

Report No.: EED32R80589102 Page 1 of 135

TEST REPORT

Product BE3600 Whole Home Mesh Wi-Fi 7 System

Trade mark N/A

Mesh3EP, ME3 Pro, EE3 Pro Model/Type reference

Serial Number N/A

Report Number EED32R80589102

V7TMESH3EP FCC ID

Date of Issue Jun. 04, 2025

47 CFR Part 15 Subpart E **Test Standards**

Test result PASS

Prepared for:

SHENZHEN TENDA TECHNOLOGY CO., LTD. 6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan District, Shenzhen, China. 518052

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

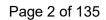
Reviewed by:

Firever. Lo

Keven Tan

Date:

Frazer Li Jun. 04, 2025


Approved by

Report Seal

Aaron Ma

Check No.: 3513220425

Content

1 CONTENT	2
2 TEST SUMMARY	
3 GENERAL INFORMATION	4
3.1 CLIENT INFORMATION	
4 EQUIPMENT LIST	
5 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
5.1 ANTENNA REQUIREMENT	
6 APPENDIX A	130
PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	134

Report No.: EED32R80589102 Page 3 of 135

2 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB Emission Bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied Bandwidth	1	PASS
6dB Emission Bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
1907	(6)	1907

Remark:

Model No.:Mesh3EP, ME3 Pro, EE3 Pro

Only the model Mesh3EP was tested, Their electrical circuit design, layout, components used and internal wiring are identical, They are just model names are different, the rest are the same.

3 General Information

3.1 Client Information

Applicant:	SHENZHEN TENDA TECHNOLOGY CO., LTD.
Address of Applicant:	6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan District, Shenzhen, China. 518052
Manufacturer:	SHENZHEN TENDA TECHNOLOGY CO., LTD.
Address of Manufacturer:	6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan District, Shenzhen, China. 518052
Factory:	SHENZHEN TENDA TECHNOLOGY CO., LTD.
Address of Factory:	6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan District, Shenzhen, China. 518052

3.2 General Description of EUT

Product Name:	BE3600 Whole Home Mesh Wi-Fi 7 System				
Model No.:	Mesh3EP, ME3 Pro, EE3 Pro				
Test Model No.:	Mesh3EP				
Trade mark:	N/A				
Product Type:	☐ Mobile ☐ Portable ☒ Fixed Location				
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(VHT20/VHT40/VHT80/VHT160): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM) IEEE 802.11ax(HE20/HE40/HE80/HE160): OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM,1024QAM) IEEE 802.11be(EHT20/EHT40/EHT80/EHT160): OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM,1024QAM, 4096QAM)				
Operating Frequency	U-NII-1: 5150-5250MHz U-NII-2A: 5250-5350MHz U-NII-3: 5745-5825MHz				
Antenna Type:	PCB Antenna				
Antenna and Beamforming Gain:	U-NII-1: ANT0: 3.86 dBi, ANT1: 3.49 dBi, ANT2: 3.64 dBi U-NII-2A: ANT0: 4.15 dBi, ANT1: 3.67 dBi, ANT2: 3.77 dBi U-NII-3: ANT0: 3.80 dBi, ANT1: 3.90 dBi, ANT2: 3.94 dBi Beamforming Gain: 3dBi				
Function	SISO □2x2 MIMO ⊠3x3 MIMO □4x4MIMO				
Support TPC Power:	⊠Yes □No				
Power Supply:	Adapter1: Model No.: BW0241202000WU Input: AC 100-240V,50/60Hz, 0.6A Output: DC 12V/2A				
Test voltage:	DC 12V				

Page 5 of 135

Sample Received Date:	Apr. 24, 2025	
Sample tested Date:	Apr. 24, 2025 to May 30, 2025	

Operation Frequency each of channel

802.11a/802.11n/802.11ac/802.11ax/802.11be(20MHz) Frequency/Channel Operations:

U-NII-1		U-NII-1 U-NII-2A		U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
36	5180	52	5260	149	5745
40	5200	56	5280	153	5765
44	5220	60	5300	157	5785
48	5240	64	5320	161	5805
A -	- (3)	r -		165	5825
/ -	-6.	_	(0,	-	(0.)
-	-	-	-	-	-
- ,			<u>-</u>	100	-

802.11n/802.11ac/802.11ax/802.11be(40MHz) Frequency/Channel Operations:

U-NII-1		U-NII-2A		U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
38	5190	54	5270	151	5755
46	5230	62	5310	159	5795
-	-	-	-	-	-
-	-	-	-		-

