

TEST REPORT

Product BE3600 Whole Home Mesh Wi-Fi 7 System

Trade mark N/A

Model/Type reference Mesh3EP, ME3 Pro, EE3 Pro

Serial Number

Report Number EED32R80589103

FCC ID V7TMESH3EP

Jun. 04. 2025 Date of Issue

47 CFR Part 15 Subpart E **Test Standards**

PASS Test result

Prepared for:

SHENZHEN TENDA TECHNOLOGY CO., LTD. 6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan District, Shenzhen, China. 518052

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by:

Firever. Lo

Keven Tan

Date:

Frazer Li Jun. 04, 2025

Report Seal

Aaron Ma

Lavon Ma

Check No.: 3513220425

Page 1 of 17

Page 2 of 17

Test Summary

Test Item	Test Requirement	Test method	Result	
DFS Detection Threshold	47 CFR Part 15 Subpart E Section 15.407 (h)(2)	KDB 905462 D02	PASS	
U-NII Detection Bandwidth	47 CFR Part 15 Subpart E Section 15.407 (h)(2)	KDB 905462 D02	PASS	
Channel Availability Check Time	47 CFR Part 15 Subpart E Section 15.407 (h)(2)(ii)	KDB 905462 D02	PASS	
Channel Move Time	47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iii)	KDB 905462 D02	PASS	
Channel Closing Transmission Time	47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iii)	KDB 905462 D02	PASS	
Non-Occupancy Period	47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iv)	KDB 905462 D02	PASS	
Statistical Performance Check	47 CFR Part 15 Subpart E Section 15.407 (h)(2)	KDB 905462 D02	PASS	

Remark:

In this whole report Tx (or tx) means Transmitter. Tx:

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel. Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

In this whole report not application Model No.: Mesh3EP, ME3 Pro, EE3 Pro

Only the model Mesh3EP was tested, Their electrical circuit design, layout, components used and internal wiring are identical, They are just model names are different, the rest are the same.

Page 3 of 17

2 Content

	MARY						
2 CONTENT			•••••	•••••	•••••		3
3 GENERAL I	NFORMATION.	•••••	•••••	•••••	•••••	•••••	4
3.2 GENERA 3.3 DESCRIF 3.4 TEST LO 3.5 DEVIATIO 3.6 ABNORN 3.7 OTHER I	INFORMATION L DESCRIPTION OF SUPPORE CATION ON FROM STANDA MALITIES FROM ST INFORMATION REC REMENT UNCERTA	OF EUT	DITIONSHE CUSTOMER				
4 EQUIPMEN	T LIST		•••••		•••••		8
5 TEST REQU	JIREMENT		•••••	•••••	•••••	•••••	9
5.1.1 For 5.1.2 Sla 5.1.3 Ma 5.2 TEST EN 5.3 TEST CO 5.3.1 Rat 5.3.2 Tec 6 RADIO TEC	TUP r Conducted test ve and Client de st device(EUT) k NVIRONMENT DNDITION dar test wavefort chnical requirem HNICAL REQUI	setup evice(EUT) blo block diagram ms nent	ock diagram or of Test setup	f Test setup			
	HS OF EUT CO						

3 General Information

3.1 Client Information

Applicant:	SHENZHEN TENDA TECHNOLOGY CO., LTD.
Address of Applicant:	6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan District, Shenzhen, China. 518052
Manufacturer:	SHENZHEN TENDA TECHNOLOGY CO., LTD.
Address of Manufacturer:	6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan District, Shenzhen, China. 518052
Factory:	SHENZHEN TENDA TECHNOLOGY CO., LTD.
Address of Factory:	6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan District, Shenzhen, China. 518052

