

Ke Mei Ou Laboratory Co., Ltd.

7A, Jiaxiangge, Jiahuixincheng, No.3027, Shennan Rd., Futian, Shenzhen, Guangdong, P.R.China. Zip Code: 518033
Tel: + 86 755 83642690 Fax: + 86 755 83297077
www.kmolab.com

FCC TEST REPORT

Under :
FCC 15 Subpart C, Paragraph 15.231

Prepared For :

4G Technologies LLC

154 Rte. 206 Suite 2F, Chester NJ 07930

FCC ID: VAUGC527444
EUT: GSM Auto Security System
Model: T360-500

September 12, 2007

Report Type: Original Report
Test Engineer: <u>Jacky Huang</u>
Test Date: <u>August 26, 2007</u>
Review By: _____
Apollo Liu / Manager

The test report consists 22 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Ke Mei Ou Laboratory Corporation. The test result in the report only applied to the tested sample.

TABLE OF CONTENTS

1. General Information.....	3
1. 1 Notes.....	3
1. 2 Testing Laboratory	3
1. 3 Details of Applicant	3
1. 4 Application Details.....	3
1. 5 Test Item.....	3
1. 6 Test Standards.....	3
2. Technical Test.....	4
2. 1 Summary of Test Results	4
3. EUT Modifications.....	4
4. Conducted Power Line Test.....	5
4. 1 Test Equipment	5
4. 2 Test Procedure	5
4. 3 Test Setup.....	5
4. 4 Configuration of The EUT.....	6
4. 5 EUT Operating Condition.....	7
4. 6 Conducted Power Line Emission Limits	7
4. 7 Conducted Power Line Test Result.....	7
5. Radiated Emission Test.....	8
5. 1 Test Equipment	8
5. 2 Test Procedure	8
5. 3 Radiated Test Setup.....	8
5. 4 Configuration of The EUT.....	9
5. 5 EUT Operating Condition.....	9
5. 6 Radiated Emission Limit	9
5. 7 Radiated Emission Test Result.....	10
6. Technical Characteristic	11
6. 1 Band Edge	11
6.1.1 Test Equipment	11
6.1.2 Test Procedure.....	11
6.1.3 Radiated Test Setup	11
6.1.4 Configuration of The EUT.....	12
6.1.5 EUT Operating Condition.....	12
6.1.6 Band Edge FCC 15.231 Limit.....	12
6.1.7 Band Edge Test Result.....	12
6. 2 Calculation of Average Factor.....	13
6. 3 Manually Operated Transmitter Deactivation	15
6. 4 Antenna Requirement.....	16
7. Photos of Testing.....	17
7. 1 EUT Test Photographs.....	17
7. 2 EUT Detailed Photographs	18
8. FCC ID Label	21
9. Test Equipment.....	22

1. General Information

1. 1 Notes

The test results of this report relate exclusively to the test item specified in 1.5. The KMO Lab does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the KMO Lab.

1. 2 Testing Laboratory

SinTek Laboratory Co., Ltd.

No.7, Xinshidai Industrial, Guantian Village, Shiyan Town, Bao'an District, Shenzhen, Guangdong China..

Tel: +86 755 27608353 Fax: +86 755 27608359

Site on File with the Federal Communications Commission – United States

Registration Number: 963441

1. 3 Details of Applicant

Name	:	4G Technologies LLC
Address	:	154 Rte. 206 Suite 2F, Chester NJ 07930
Contact	:	N/A
Tel	:	N/A
Fax	:	N/A

1. 4 Application Details

Date of Receipt of Application	:	June 25, 2007
Date of Receipt of Test Item	:	June 25, 2007
Date of Test	:	August 26~September 12, 2007

1. 5 Test Item

Manufacturer	:	See Applicant
Trade Name	:	Amwell
Model No.	:	T360-500
Description	:	GSM Auto Security System

Additional Information

Frequency	:	433.99MHz
Transmission Range	:	N/A
Number of Channels	:	1
Antenna	:	Internal
Power Supply	:	DC 3V
Extreme Temp. Tolerance	:	N/A

1. 6 Test Standards

Title 47 CFR, FCC Part 15, including: 15.203, 15.205, 15.207, 15.209, 15.231a, 15.231b and 15.231c.

Note: All radiated measurements were made in all three orthogonal planes. The values reported are the maximum values.

