

KES Co., Ltd.
C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

TEST REPORT

Part 15 Subpart C 15.247 & IC RSS-210(Issue 8)

Equipment under test Keyless Entry System

Model name MR1040-2WAY (Variant model: REB500-2WAY)

FCC ID VA5JR1040-2WSSL

IC Certification 7087A-2WR1040SSL

Applicant SEGI LIMITED

Manufacturer SEGI ELECTRONICS CO.,LTD.

Date of test(s) 2012.03.27 ~ 2012.04.10

Date of issue 2012.04.17

Issued to

SEGI LIMITED

ROOM 1808, 18/F, Tower 2, Admiralty Centre, 18 Harcourt Rd.,
Admiralty, Hong Kong, China

Issued by

KES Co., Ltd.

C3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si,
Gyeonggi-do, 431-716, Korea
477-6, Hageo-ri, Yeoju-eup, Yeoju-gun, Gyeonggi-do, 469-803, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
Jeff Do Test engineer	Gyu-cheol Shin Technical manager

KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Revision history

Revision	Date of issue	Test report No.	Description
-	2012.04.17	KES-RF-120026	Initial

TABLE OF CONTENTS

1.0	General product description	4
1.1	Test frequency	4
1.2	Information about variant model.....	4
1.3	Device modifications	4
1.4	Test facility.....	5
1.5	Test measurement procedure	5
1.6	Laboratory accreditations and listings.....	5
2.0	Summary of tests.....	6
2.1	Test data	7
2.1.1	Maximum peak power.....	7
2.1.2	Conducted spurious emission & band edge.....	10
2.1.3	20 dB bandwidth & 99 % occupied bandwidth.....	16
2.1.4	Frequency separation.....	19
2.1.5	Number of hopping frequency.....	21
2.1.6	Time of occupancy (Dwell time).....	23
2.1.7	Radiated spurious emission & band edge.....	25
	Appendix A. Test equipment used for test.....	33
	Appendix B. Test setup photos	34

KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

1.0 General product description

Equipment under test	Keyless Entry System
Model name	MR1040-2WAY (Variant model: REB500-2WAY)
Serial number	N/A
Frequency Range	910.92 MHz ~ 919.08 MHz
Modulation technique	FHSS
Number of channels	25
Antenna type & gain	Helical antenna / -8.586 dBi
Power source	DC 6 V

1.1 Test frequency

	Low channel	Middle channel	High channel
Frequency (MHz)	910.92	915.00	919.08

1.2 Information about variant model

Please refer to the family model cover letter.

1.3 Device modifications

No modifications were made during testing.

KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

1.4 Test facility

C3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
477-6, Hageo-ri, Yeoju-eup, Yeoju-gun, Gyeonggi-do, 469-803, Korea

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

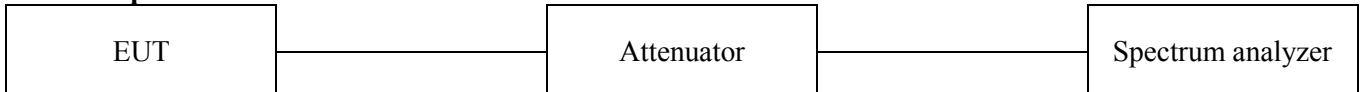
1.5 Test measurement procedure

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.4-2003) and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems"

1.6 Laboratory accreditations and listings

Country	Agency	Scope of accreditation	Logo
USA	FCC	3 & 10 meter Open Area Test Sites and one conducted site to perform FCC Part 15/18 measurements.	 343818
KOREA	KC	EMI (10 meter Open Area Test Site and two conducted sites) Radio (3 & 10 meter Open Area Test Sites and one conducted site)	 KR0100
Canada	IC	3 & 10 meter Open Area Test Sites and one conducted site	 4769B-1

2.0 Summary of tests


Section in FCC Part 15 & RSS-210	Parameter	Status
15.247(b)(2) RSS-210 A8.4(1)	Maximum peak output power	C
15.247(d) RSS-210 A8.5	Conducted spurious emission & band edge	C
15.247(a)(1)(i) RSS-210 A8.1(c)	20 dB bandwidth	C
15.247(a)(1) RSS-210 A8.1(b)	Frequency separation	C
15.247(b)(2) RSS-210 A8.1(c)	Number of hopping frequency	C
15.247(a)(1)(i) RSS-210 A8.1(c)	Time of occupancy(Dwell time)	C
15.247(d) RSS-210 A8.5	Radiated spurious emission & band edge	C
RSS-Gen 4.6.1	99 % Occupied bandwidth	C

Note 1: C=Complies NC=Not complies NT=Not tested NA=Not applicable

2.1 Test data

2.1.1 Maximum peak power

Test setup

Test procedure

1. Use the following spectrum analyzer setting

Center frequency: Lowest, middle and highest channels

Span = 5 MHz (Approximately 5 times the 20 dB bandwidth, centered on a hopping channel)

RBW = 1 MHz (the 20 dB bandwidth of the emission being measured)

VBW = 1 MHz (\geq RBW)

