |           |                          |                           |                               |      |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| <table border="1"> <thead> <tr> <th>QPSK</th> <th>Low Channel, 1950 MHz</th> <th>33.779</th> <th>0</th> <th>33.8</th> <th>36.8</th> <th>39.8</th> </tr> </thead> <tbody> <tr> <td></td> <td>Mid Channel, 1962.5 MHz</td> <td>33.737</td> <td>0</td> <td>33.7</td> <td>36.7</td> <td>39.7</td> </tr> <tr> <td></td> <td>High Channel, 1975 MHz</td> <td>33.869</td> <td>0</td> <td>33.9</td> <td>36.9</td> <td>39.9</td> </tr> <tr> <td>16QAM</td> <td>Low Channel, 1950 MHz</td> <td>35.508</td> <td>0</td> <td>35.5</td> <td>38.5</td> <td>41.5</td> </tr> <tr> <td></td> <td>Mid Channel, 1962.5 MHz</td> <td>35.446</td> <td>0</td> <td>35.4</td> <td>38.4</td> <td>41.4</td> </tr> <tr> <td></td> <td>High Channel, 1975 MHz</td> <td>35.625</td> <td>0</td> <td>35.6</td> <td>38.6</td> <td>41.6</td> </tr> <tr> <td>64QAM</td> <td>Low Channel, 1950 MHz</td> <td>33.834</td> <td>0</td> <td>33.8</td> <td>36.8</td> <td>39.8</td> </tr> <tr> <td></td> <td>Mid Channel, 1962.5 MHz</td> <td>33.740</td> <td>0</td> <td>33.7</td> <td>36.7</td> <td>39.7</td> </tr> <tr> <td></td> <td>High Channel, 1975 MHz</td> <td>33.879</td> <td>0</td> <td>33.9</td> <td>36.9</td> <td>39.9</td> </tr> <tr> <td>256QAM</td> <td>Low Channel, 1950 MHz</td> <td>33.846</td> <td>0</td> <td>33.8</td> <td>36.8</td> <td>39.8</td> </tr> <tr> <td></td> <td>Mid Channel, 1962.5 MHz</td> <td>33.756</td> <td>0</td> <td>33.8</td> <td>36.8</td> <td>39.8</td> </tr> <tr> <td></td> <td>High Channel, 1975 MHz</td> <td>33.865</td> <td>0</td> <td>33.9</td> <td>36.9</td> <td>39.9</td> </tr> </tbody> </table> |                              |           |                          |                           |                               | QPSK | Low Channel, 1950 MHz | 33.779 | 0 | 33.8 | 36.8 | 39.8 |  | Mid Channel, 1962.5 MHz | 33.737 | 0 | 33.7 | 36.7 | 39.7 |  | High Channel, 1975 MHz | 33.869 | 0 | 33.9 | 36.9 | 39.9 | 16QAM | Low Channel, 1950 MHz | 35.508 | 0 | 35.5 | 38.5 | 41.5 |  | Mid Channel, 1962.5 MHz | 35.446 | 0 | 35.4 | 38.4 | 41.4 |  | High Channel, 1975 MHz | 35.625 | 0 | 35.6 | 38.6 | 41.6 | 64QAM | Low Channel, 1950 MHz | 33.834 | 0 | 33.8 | 36.8 | 39.8 |  | Mid Channel, 1962.5 MHz | 33.740 | 0 | 33.7 | 36.7 | 39.7 |  | High Channel, 1975 MHz | 33.879 | 0 | 33.9 | 36.9 | 39.9 | 256QAM | Low Channel, 1950 MHz | 33.846 | 0 | 33.8 | 36.8 | 39.8 |  | Mid Channel, 1962.5 MHz | 33.756 | 0 | 33.8 | 36.8 | 39.8 |  | High Channel, 1975 MHz | 33.865 | 0 | 33.9 | 36.9 | 39.9 |
| QPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low Channel, 1950 MHz        | 33.779    | 0                        | 33.8                      | 36.8                          | 39.8 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mid Channel, 1962.5 MHz      | 33.737    | 0                        | 33.7                      | 36.7                          | 39.7 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | High Channel, 1975 MHz       | 33.869    | 0                        | 33.9                      | 36.9                          | 39.9 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| 16QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Low Channel, 1950 MHz        | 35.508    | 0                        | 35.5                      | 38.5                          | 41.5 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mid Channel, 1962.5 MHz      | 35.446    | 0                        | 35.4                      | 38.4                          | 41.4 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | High Channel, 1975 MHz       | 35.625    | 0                        | 35.6                      | 38.6                          | 41.6 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| 64QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Low Channel, 1950 MHz        | 33.834    | 0                        | 33.8                      | 36.8                          | 39.8 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mid Channel, 1962.5 MHz      | 33.740    | 0                        | 33.7                      | 36.7                          | 39.7 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | High Channel, 1975 MHz       | 33.879    | 0                        | 33.9                      | 36.9                          | 39.9 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
| 256QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Low Channel, 1950 MHz        | 33.846    | 0                        | 33.8                      | 36.8                          | 39.8 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mid Channel, 1962.5 MHz      | 33.756    | 0                        | 33.8                      | 36.8                          | 39.8 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | High Channel, 1975 MHz       | 33.865    | 0                        | 33.9                      | 36.9                          | 39.9 |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |       |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |        |                       |        |   |      |      |      |  |                         |        |   |      |      |      |  |                        |        |   |      |      |      |

# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n25

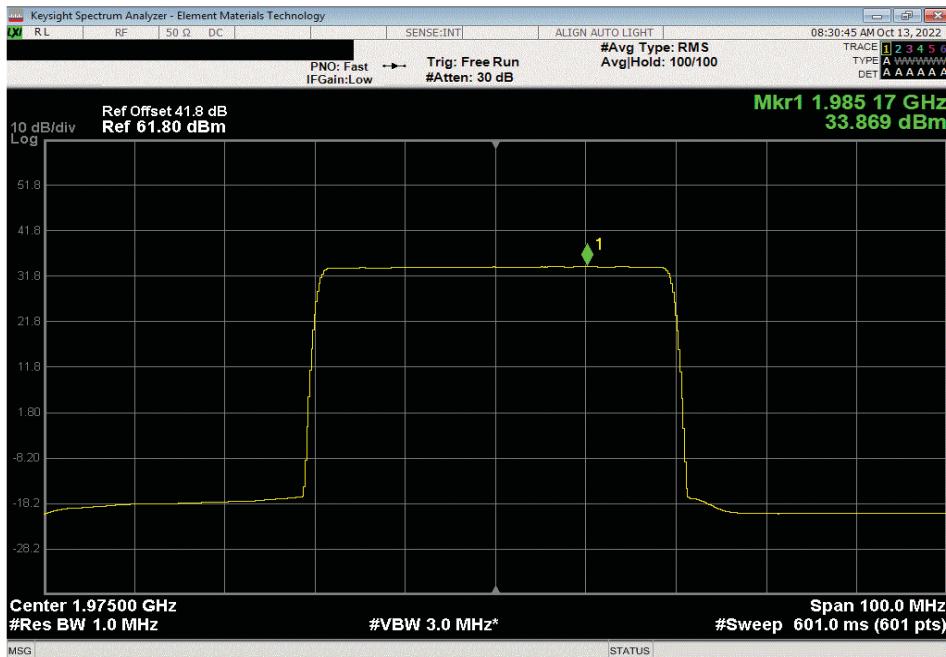



TbITx 2022.06.03.0 XMr1 2022.02.07.0

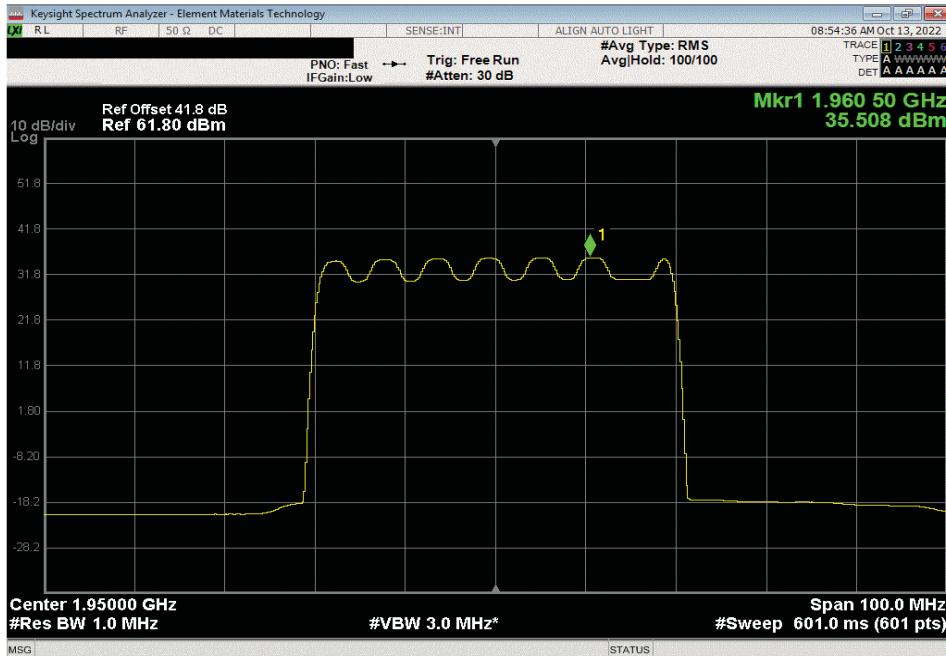
| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, QPSK, Low Channel, 1950 MHz |                           |                               |                                       |                                        |  |
|-----------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                          | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.779                                                                            | 0                         | 33.779                        | 36.779                                | 39.779                                 |  |



| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, QPSK, Mid Channel, 1962.5 MHz |                           |                               |                                       |                                        |  |
|-------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                            | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.737                                                                              | 0                         | 33.737                        | 36.737                                | 39.737                                 |  |




# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n25

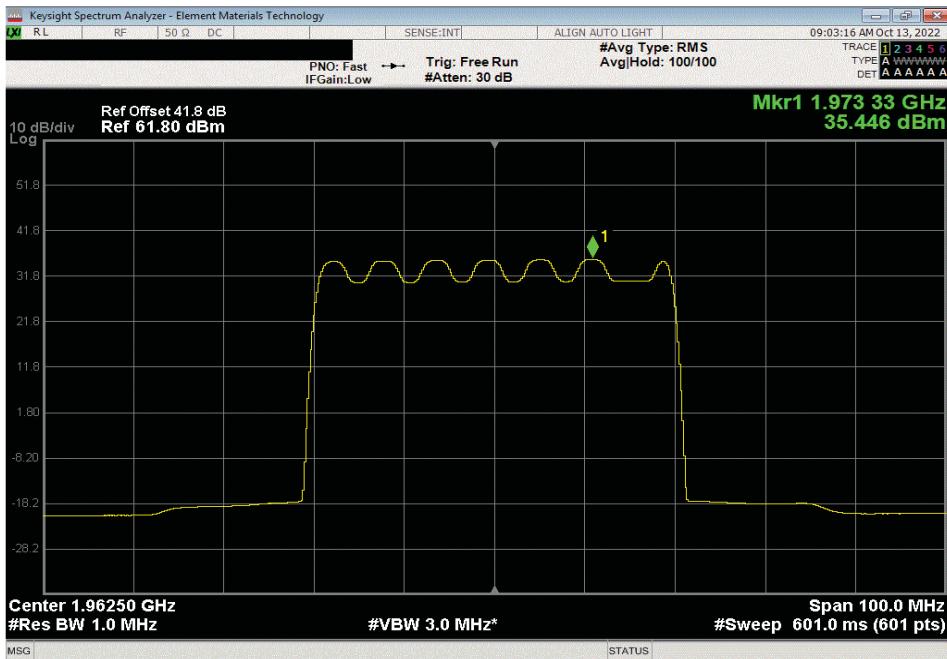



TbITx 2022.06.03.0 XMr1 2022.02.07.0

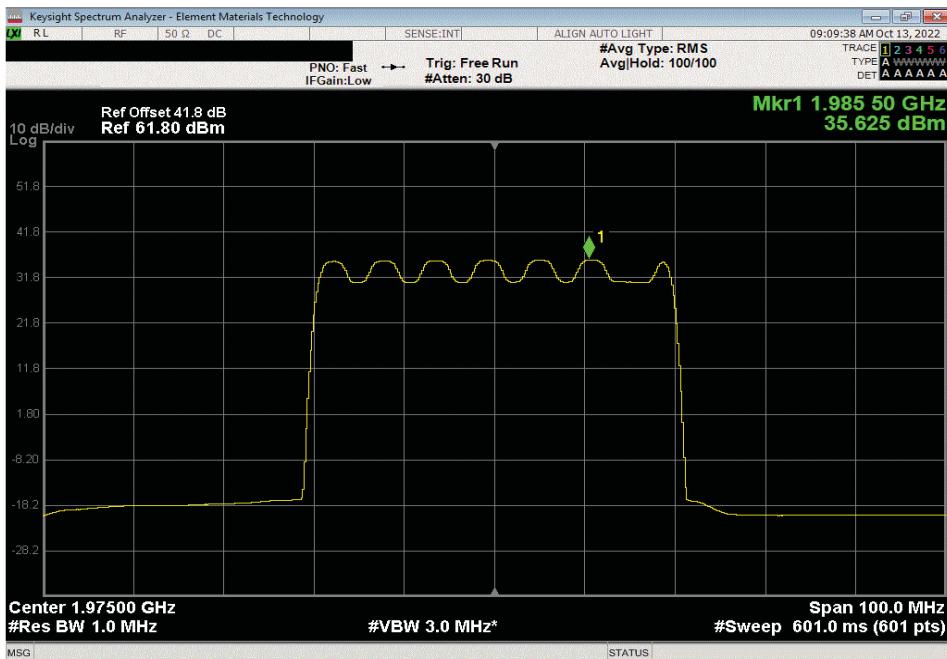
| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, QPSK, High Channel, 1975 MHz |                           |                               |                                       |                                        |  |
|------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                           | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.869                                                                             | 0                         | 33.869                        | 36.869                                | 39.869                                 |  |



| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 16QAM, Low Channel, 1950 MHz |                           |                               |                                       |                                        |  |
|------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                           | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 35.508                                                                             | 0                         | 35.508                        | 38.508                                | 41.508                                 |  |



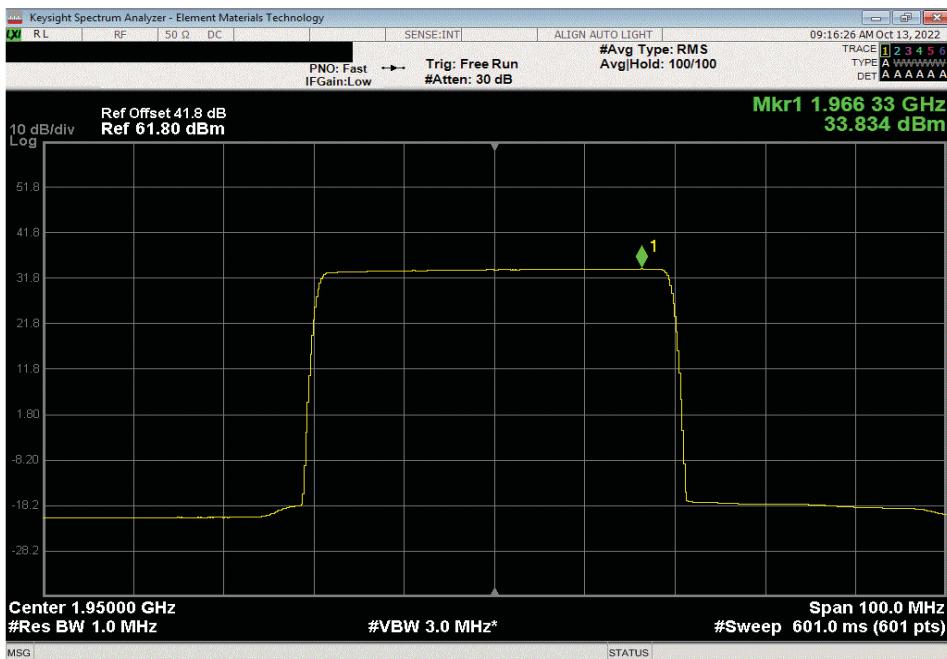

# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n25




TbITx 2022.06.03.0 XMr1 2022.02.07.0

| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 16QAM, Mid Channel, 1962.5 MHz |                           |                               |                                       |                                        |  |
|--------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                             | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 35.446                                                                               | 0                         | 35.446                        | 38.446                                | 41.446                                 |  |




| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 16QAM, High Channel, 1975 MHz |                           |                               |                                       |                                        |  |
|-------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                            | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 35.625                                                                              | 0                         | 35.625                        | 38.625                                | 41.625                                 |  |

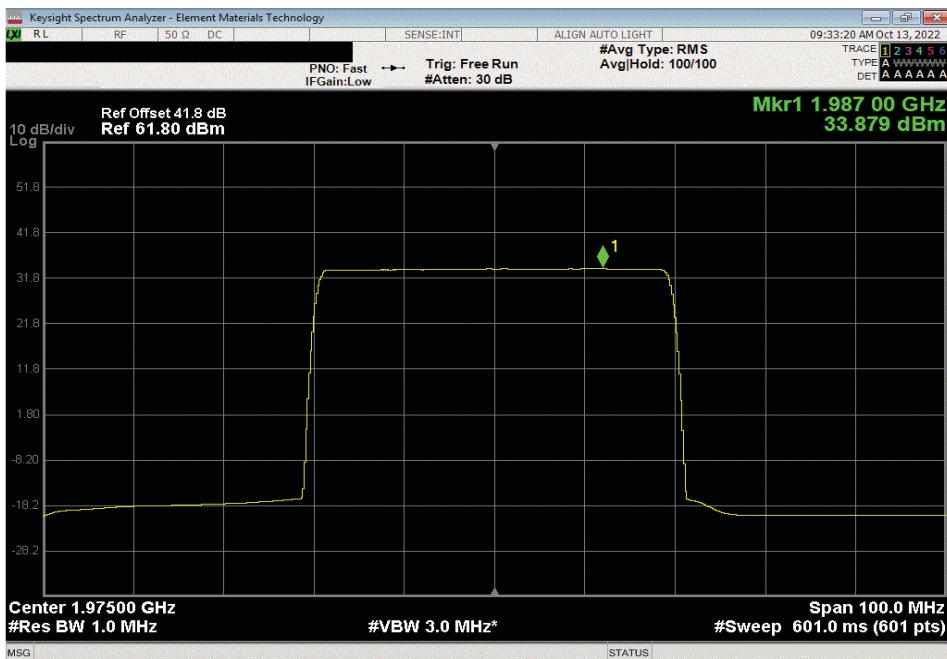



## POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n25

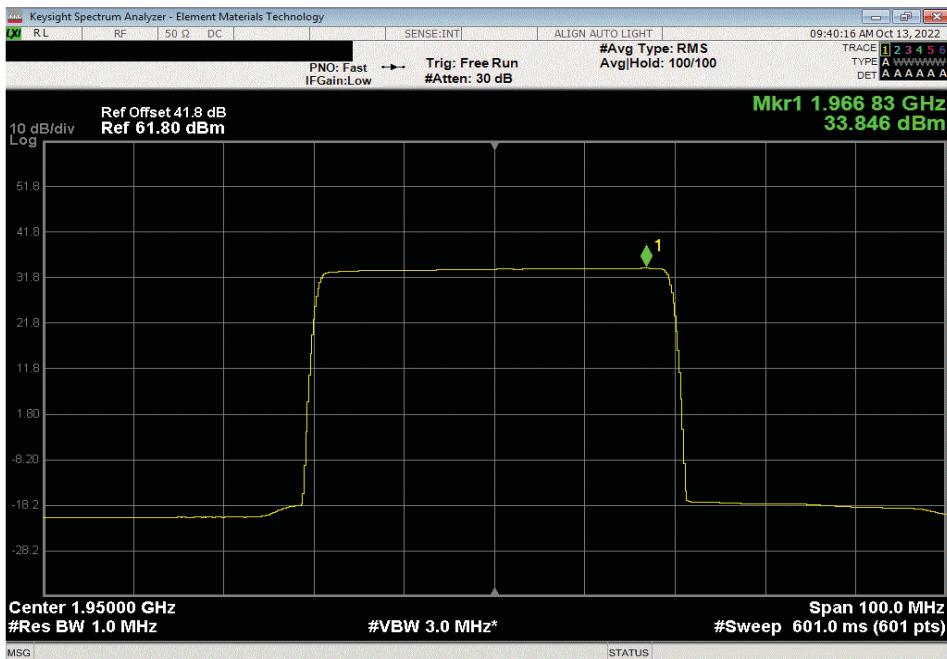


| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 64QAM, Low Channel, 1950 MHz |                           |                               |                                       |                                        |                                        |
|------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|
| Initial Value<br>dBm/MHz                                                           | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |
| 33.834                                                                             | 0                         | 33.834                        | 36.834                                | 39.834                                 | 39.834                                 |




| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 64QAM, Mid Channel, 1962.5 MHz |                           |                               |                                       |                                        |                                        |                                        |
|--------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Initial Value<br>dBm/MHz                                                             | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |
| 33.74                                                                                | 0                         | 33.74                         | 36.74                                 | 39.74                                  |                                        |                                        |