2. Technical Test

2. 1 Summary of Test Results

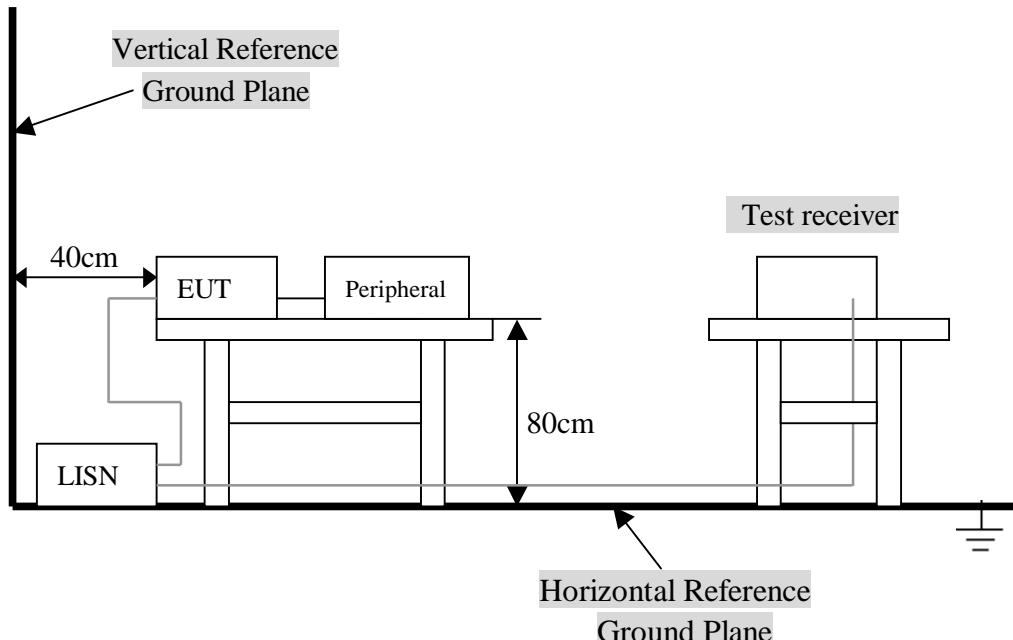
The EUT has been tested according to the following specifications:

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.203	Antenna Requirement	PASS	Complies
FCC Part 15, Paragraph 15.207	Conducted Test	N/A	Owing to the DC operation of EUT, this test item is not performed.
FCC Part 15 Subpart C Paragraph 15.231(a)	Periodic Operation Characteristics	PASS	Complies
FCC Part 15 Subpart C Paragraph 15.231(b) Limit	Field Strength of Fundamental	PASS	Complies
FCC Part 15, Subpart C Paragraph 15.231(b) Limit & Paragraph 15.209, Paragraph 15.205(b)	Radiated Test	PASS	Complies
FCC Part 15 Subpart C Paragraph 15.231(c) Limit	Measured 20 dB Bandwidth	PASS	Complies.

3. EUT Modifications

No modification by SinTek Laboratory Co., Ltd.

4. Conducted Power Line Test


4. 1 Test Equipment

Please refer to Section 9 this report.

4. 2 Test Procedure

The EUT was tested according to ANSI C63.4 - 2003. The frequency spectrum from 0.15 MHz to 30 MHz was investigated. The LISN used was 50 ohm / 50 uHenry as specified by section 5.1 of ANSI C63.4 - 2003. cables and peripherals were moved to find the maximum emission levels for each frequency.

4. 3 Test Setup

For the actual test configuration, Please refer to the related items – Photos of Testing.

4. 4 Configuration of The EUT

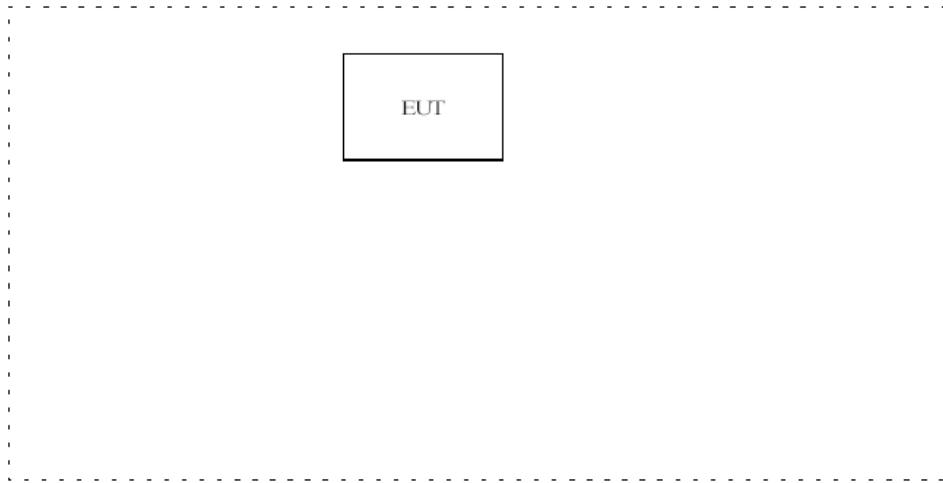
The EUT was configured according to ANSI C63.4-2003. EUT was used DC 3V. Press any key of the EUT. Once the button releasing, the transmission will be stopped within 1 second. The EUT transmitted continuously and the duty cycle of transmitting was set to worst case condition, which provided by manufacturer during all the tests. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

A. EUT

Device	Manufacturer	Model #	FCC ID
GSM Auto Security System	4G Technologies LLC	T360-500	VAU-GC527444

B. Internal Devices

Device	Manufacturer	Model #	FCCID / DoC
N/A			


C. Peripherals

Device	Manufacturer	Model # Serial #	FCC ID/ DoC	Cable
N/A				

4. 5 EUT Operating Condition

Operating condition is according to ANSI C63.4 - 2003.