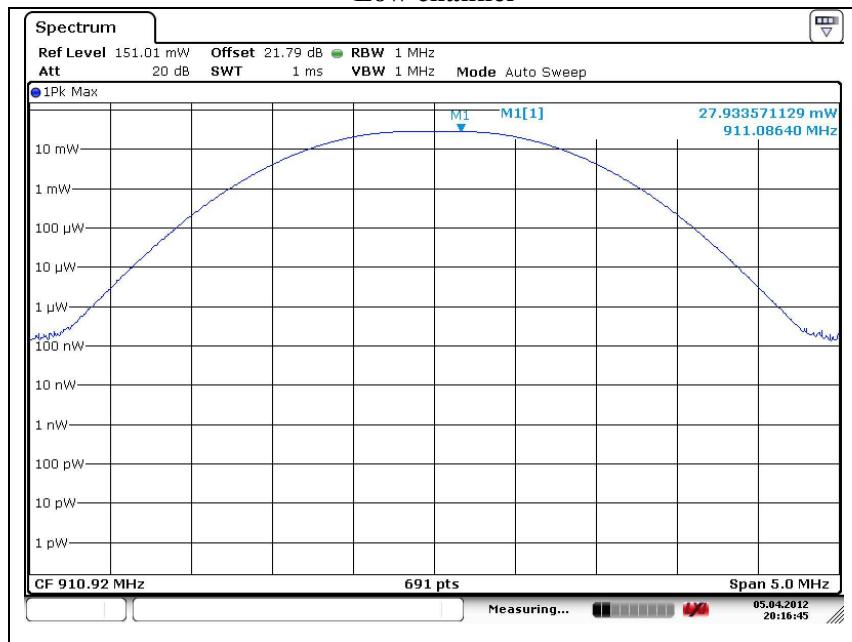
Sweep = auto

Detector function = peak

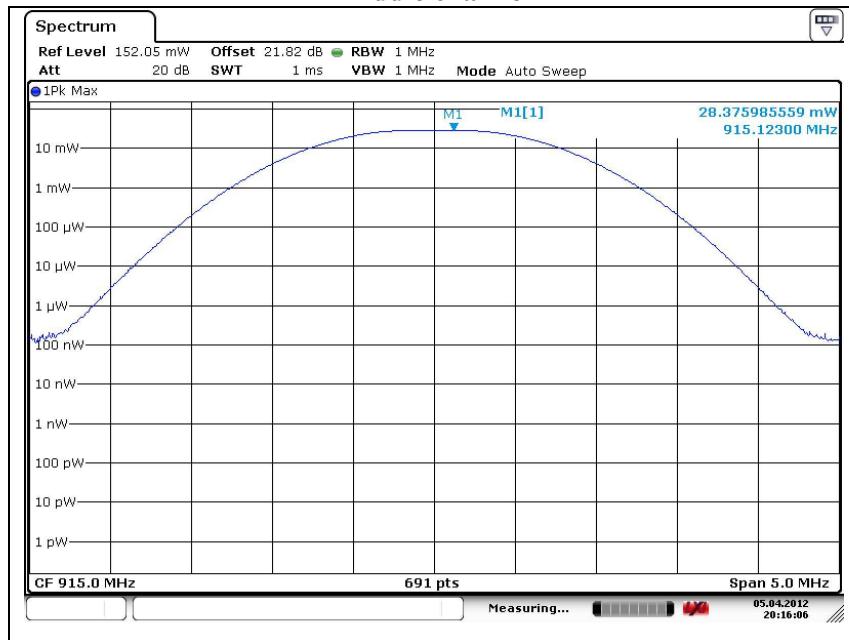
Trace = max hold

2. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.

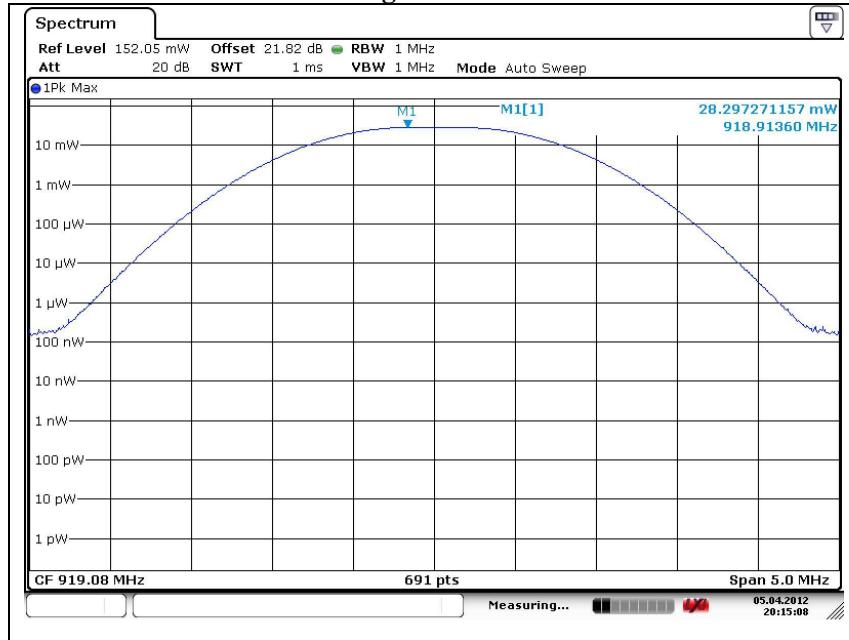
The indicated level is the peak output power.


Limit

For frequency hopping systems operating in the 902 ~ 928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.


Test results

Frequency(MHz)	Output power (W)	Limit (W)
910.92	0.027	0.25
915.00	0.028	0.25
919.08	0.028	0.25


Low channel

Middle channel



High channel

2.1.2 Conducted spurious emission & band edge

Test setup

Test procedure for band edge

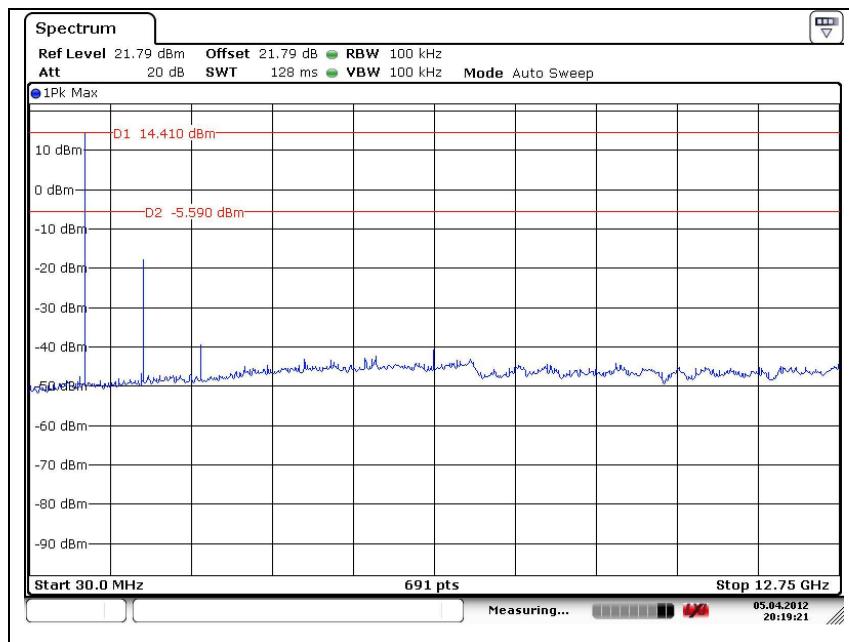
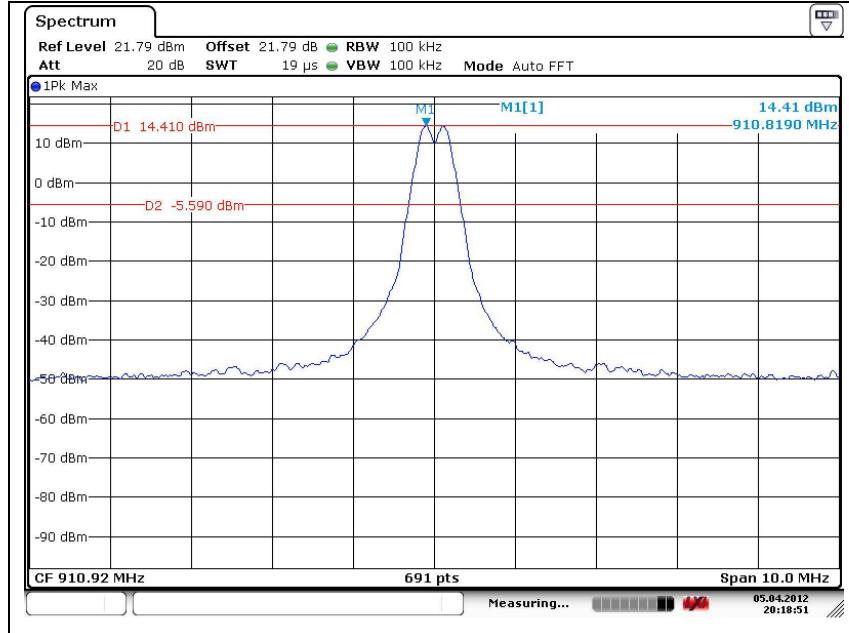
1. Use the following spectrum analyzer setting
 Center frequency: Low, middle and high channel.
 Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.
 RBW = 100 kHz
 VBW = 100 kHz (\geq RBW)
 Sweep = auto
 Detector function = peak
 Trace = max hold
2. Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation on product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission

Test procedure for spurious emission

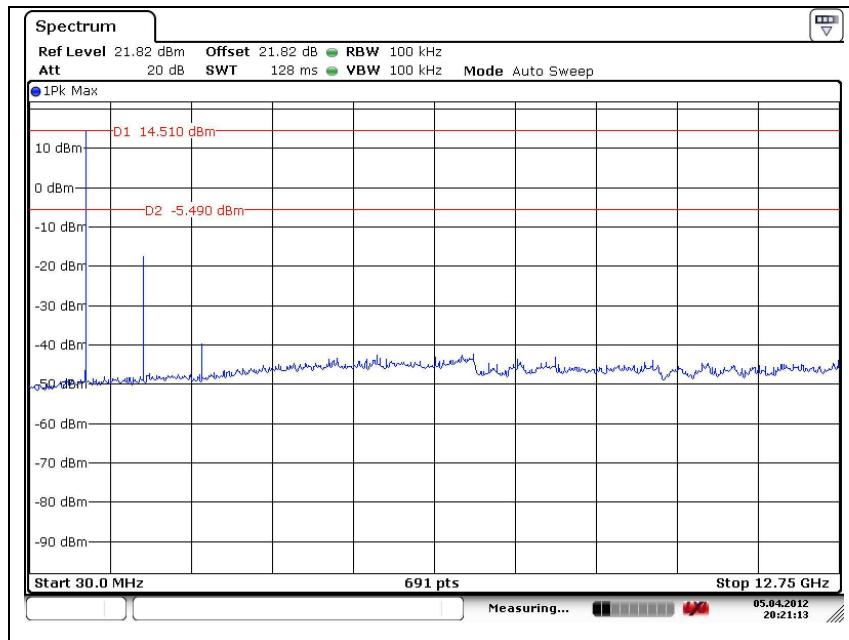
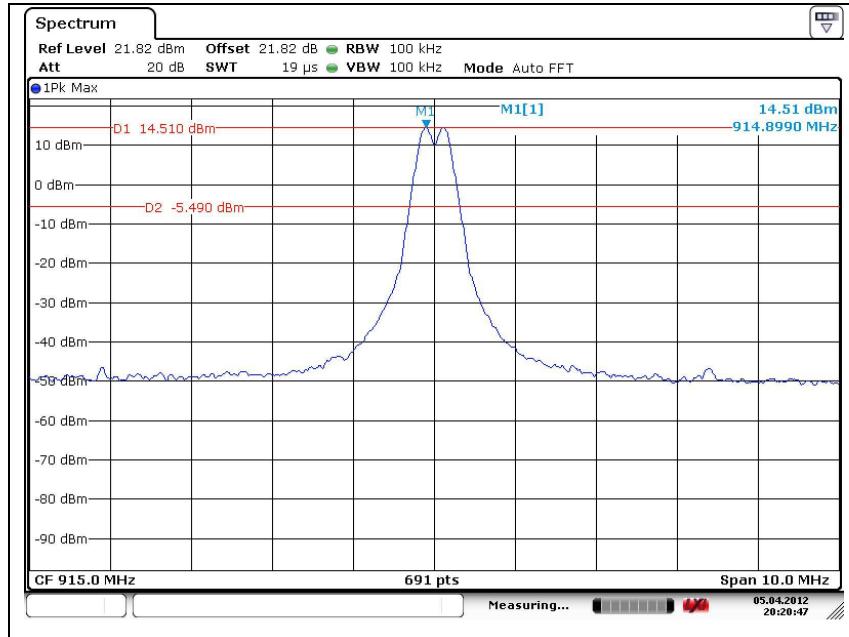
1. Use the following spectrum analyzer setting
 Center frequency: Low, middle and high channel.
 Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.
 RBW = 100 kHz
 VBW = 100 kHz (\geq RBW)
 Sweep = auto
 Detector function = peak
 Trace = max hold
2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.

KES Co., Ltd.

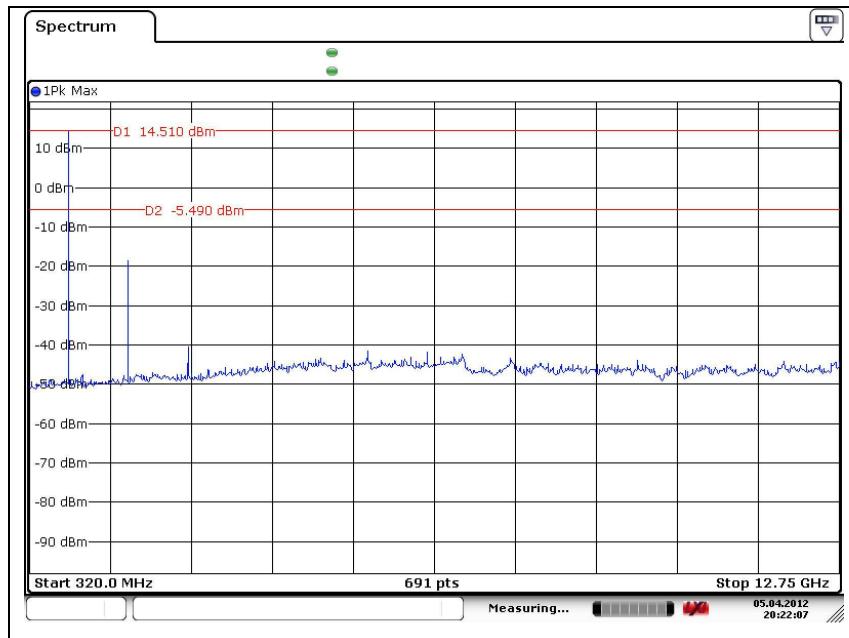
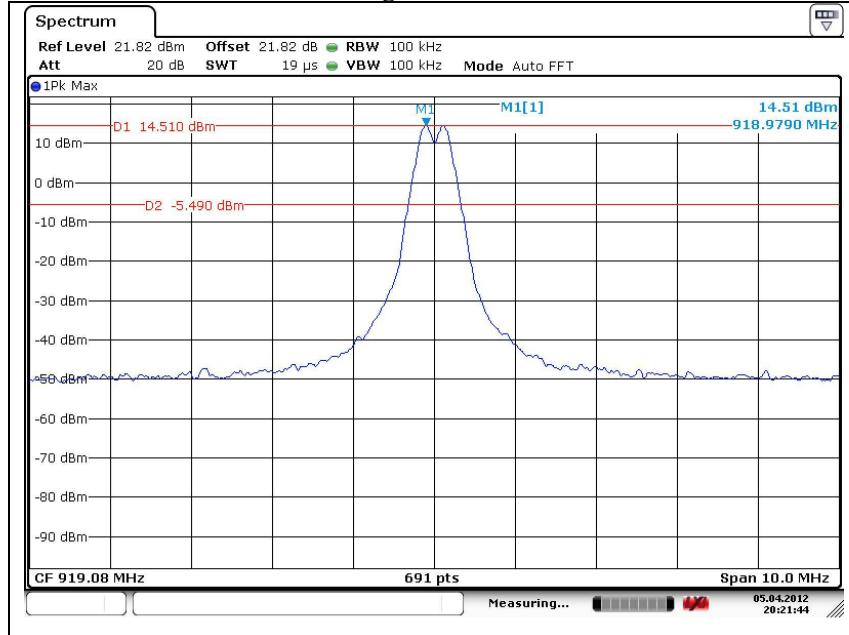
C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