3.2 General Description of EUT

Product Name:	BE3600 Whole Home Mesh Wi-Fi 7 System
Model No.:	Mesh3EP, ME3 Pro, EE3 Pro
Test Model No.:	Mesh3EP
Trade mark:	N/A
Location for use:	indoor
Operation Frequency:	U-NII-1: 5150-5250MHz U-NII-2A: 5250-5350MHz U-NII-3:5745-5825MHz
Channel Numbers:	IEEE 802.11a/n(HT20)/ac(VHT20)/ax(HE20)/be(EHT20): 5250MHz ~5350 MHz/ 4 channel 802.11n(HT40)/ac(VHT40)/ax(HE40)/be(EHT40): 5250MHz ~5350 MHz/ 2 channel 802.11ac(VHT80)/ax(HE80)/be(EHT80): 5250MHz ~5350 MHz/ 1 channel
Operation Mode:	Master device
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(VHT20/VHT40/VHT80/VHT160): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM) IEEE 802.11ax(HE20/HE40/HE80/HE160): OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM,1024QAM) IEEE 802.11be(EHT20/EHT40/EHT80/EHT160): OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM,1024QAM, 4096QAM)
Sample Type:	Fixed Location
Test Power Grade:	Default
Test Software of EUT:	QATool_Dbg.exe
Antenna Type:	PCB Antenna
Antenna Gain:	U-NII-1: ANT0: 3.86 dBi, ANT1: 3.49 dBi, ANT2: 3.64 dBi U-NII-2A: ANT0: 4.15 dBi, ANT1: 3.67 dBi, ANT2: 3.77 dBi U-NII-3: ANT0: 3.80 dBi, ANT1: 3.90 dBi, ANT2: 3.94 dBi
Power Supply:	Adapter: DC 12V
Test Voltage:	DC 12V

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 5 of 17

Sample Received Da	ate: Apr. 24, 20)25			
Sample tested Date:		025 to May 30,	2025	(3)	

Page 6 of 17

Operation Frequency each of channel

For 802.11	For 802.11a/n(HT20)/ac(VHT20)/ax(HE20)/be(EHT20): Operation in the 5250MHz ~5350 MHz band							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
52	5260MHz	56	5280MHz	60	5300MHz	64	5320MHz	
For 802.11	For 802.11n(HT40)/ac(VHT40)/ax(HE40)/be(EHT40): Operation in the 5250MHz ~5350 MHz band							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
54	5270MHz	62	5310MHz	N/A	N/A	N/A	N/A	
For 802.11	For 802.11ac(VHT80)/ax(HE80)/be(EHT80): Operation in the 5250MHz ~5350 MHz band							
Channe	Channel Frequency		Channel	Freque	ncy C	hannel	Frequency	
58			N/A	N/A	<u> </u>	N/A	N/A	

3.3 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	Dell	P77F	FCC&CE	СТІ

3.4 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

3.5 Deviation from Standards

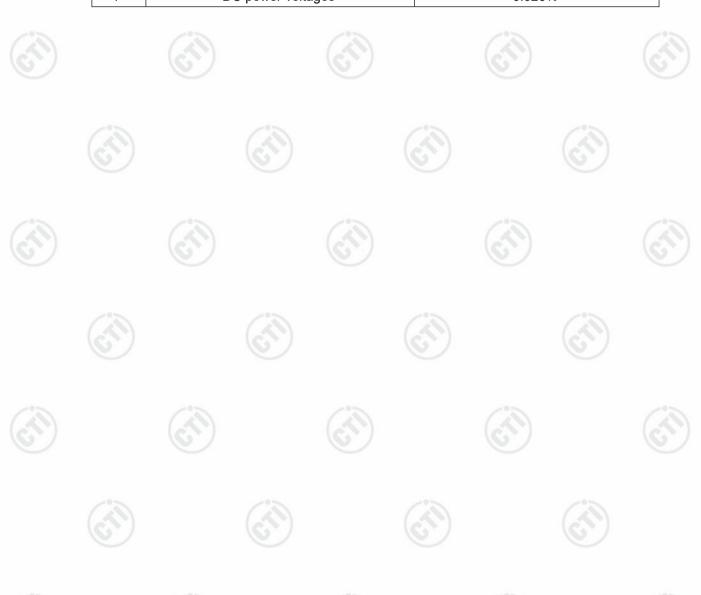
None.

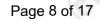
3.6 Abnormalities from Standard Conditions

None.

3.7 Other Information Requested by the Customer

None.



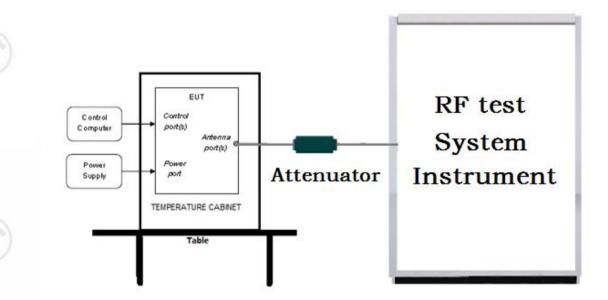


3.8 Measurement Uncertainty (95% confidence levels, k=2)

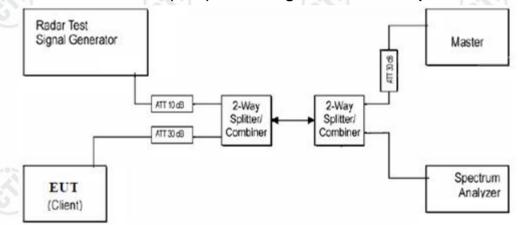
No.	Item	Measurement Uncertainty
21/	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nouver conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