- A. Setup the EUT and simulators as shown on follow.
- B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.

4. 6 Conducted Power Line Emission Limits

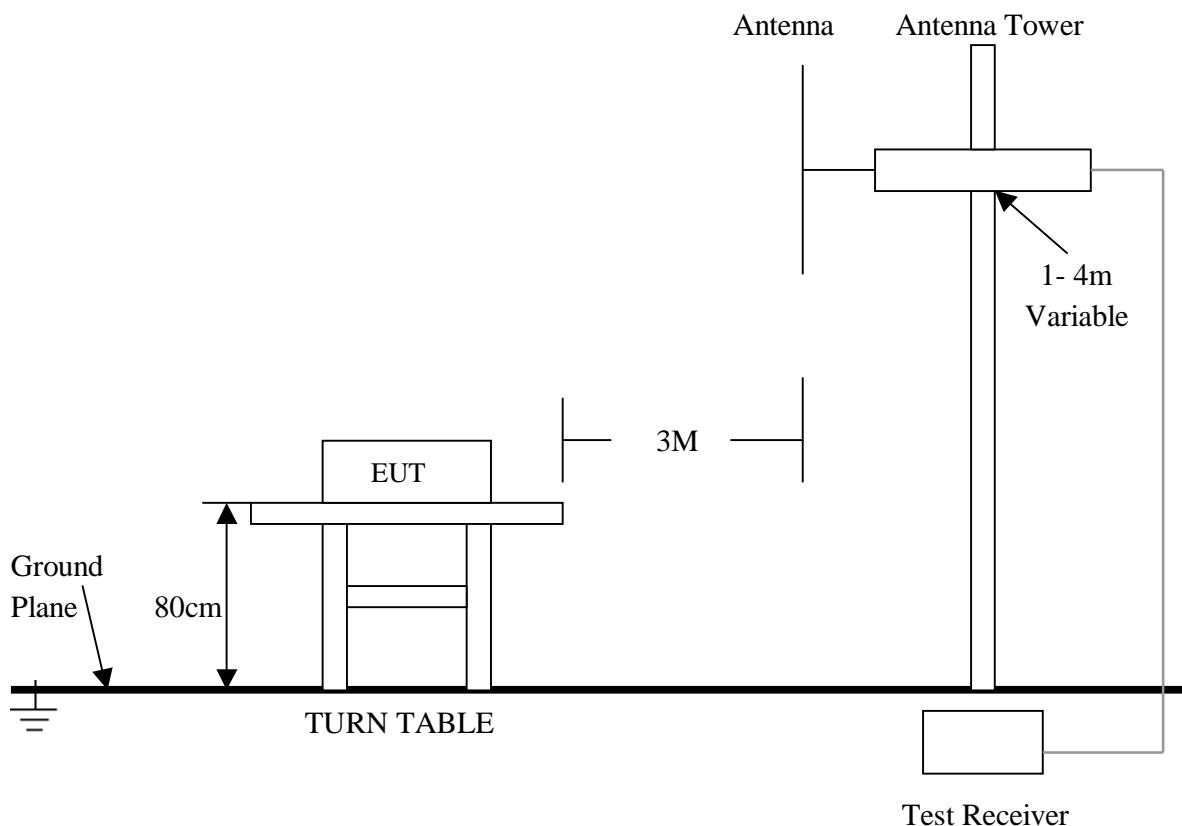
FCC Part 15 Paragraph 15.207 (dBuV)		
Frequency Range (MHz)	Class A QP/AV	Class B QP/AV
0.15 – 0.5	79/66	66-56/56-46
0.5 – 5.0	73/60	56/46
5.0 - 30	73/60	60/50

NOTE : In the above table, the tighter limit applies at the band edges.

4. 7 Conducted Power Line Test Result

Owing to the DC operation of EUT, this test item is not performed.

5. Radiated Emission Test


5. 1 Test Equipment

Please refer to Section 9 this report.

5. 2 Test Procedure

1. The EUT was tested according to ANSI C63.4 - 2003.
2. The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.4-2003.
3. The frequency spectrum from 30 MHz to 1 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 KHz. All readings are above 1 GHz , peak values with a resolution bandwidth of 1 MHz . Measurements were made at 3 meters.
4. The antenna height is varied from 1 m to 4 m high to find the maximum emission for each frequency.
5. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "QP" in the data table.
6. The antenna polarization : Vertical polarization and Horizontal polarization.

5. 3 Radiated Test Setup

For the actual test configuration , please refer to the related items – Photos of Testing.

5. 4 Configuration of The EUT

Same as section 4 . 4 of this report

5. 5 EUT Operating Condition

Same as section 4 . 5 of this report.