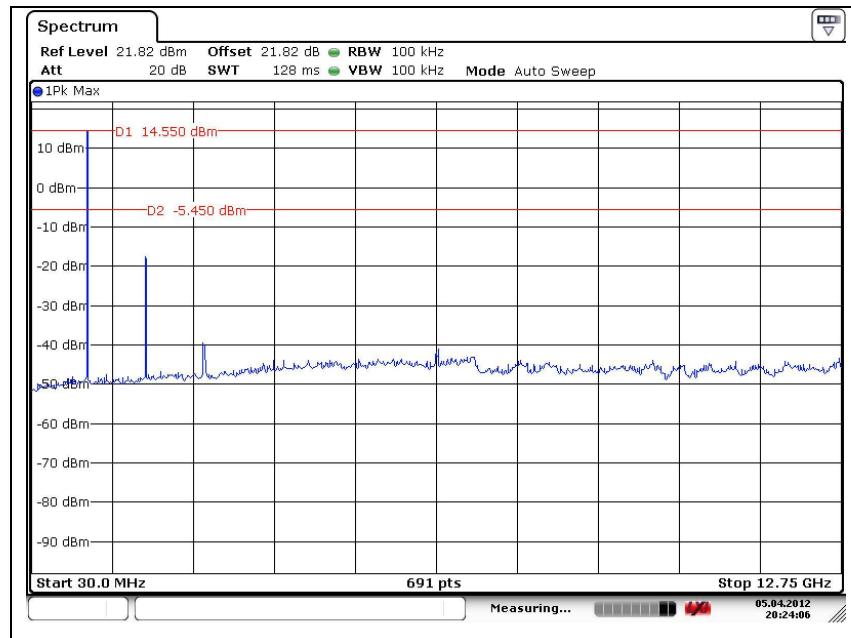
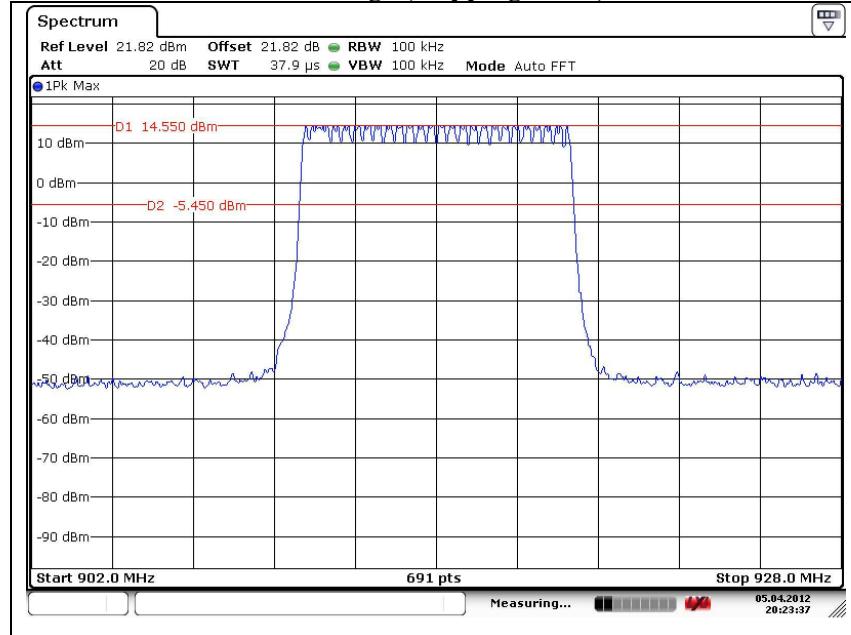



Limit

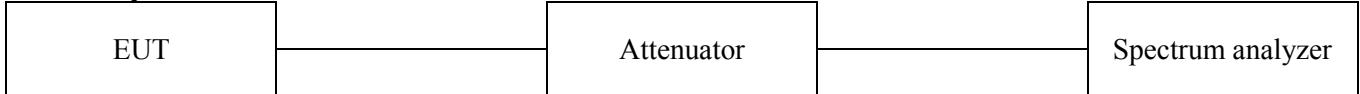


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))

Test results



Low channel



Middle channel

High channel



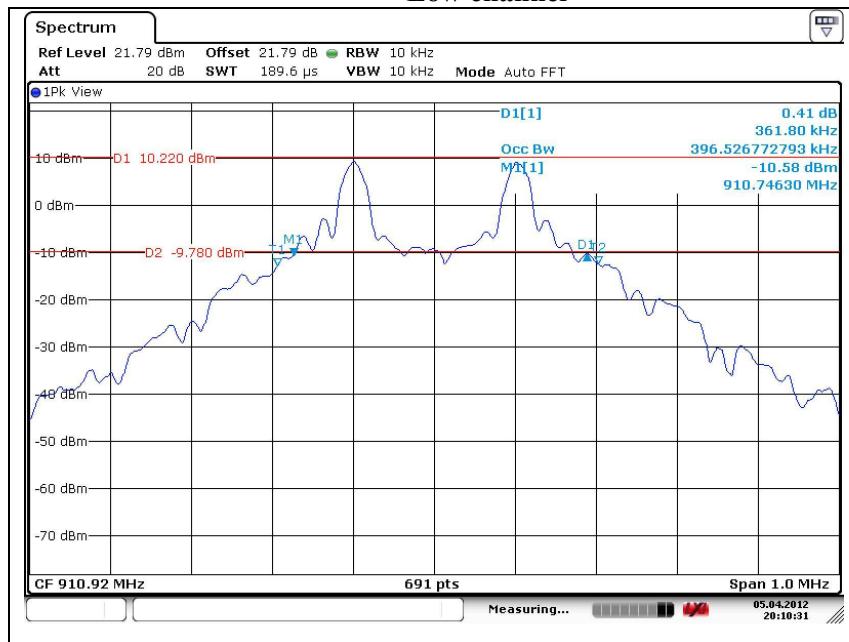
Band edge (Hopping mode)