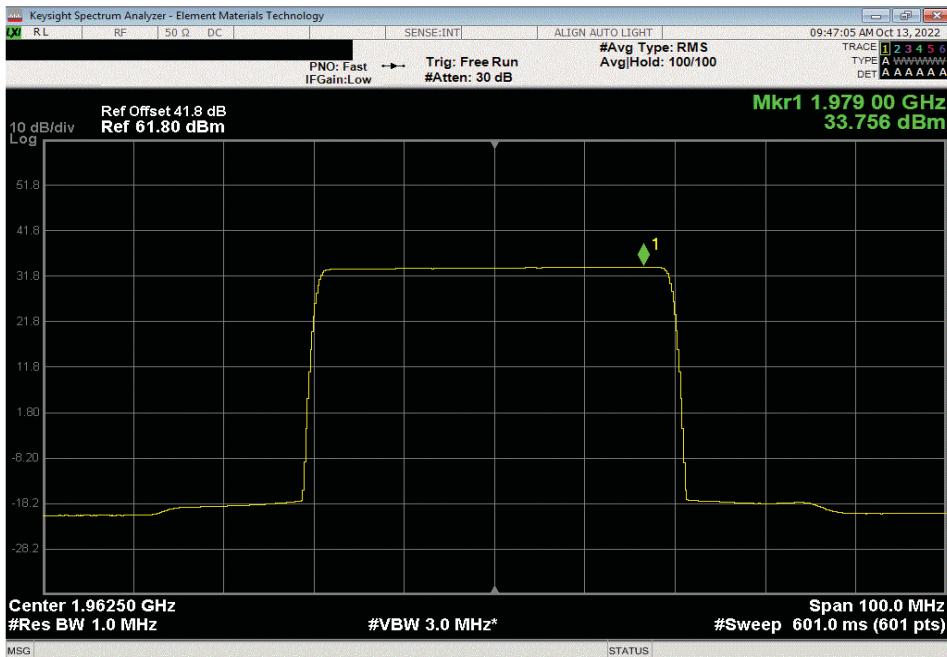

## POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n25



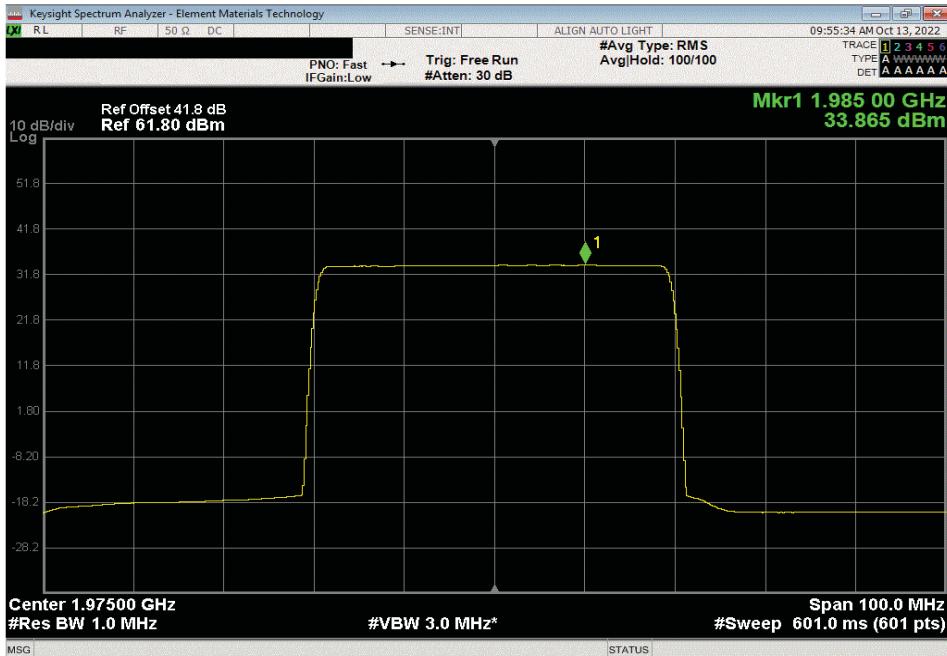
| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 64QAM, High Channel, 1975 MHz |                           |                               |                                       |                                        |                                        |
|-------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|
| Initial Value<br>dBm/MHz                                                            | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |
| 33.879                                                                              | 0                         | 33.879                        | 36.879                                | 39.879                                 |                                        |



| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 256QAM, Low Channel, 1950 MHz |                           |                               |                                       |                                        |  |
|-------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                            | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.846                                                                              | 0                         | 33.846                        | 36.846                                | 39.846                                 |  |




# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n25




TbITx 2022.06.03.0 XMr1 2022.02.07.0

| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 256QAM, Mid Channel, 1962.5 MHz |                           |                               |                                       |                                        |  |
|---------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                              | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.756                                                                                | 0                         | 33.756                        | 36.756                                | 39.756                                 |  |



| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 256QAM, High Channel, 1975 MHz |                           |                               |                                       |                                        |  |
|--------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                             | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.865                                                                               | 0                         | 33.865                        | 36.865                                | 39.865                                 |  |



# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n25



TbTx 2022.06.03.0 XMI 2022.02.07.0

## EIRP Calculations for Four Port MIMO Operations for Band n25 Single NR Carriers

EIRP calculations are needed at each transmitter location to optimize base station operational performance while meeting regulatory requirements. Each cell site installation needs to consider the power measurements in the radio certification report as well as site specific regulatory requirements (such as antenna height, population density, etc.), site installation parameters (line loss between antenna and radio, antenna parameters, etc.) and base station operational parameters (MIMO operational setup, carrier power level, channel bandwidth, modulation type, etc.) to optimize performance. Transmitter output power may be reduced (from maximum) by base station setup parameters. Base station antennas are selected by the customer.

The base station antenna is selected by the customer and this EIRP calculation is based upon a sample worst case antenna. The EIRP calculation is based upon Kathrein antenna assembly model "80011867". The maximum Band n25 gain (17.9dBi) for this antenna was used for the EIRP calculation. This antenna assembly has a pair of  $\pm 45^\circ$  cross-polarized radiators used for Band n25. The four antenna RF inputs (used for Band n25) on the antenna assembly are as follows: Y1+ L5 ( $+45^\circ$ ), Y1- L6 ( $-45^\circ$ ), Y2+ R7 ( $+45^\circ$ ) and Y2- R8 ( $-45^\circ$ ). Four AHFII transmitter outputs are connected to the antenna assembly RF inputs.

Equivalent Isotropically Radiated Power (EIRP) is calculated for four port MIMO (as specified in ANSI C63.26-2015 section 6.4 for uncorrelated output signals) from the results of power measurements (highest measured PSD for each channel bandwidth type). The maximum antenna gain was used for this calculation. The cable loss between the antenna and transmitter is site dependent (will not be 0 dB) but for this worst case EIRP calculation 0 dB was used. Calculations of worst-case EIRP for four port MIMO are as follows:

| Parameter                                                             | 40 MHz<br>Ch BW          |
|-----------------------------------------------------------------------|--------------------------|
| Worst Case PSD/Antenna Port                                           | 35.6 dBm/MHz             |
| Number of Ant Ports per                                               | 2                        |
| Total PSD per Polarization<br>$10\log 2 = +3\text{dB}$                | 38.6<br>dBm/MHz          |
| Cable Loss (site dependent)                                           | 0 dB                     |
| Dir Gain = Max Ant Gain ( $G_{Ant}$ )<br>See Note 1                   | 17.9 dBi                 |
| EIRP per Polarization                                                 | 56.5<br>dBm/MHz          |
| Number of Polarizations                                               | 2                        |
| EIRP Total =<br>Y1 $\pm 45^\circ$ and Y2 $\pm 45^\circ$<br>See Note 2 | 56.5<br>dBm/MHz          |
| Passing EIRP Limit                                                    | 62.15 & 65.16<br>dBm/MHz |

Note 1: The directional gain is equal to antenna gain since the transmit signals are completely uncorrelated. See ANSI C63.26 sections 6.4.5.2.3b) and 6.4.5.3.1b) for guidance.

Note 2: The EIRP per antenna polarity is required to be below the regulatory limit as described in ANSI C63.26-2015 section 6.4.6.3 b2) and KDB 662911 D02v01 page 3 example (2) since the two transmitter outputs to each antenna are 90 degree-phase shifted relative to each other (cross-polarized radiators).

## EIRP Calculation Summary

The worst case AHFII Band n25 four port MIMO EIRP levels using antenna assembly model "80011867" are less than the FCC and ISED (65.16 dBm/MHz or 62.15 dBm/MHz) EIRP Regulatory Limits.

# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n66



XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model  | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|--------|-----|------------|------------|
| Generator - Signal           | Agilent            | N5173B | TIW | 2020-07-17 | 2023-07-17 |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A | AFQ | 2022-01-17 | 2023-01-17 |
| Block - DC                   | Fairview Microwave | SD3239 | ANC | 2022-03-02 | 2023-03-02 |

## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission power spectral density was measured using the channels and modes as called out on the following data sheets.

The method of ANSI C63.26-2015 section 5.2.4.5 was used to make this measurement.

The RF conducted emission testing was performed on one port. The AHFII antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in the "Output Power - All Ports" report section) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i, and 6.4.

The total PSD for all antenna ports (at the radio output) were determined per ANSI C63.26-2015 paragraph 6.4.3.2.4. The EIRP calculations are based upon ANSI C63.26-2015 paragraphs 6.4 for a four port MIMO base station.

EIRP Requirements:

### FCC Requirements: Part 27.50(d)

The following power and antenna height requirements apply to stations transmitting in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz and 2180-2200 MHz bands:

- (1) The power of each fixed or base station transmitting in the 1995-2000 MHz, 2110-2155 MHz, 2155-2180 MHz or 2180-2200 MHz band and located in any county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, is limited to:
  - (ii) An EIRP of 3280 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.
  - (2) The power of each fixed or base station transmitting in the 1995-2000 MHz, the 2110-2155 MHz 2155-2180 MHz band, or 2180-2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:
    - (ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

### ISED Requirements RSS-139 Section 5.5/SRSP-513 Section 6.1.2/SRSP-519 Section 6.1.2

SRSP-513 6.1.3 E.i.r.p. limits and antenna height limits for non-AAS systems

21. For fixed and base stations operating in the band 2110-2180 MHz with a channel bandwidth greater than 1 MHz, the maximum permissible e.i.r.p. is 62 dBm/MHz (i.e. no more than 62 dBm e.i.r.p. in any 1 MHz band segment), with an antenna HAAT of up to 300 m.

22. Fixed and base stations operating in the band 2110-2180 MHz and located in geographic areas at a distance greater than 26 km from large or medium population centres may increase their e.i.r.p. to a maximum of 65 dBm/MHz (i.e. no more than 65 dBm e.i.r.p. in any 1 MHz band segment), with an antenna HAAT of up to 300 m.

SRSP-519 6.1.3 Radiated power and antenna height limits for base stations using non-AAS systems

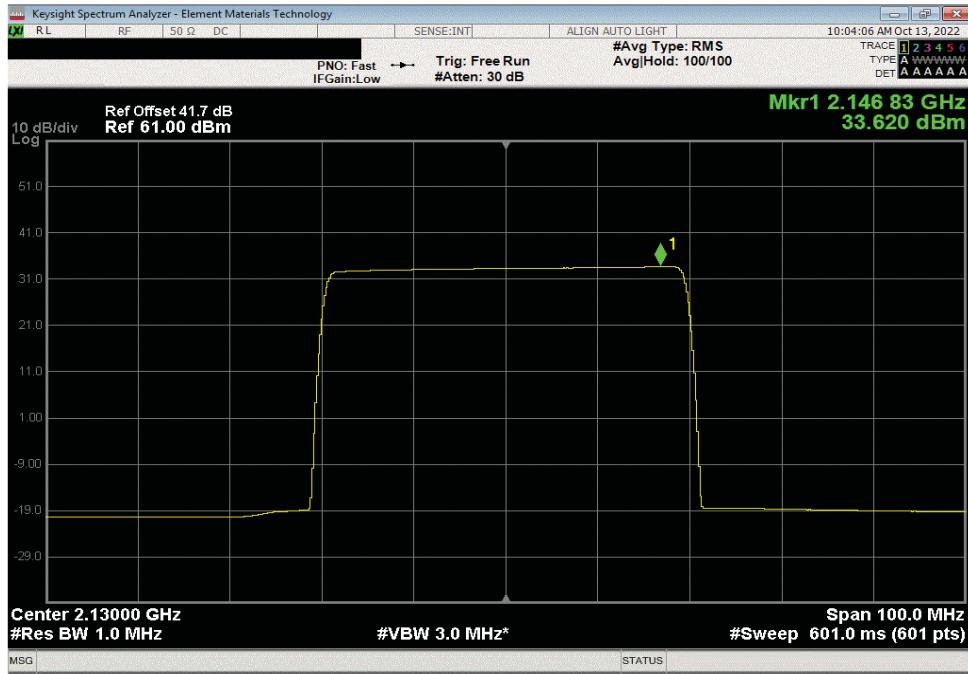
22. For base stations operating in the bands 2000-2020 MHz and 2180-2200 MHz with an antenna HAAT of up to 300 m, the e.i.r.p. shall not exceed 62 dBm/MHz when transmitting with an emission bandwidth greater than 1 MHz.

23. Base stations located in geographic areas at a distance greater than 26 km from large or medium population centres may increase their e.i.r.p. to a maximum of 65 dBm when transmitting with an emission bandwidth of 1 MHz or less, and 65 dBm/MHz when transmitting with an emission bandwidth greater than 1 MHz, with an antenna HAAT of up to 300 m. Base stations located outside of large or medium population centres may increase their e.i.r.p. to a maximum of 3280 W when transmitting with an emission bandwidth of 1 MHz or less, and to 3280 W/MHz when transmitting with an emission bandwidth greater than 1 MHz, with an antenna HAAT of up to 300 m.

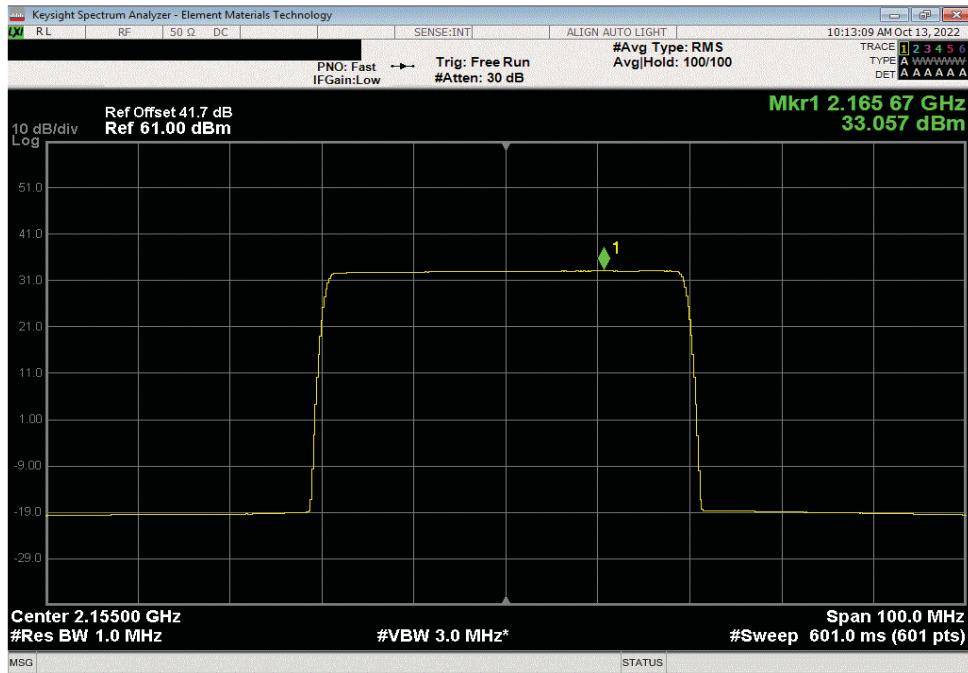
# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n66



TbTx 2022.06.03.0 XMit 2022.02.07.0


| EUT: AHFII (FCC/ISED C2PC)                                                                  | Work Order: NOKI0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                           |                               |                                       |                                        |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|
| Serial Number: K9181401111                                                                  | Date: 18-Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                           |                               |                                       |                                        |
| Customer: Nokia of America Corporation                                                      | Temperature: 22.3 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                           |                               |                                       |                                        |
| Attendee: Mitchell Hill                                                                     | Humidity: 29.2% RH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                           |                               |                                       |                                        |
| Project: None                                                                               | Barometric Pres.: 1030 mbar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                           |                               |                                       |                                        |
| Tested by: Brandon Hobbs                                                                    | Job Site: TX07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                           |                               |                                       |                                        |
| TEST SPECIFICATIONS                                                                         | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                           |                               |                                       |                                        |
| FCC 27:2022                                                                                 | ANSI C63.26:2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                           |                               |                                       |                                        |
| RSS-139 Issue 4:2022                                                                        | ANSI C63.26:2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                           |                               |                                       |                                        |
| COMMENTS                                                                                    | All measurement path losses were accounted for in the reference level offset including any attenuators, filters and DC blocks. Band n66 carriers are enabled at maximum power (80 watts/carrier). The PSD was measured while transmitting one carrier on Port 1. The total PSD for multiport (2x2 MIMO, 4x4 MIMO) operation was determined based upon ANSI 63.26 clause 6.4.3.2.4 (10 Log(2)). The total PSD for two port operation is single port PSD +3dB [i.e. 10 Log(2)]. The total PSD for four port operation is single port PSD +6dB [i.e. 10 Log(4)]. |                            |                           |                               |                                       |                                        |
| DEVIATIONS FROM TEST STANDARD                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                           |                               |                                       |                                        |
| None                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                           |                               |                                       |                                        |
| Configuration #                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                           |                               |                                       |                                        |
| Signature  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                           |                               |                                       |                                        |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Initial Value<br>dBm/MHz   | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |
| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz<br>40 MHz                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                           |                               |                                       |                                        |
| QPSK                                                                                        | Low Channel, 2130 MHz<br>Mid Channel, 2155 MHz<br>High Channel, 2180 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.62<br>33.057<br>33.238  | 0<br>0<br>0               | 33.6<br>33.1<br>33.2          | 36.6<br>36.1<br>36.2                  | 39.6<br>39.1<br>39.2                   |
| 16QAM                                                                                       | Low Channel, 2130 MHz<br>Mid Channel, 2155 MHz<br>High Channel, 2180 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.304<br>34.851<br>35.125 | 0<br>0<br>0               | 35.3<br>34.9<br>35.1          | 38.3<br>37.9<br>38.1                  | 41.3<br>40.9<br>41.1                   |
| 64QAM                                                                                       | Low Channel, 2130 MHz<br>Mid Channel, 2155 MHz<br>High Channel, 2180 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.608<br>33.032<br>33.345 | 0<br>0<br>0               | 33.6<br>33.0<br>33.3          | 36.6<br>36.0<br>36.3                  | 39.6<br>39.0<br>39.3                   |
| 256QAM                                                                                      | Low Channel, 2130 MHz<br>Mid Channel, 2155 MHz<br>High Channel, 2180 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.631<br>33.158<br>33.356 | 0<br>0<br>0               | 33.6<br>33.2<br>33.4          | 36.6<br>36.2<br>36.4                  | 39.6<br>39.2<br>39.4                   |

# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n66

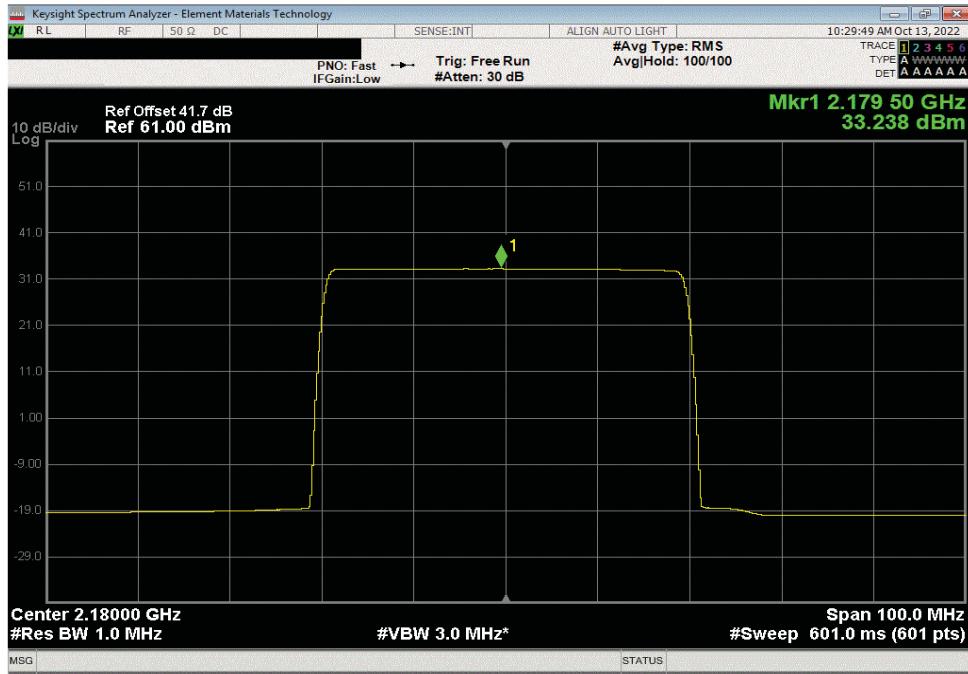



TbTx 2022.06.03 XMM 2022.02.07

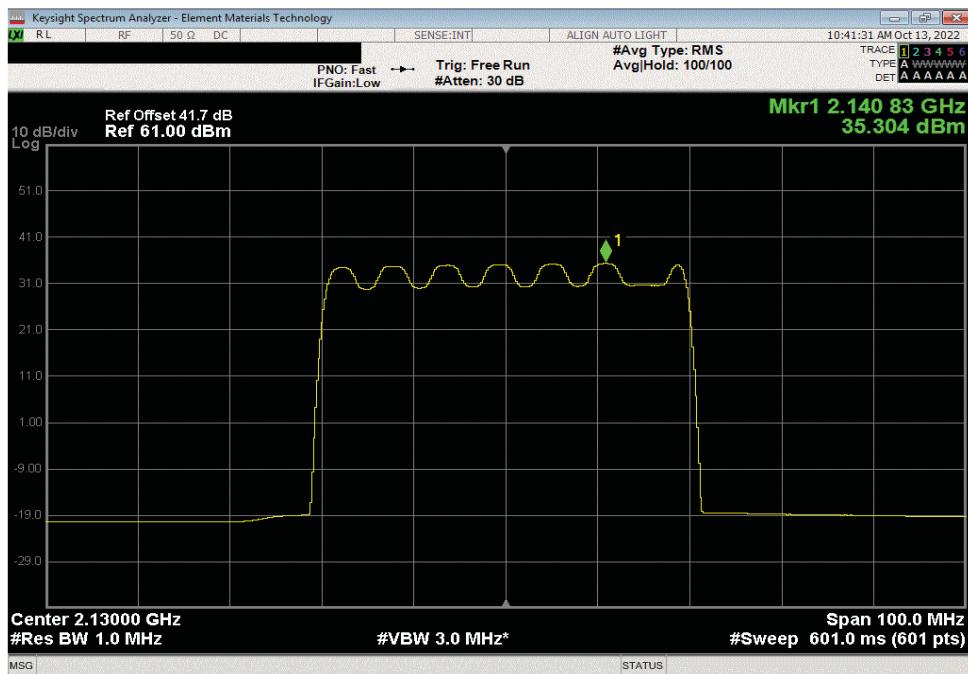
| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, QPSK, Low Channel, 2130 MHz |                           |                               |                                       |                                        |  |
|-----------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                          | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.62                                                                             | 0                         | 33.62                         | 36.62                                 | 39.62                                  |  |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, QPSK, Mid Channel, 2155 MHz |                           |                               |                                       |                                        |  |
|-----------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                          | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.057                                                                            | 0                         | 33.057                        | 36.057                                | 39.057                                 |  |




# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n66

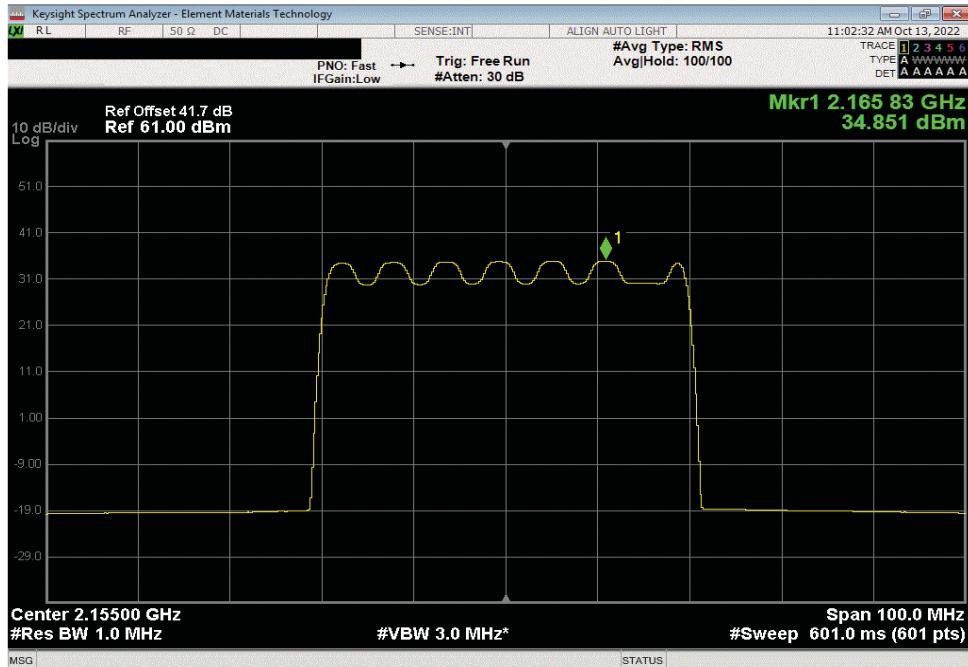



TbTx 2022.06.03 XMM 2022.02.07

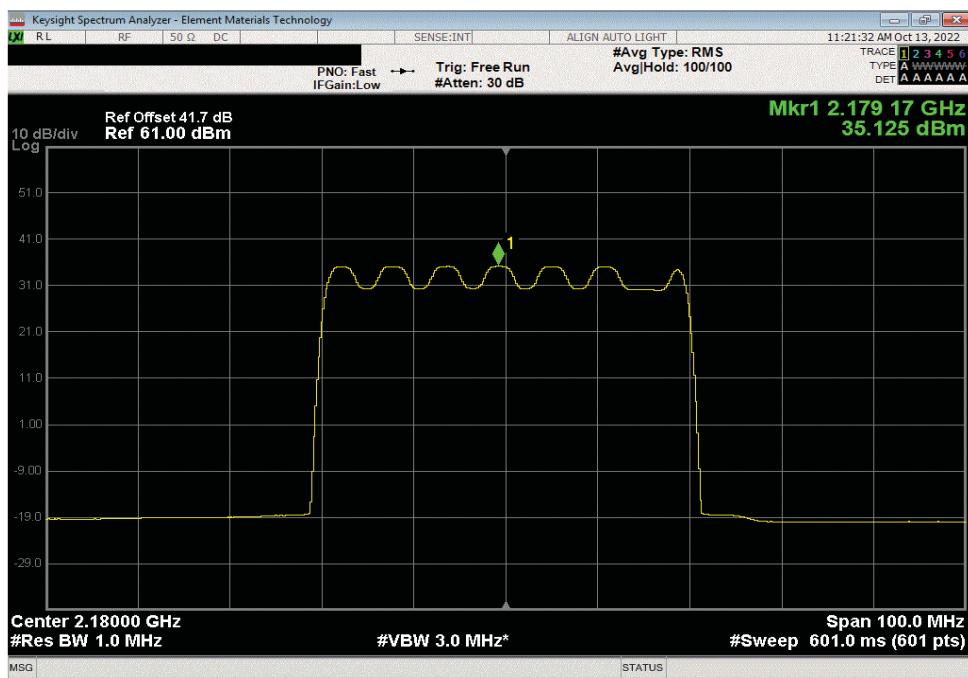
| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, QPSK, High Channel, 2180 MHz |                           |                               |                                       |                                        |  |
|------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                           | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.238                                                                             | 0                         | 33.238                        | 36.238                                | 39.238                                 |  |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 16QAM, Low Channel, 2130 MHz |                           |                               |                                       |                                        |  |
|------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                           | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 35.304                                                                             | 0                         | 35.304                        | 38.304                                | 41.304                                 |  |




# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n66

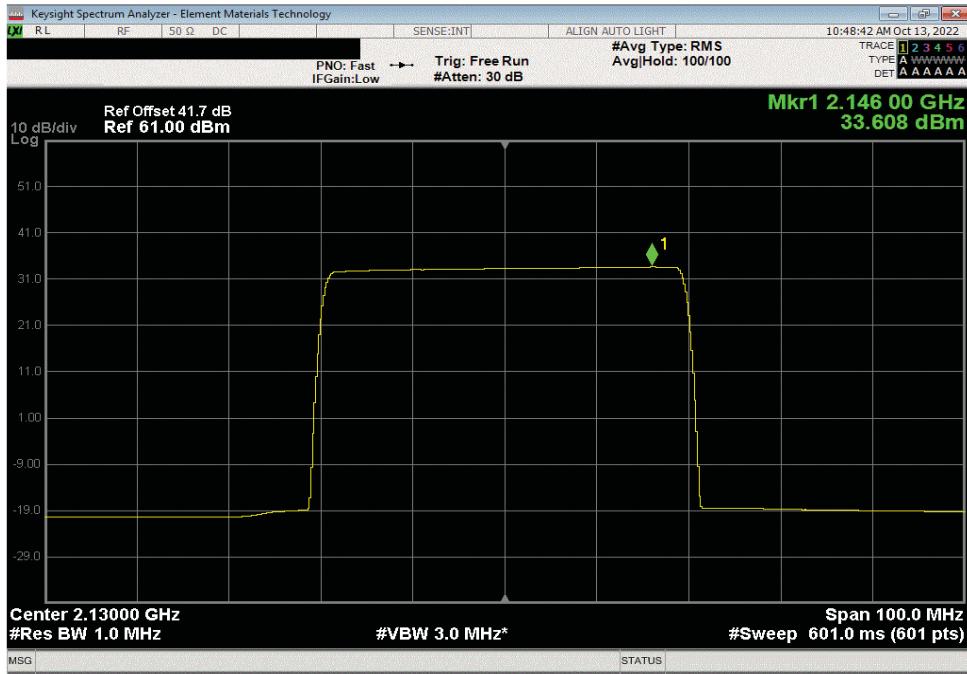



TbTx 2022.06.03 XMM 2022.02.07

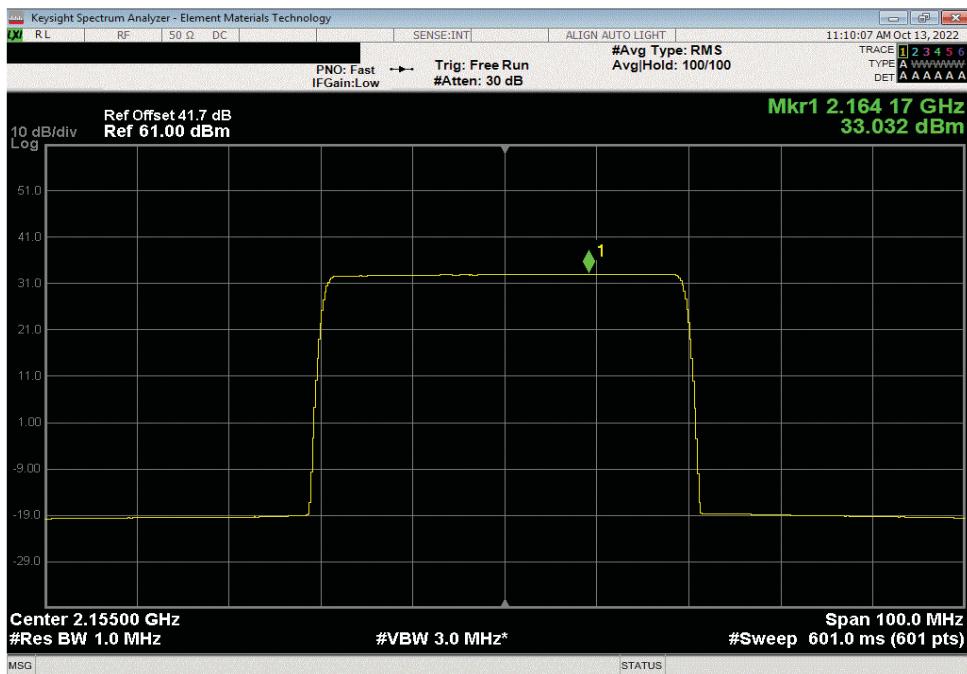
| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 16QAM, Mid Channel, 2155 MHz |                           |                               |                                       |                                        |  |
|------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                           | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 34.851                                                                             | 0                         | 34.851                        | 37.851                                | 40.851                                 |  |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 16QAM, High Channel, 2180 MHz |                           |                               |                                       |                                        |  |
|-------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                            | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 35.125                                                                              | 0                         | 35.125                        | 38.125                                | 41.125                                 |  |




# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n66

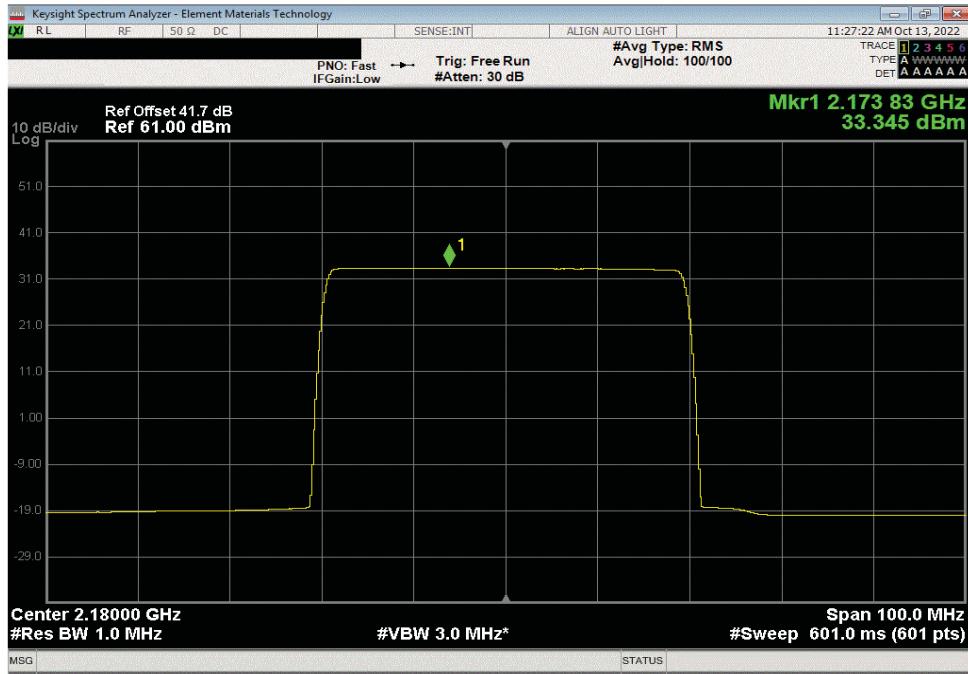



TbTx 2022.06.03 XMM 2022.02.07

| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 64QAM, Low Channel, 2130 MHz |                           |                               |                                       |                                        |  |
|------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                           | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.608                                                                             | 0                         | 33.608                        | 36.608                                | 39.608                                 |  |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 64QAM, Mid Channel, 2155 MHz |                           |                               |                                       |                                        |  |
|------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                           | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.032                                                                             | 0                         | 33.032                        | 36.032                                | 39.032                                 |  |




# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n66

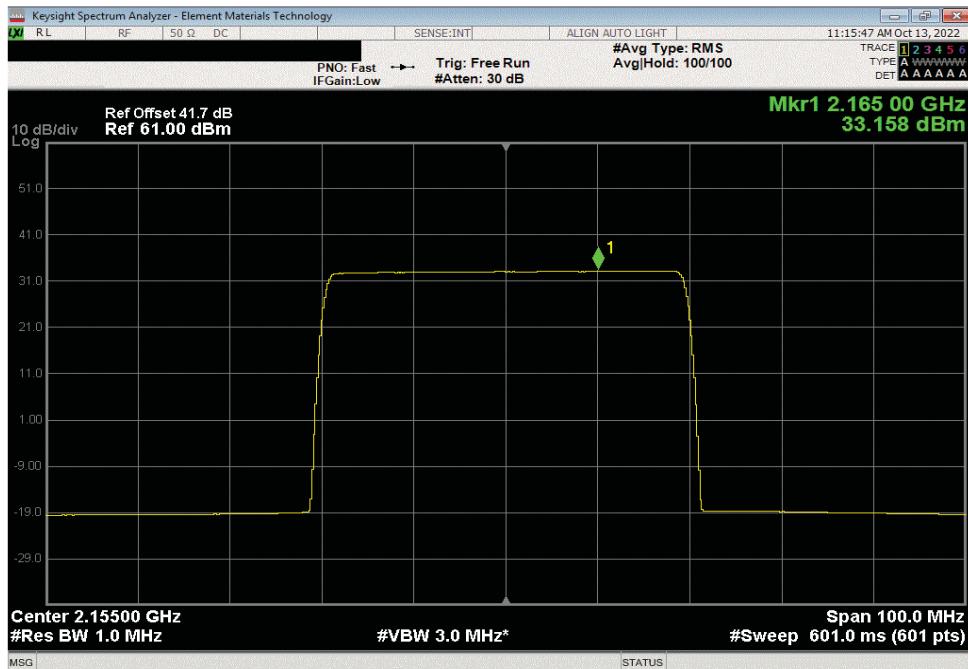



TbTx 2022.06.03 XMM 2022.02.07

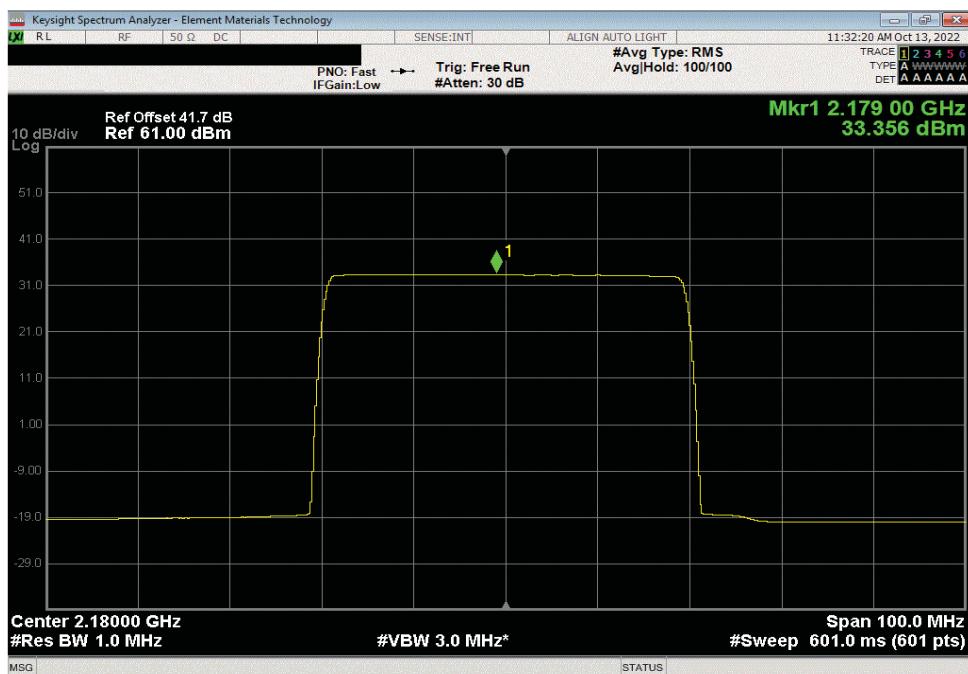
| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 64QAM, High Channel, 2180 MHz |                           |                               |                                       |                                        |  |
|-------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                            | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.345                                                                              | 0                         | 33.345                        | 36.345                                | 39.345                                 |  |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 256QAM, Low Channel, 2130 MHz |                           |                               |                                       |                                        |  |
|-------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                            | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.631                                                                              | 0                         | 33.631                        | 36.631                                | 39.631                                 |  |




# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n66




TbTx 2022.06.03 XMM 2022.02.07

| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 256QAM, Mid Channel, 2155 MHz |                           |                               |                                       |                                        |  |
|-------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                            | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.158                                                                              | 0                         | 33.158                        | 36.158                                | 39.158                                 |  |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 256QAM, High Channel, 2180 MHz |                           |                               |                                       |                                        |  |
|--------------------------------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
| Initial Value<br>dBm/MHz                                                             | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/MHz == PSD | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO)<br>dBm/MHz == PSD |  |
| 33.356                                                                               | 0                         | 33.356                        | 36.356                                | 39.356                                 |  |



# POWER SPECTRAL DENSITY AND EIRP CALCULATIONS - BAND n66



TbTx 2022.06.03.0 XMII 2022.02.07.0

## EIRP Calculations for Four Port MIMO Operations for Band n66 Single NR Carriers

EIRP calculations are needed at each transmitter location to optimize base station operational performance while meeting regulatory requirements. Each cell site installation needs to consider the power measurements in the radio certification report as well as site specific regulatory requirements (such as antenna height, population density, etc.), site installation parameters (line loss between antenna and radio, antenna parameters, etc.) and base station operational parameters (MIMO operational setup, carrier power level, channel bandwidth, modulation type, etc.) to optimize performance. Transmitter output power may be reduced (from maximum) by base station setup parameters. Base station antennas are selected by the customer.