4 **Equipment List**

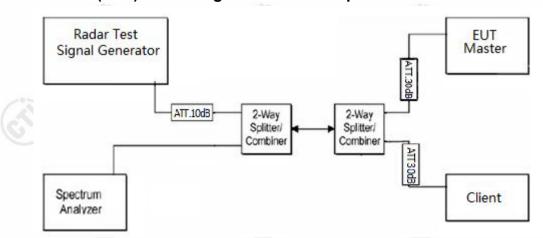
		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-05-2024	12-04-2025
Signal Generator	Keysight	N5182B	MY53051549	11-30-2024	11-29-2025
DC Power	Keysight	E3642A	MY56376072	11-30-2024	11-29-2025
Communication test	R&S	CMW500	169004	03-03-2025	03-02-2026
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	07-22-2024	07-21-2025
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024 05-12-2025	05-30-2025 05-11-2026
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-30-2024	11-29-2025
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024 05-26-2025	05-28-2025 05-25-2026
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20		- 67
Spectrum Analyzer	R&S	FSV3044	101509	02-14-2025	02-13-2026



Page 9 of 17


5 Test Requirement

5.1 Test setup


5.1.1 For Conducted test setup

5.1.2 Slave and Client device(EUT) block diagram of Test setup

5.1.3 Mast device(EUT) block diagram of Test setup

Page 10 of 17

5.2 Test Environment

Operating Environment:	(3)		
Temperature:	25.0 °C	(6,2)	(67)
Humidity:	53 % RH		
Atmospheric Pressure:	995mbar		

5.3 Test Condition

5.3.1 Radar test waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

a) Short Pulse Radar Test Waveforms

Radar Type	Pulse width (μsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate(F	Radar Types 1-4	l)		80%	120

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4.For Short Pulse Radar Type 1, the same waveform is used a minimum of 30 times. If more than 30waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms.

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4.

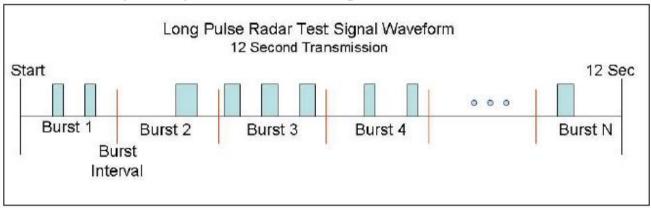
b) Long Pulse Radar Test Waveform

Radar Type	Pulse width (μsec)	Chirp Width (MHz)	PRI (μsec)	Number of Pulses per Burst	Number of Burst	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Each waveform is defined as follows:

- 1) The transmission period for the Long Pulse Radar test signal is 12 seconds.
- 2) There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.
- 3) Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- 4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
- 5) Each pulse has a linear frequency modulated chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a Burst will have the same chirp width. Pulses indifferent Bursts may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at5290 MHz and ends at 5310 MHz.
- 6) If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the random time interval between the first and second pulses is chosen independently of the random time interval between the second and third pulses.
- 7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst_Count. Each interval is of length (12,000,000 / Burst_Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval,is between 1 and [(12,000,000 / Burst_Count) (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen randomly.



Page 11 of 17

A representative example of a Long Pulse Radar Type waveform:

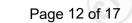
- 1) The total test waveform length is 12 seconds.
- 2) Eight (8) Bursts are randomly generated for the Burst Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3 5.
- 7) Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 3,000,000 microsecond range).

Graphical representation of the Long Pulse Radar Test Waveform.

c) Frequency Hopping Radar Test Waveform

	Radar Type	Pulse width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (m sec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
Ī	6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm.


d) Radar Waveform Calibration

The following equipment setup was used to calibrate the conducted radar waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were replace 50ohm terminal from master and client device and no transmissions by either the master or client device. The spectrum analyzer was switched to the zero span (time domain) at the frequency of the radar waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3MHz and 3 MHz.

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -61dBm due to the interference threshold level is not required.