5. 6 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below :

A. FCC Part 15 Subpart C Paragraph 15.231(b) Limit

Calculation of Radiated Emissions limits for FCC Part 15.231b (260-470MHz)

Field Strength of Fundamental / Harmonic Frequencies:

The calculation involves a linear interpolation of 3750 to 12500 uV/m over 260 - 470 MHz, where field strength of the fundamental frequency (f_0) when, $2608f_0/470$ MHz, can be found by: $41.6667(f_0) - 7083.3333$, where f_0 is in MHz.

Field Strength of Spurious / Harmonic Frequencies:

The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

where $f_0 = 433.99$ MHz

Fundamental: $41.6667(433.99) - 7083.3333 = 10999.6$ uV/m

Fundamental Frequency (MHz)	Field Strength of Fundamental (3m)		Field Strength of Harmonics (3m)	
	uV/m	dBuV/m	uV/m	dBuV/m
433.99	10999.6	80.8	1099.96	60.8

Note:

- (1) RF Voltage (dBuV) = $20 \log_{10}$ RF Voltage (uV)
- (2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (3) The emission limit in this paragraph is based on measurement instrumentation employing an average detector. Measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

B. Frequencies in restricted band are complied to limit on Paragraph 15.209.

Frequency (MHz)	Distance (m)	Field Strength (dBuV/m)
30 - 88	3	40.0
88 - 216	3	43.5
216 - 960	3	46.0
ABOVE 960	3	54.0

Note:

- (1) RF Voltage (dBuV) = $20 \log_{10}$ RF Voltage (uV)
- (2) In the Above Table, the tighter limit applies at the band edges.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the

5. 7 Radiated Emission Test Result

A. Fundamental Radiated Emission Data

Product	: GSM Auto Security System	Test Mode	: Normal
Test Item	: Fundamental Radiated Emission Data	Temperature	: 25 °C
Test Voltage	: DC 3V	Humidity	: 56% RH
Test Result	: PASS		

Freq. (MHz)	Emission Peak (dBuV/m)	Calculated Average Level (dBuV/m)	HORIZ / VERT	Limits (dBuV/m)	Margin (dB)
433.990	77.9	73.5	HORIZ	80.8	-7.3
433.990	73.4	69.0	VERT	80.8	-11.8

Note: (1) Emission Level = Reading Level + Probe Factor + Cable Loss + Duty Cycle.
 (2) The Duty Cycle = 4.4dB, Refer to section 6.2 of this report.

B. General Radiated Emission Data & Harmonics Radiated Emission Data

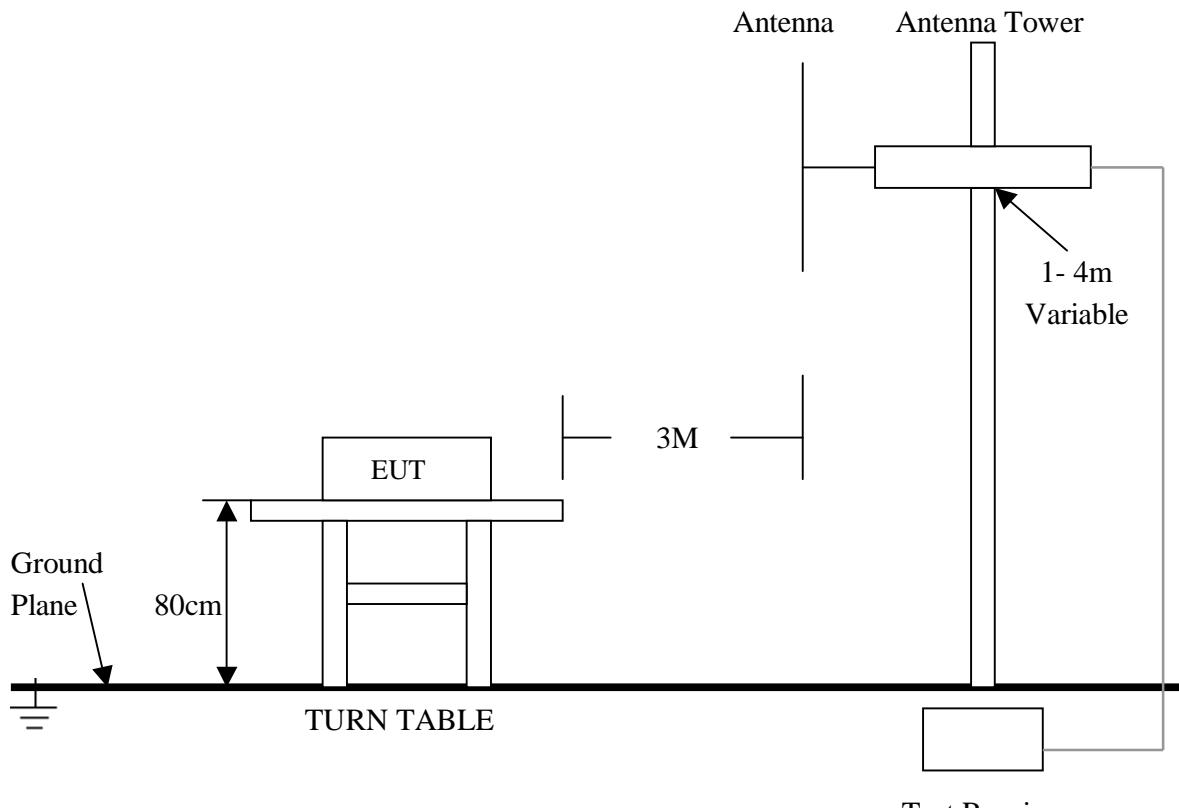
Product	: GSM Auto Security System	Test Mode	: Normal
Test Item	: General Radiated Emission Data & Harmonics Radiated Emission Data	Temperature	: 25 °C
Test Voltage	: DC 3V	Humidity	: 56% RH
Test Result	: PASS		