2.1.3 20 dB bandwidth & 99 % occupied bandwidth

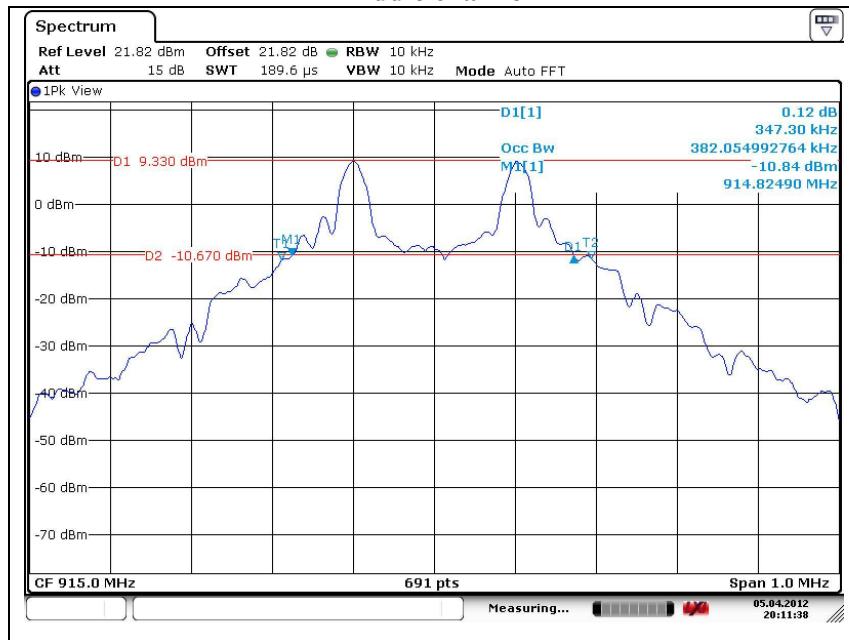
Test setup

Test procedure

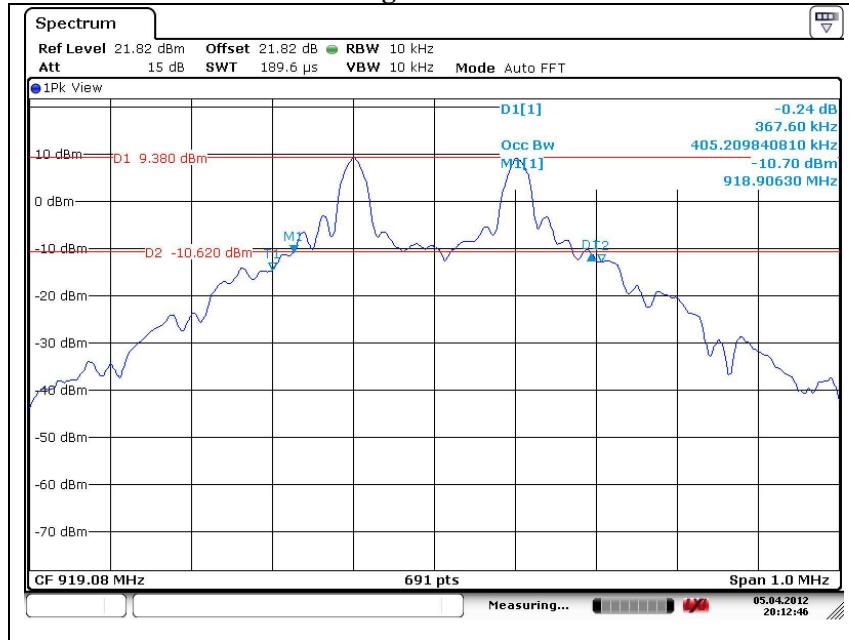
1. Use the following spectrum analyzer setting
 - Center frequency: Lowest, middle and highest channels
 - Span = 1 MHz (Approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel)
 - RBW = 10 kHz (\geq 1% of the span)
 - VBW = 10 kHz (\geq RBW)
 - Sweep = auto
 - Detector function = peak
 - Trace = max hold
2. The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down on side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level.


Limit

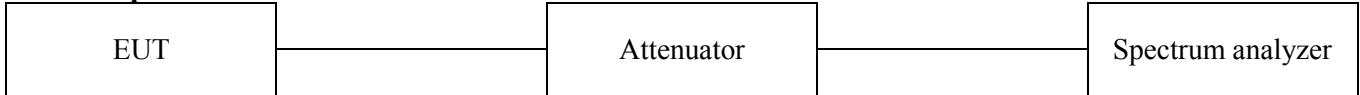
Not applicable


Test results

Frequency(MHz)	20 dB bandwidth(kHz)	99 % occupied bandwidth(kHz)
910.92	361.80	396.53
915.00	347.30	382.05
919.08	367.60	405.21


Low channel

Middle channel

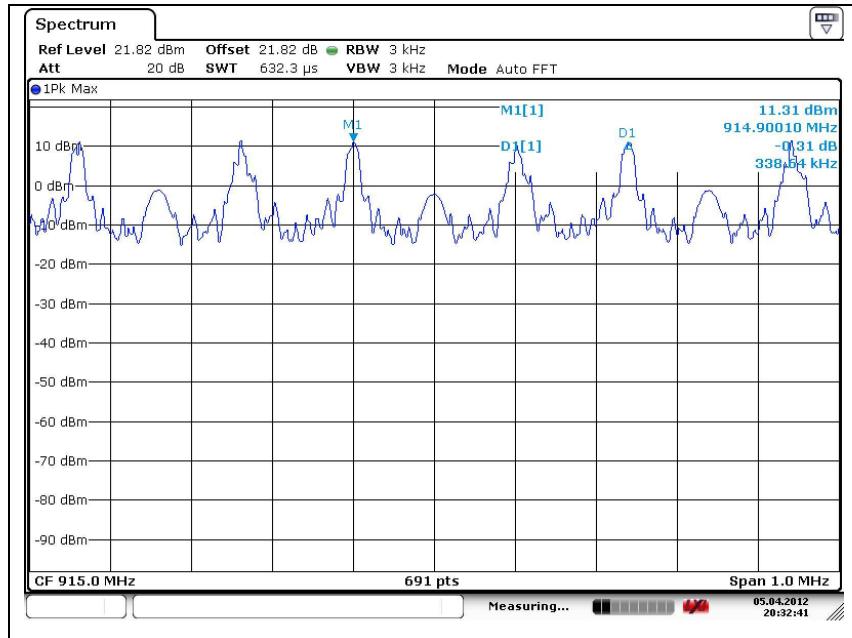


High channel

2.1.4 Frequency separation

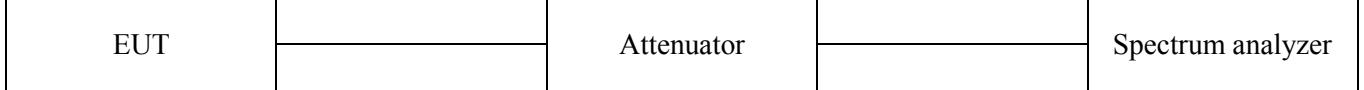
Test setup

Test procedure


1. The EUT must have its hopping function enabled.
2. Use the following spectrum analyzer setting
Span = 1 MHz (wide enough to capture the peaks of two adjacent channels)
RBW = 3 kHz (\geq 1% of the span)
VBW = 3 kHz (\geq RBW)
Sweep = auto
Detector function = peak
Trace = max hold
3. All the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.