The base station antenna is selected by the customer and this EIRP calculation is based upon a sample worst case antenna. The EIRP calculation is based upon Kathrein antenna assembly model "80011867". The maximum Band n66 gain (18.2dBi) for this antenna was used for the EIRP calculation. This antenna assembly has a pair of  $\pm 45^\circ$  cross-polarized radiators used for Band n66. The four antenna RF inputs (used for Band n66) on the antenna assembly are as follows: Y1+ L5 (+45°), Y1- L6 (-45°), Y2+ R7 (+45°) and Y2- R8 (-45°). Four AHFII transmitter outputs are connected to the antenna assembly RF inputs.

Equivalent Isotropically Radiated Power (EIRP) is calculated for four port MIMO (as specified in ANSI C63.26-2015 section 6.4 for uncorrelated output signals) from the results of power measurements (highest measured PSD for each channel bandwidth type). The maximum antenna gain was used for this calculation. The cable loss between the antenna and transmitter is site dependent (will not be 0 dB) but for this worst case EIRP calculation 0 dB was used. EIRP was calculated as described in SRSP 513 clause 6.1.2 and SRSP 519 clause 6.1.2 "EIRP for non-AAS uncorrelated transmission". Calculations of worst-case EIRP for four port MIMO are as follows:

| Parameter                                                          | 40 MHz Channel Bandwidth |
|--------------------------------------------------------------------|--------------------------|
| Worst Case PSD/Antenna Port                                        | 35.3 dBm/MHz             |
| Number of Ant Ports per Polarization                               | 2                        |
| Total PSD per Polarization<br>$10\log 2 = +3\text{dB}$             | 38.3 dBm/MHz             |
| Cable Loss (site dependent)                                        | 0 dB                     |
| Dir Gain = Max Ant Gain ( $G_{Ant}$ )<br>See Note 1                | 18.2 dBi                 |
| EIRP per Polarization                                              | 56.5 dBm/MHz             |
| Number of Polarizations                                            | 2                        |
| EIRP Total = Y1 $\pm 45^\circ$ and Y2 $\pm 45^\circ$<br>See Note 2 | 56.5 dBm/MHz             |
| Passing FCC EIRP Limit                                             | 62.15 & 65.16 dBm/MHz    |
| Passing ISED EIRP Limit                                            | 62 & 65 dBm/MHz          |

Note 1: The directional gain is equal to antenna gain since the transmit signals are completely uncorrelated. See ANSI C63.26 sections 6.4.5.2.3b) and 6.4.5.3.1b) for guidance.

Note 2: The EIRP per antenna polarity is required to be below the regulatory limit as described in ANSI C63.26-2015 section 6.4.6.3 b)2) and KDB 662911 D02v01 page 3 example (2) since the two transmitter outputs to each antenna are 90 degree-phase shifted relative to each other (cross-polarized radiators).

## EIRP Calculation Summary

The worst case AHFII Band n66 four port MIMO EIRP levels using antenna assembly model "80011867" are less than the FCC and ISED EIRP Regulatory Limits.

# OCCUPIED BANDWIDTH - BAND n25



XMIT 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model  | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|--------|-----|------------|------------|
| Generator - Signal           | Agilent            | N5173B | TIW | 2020-07-17 | 2023-07-17 |
| Block - DC                   | Fairview Microwave | SD3239 | ANC | 2022-03-02 | 2023-03-02 |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A | AFQ | 2022-01-17 | 2023-01-17 |

## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The method in section 5.4 of ANSI C63.26 was used to make this measurement. The spectrum analyzer settings were as follows:

- RBW is 1% - 5% of the occupied bandwidth
- VBW is  $\geq 3$  times the RBW
- Peak Detector was used
- Trace max hold was used

The occupied bandwidth was measured with the EUT configured in the modes called out in the data sheets. FCC 24.238(b) defines the 26dB emission bandwidth requirement.

RSS GEN Section 6.7 defines the 99% emission bandwidth requirement

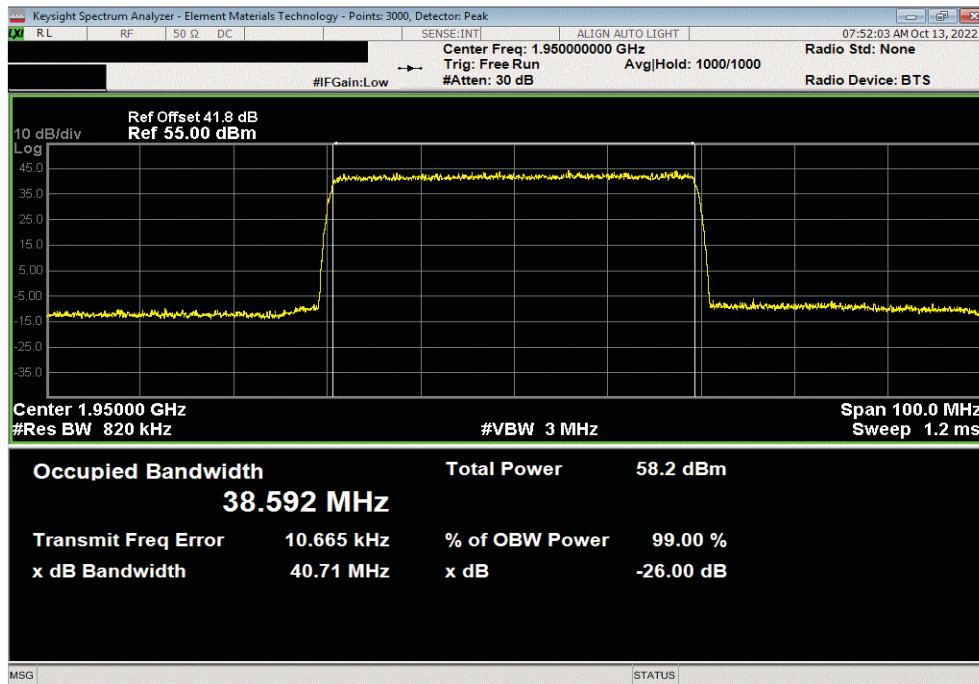
| FCC and ISED Emission Designators for Band n25 (1930MHz to 1995MHz) |               |             |         |              |         |              |         |               |
|---------------------------------------------------------------------|---------------|-------------|---------|--------------|---------|--------------|---------|---------------|
| Ch BW                                                               | Radio Channel | 5G-NR: QPSK |         | 5G-NR: 16QAM |         | 5G-NR: 64QAM |         | 5G-NR: 256QAM |
|                                                                     |               | FCC         | ISED    | FCC          | ISED    | FCC          | ISED    | FCC           |
| 40MHz                                                               | Low           | 40M7G7W     | 38M6G7W | 40M6G7W      | 38M8G7W | 40M7G7W      | 38M6G7W | 40M7G7W       |
|                                                                     | Mid           | 40M6G7W     | 38M7G7W | 40M7G7W      | 38M8G7W | 40M7G7W      | 38M7G7W | 40M7G7W       |
|                                                                     | High          | 40M7G7W     | 38M7G7W | 40M6G7W      | 38M8G7W | 40M6G7W      | 38M6G7W | 40M6G7W       |

Note: FCC emission designators are based on 26dB emission bandwidth. ISED emission designators are based on 99% emission bandwidth.

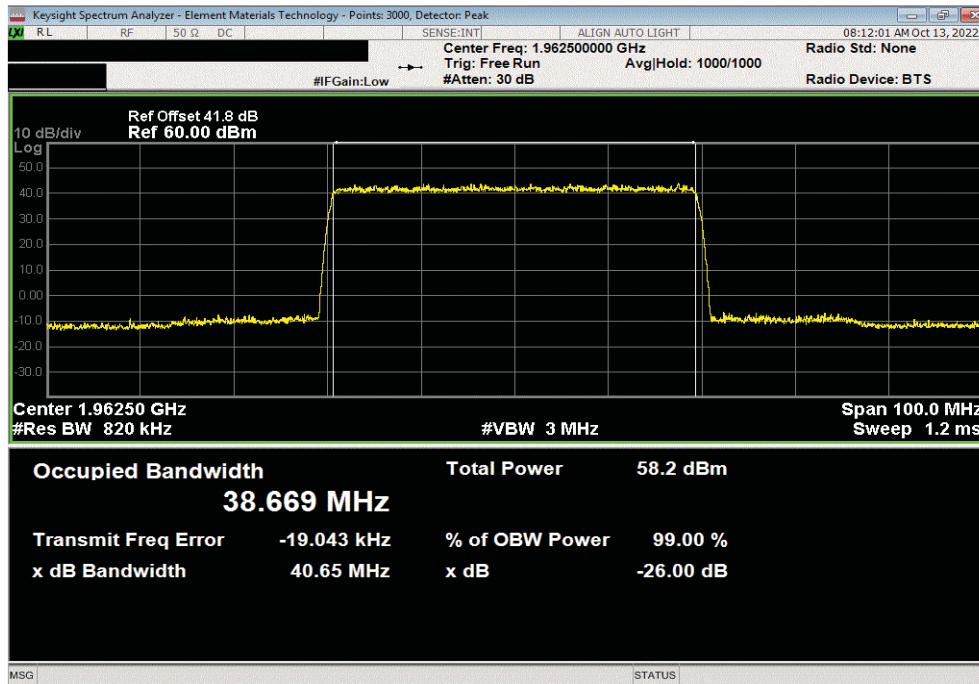
# OCCUPIED BANDWIDTH - BAND n25



TbTx 2022.06.03.0 XMII 2022.02.07.0


| EUT:                                                   | AHFII (FCC/ISED C2PC)                                                                                                                                                                             | Work Order:        | NOKI0050            |             |        |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-------------|--------|
| Serial Number:                                         | K9181401111                                                                                                                                                                                       | Date:              | 17-Oct-22           |             |        |
| Customer:                                              | Nokia of America Corporation                                                                                                                                                                      | Temperature:       | 21.7 °C             |             |        |
| Attendees:                                             | Mitchell Hill                                                                                                                                                                                     | Humidity:          | 41.5% RH            |             |        |
| Project:                                               | None                                                                                                                                                                                              | Barometric Pres.:  | 1024 mbar           |             |        |
| Tested by:                                             | Brandon Hobbs                                                                                                                                                                                     | Power:             | 54 VDC              |             |        |
| TEST SPECIFICATIONS                                    |                                                                                                                                                                                                   | Test Method        | Job Site: TX07      |             |        |
| FCC 24E:2022                                           |                                                                                                                                                                                                   | ANSI C63.26:2015   |                     |             |        |
| RSS-Gen Issue 5:2018+A1:2019+A2:2021                   |                                                                                                                                                                                                   | ANSI C63.10:2013   |                     |             |        |
| COMMENTS                                               | All measurement path losses were accounted for in the reference level offset including any attenuators, filters and DC blocks. Band n25 carriers are enabled at maximum power (80 watts/carrier). |                    |                     |             |        |
| DEVIATIONS FROM TEST STANDARD                          |                                                                                                                                                                                                   |                    |                     |             |        |
| None                                                   |                                                                                                                                                                                                   |                    |                     |             |        |
| Configuration #                                        | 2                                                                                                                                                                                                 | Signature          |                     |             |        |
|                                                        |                                                                                                                                                                                                   | Value<br>99% (MHz) | Value<br>26dB (MHz) | Limit       | Result |
| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz<br>40 MHz |                                                                                                                                                                                                   |                    |                     |             |        |
| QPSK                                                   | Low Channel, 1950 MHz                                                                                                                                                                             | 38.6               | 40.7                | Within Band | Pass   |
|                                                        | Mid Channel, 1962.5 MHz                                                                                                                                                                           | 38.7               | 40.6                | Within Band | Pass   |
|                                                        | High Channel, 1975 MHz                                                                                                                                                                            | 38.7               | 40.7                | Within Band | Pass   |
| 16QAM                                                  | Low Channel, 1950 MHz                                                                                                                                                                             | 38.8               | 40.6                | Within Band | Pass   |
|                                                        | Mid Channel, 1962.5 MHz                                                                                                                                                                           | 38.8               | 40.7                | Within Band | Pass   |
|                                                        | High Channel, 1975 MHz                                                                                                                                                                            | 38.8               | 40.6                | Within Band | Pass   |
| 64QAM                                                  | Low Channel, 1950 MHz                                                                                                                                                                             | 38.6               | 40.7                | Within Band | Pass   |
|                                                        | Mid Channel, 1962.5 MHz                                                                                                                                                                           | 38.7               | 40.7                | Within Band | Pass   |
|                                                        | High Channel, 1975 MHz                                                                                                                                                                            | 38.6               | 40.6                | Within Band | Pass   |
| 256QAM                                                 | Low Channel, 1950 MHz                                                                                                                                                                             | 38.7               | 40.7                | Within Band | Pass   |
|                                                        | Mid Channel, 1962.5 MHz                                                                                                                                                                           | 38.6               | 40.7                | Within Band | Pass   |
|                                                        | High Channel, 1975 MHz                                                                                                                                                                            | 38.6               | 40.6                | Within Band | Pass   |

# OCCUPIED BANDWIDTH - BAND n25

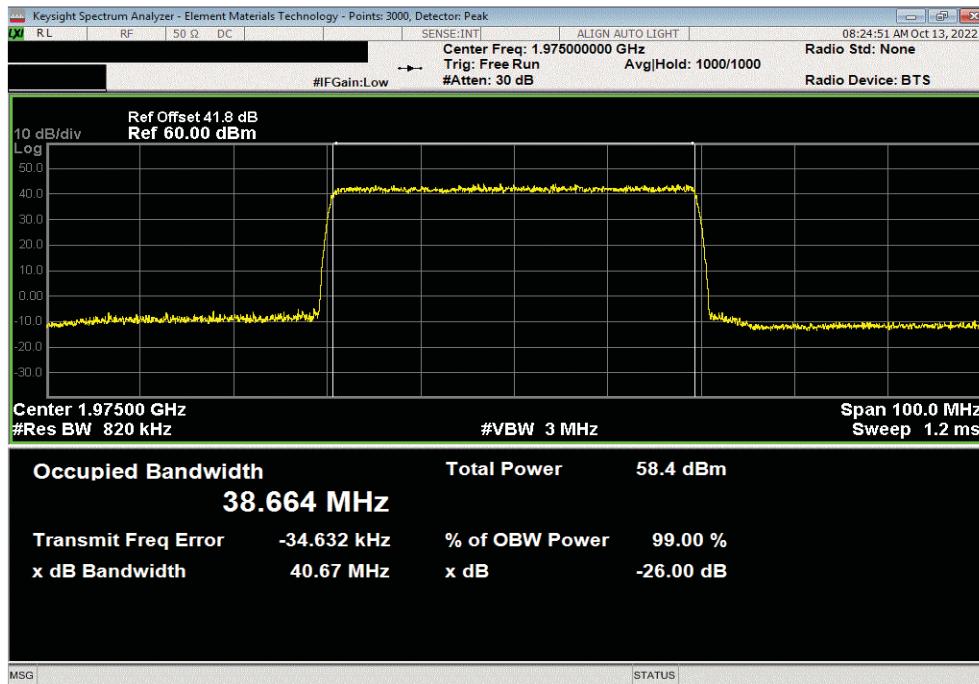



TbITx 2022.06.03.0 XMit 2022.02.07.0

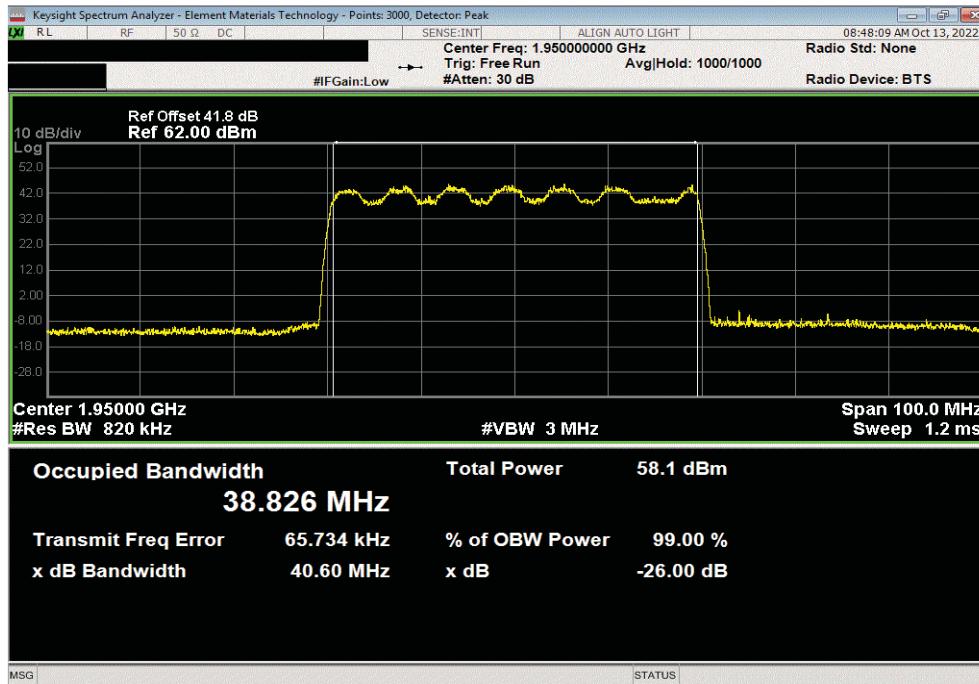
| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, QPSK, Low Channel, 1950 MHz |            |             |        |
|-----------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                             | Value      | Limit       | Result |
| 99% (MHz)                                                                         | 26dB (MHz) |             |        |
| 38.592                                                                            | 40.71      | Within Band | Pass   |



| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, QPSK, Mid Channel, 1962.5 MHz |            |             |        |
|-------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                               | Value      | Limit       | Result |
| 99% (MHz)                                                                           | 26dB (MHz) |             |        |
| 38.669                                                                              | 40.647     | Within Band | Pass   |