Freq. (MHz)	Emission Peak (dBuV/m)	Calculated Average Level (dBuV/m)	HORIZ / VERT	Limits (dBuV/m)	Margin (dB)
867.98	49.7	45.3	HORIZ	60.8	-15.5
867.98	48.1	43.7	VERT	60.8	-17.1
1301.97	46.4	42.0	HORIZ	60.8	-18.8
1301.97	45.6	41.2	VERT	60.8	-19.6
1735.96	43.3	38.9	HORIZ	60.8	-21.9
1735.96	41.5	37.1	VERT	60.8	-23.7
2169.95	41.6	37.2	HORIZ	60.8	-23.6
2169.95	42.7	38.3	VERT	60.8	-22.5
4339.90	38.7	34.3	HORIZ	60.8	-26.5
4339.90	38.3	33.9	VERT	60.8	-26.9

Note: (1) Emission Level = Reading Level + Probe Factor + Cable Loss + Duty Cycle.
 (2) The Duty Cycle = 4.4dB, Refer to section 6.2 of this report.

6. Technical Characteristic

6.1 Band Edge


6.1.1 Test Equipment

Please refer to Section 9 this report.

6.1.2 Test Procedure

1. The EUT was tested according to ANSI C63.4 - 2003.
2. The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.4-2003.
3. The frequency spectrum from 30 MHz to 1 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 KHz. All readings are above 1 GHz , peak values with a resolution bandwidth of 1 MHz . Measurements were made at 3 meters.
4. The antenna height were varied from 1 m to 4 m high to find the maximum emission for each frequency.
5. The additional latch filter below 1GHz was used to measure the level of harmonics radiated emission during field strength of harmonics measurement. The bandwidth below 30MHz setting on the field strength meter is 10 kHz, above 1GHz are 1 MHz.
6. Maximizing procedure was performed on the highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "QP" in the data table.
7. The antenna polarization : Vertical polarization and horizontal polarization.

6.1.3 Radiated Test Setup

For the actual test configuration , please refer to the related items – Photos of Testing

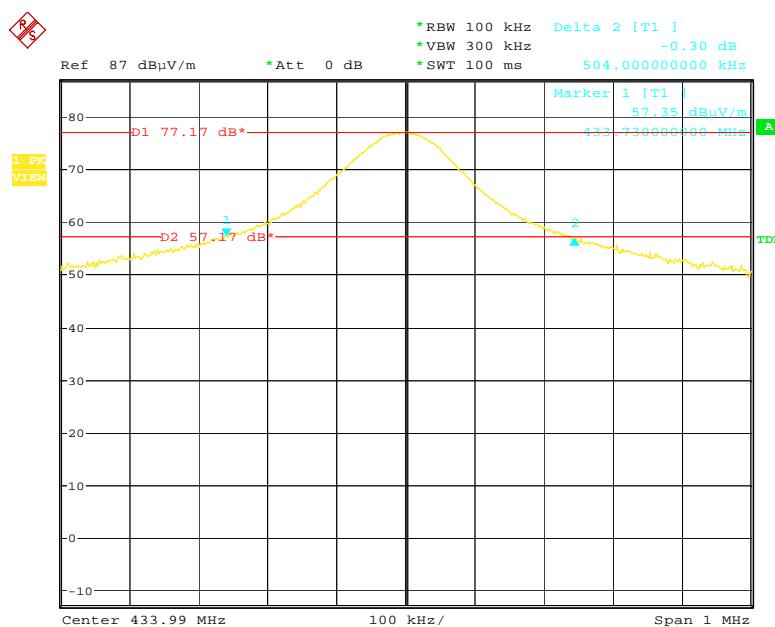
6.1.4 Configuration of The EUT

Same as section 4 . 4 of this report

6.1.5 EUT Operating Condition

Same as section 4 . 5 of this report.

6.1.6 Band Edge FCC 15.231 Limit


The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20dB down from the modulated carrier.

$$B.W(20\text{dBc}) \text{ Limit} = 0.25\% \times f(\text{MHz}) = 0.25\% \times 433.99\text{MHz} = 1.085\text{MHz}$$

From the plot, the bandwidth is observed to be 0.504MHz, at 20dBc where the bandwidth limit is 1.085MHz.