Test results

Operation mode	Channel separation(kHz)	Minimum bandwidth (kHz)
Hopping mode	338.64	25

2.1.5 Number of hopping frequency

Test setup

Test procedure

1. The EUT must have its hopping function enabled.

2. Use the following spectrum analyzer setting

Frequency range: 910 MHz ~ 920 MHz

Span = the frequency band of operation

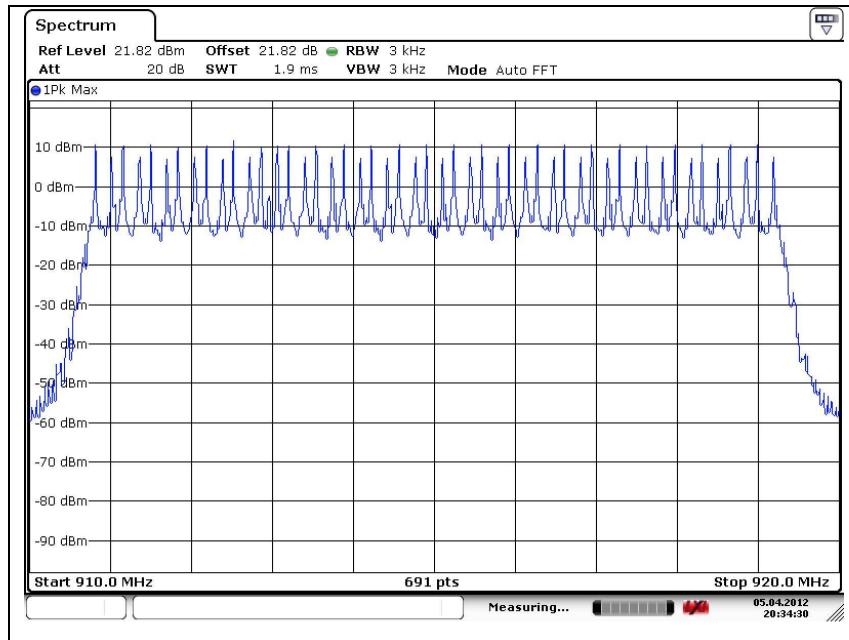
RBW = 3 kHz ($\geq 1\%$ of the span)

VBW = 3 kHz (\geq RBW)

Sweep = auto

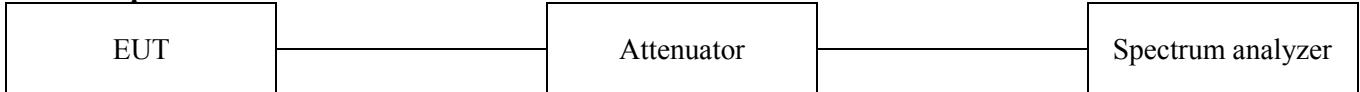
Detector function = peak

Trace = max hold


3. All the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Limit

For frequency hopping systems operating in the 902 ~ 928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.


Test results

Operation mode	Number of hopping frequency	Limit
GFSK	25	≥ 25

2.1.6 Time of occupancy (Dwell time)

Test setup

Test procedure

1. Use the following spectrum analyzer setting

Operation frequency: center frequency

Span = Zero span, centered on a hopping channel

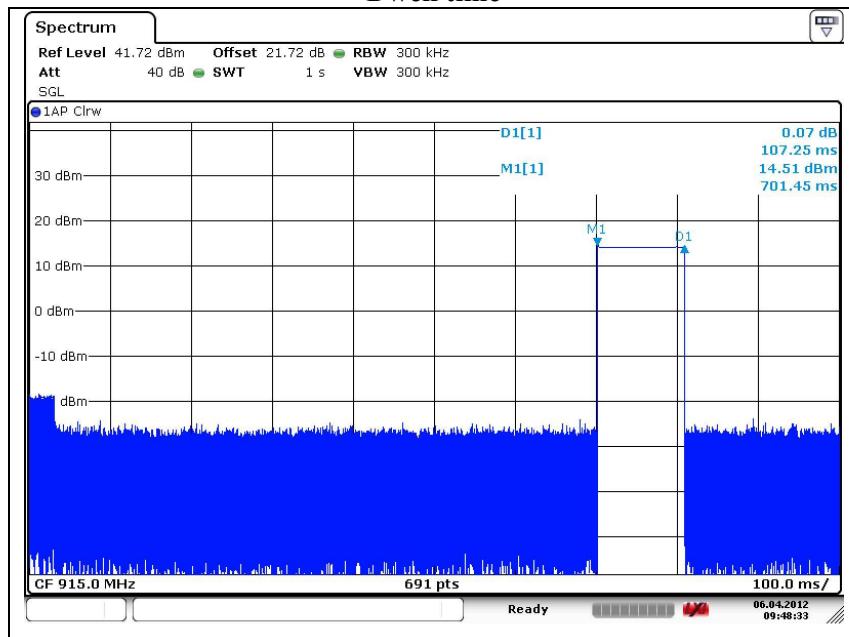
RBW = 300 kHz

VBW = 300 kHz (\geq RBW)

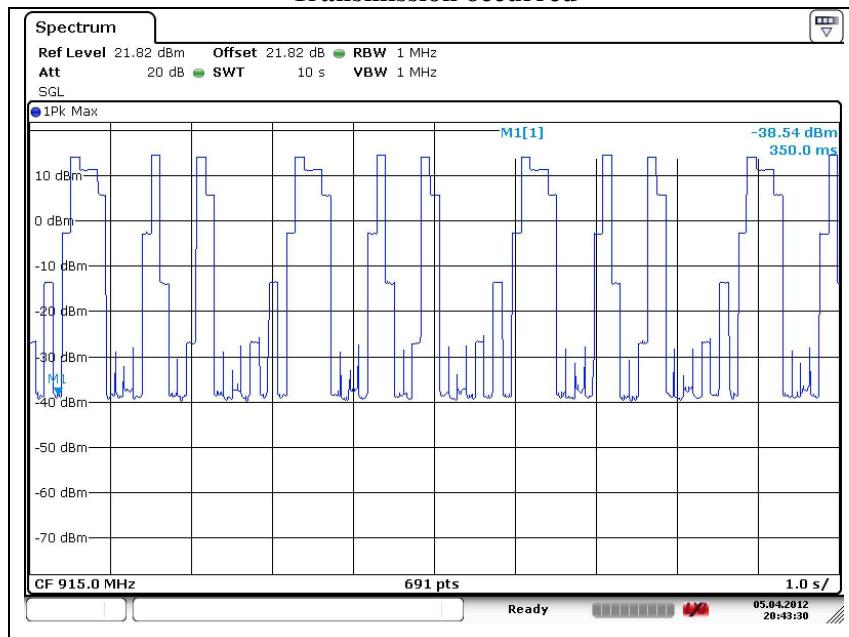
Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold


Limit

For frequency hopping systems operating in the 902 ~ 928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.