# OCCUPIED BANDWIDTH - BAND n25

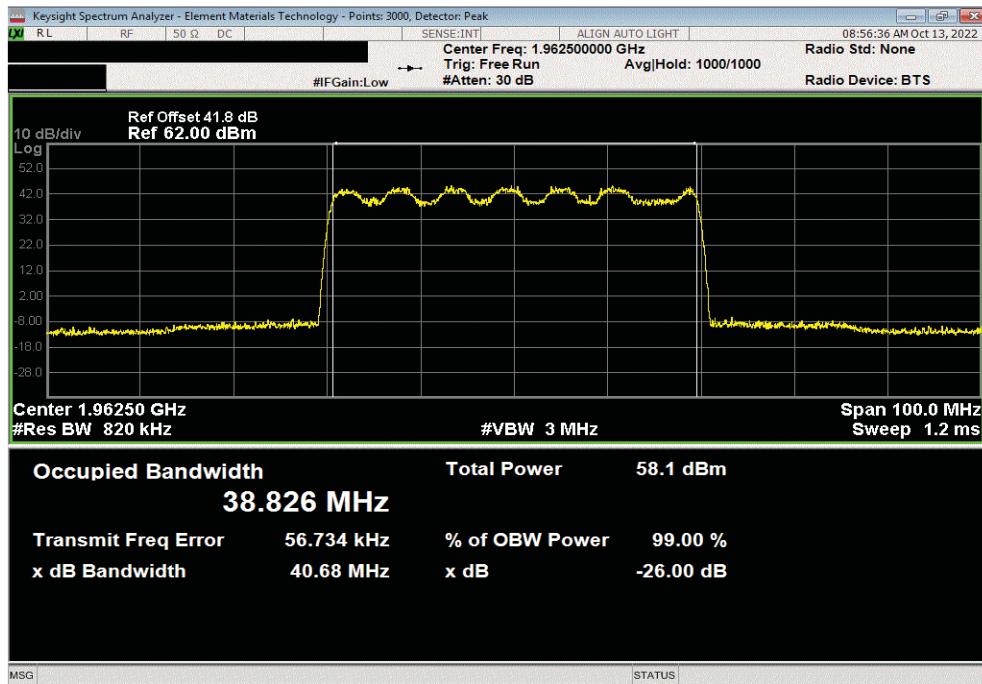



TbITx 2022.06.03.0 XMit 2022.02.07.0

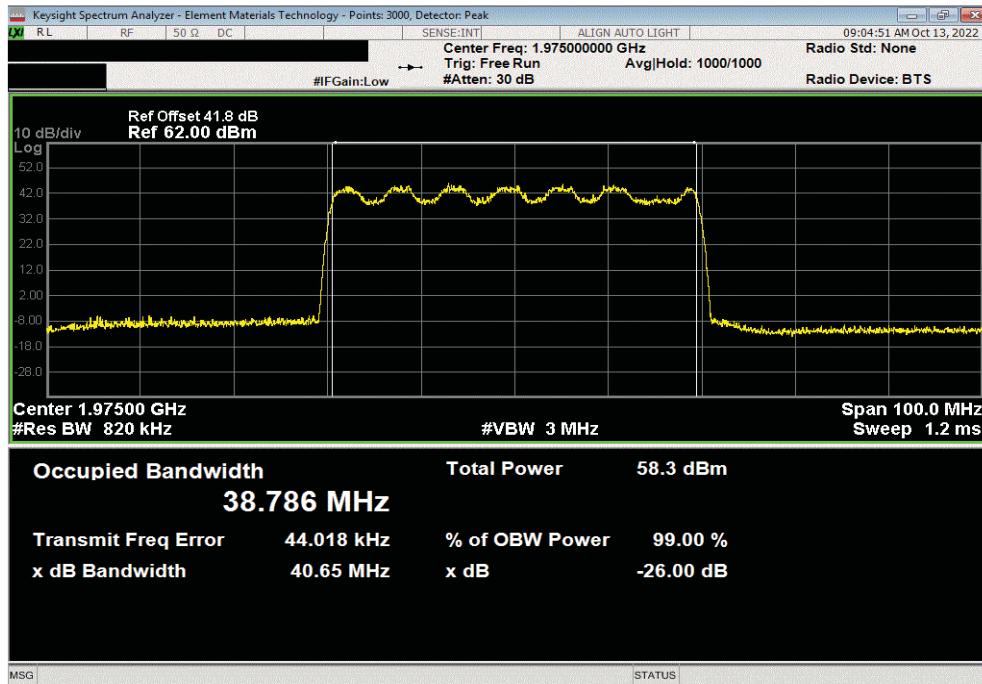
| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, QPSK, High Channel, 1975 MHz |            |             |        |
|------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                              | Value      | Limit       | Result |
| 99% (MHz)                                                                          | 26dB (MHz) |             |        |
| 38.664                                                                             | 40.675     | Within Band | Pass   |



| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 16QAM, Low Channel, 1950 MHz |            |             |        |
|------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                              | Value      | Limit       | Result |
| 99% (MHz)                                                                          | 26dB (MHz) |             |        |
| 38.826                                                                             | 40.598     | Within Band | Pass   |




# OCCUPIED BANDWIDTH - BAND n25

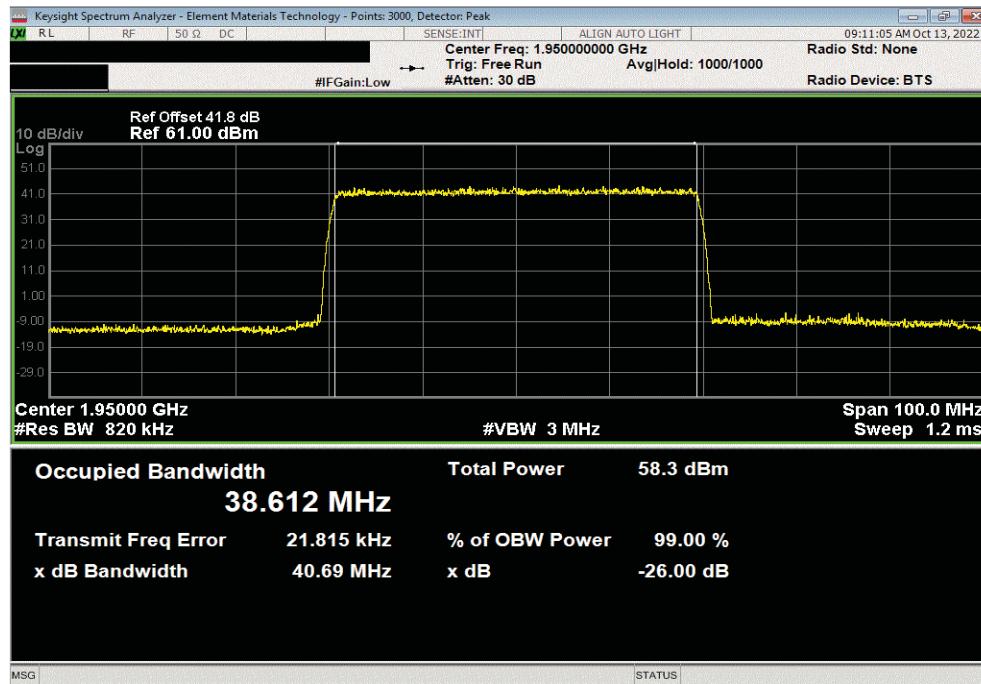



TbTx 2022.06.03.0 XMit 2022.02.07.0

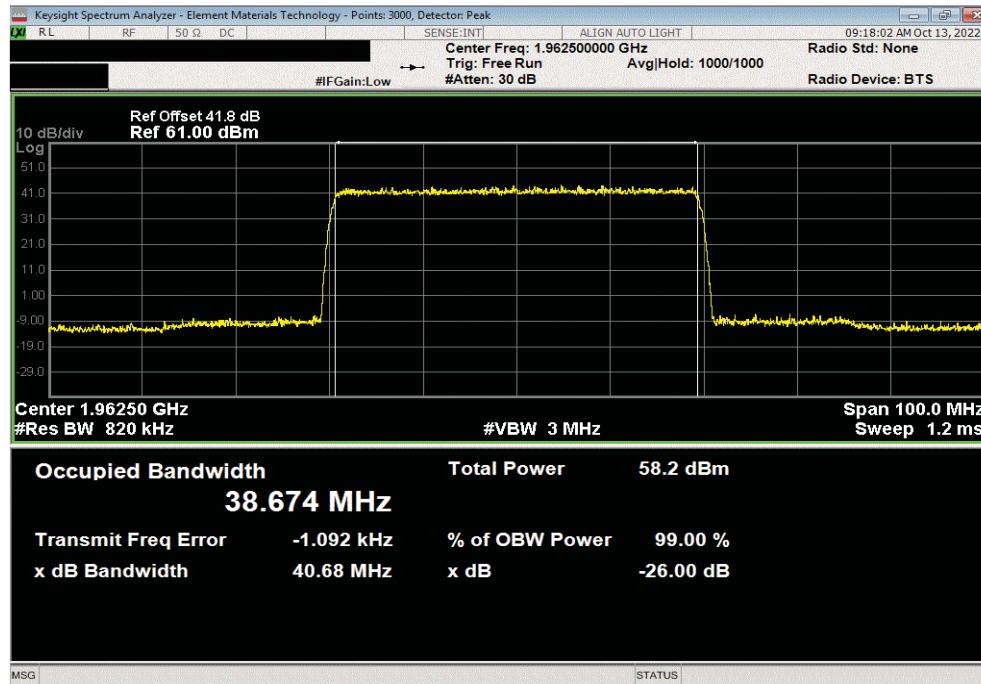
| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 16QAM, Mid Channel, 1962.5 MHz |            |             |        |
|--------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                                | Value      | Limit       | Result |
| 99% (MHz)                                                                            | 26dB (MHz) |             |        |
| 38.826                                                                               | 40.681     | Within Band | Pass   |



| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 16QAM, High Channel, 1975 MHz |            |             |        |
|-------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                               | Value      | Limit       | Result |
| 99% (MHz)                                                                           | 26dB (MHz) |             |        |
| 38.786                                                                              | 40.647     | Within Band | Pass   |




# OCCUPIED BANDWIDTH - BAND n25

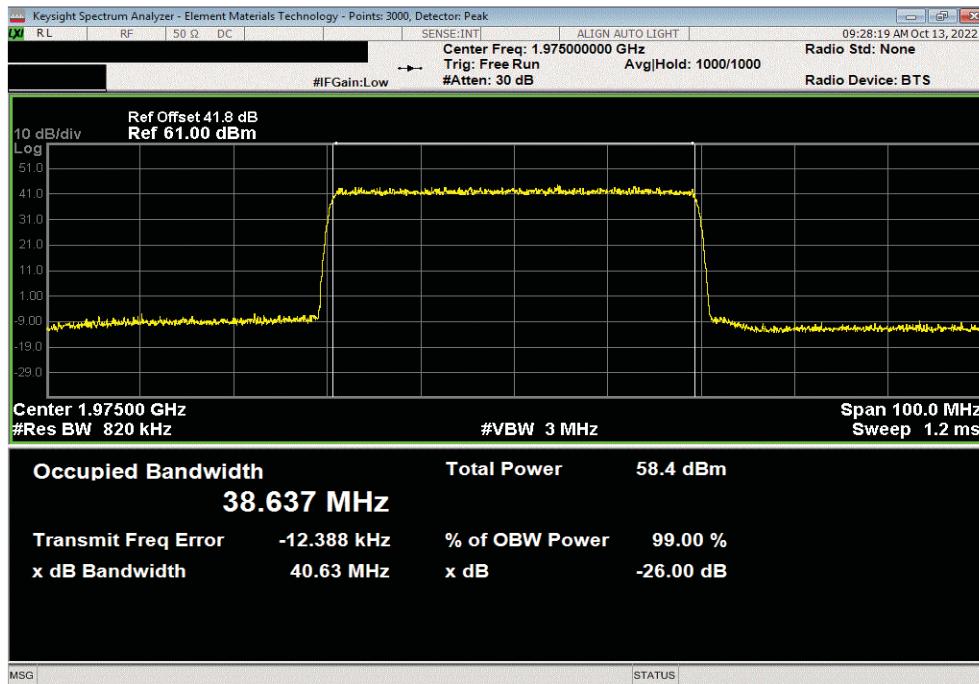



TbITx 2022.06.03.0 XMit 2022.02.07.0

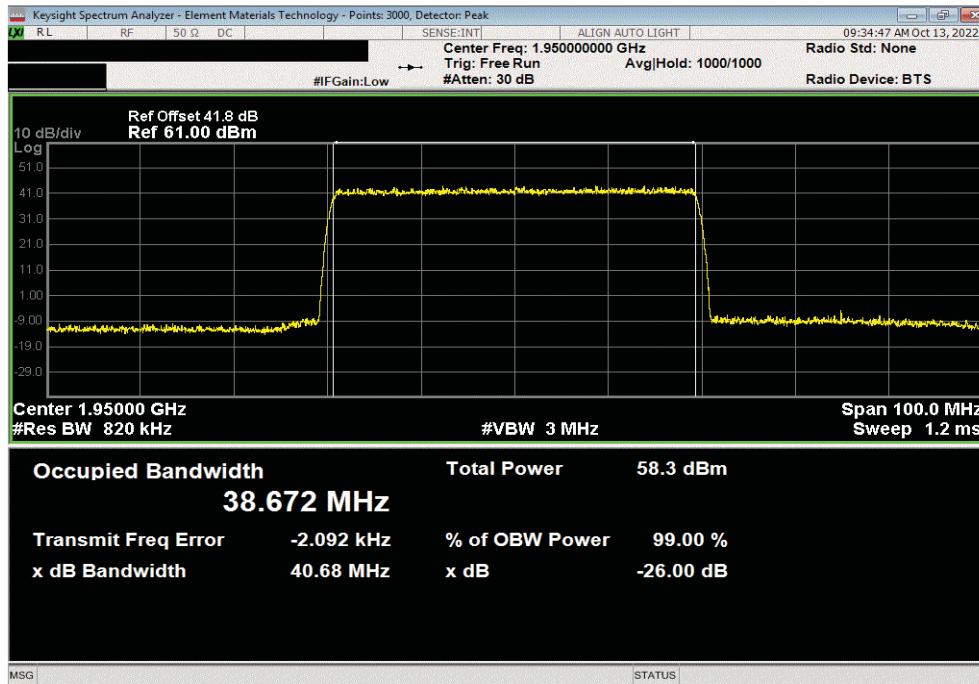
| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 64QAM, Low Channel, 1950 MHz |            |             |        |
|------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                              | Value      | Limit       | Result |
| 99% (MHz)                                                                          | 26dB (MHz) |             |        |
| 38.612                                                                             | 40.687     | Within Band | Pass   |



| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 64QAM, Mid Channel, 1962.5 MHz |            |             |        |
|--------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                                | Value      | Limit       | Result |
| 99% (MHz)                                                                            | 26dB (MHz) |             |        |
| 38.674                                                                               | 40.676     | Within Band | Pass   |




# OCCUPIED BANDWIDTH - BAND n25

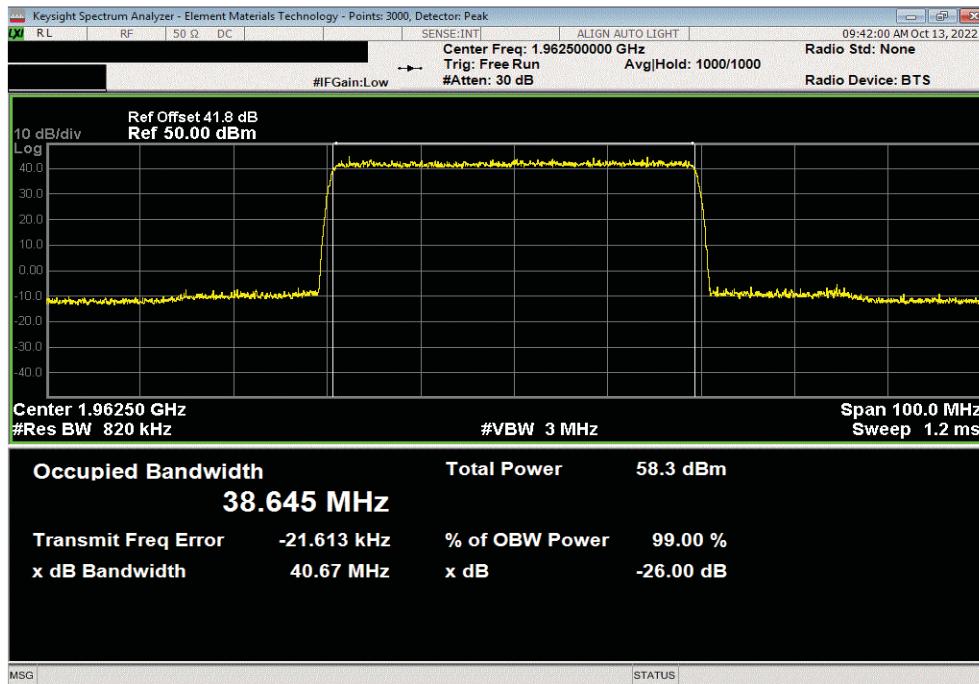



TbTx 2022.06.03.0 XMit 2022.02.07.0

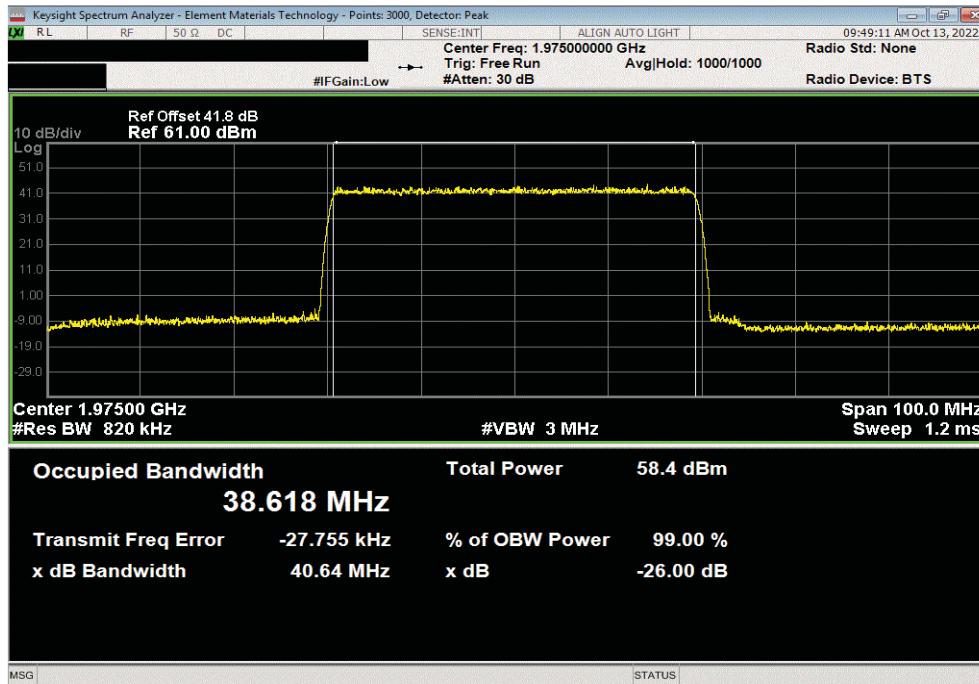
| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 64QAM, High Channel, 1975 MHz |            |             |        |
|-------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                               | Value      | Limit       | Result |
| 99% (MHz)                                                                           | 26dB (MHz) |             |        |
| 38.637                                                                              | 40.632     | Within Band | Pass   |



| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 256QAM, Low Channel, 1950 MHz |            |             |        |
|-------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                               | Value      | Limit       | Result |
| 99% (MHz)                                                                           | 26dB (MHz) |             |        |
| 38.672                                                                              | 40.677     | Within Band | Pass   |




# OCCUPIED BANDWIDTH - BAND n25




TbTx 2022.06.03.0 XMit 2022.02.07.0

| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 256QAM, Mid Channel, 1962.5 MHz |            |             |        |
|---------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                                 | Value      | Limit       | Result |
| 99% (MHz)                                                                             | 26dB (MHz) |             |        |
| 38.645                                                                                | 40.665     | Within Band | Pass   |



| Port 1, Band n25, NR 40 MHz, 1930 - 1995 MHz, 40 MHz, 256QAM, High Channel, 1975 MHz |            |             |        |
|--------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                                | Value      | Limit       | Result |
| 99% (MHz)                                                                            | 26dB (MHz) |             |        |
| 38.618                                                                               | 40.644     | Within Band | Pass   |



# OCCUPIED BANDWIDTH - BAND n66



XMIT 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model  | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|--------|-----|------------|------------|
| Analyzer - Spectrum Analyzer | Keysight           | N9010A | AFQ | 2022-01-17 | 2023-01-17 |
| Generator - Signal           | Agilent            | N5173B | TIW | 2020-07-17 | 2023-07-17 |
| Block - DC                   | Fairview Microwave | SD3239 | ANC | 2022-03-02 | 2023-03-02 |

## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The method in section 5.4 of ANSI C63.26 was used to make this measurement. The spectrum analyzer settings were as follows:

- RBW is 1% - 5% of the occupied bandwidth
- VBW is  $\geq 3$  times the RBW
- Peak Detector was used
- Trace max hold was used

The occupied bandwidth was measured with the EUT configured in the modes called out in the data sheets. FCC 27.53(h)(3) defines the 26dB emission bandwidth requirement.