6.1.7 Band Edge Test Result

Product	: GSM Auto Security System	Test Mode	: Normal
Test Item	: Band Edge Data	Temperature	: 25 °C
Test Voltage	: DC 3V	Humidity	: 56% RH
Test Result	: PASS		

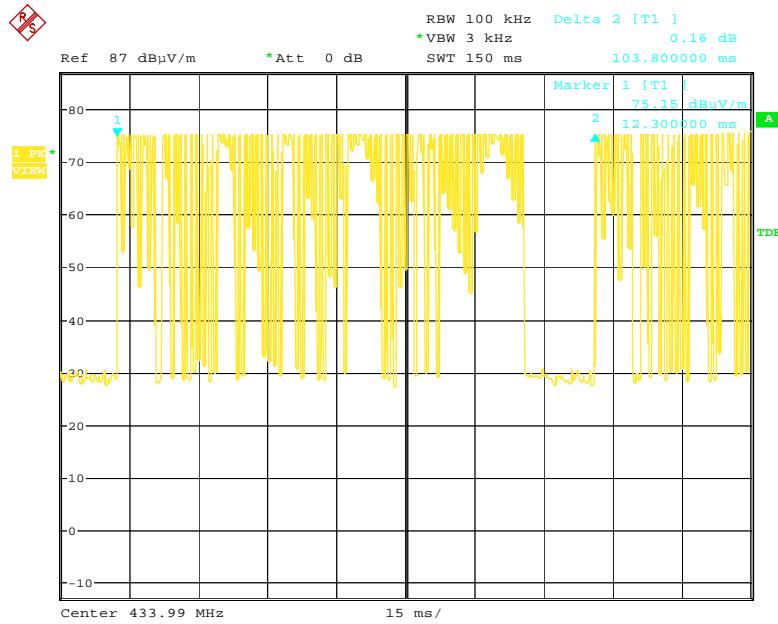
Date: 4.SEP.2007 17:29:54

Note:

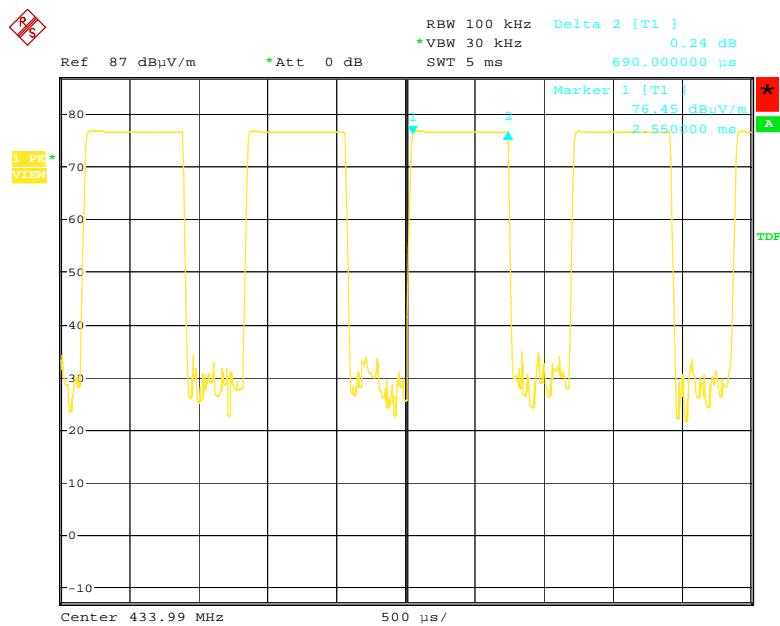
- (1) The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in Section 15.209.
- (2) The average measurement was not performed when the peak measured data under the limit of average detection.

6.2 Calculation of Average Factor

For a graphical presentation of the data bursts being transmitted from the transmitter, refer to below figures for the amount of time that the transmitter is active. Figures are provided that show the On-time of the transmitter that occurs when a key is held down continuously, and also over a 100 milliseconds (worst case) period. In the 100 millisecond window, with 103.8ms packet length, and 103.8 ms between packets with each packet consisting of 87 bits we will obtain a total of 1 packet transmitted during the 103.8 ms interval. If all bits are high and each bit is 0.69ms long, the On-time for a burst is; 0.69ms x 87 bits = 60.03ms.