Test results

Frequency (MHz)	Dwell time (ms)	Transmission occurred	Result (ms)	Limit (ms)
915	107.25	3	321.75	400

Dwell time

Transmission occurred

2.1.7 Radiated spurious emission & band edge

Test location

Testing was performed at a test distance of 3 meter Open Area Test Site

Test procedures

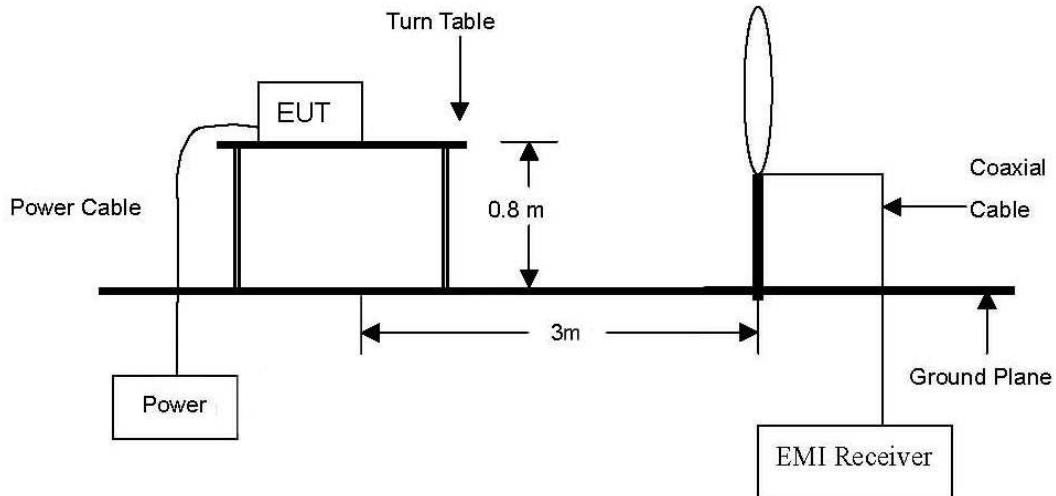
[9 kHz to 30 MHz]

The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter OATS. The table was rotated 360 degrees to determine the position of the highest radiation. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Quasi-peak function and specified bandwidth with maximum hold mode.

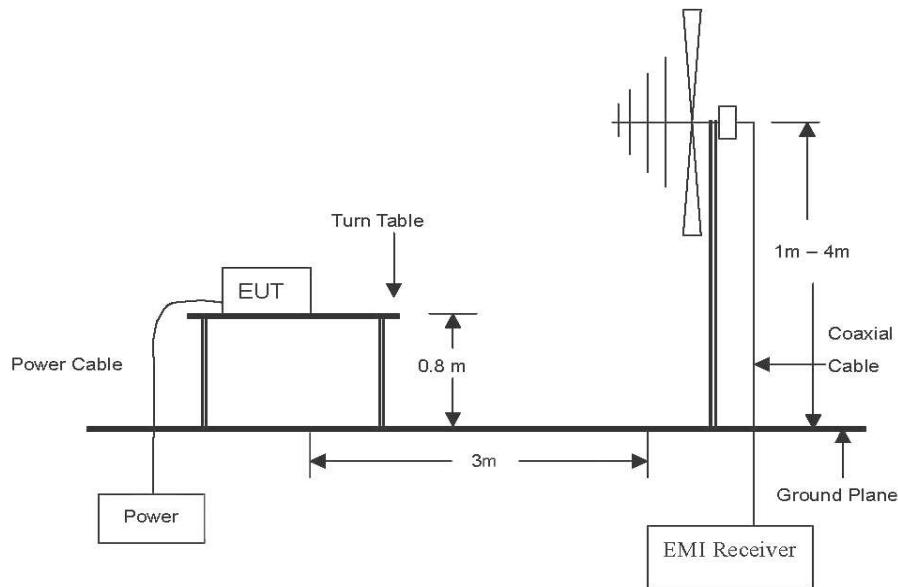
The spectrum analyzer is set to:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 200 Hz for Quasi-peak detection (QP) at frequency below 9 kHz~ 150 kHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 9 kHz for Quasi-peak detection (QP) at frequency below 150 kHz~ 30 MHz.

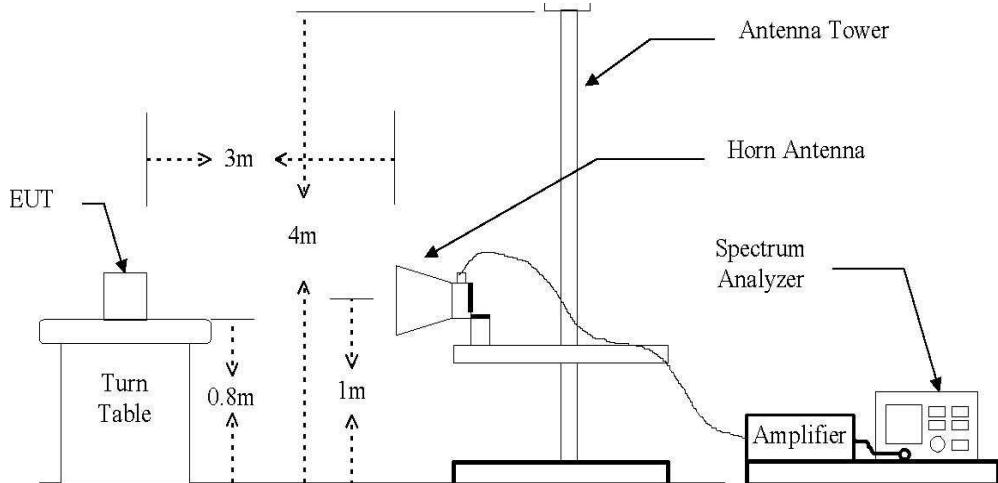
[30 MHz to 1 GHz and 1 GHz to 24 GHz]


The height of the measuring antenna was varied between 1 to 4 m and the table was rotated a full revolution in order to obtain maximum values of the electric field intensity.