RSS GEN Section 6.7 defines the 99% emission bandwidth requirement

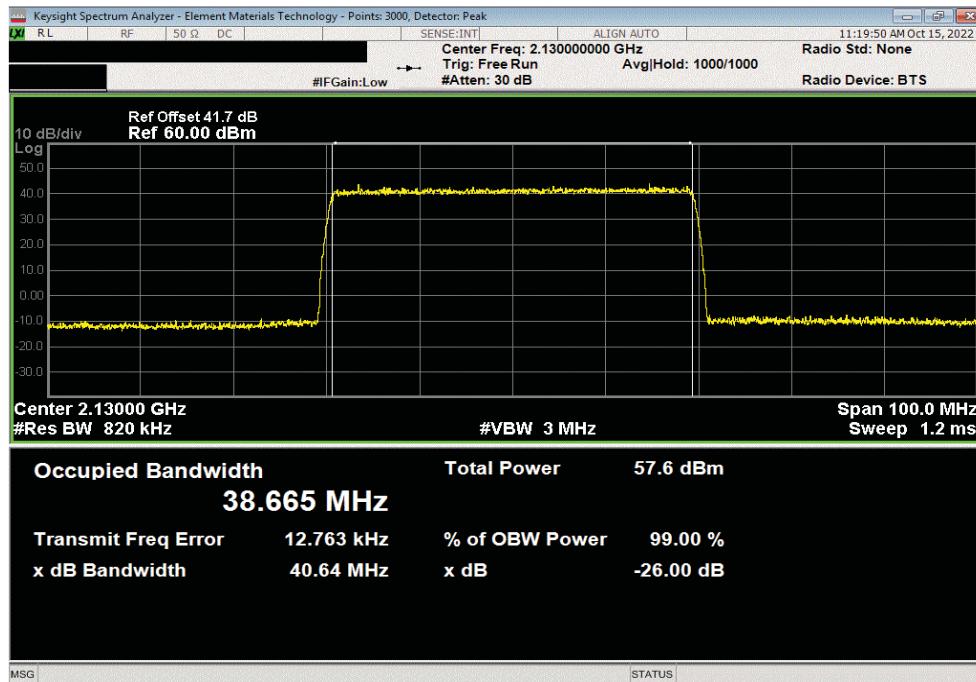
| FCC and ISED Emission Designators Band n66 (2110MHz to 2200MHz) |               |             |         |              |         |              |         |               |         |
|-----------------------------------------------------------------|---------------|-------------|---------|--------------|---------|--------------|---------|---------------|---------|
| Ch BW                                                           | Radio Channel | 5G-NR: QPSK |         | 5G-NR: 16QAM |         | 5G-NR: 64QAM |         | 5G-NR: 256QAM |         |
|                                                                 |               | FCC         | ISED    | FCC          | ISED    | FCC          | ISED    | FCC           | ISED    |
| 40MHz                                                           | Low           | 40M6G7W     | 38M7G7W | 40M6G7W      | 38M8G7W | 40M6G7W      | 38M6G7W | 40M7G7W       | 38M8G7W |
|                                                                 | Mid           | 40M7G7W     | 38M7G7W | 40M7G7W      | 38M8G7W | 40M6G7W      | 38M6G7W | 40M7G7W       | 38M7G7W |
|                                                                 | High          | 40M7G7W     | 38M7G7W | 40M7G7W      | 38M8G7W | 40M7G7W      | 38M6G7W | 40M6G7W       | 38M6G7W |

Note: FCC emission designators are based on 26dB emission bandwidth. ISED emission designators are based on 99% emission bandwidth.

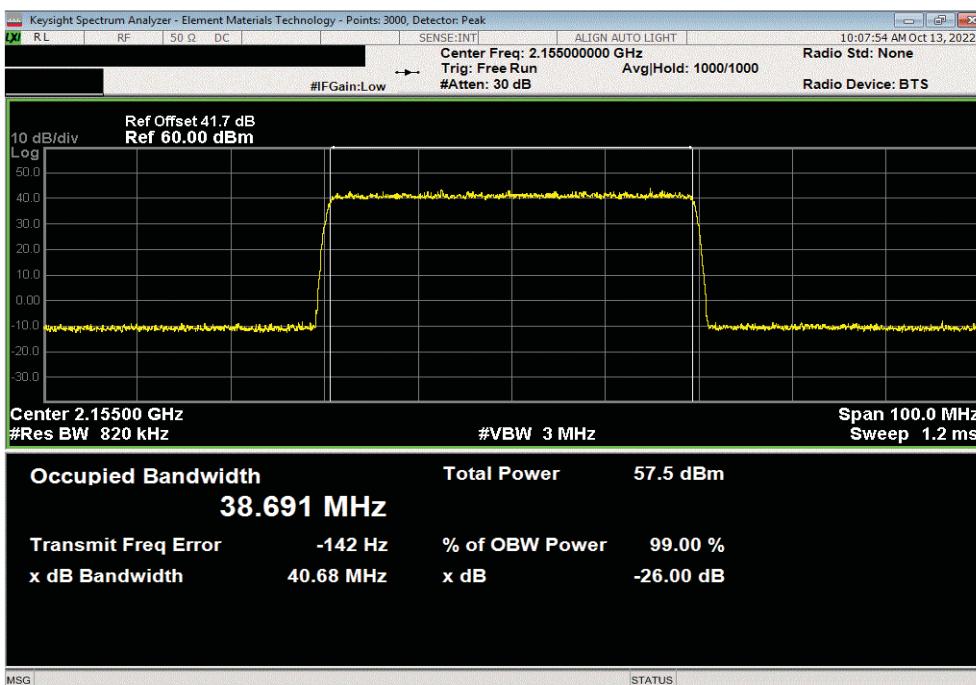
# OCCUPIED BANDWIDTH - BAND n66



TbTx 2022.06.03.0 XMII 2022.02.07.0


| EUT:                                                   | AHFII (FCC/ISED C2PC)                                                                                                                                                                             | Work Order:        | NOKI0050            |             |        |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-------------|--------|
| Serial Number:                                         | K9181401111                                                                                                                                                                                       | Date:              | 17-Oct-22           |             |        |
| Customer:                                              | Nokia of America Corporation                                                                                                                                                                      | Temperature:       | 20.1 °C             |             |        |
| Attendees:                                             | Mitchell Hill                                                                                                                                                                                     | Humidity:          | 43.8% RH            |             |        |
| Project:                                               | None                                                                                                                                                                                              | Barometric Pres.:  | 1024 mbar           |             |        |
| Tested by:                                             | Brandon Hobbs                                                                                                                                                                                     | Power:             | 54 VDC              |             |        |
| TEST SPECIFICATIONS                                    |                                                                                                                                                                                                   | Test Method        | Job Site: TX07      |             |        |
| FCC 27:2022                                            |                                                                                                                                                                                                   | ANSI C63.26:2015   |                     |             |        |
| RSS-Gen Issue 5:2018+A1:2019+A2:2021                   |                                                                                                                                                                                                   | ANSI C63.10:2013   |                     |             |        |
| COMMENTS                                               | All measurement path losses were accounted for in the reference level offset including any attenuators, filters and DC blocks. Band n66 carriers are enabled at maximum power (80 watts/carrier). |                    |                     |             |        |
| DEVIATIONS FROM TEST STANDARD                          |                                                                                                                                                                                                   |                    |                     |             |        |
| None                                                   |                                                                                                                                                                                                   |                    |                     |             |        |
| Configuration #                                        | 2                                                                                                                                                                                                 | Signature          |                     |             |        |
|                                                        |                                                                                                                                                                                                   | Value<br>99% (MHz) | Value<br>26dB (MHz) | Limit       | Result |
| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz<br>40 MHz |                                                                                                                                                                                                   |                    |                     |             |        |
| QPSK                                                   |                                                                                                                                                                                                   |                    |                     |             |        |
|                                                        | Low Channel, 2130 MHz                                                                                                                                                                             | 38.7               | 40.6                | Within Band | Pass   |
|                                                        | Mid Channel, 2155 MHz                                                                                                                                                                             | 38.7               | 40.7                | Within Band | Pass   |
|                                                        | High Channel, 2180 MHz                                                                                                                                                                            | 38.7               | 40.7                | Within Band | Pass   |
| 16QAM                                                  |                                                                                                                                                                                                   |                    |                     |             |        |
|                                                        | Low Channel, 2130 MHz                                                                                                                                                                             | 38.8               | 40.6                | Within Band | Pass   |
|                                                        | Mid Channel, 2155 MHz                                                                                                                                                                             | 38.8               | 40.7                | Within Band | Pass   |
|                                                        | High Channel, 2180 MHz                                                                                                                                                                            | 38.8               | 40.7                | Within Band | Pass   |
| 64QAM                                                  |                                                                                                                                                                                                   |                    |                     |             |        |
|                                                        | Low Channel, 2130 MHz                                                                                                                                                                             | 38.6               | 40.6                | Within Band | Pass   |
|                                                        | Mid Channel, 2155 MHz                                                                                                                                                                             | 38.6               | 40.6                | Within Band | Pass   |
|                                                        | High Channel, 2180 MHz                                                                                                                                                                            | 38.6               | 40.7                | Within Band | Pass   |
| 256QAM                                                 |                                                                                                                                                                                                   |                    |                     |             |        |
|                                                        | Low Channel, 2130 MHz                                                                                                                                                                             | 38.8               | 40.7                | Within Band | Pass   |
|                                                        | Mid Channel, 2155 MHz                                                                                                                                                                             | 38.7               | 40.7                | Within Band | Pass   |
|                                                        | High Channel, 2180 MHz                                                                                                                                                                            | 38.6               | 40.6                | Within Band | Pass   |

# OCCUPIED BANDWIDTH - BAND n66

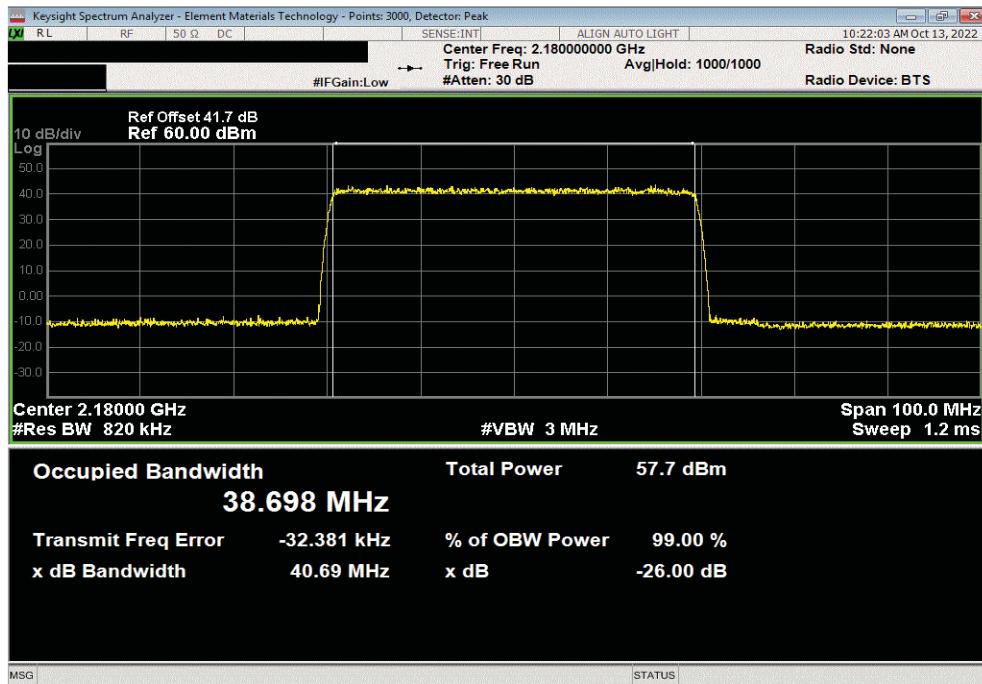



TbITx 2022.06.03.0 XMit 2022.02.07.0

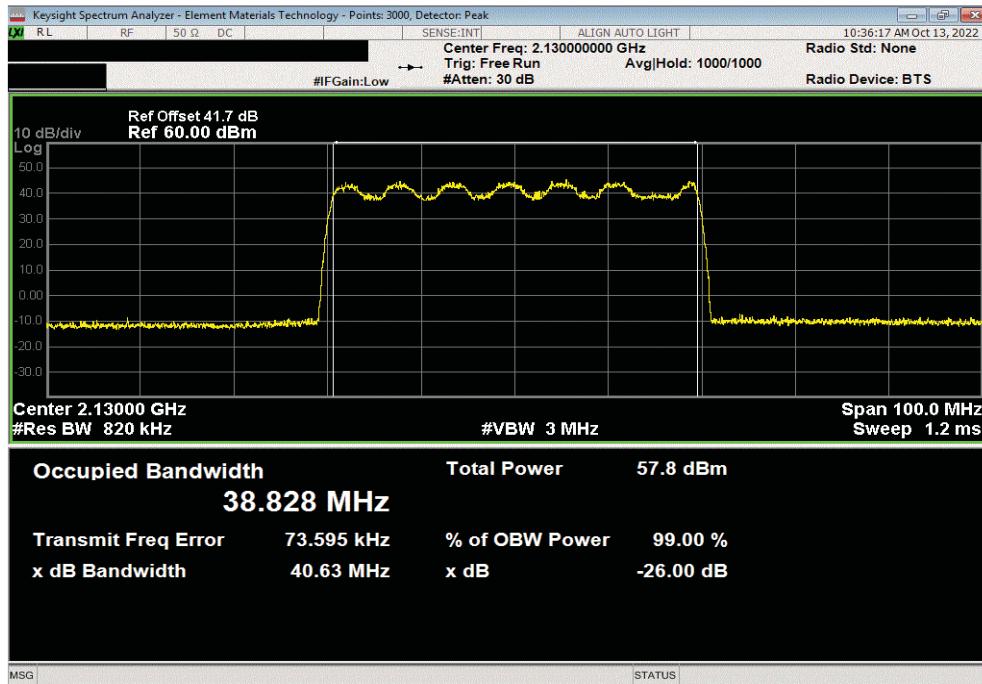
| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, QPSK, Low Channel, 2130 MHz |            |             |        |
|-----------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                             | Value      | Limit       | Result |
| 99% (MHz)                                                                         | 26dB (MHz) |             |        |
| 38.665                                                                            | 40.64      | Within Band | Pass   |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, QPSK, Mid Channel, 2155 MHz |            |             |        |
|-----------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                             | Value      | Limit       | Result |
| 99% (MHz)                                                                         | 26dB (MHz) |             |        |
| 38.691                                                                            | 40.683     | Within Band | Pass   |




# OCCUPIED BANDWIDTH - BAND n66

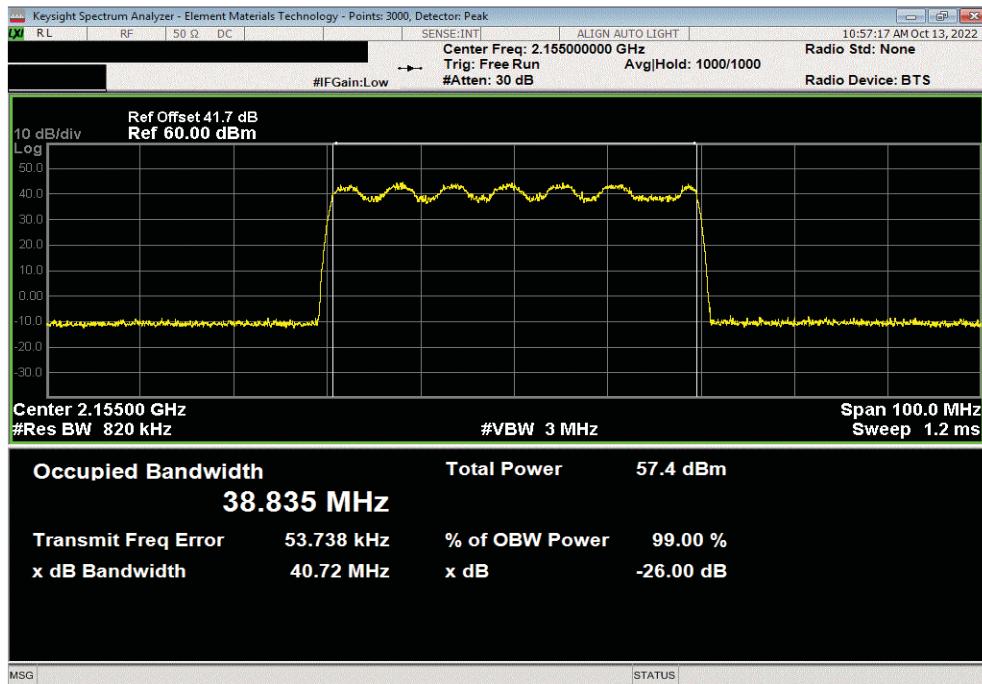



TbITx 2022.06.03.0 XMit 2022.02.07.0

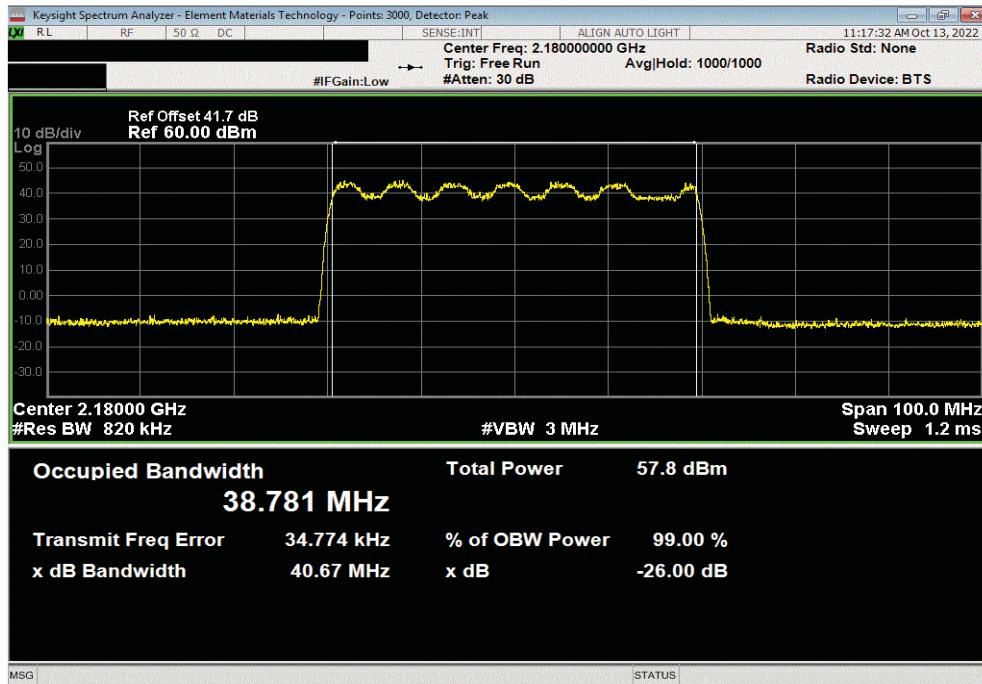
| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, QPSK, High Channel, 2180 MHz |            |             |        |
|------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                              | Value      | Limit       | Result |
| 99% (MHz)                                                                          | 26dB (MHz) |             |        |
| 38.698                                                                             | 40.688     | Within Band | Pass   |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 16QAM, Low Channel, 2130 MHz |            |             |        |
|------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                              | Value      | Limit       | Result |
| 99% (MHz)                                                                          | 26dB (MHz) |             |        |
| 38.828                                                                             | 40.633     | Within Band | Pass   |