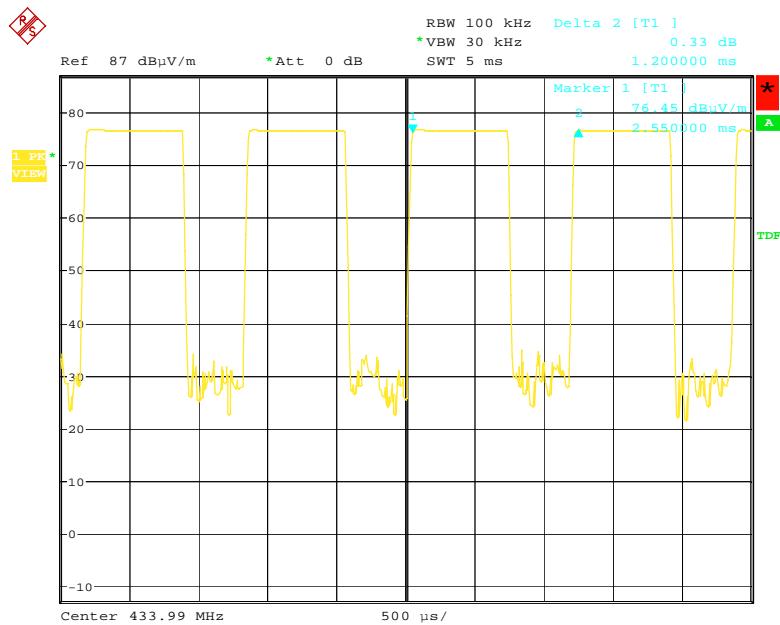

The duration of one cycle = 100ms

Effective period of the cycle = 60.03ms


DC = 60.03ms / 100ms = 0.6003

Averaging Factor = $20 * \log(\text{DC}) = -4.4\text{dB}$

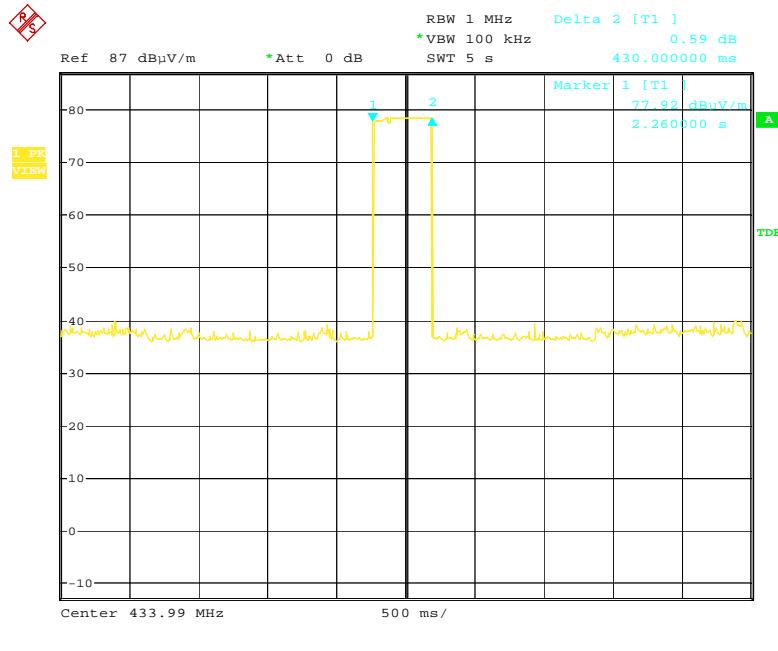
Duty Cycle Detail, Over a 100 ms Interval



Duty Cycle Detail, Over a 5.0 ms Interval

Date: 4.SEP.2007 17:34:07

Duty Cycle Detail, Over a 5.0 ms Interval



Date: 4.SEP.2007 17:34:25

6.3 Manually Operated Transmitter Deactivation

15.231(a) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Transmitter Turn-Off Release Time, Upon Momentary Activation of Push Switch (Showing release time less than 1 second)

Date: 5.SEP.2007 10:42:54

6. 4 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

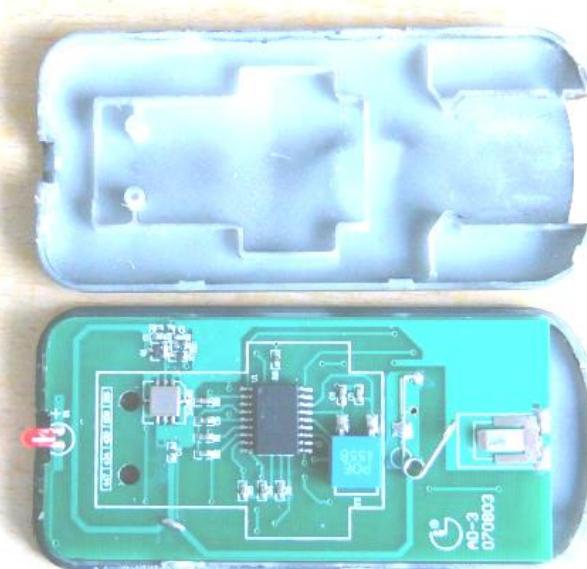
The EUT's antenna is a trace on the PCB. The EUT meets the requirements of this section.