The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.


The spectrum analyzer is set to:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection at frequency above 1 GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 GHz.


The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 24 GHz emissions.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (MHz)	Distance (Meters)	Radiated (μ V/m)
0.009 ~ 0.490	300	2400 / F(kHz)
0.490 ~ 1.705	30	24000 / F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 ~ 72 MHz, 76 ~ 88 MHz, 174 ~ 216 MHz or 470 ~ 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong,
 Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
 Tel: +82-31-425-6200 / Fax: +82-31-424-0450
 www.kes.co.kr

Test results (Below 30 MHz)

Radiated emissions		Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Pol.	Ant. Factor (dB/m)	Cable loss (dB)	F _d (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
Not applicable								

* Remark

1. All spurious emission at channels are almost the same below 30 MHz, so that N/A was chosen at representative in final test.
2. Actual = Reading + Ant. factor + Cable loss + F_d
3. $F_d = 40\log(D_m / D_s)$

Where:

F_d = Distance factor in dB
 D_m = Measurement distance in meters
 D_s = Specification distance in meters

Test results (Below 1 000 MHz)

The frequency spectrum from 30 MHz to 1 000 MHz was investigated.

Radiated emissions		Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
Emission levels are not reported much lower than the limits by over 20 dB							

* Remark

1. All spurious emission at channels are almost the same below 1 GHz, so that high channel was chosen at representative in final test.
2. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
3. Detector mode: Quasi peak
4. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Test results (Above 1 000 MHz) – Basic model

Low channel

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
2732.76	66.41	Peak	V	29.01	-38.33	57.09	74.00	16.91
2732.76	62.46	Average	V	29.01	-38.33	53.14	54.00	0.86
3643.68	58.68	Peak	H	30.65	-36.12	53.21	74.00	20.79
4554.60	58.32	Peak	V	33.08	-33.64	57.76	74.00	16.24
4554.60	54.36	Average	V	33.08	-33.64	53.80	54.00	0.20
4554.60	56.88	Peak	H	33.08	-33.64	56.32	74.00	17.68
4554.60	53.71	Average	H	33.08	-33.64	53.15	54.00	0.85

Middle channel

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
2745.00	64.87	Peak	V	29.03	-38.31	55.59	74.00	18.41
2745.00	61.66	Average	V	29.03	-38.31	52.38	54.00	1.62
3660.00	59.71	Peak	H	30.68	-36.05	54.34	74.00	19.66
3660.00	57.09	Average	H	30.68	-36.05	51.72	54.00	2.28
4575.00	58.00	Peak	V	33.15	-33.48	57.67	74.00	16.33
4575.00	54.01	Average	V	33.15	-33.48	53.68	54.00	0.32
4575.00	56.99	Peak	H	33.15	-33.48	56.66	74.00	17.34
4575.00	53.74	Average	H	33.15	-33.48	53.41	54.00	0.59

High channel

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
2757.24	65.23	Peak	V	29.06	-38.29	56.00	74.00	18.00
2757.24	61.43	Average	V	29.06	-38.29	52.20	54.00	1.80
4595.40	57.63	Peak	V	33.22	-33.32	57.53	74.00	16.47
4595.40	53.73	Average	V	33.22	-33.32	53.63	54.00	0.37
3676.32	61.28	Peak	H	30.71	-35.97	56.01	74.00	17.99
3676.32	57.42	Average	H	30.71	-35.97	52.15	54.00	1.85
4595.40	56.99	Peak	H	33.22	-33.32	56.89	74.00	17.11
4595.40	53.73	Average	H	33.22	-33.32	53.63	54.00	0.37

*** Remark**

1. “*” means the restricted band.
2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
3. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.
4. Average test would be performed if the peak result were greater than the average limit.
5. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
6. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Test results (Above 1 000 MHz) – Variant model

Low channel

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
2732.76	66.29	Peak	V	29.01	-38.33	56.97	74.00	17.03
2732.76	62.65	Average	V	29.01	-38.33	53.33	54.00	0.67
3643.68	58.45	Peak	H	30.65	-36.12	52.98	74.00	21.02
4554.60	58.22	Peak	V	33.08	-33.64	57.66	74.00	16.34
4554.60	53.77	Average	V	33.08	-33.64	53.21	54.00	0.79
4554.60	56.96	Peak	H	33.08	-33.64	56.40	74.00	17.60
4554.60	53.24	Average	H	33.08	-33.64	52.68	54.00	1.32

Middle channel

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
2745.00	64.70	Peak	V	29.03	-38.31	55.42	74.00	18.58
2745.00	61.71	Average	V	29.03	-38.31	52.43	54.00	1.57
3660.00	59.38	Peak	V	30.68	-36.05	54.01	74.00	19.99
3660.00	57.49	Average	V	30.68	-36.05	52.12	54.00	1.88
4575.00	58.13	Peak	H	33.15	-33.48	57.80	74.00	16.20
4575.00	53.73	Average	H	33.15	-33.48	53.40	54.00	0.60
4575.00	56.70	Peak	H	33.15	-33.48	56.37	74.00	17.63
4575.00	53.28	Average	H	33.15	-33.48	52.95	54.00	1.05

High channel

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
2757.24	65.32	Peak	V	29.06	-38.29	56.09	74.00	17.91
2757.24	61.01	Average	V	29.06	-38.29	51.78	54.00	2.22
4595.40	58.05	Peak	V	33.22	-33.32	57.95	74.00	16.05
4595.40	53.63	Average	V	33.22	-33.32	53.53	54.00	0.47
3676.32	61.64	Peak	H	30.71	-35.97	56.37	74.00	17.63
3676.32	57.81	Average	H	30.71	-35.97	52.54	54.00	1.46
4595.40	57.00	Peak	H	33.22	-33.32	56.90	74.00	17.10
4595.40	53.32	Average	H	33.22	-33.32	53.22	54.00	0.78

*** Remark**

- “*” means the restricted band.
- Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.
- Average test would be performed if the peak result were greater than the average limit.
- Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Appendix A. Test equipment used for test

Equipment	Manufacturer	Model	Calibration due.
Spectrum Analyzer	R&S	FSV30	2013.01.10
Vector Signal Generator	R&S	SMBV2100A	2013.01.10
DC Power Supply	Agilent	6632B	2012.05.06
DC Power Supply	SMTECHNO	SDP 30-5D	2012.11.14
Trilog-Broadband Antenna	SCHWARZBECK	VULB 9168	2013.10.25
Horn Antenna	A.H. System	SAS-571	2013.03.22
High Pass Filter	Wainwright Instrument	WHKX1.5/15G-6SS	2013.03.30
Preamplifier	A.H. System	PAM-0118	2012.05.04
EMI Test Receiver	R&S	ESVS10	2012.05.20

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
N/A			

Appendix B. Test setup photos**Radiated field emissions**