# OCCUPIED BANDWIDTH - BAND n66

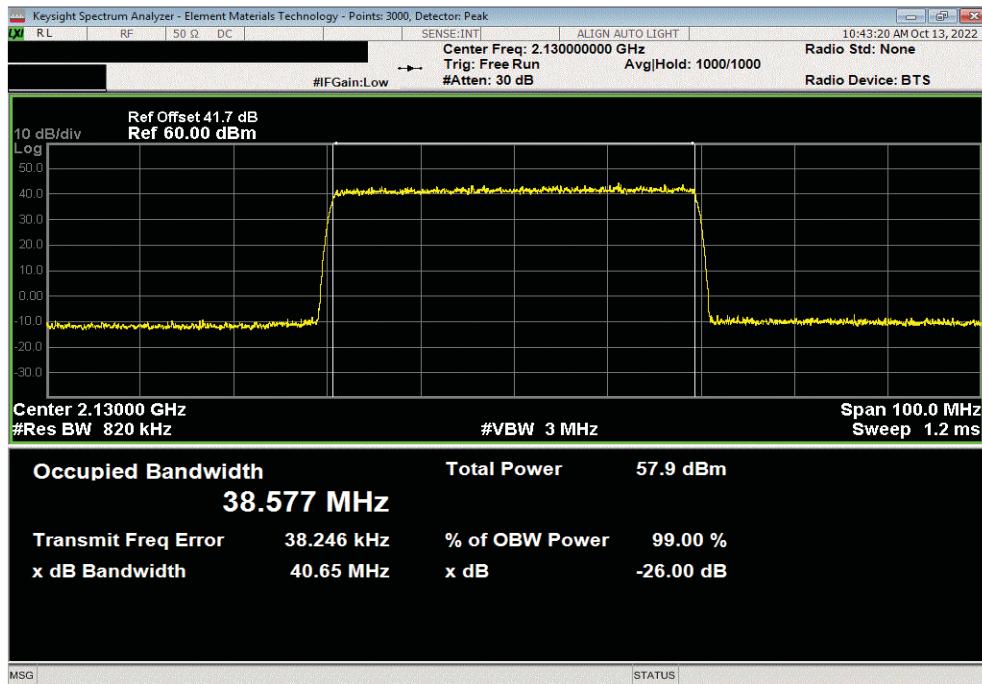



TbITx 2022.06.03.0 XMit 2022.02.07.0

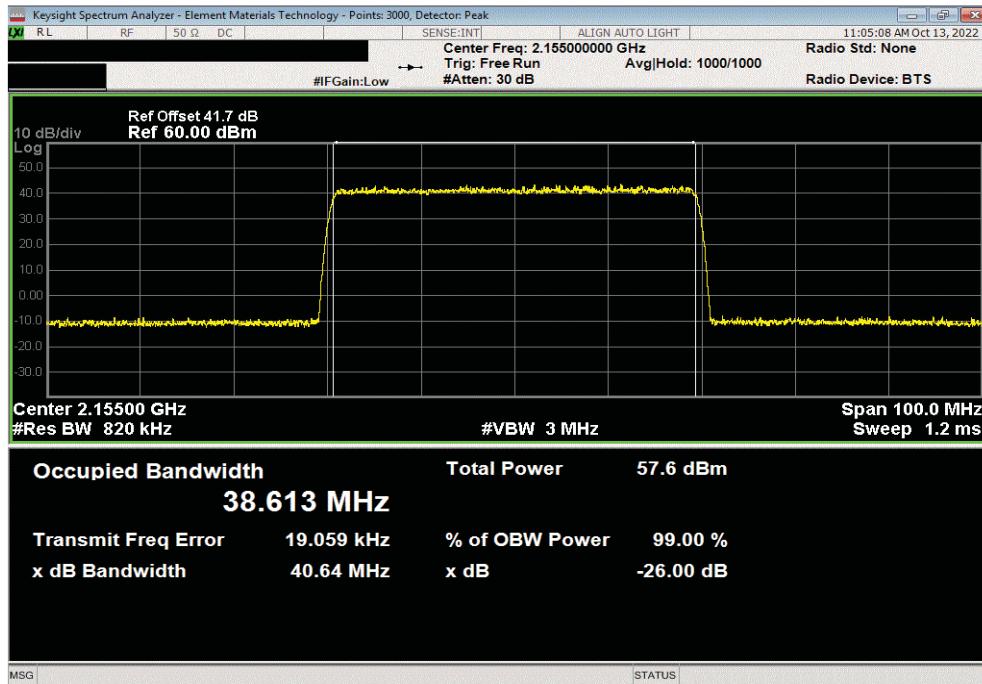
| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 16QAM, Mid Channel, 2155 MHz |            |             |        |
|------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                              | Value      | Limit       | Result |
| 99% (MHz)                                                                          | 26dB (MHz) |             |        |
| 38.835                                                                             | 40.718     | Within Band | Pass   |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 16QAM, High Channel, 2180 MHz |            |             |        |
|-------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                               | Value      | Limit       | Result |
| 99% (MHz)                                                                           | 26dB (MHz) |             |        |
| 38.781                                                                              | 40.668     | Within Band | Pass   |




# OCCUPIED BANDWIDTH - BAND n66

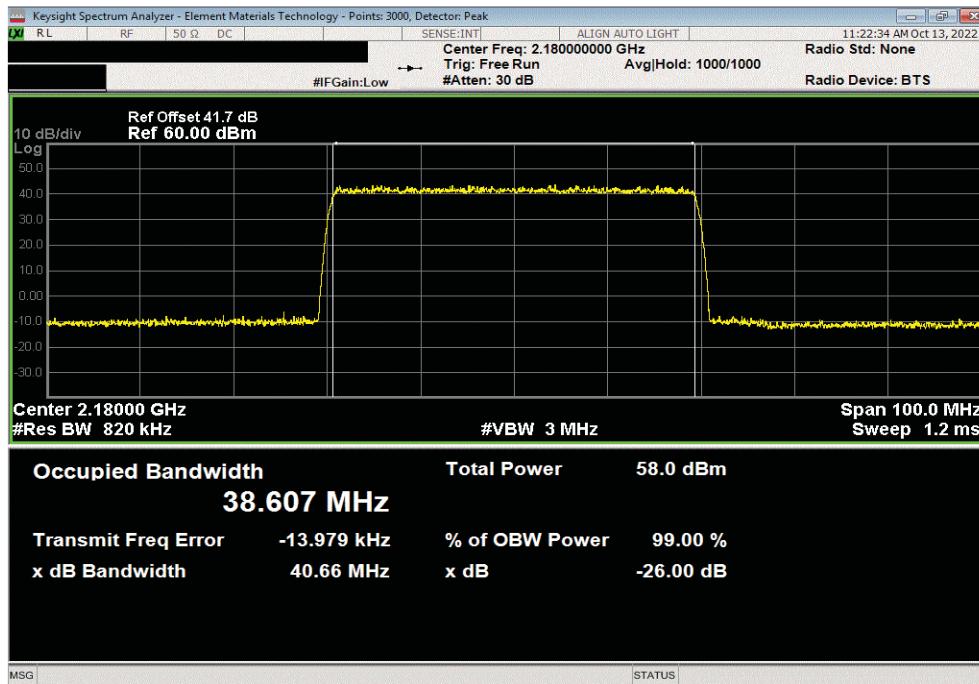



TbITx 2022.06.03.0 XMit 2022.02.07.0

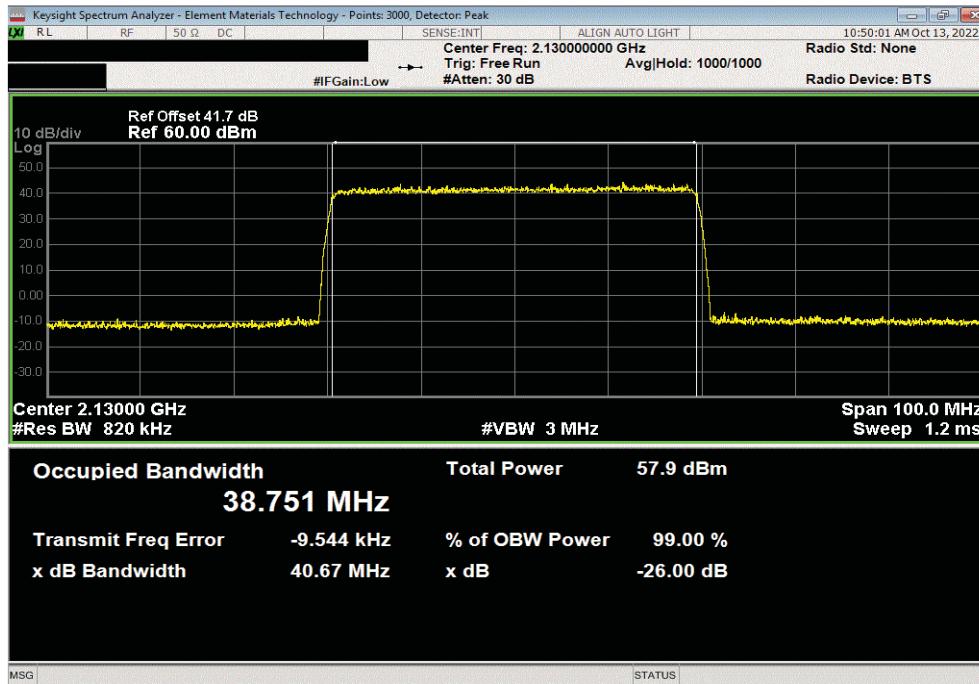
| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 64QAM, Low Channel, 2130 MHz |            |             |        |  |  |
|------------------------------------------------------------------------------------|------------|-------------|--------|--|--|
| Value                                                                              | Value      | Limit       | Result |  |  |
| 99% (MHz)                                                                          | 26dB (MHz) |             |        |  |  |
| 38.577                                                                             | 40.646     | Within Band | Pass   |  |  |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 64QAM, Mid Channel, 2155 MHz |            |             |        |  |  |
|------------------------------------------------------------------------------------|------------|-------------|--------|--|--|
| Value                                                                              | Value      | Limit       | Result |  |  |
| 99% (MHz)                                                                          | 26dB (MHz) |             |        |  |  |
| 38.613                                                                             | 40.645     | Within Band | Pass   |  |  |




# OCCUPIED BANDWIDTH - BAND n66

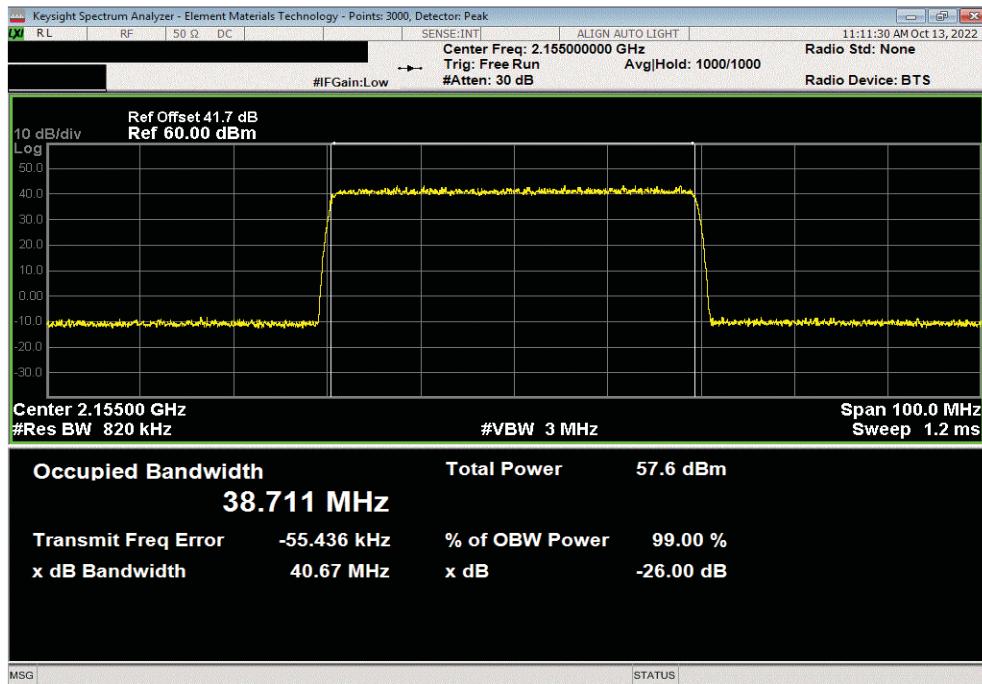



TbITx 2022.06.03.0 XMit 2022.02.07.0

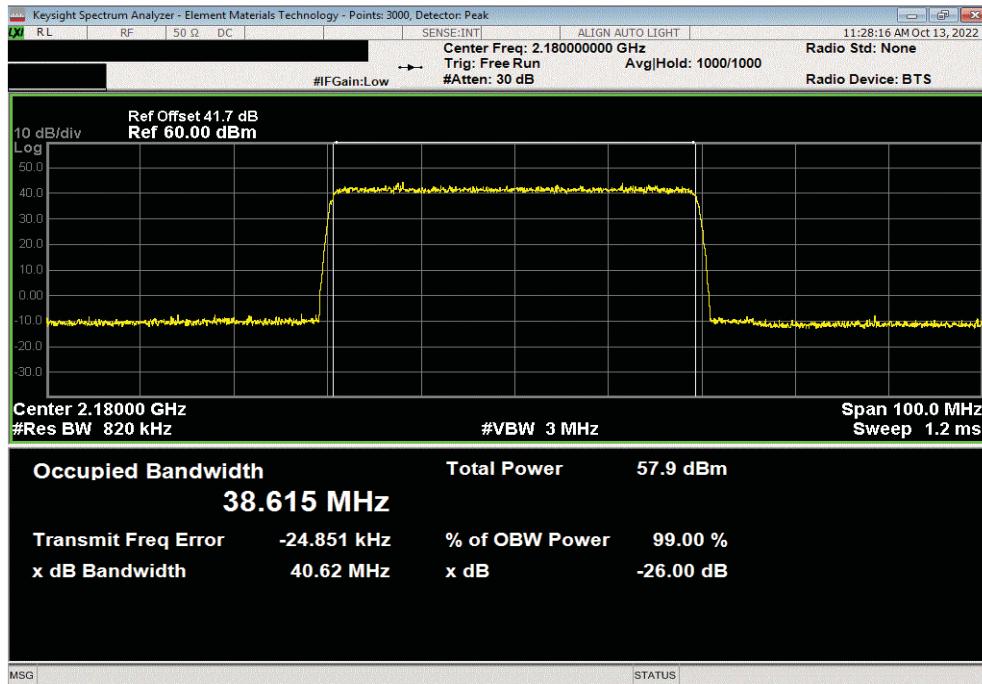
| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 64QAM, High Channel, 2180 MHz |            |             |        |
|-------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                               | Value      | Limit       | Result |
| 99% (MHz)                                                                           | 26dB (MHz) |             |        |
| 38.607                                                                              | 40.659     | Within Band | Pass   |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 256QAM, Low Channel, 2130 MHz |            |             |        |
|-------------------------------------------------------------------------------------|------------|-------------|--------|
| Value                                                                               | Value      | Limit       | Result |
| 99% (MHz)                                                                           | 26dB (MHz) |             |        |
| 38.751                                                                              | 40.666     | Within Band | Pass   |




# OCCUPIED BANDWIDTH - BAND n66




TbITx 2022.06.03.0 XMit 2022.02.07.0

| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 256QAM, Mid Channel, 2155 MHz |            |             |        |  |  |
|-------------------------------------------------------------------------------------|------------|-------------|--------|--|--|
| Value                                                                               | Value      | Limit       | Result |  |  |
| 99% (MHz)                                                                           | 26dB (MHz) |             |        |  |  |
| 38.711                                                                              | 40.673     | Within Band | Pass   |  |  |



| Port 1, Band n66, NR 40 MHz, 2110 - 2200 MHz, 40 MHz, 256QAM, High Channel, 2180 MHz |            |             |        |  |  |
|--------------------------------------------------------------------------------------|------------|-------------|--------|--|--|
| Value                                                                                | Value      | Limit       | Result |  |  |
| 99% (MHz)                                                                            | 26dB (MHz) |             |        |  |  |
| 38.615                                                                               | 40.624     | Within Band | Pass   |  |  |



# OUTPUT POWER - MULTICARRIER



XMIT 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model  | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|--------|-----|------------|------------|
| Analyzer - Spectrum Analyzer | Keysight           | N9010A | AFQ | 2022-01-17 | 2023-01-17 |
| Generator - Signal           | Agilent            | N5173B | TIW | 2020-07-17 | 2023-07-17 |
| Block - DC                   | Fairview Microwave | SD3239 | ANC | 2022-03-02 | 2023-03-02 |

## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurements. This method uses trace averaging across the ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding  $[10 \log (1/D)]$ , where D is the duty cycle in decimal, to the measured power to compute the average power during the actual transmission times.

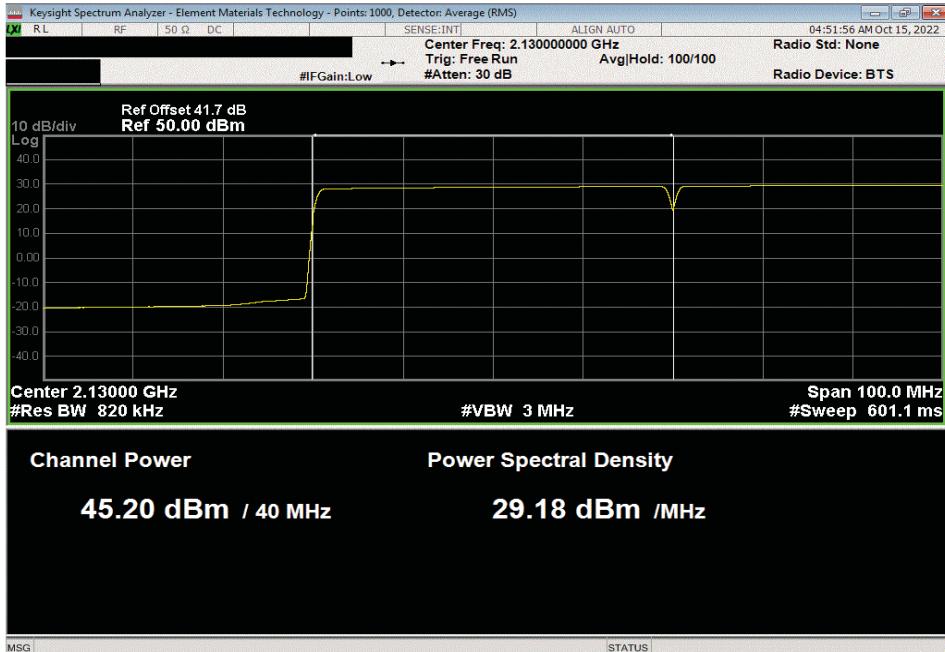
RF conducted emissions testing was performed only on one port. The testing was performed on the same version of hardware (AHFII) as the original certification test. The AHFII antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in this certification testing) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

The total average transmit power of all antenna ports was determined per ANSI C63.26-2105 paragraph 6.4.3.1.