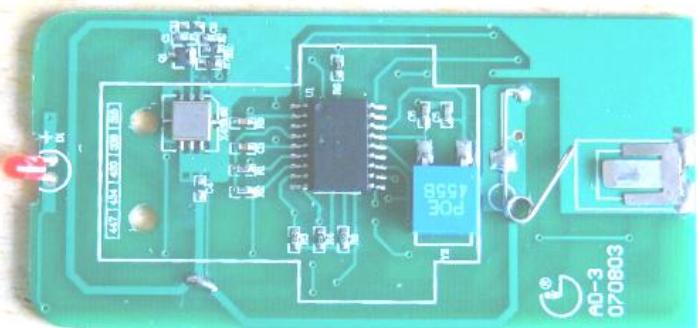
7. Photos of Testing

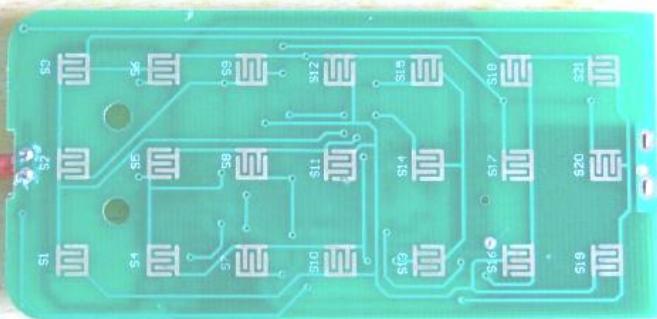
7. 1 EUT Test Photographs

Radiated emission test view

7.2 EUT Detailed Photographs


EUT top view


EUT bottom view


EUT inside whole view

Main board component side

Main board solder side

8. FCC ID Label

FCC ID: VAUGC527444

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The Label must not be a stick-on paper label. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Proposed Label Location on EUT

EUT Bottom View/Proposed FCC ID Label Location

9. Test Equipment

The following test equipments were used during the radiated & conducted emission test:

Equipment/ Facilities	Manufacturer	Model #	Serial No.	Date of Cal.	Due Date
Turntable	SinTek	N/A	N/A	NCR	NCR
Antenna Tower	SinTek	N/A	N/A	NCR	NCR
OATS	SinTek	N/A	N/A	Nov. 02, 2004	Nov. 02, 2007
EMI Test Receiver	Rohde & Schwarz	ESPI3	100180	Oct.18, 2006	Oct.18, 2007
Spectrum Analyzer	Rohde & Schwarz	FSP40	100273	Sep. 18, 2007	Sep. 18, 2008
Signal Generator	FLUKE	PM5418+Y/C	LO747012	Feb.10, 2007	Feb.10, 2008
Signal Generator	FLUKE	PM5418TX	LO738007	Feb.10, 2007	Feb.10, 2008
Loop Antenna	SCHWARZBECK	FMZB1516	113	Jan. 30, 2007	Jan. 30, 2008
Loop Antenna	Rohde & Schwarz	HFH2-Z2	872096/16	Jan. 30, 2007	Jan. 30, 2008
Trilog-Super Broadband Antenna	SCHWARZBECK	VULB9161	9161-4079	Sep.18, 2007	Sep.18, 2008
Trilog-Super Broadband Antenna	SCHWARZBECK	VULB9161	9161-4080	Sep.18, 2007	Sep.18, 2008
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-564	Sep.18, 2007	Sep.18, 2008
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-565	Sep.18, 2007	Sep.18, 2008
AMN	Rohde & Schwarz	ESH3-Z5	100196	Oct. 23, 2006	Oct. 23, 2007
AMN	Rohde & Schwarz	ESH3-Z5	100197	Oct. 23, 2006	Oct. 23, 2007
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	N/A	N/A	N/A
Absorbing Clamp	Rohde & Schwarz	MDS-21	N/A	Oct. 29, 2006	Oct. 29, 2007
KMO Shielded Room	KMO	KMO-001	N/A	N/A	N/A
Coaxial Cable with N-Connectors	SCHWARZBECK	AK9515H	95549	Sep.18, 2007	Sep.18, 2008
Power Meter	Rohde & Schwarz	NRVD	100041	Feb.10, 2007	Feb.10, 2008
Radio Communication Test Set	Rohde & Schwarz	CMS 54	846621/024	Feb.10, 2007	Feb.10, 2008
Modulation Analyzer	Hewlett-Packard	8901B	2303A00362	Feb.10, 2007	Feb.10, 2008
Communication Analyzer	Wavetek Stabilock	4032	N/A	Feb. 01, 2007	Feb.01, 2008
Storage Oscilloscope	Tektronix	TDS3052	N/A	Feb. 01, 2007	Feb.01, 2008
Attenuator	Schwarzbeck	20dB	N/A	Feb. 01, 2007	Feb.01, 2008
Attenuator	Rohde & Schwarz	10dB	N/A	Feb. 01, 2007	Feb.01, 2008
SOHO Telephone Switching System	IKE	2000-108C	N/A	Feb.10, 2007	Feb.10, 2008
Temperature Chamber	TABAI	PSL-4GTW	N/A	Feb.10, 2007	Feb.10, 2008