Splitter/ Combiner Spectrum Analyzer Conducted Calibration Setup Att. 30dB Splitter/ Combiner Att. 10dB Radar Signal Generator

5.3.2 Technical requirement

a) Applicability of DFS Requirements

Applicability of DFS Requirements Prior to Use of a Channel

	Operation Mode					
Requirement	Master	Client without Radar Detection	Client with Radar Detection			
Non-Occupancy Period	Yes	Not require	Yes			
DFS Detection Threshold	Yes	Not require	Yes			
Channel Availability Check Time	Yes	Not require	Not require			
Uniform Spreading	Yes	Not require	Not require			
U-NII Detection Bandwidth	Yes	Not require	Yes			

Applicability of DFS requirements during normal operation

	Operation Mode					
Requirement	Master	Client without Radar Detection	Client with Radar Detection			
DFS Detection Threshold	Yes	Not require	Yes			
Channel Closing Transmission Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not require	Yes			

b) DFS Detection Thresholds and Response Requirement

DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value(See Notes 1 and 2)		
≥ 200 milliwatt	-64 dBm		
< 200 milliwatt	-62 dBm		

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

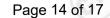
DFS Response Requirement Values

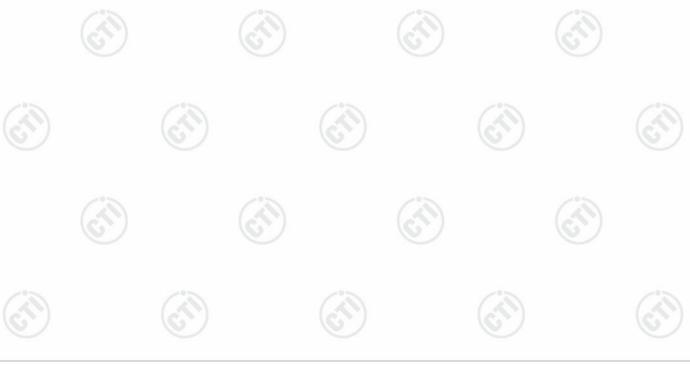
Parameter	Value				
Non- occupancy period	Minimum 30 minutes				
Channel Availability Check Time	60 seconds				
Channel Move Time	10 seconds See Note 1				
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60milliseconds over remaining 10 second period. See Notes 1 and 2				
U-NII Detection Bandwidth	Minimum 80% of the UNII99% transmission power bandwidth See Note 3				

- **Note 1:** The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:
 - For the Short Pulse Radar Test Signals this instant is the end of the Burst.
 - For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
 - For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.
- **Note 2:** The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each

Page 13 of 17

frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.




6 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title			
1	FCC Part15E	Subpart C-Intentional Radiators			
2	FCC Order, ET Docket No.03-122 (FCC 06-96)	Compliance Measurement Procedures for Unlicensed-National Information Infrastructure Devices Operating in the 5.25-5.35 GHz and 5.47-5.725 GHz Bands Incorporating Dynamic Frequency Selection			

Test Results List:

1621 V620112 F12						
	Tool					
FCC Part15E	Test method	Test item	Master	Client without Radar Detection	Client with Radar Detection	Note
47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iv)	FCC 06-96	Non-Occupancy Period	PASS	Not require	PASS	Appendix A)
47 CFR Part 15 Subpart E Section 15.407 (h)(2)	FCC 06-96	DFS Detection Threshold	PASS	Not require	PASS	Appendix B)
47 CFR Part 15 Subpart E Section 15.407 (h)(2)(ii)	FCC 06-96	Channel Availability Check Time	PASS	Not require	Not require	Appendix C)
47 CFR Part 15 Subpart E Section 15.407 (h)(2)	FCC 06-96	U-NII Detection Bandwidth	PASS	Not require	PASS	Appendix D)
47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iii)	FCC 06-96	Channel Closing Transmission Time	PASS	PASS	PASS	Appendix E)
47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iii)	FCC 06-96	Channel Move Time	PASS	PASS	PASS	Appendix F)
47 CFR Part 15 Subpart E Section 15.407 (h)(2)	FCC 06-96	Uniform Spreading	PASS	Not require	Not require	Appendix G)

Page 15 of 17

7 Appendix G)Uniform Spreading

The intention of the uniform spreading is to provide, on aggregate, a uniform loading of the spectrum. The EUT randomly select next output channel without any bias or fixed pattern. So that all channels in DFS band will be used equally

Page 16 of 17

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32R80589101 for EUT external and internal photos.

Page 17 of 17

Statement

- 1. This report is considered invalid without approved signature, special seal and the seal on the perforation;
- 2. The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;
- 3. The result(s) shown in this report refer(s) only to the sample(s) tested;
- 4. Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;
- 5. Without written approval of CTI, this report can't be reproduced except in full;