# OUTPUT POWER - MULTICARRIER



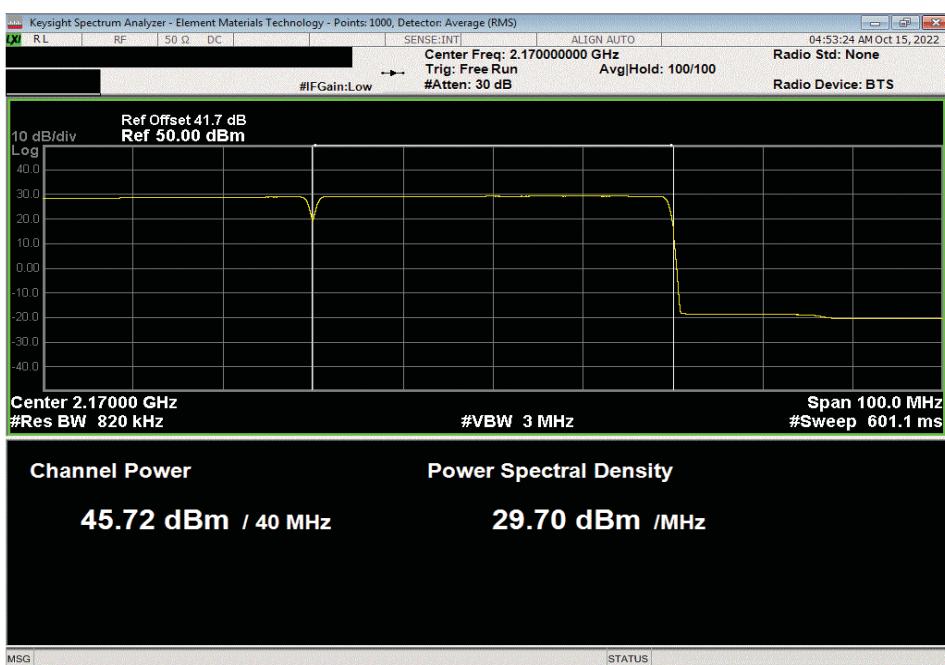
TbTx 2022.05.02.0 XMe 2022.02.07.0


| EUT: AHFII (FCC/ISED C2PC)<br>Serial Number: K9181401111<br>Customer: Nokia of America Corporation<br>Attendees: Mitchell Hill<br>Project: None<br>Tested by: Brandon Hobbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Power: 54 VDC            | Work Order: NOKI0050<br>Date: 17-Oct-22<br>Temperature: 21.5 °C<br>Humidity: 41.3% RH<br>Barometric Pres.: 1024 mbar<br>Job Site: TX07 |                               |                                       |                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|----------------------------------------|
| <b>TEST SPECIFICATIONS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                          |                                                                                                                                        |                               |                                       |                                        |
| FCC 27:2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ANSI C63.26:2015         |                                                                                                                                        |                               |                                       |                                        |
| RSS-133 Issue 6:2013+A1:2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | ANSI C63.26:2015         |                                                                                                                                        |                               |                                       |                                        |
| RSS-139 Issue 4:2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | ANSI C63.26:2015         |                                                                                                                                        |                               |                                       |                                        |
| FCC 24E:2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | ANSI C63.26:2015         |                                                                                                                                        |                               |                                       |                                        |
| <b>COMMENTS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                          |                                                                                                                                        |                               |                                       |                                        |
| All measurement path losses were accounted for in the reference level offset including any attenuators, filters and DC blocks. ). The following is the output power measurements at the radio output ports. The output power was measured for a single carrier over the carrier channel bandwidth on port 1. The total output power for multiport (2x2 MIMO and 4x4 MIMO) operation was determined based upon ANSI 63.26 clauses 6.4.3.1 and 6.4.3.2.4 (10 log Nout). The total output power for two port operation is single port power + 3dB [i.e. 10log(2)]. The total output power for four port operation is single port power + 6dB [i.e. 10log(4)]. |   |                          |                                                                                                                                        |                               |                                       |                                        |
| <b>DEVIATIONS FROM TEST STANDARD</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                          |                                                                                                                                        |                               |                                       |                                        |
| None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                          |                                                                                                                                        |                               |                                       |                                        |
| Configuration #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 | Signature                |                                                                                                                                        |                               |                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | Initial Value<br>dBm/MHz | Duty Cycle<br>Factor (dB)                                                                                                              | Single Port<br>dBm/Carrier BW | Two Port (2x2 MIMO)<br>dBm/Carrier BW | Four Port (4x4 MIMO)<br>dBm/Carrier BW |
| Port 3, AWS Band n66 and PCS Band n25, 40MHz Channel BW<br>QPSK Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                          |                                                                                                                                        |                               |                                       |                                        |
| Test Case 3, Band n66 = 80W, Band n25 = 40W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                          |                                                                                                                                        |                               |                                       |                                        |
| Test Case 3, Channel 2130 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                          |                                                                                                                                        | 45.196                        | 0                                     | 45.2                                   |
| Test Case 3, Channel 2170 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                          |                                                                                                                                        | 45.723                        | 0                                     | 45.7                                   |
| Test Case 3, Channel 1962.5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                          |                                                                                                                                        | 46.114                        | 0                                     | 46.1                                   |
| Test Case 4, Band n66 = 80W, Band n25 = 40W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                          |                                                                                                                                        |                               |                                       |                                        |
| Test Case 4, Channel 2140 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                          |                                                                                                                                        | 45.671                        | 0                                     | 45.7                                   |
| Test Case 4, Channel 2180 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                          |                                                                                                                                        | 46.121                        | 0                                     | 46.1                                   |
| Test Case 4, Channel 1962.5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                          |                                                                                                                                        | 46.074                        | 0                                     | 46.1                                   |
| Port 3, AWS Band n66 and PCS Band n25, 40MHz Channel BW<br>QPSK Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                          |                                                                                                                                        |                               |                                       |                                        |
| Test Case 3, Band n66 = 80W, Band n25 = 40W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                          |                                                                                                                                        | N/A                           | N/A                                   | 50.5                                   |
| Test Case 3, Total Port Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                          |                                                                                                                                        |                               | 53.5                                  | 56.5                                   |
| Test Case 4, Band n66 = 80W, Band n25 = 40W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                          |                                                                                                                                        | N/A                           | N/A                                   | 50.7                                   |
| Test Case 4, Total Port Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                          |                                                                                                                                        |                               | 53.7                                  | 56.7                                   |

# OUTPUT POWER - MULTICARRIER

Port 3, AWS Band n66 and PCS Band n25, 40MHz Channel BW, QPSK Modulation, Test Case 3, Band n66 = 80W, Band n25 = 40W, Test Case 3, Channel 2130 MHz

| Initial Value<br>dBm/MHz | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/Carrier BW | Two Port (2x2 MIMO)<br>dBm/Carrier BW | Four Port (4x4 MIMO)<br>dBm/Carrier BW |
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|

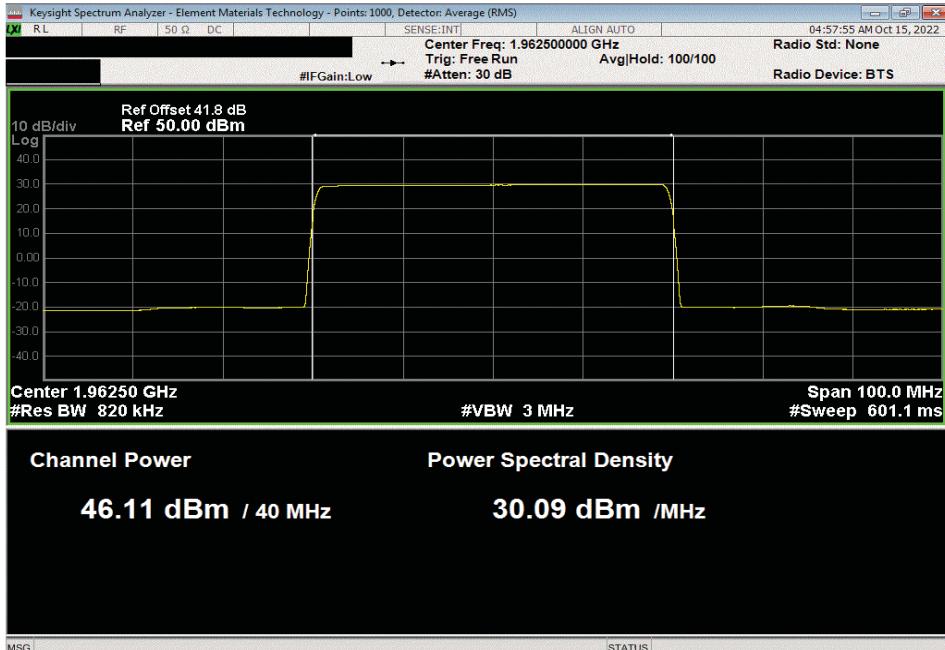

|        |   |      |      |      |
|--------|---|------|------|------|
| 45.196 | 0 | 45.2 | 48.2 | 51.2 |
|--------|---|------|------|------|



Port 3, AWS Band n66 and PCS Band n25, 40MHz Channel BW, QPSK Modulation, Test Case 3, Band n66 = 80W, Band n25 = 40W, Test Case 3, Channel 2170 MHz

| Initial Value<br>dBm/MHz | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/Carrier BW | Two Port (2x2 MIMO)<br>dBm/Carrier BW | Four Port (4x4 MIMO)<br>dBm/Carrier BW |
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|

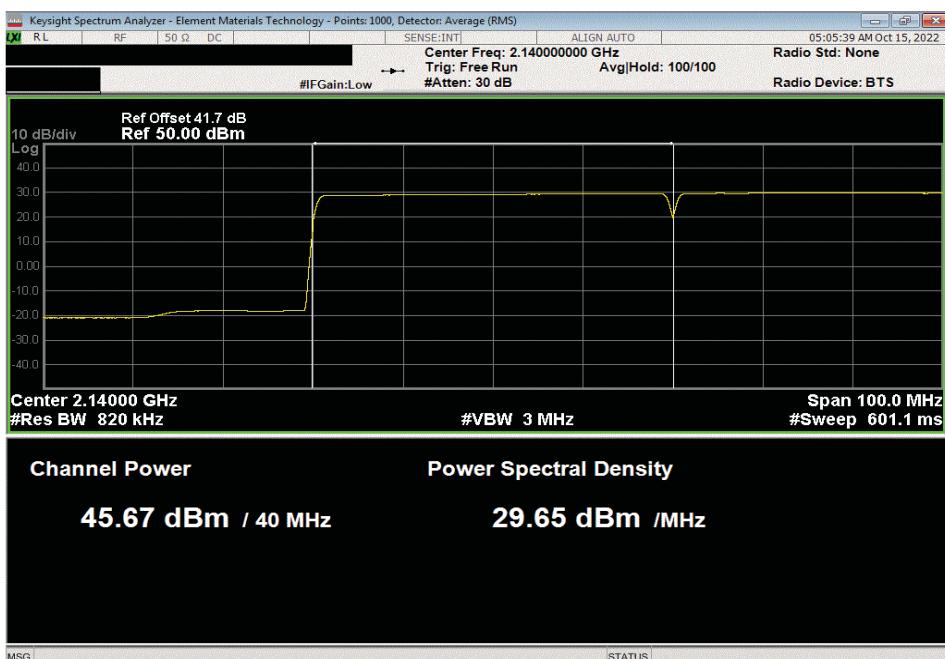
|        |   |      |      |      |
|--------|---|------|------|------|
| 45.723 | 0 | 45.7 | 48.7 | 51.7 |
|--------|---|------|------|------|




# OUTPUT POWER - MULTICARRIER

Port 3, AWS Band n66 and PCS Band n25, 40MHz Channel BW, QPSK Modulation, Test Case 3, Band n66 = 80W, Band n25 = 40W, Test Case 3, Channel 1962.5 MHz

| Initial Value<br>dBm/MHz | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/Carrier BW | Two Port (2x2 MIMO)<br>dBm/Carrier BW | Four Port (4x4 MIMO)<br>dBm/Carrier BW |
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|

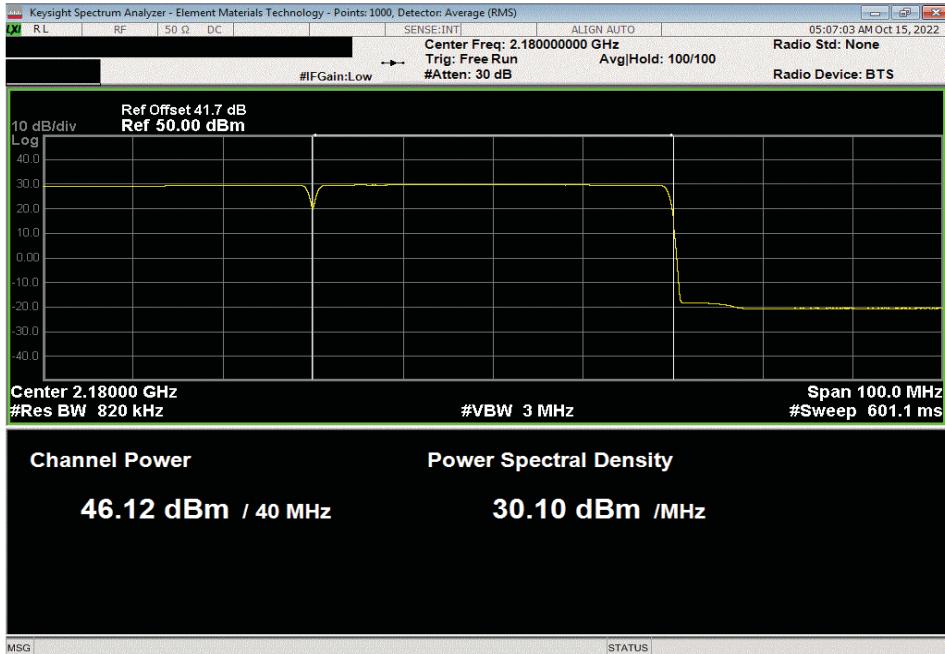

|        |   |      |      |      |
|--------|---|------|------|------|
| 46.114 | 0 | 46.1 | 49.1 | 52.1 |
|--------|---|------|------|------|



Port 3, AWS Band n66 and PCS Band n25, 40MHz Channel BW, QPSK Modulation, Test Case 4, Band n66 = 80W, Band n25 = 40W, Test Case 4, Channel 2140 MHz

| Initial Value<br>dBm/MHz | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/Carrier BW | Two Port (2x2 MIMO)<br>dBm/Carrier BW | Four Port (4x4 MIMO)<br>dBm/Carrier BW |
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|

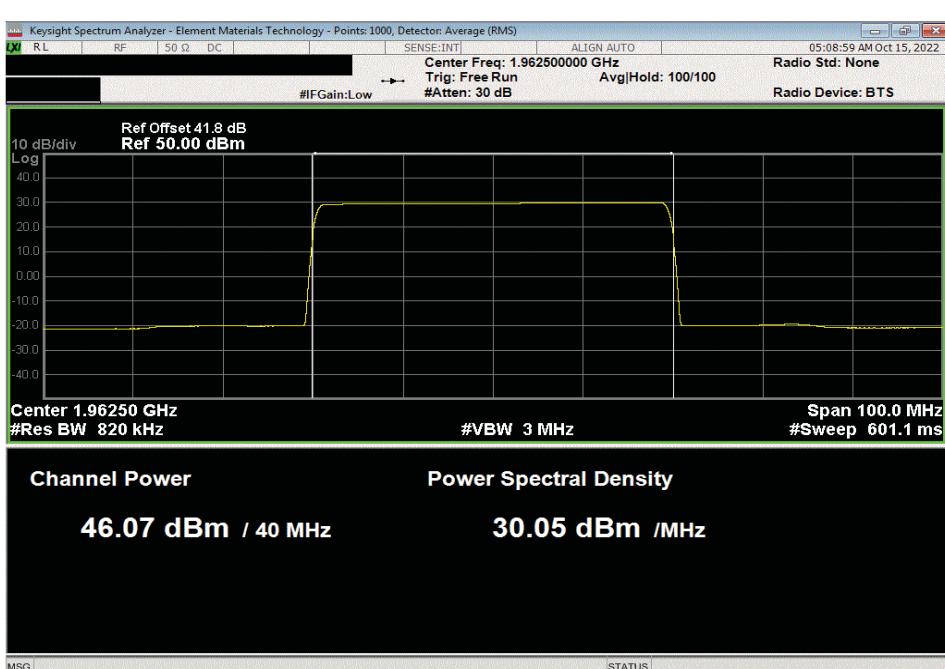
|        |   |      |      |      |
|--------|---|------|------|------|
| 45.671 | 0 | 45.7 | 48.7 | 51.7 |
|--------|---|------|------|------|




# OUTPUT POWER - MULTICARRIER

Port 3, AWS Band n66 and PCS Band n25, 40MHz Channel BW, QPSK Modulation, Test Case 4, Band n66 = 80W, Band n25 = 40W, Test Case 4, Channel 2180 MHz

| Initial Value<br>dBm/MHz | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/Carrier BW | Two Port (2x2 MIMO)<br>dBm/Carrier BW | Four Port (4x4 MIMO)<br>dBm/Carrier BW |
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|


|        |   |      |      |      |
|--------|---|------|------|------|
| 46.121 | 0 | 46.1 | 49.1 | 52.1 |
|--------|---|------|------|------|



Port 3, AWS Band n66 and PCS Band n25, 40MHz Channel BW, QPSK Modulation, Test Case 4, Band n66 = 80W, Band n25 = 40W, Test Case 4, Channel 1962.5 MHz

| Initial Value<br>dBm/MHz | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/Carrier BW | Two Port (2x2 MIMO)<br>dBm/Carrier BW | Four Port (4x4 MIMO)<br>dBm/Carrier BW |
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|
|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|

|        |   |      |      |      |
|--------|---|------|------|------|
| 46.074 | 0 | 46.1 | 49.1 | 52.1 |
|--------|---|------|------|------|



# OUTPUT POWER - MULTICARRIER



TbITx 2022.05.02.0 XMII 2022.02.07.0

Port 3, AWS Band n66 and PCS Band n25, 40MHz Channel BW, QPSK Modulation, Test Case 3, Band n66 = 80W, Band n25 = 40W, Test Case 3, Total Port Power

|  | Initial Value<br>dBm/MHz | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/Carrier BW | Two Port (2x2 MIMO)<br>dBm/Carrier BW | Four Port (4x4 MIMO)<br>dBm/Carrier BW |  |
|--|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
|  | N/A                      | N/A                       | 50.47                         | 53.5                                  | 56.5                                   |  |

| Case 3 Carriers  | dBm Power | Watts Power | Total Watts Power | Total dBm Power |
|------------------|-----------|-------------|-------------------|-----------------|
| 2130 MHz         | 45.2      | 33.1        |                   |                 |
| 2170 MHz         | 45.7      | 37.4        |                   |                 |
| 1962.5 MHz       | 46.1      | 40.9        |                   |                 |
| Total Port Power |           |             | 111.3             | 50.47           |

Port 3, AWS Band n66 and PCS Band n25, 40MHz Channel BW, QPSK Modulation, Test Case 4, Band n66 = 80W, Band n25 = 40W, Test Case 4, Total Port Power

|  | Initial Value<br>dBm/MHz | Duty Cycle<br>Factor (dB) | Single Port<br>dBm/Carrier BW | Two Port (2x2 MIMO)<br>dBm/Carrier BW | Four Port (4x4 MIMO)<br>dBm/Carrier BW |  |
|--|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------------------------|--|
|  | N/A                      | N/A                       | 50.7                          | 53.7                                  | 56.7                                   |  |

| Case 3 Carriers  | dBm Power | Watts Power | Total Watts Power | Total dBm Power |
|------------------|-----------|-------------|-------------------|-----------------|
| 2130 MHz         | 45.7      | 36.9        |                   |                 |
| 2170 MHz         | 46.1      | 40.9        |                   |                 |
| 1962.5 MHz       | 46.1      | 40.5        |                   |                 |
| Total Port Power |           |             | 118.3             | 50.73           |