802.11ac/802.11ax/802.11be(80MHz) Frequency/Channel Operations:

U-NII-1		U-NII-1 U-NII-2A		U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
42	5210	58	5290	155	5775
) .	- (C)	_		-	(6)

802.11ac/802.11ax/802.11be(160MHz) Frequency/Channel Operations:

U-NII-1&U-NII-2A				
	Channel	Frequency(MHz)		
	50	5250		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. : EED32R80589102 Page 6 of 135

Test Configuration

EUT Test Software Setti	ngs:	
Software:	QATool_Dbg.exe	
EUT Power Grade:	Default	
Lice test software to set th	a lowest frequency, the middle frequency and the highest frequency	uency keen

Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

Test Mode:

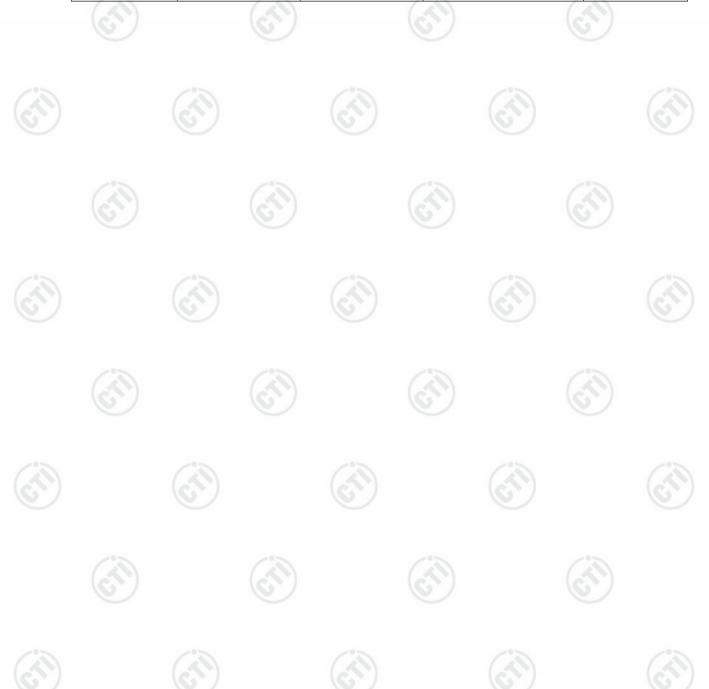
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0
802.11ac(VHT20)	MCS0
802.11ac(VHT40)	MCS0
802.11ac(VHT80)	MCS0
802.11ac(VHT160)	MCS0
802.11ax(HE20)	MCS0
802.11ax(HE40)	MCS0
802.11ax(HE80)	MCS0
802.11ax(HE160)	MCS0
802.11be(EHT20)	MCS0
802.11be(EHT40)	MCS0
802.11be(EHT80)	MCS0
802.11be(EHT160)	MCS0

3.3 Test Environment

Operating Environment:			
Radiated Spurious Emissions	S:		
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
Conducted Emissions:			
Temperature:	22~25.0 °C	(67)	(6,1)
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
RF Conducted:			
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
	NT (Normal Temperature)	22~25.0 °C	
Temperature:	LT (Low Temperature)	0 °C	101
	HT (High Temperature)	40.0 °C	
Working Voltage of the EUT:	NV (Normal Voltage)	12 V	


	LV (Low Voltage)	10.8 V
(6,1)	HV (High Voltage)	13.2 V

3.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	Dell	P77F	FCC&CE	СТІ

Report No.: EED32R80589102 Page 8 of 135

3.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

3.6 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nouver conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
	(25) (25)	3.3dB (9kHz-30MHz)	
3	Dedicted Spurious emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)	
-0-		3.4dB (18GHz-40GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
94	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No. : EED32R80589102 Page 9 of 135

4 Equipment List

	RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-05-2024	12-04-2025		
Signal Generator	Keysight	N5182B	MY53051549	11-30-2024	11-29-2025		
DC Power	Keysight	E3642A	MY56376072	11-30-2024	11-29-2025		
Communication test	R&S	CMW500	169004	03-03-2025	03-02-2026		
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	07-22-2024	07-21-2025		
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024 05-12-2025	05-30-2025 05-11-2026		
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-30-2024	11-29-2025		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024 05-26-2025	05-28-2025 05-25-2026		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20	- 6	<u> </u>		
Spectrum Analyzer	R&S	FSV3044	101509	02-14-2025	02-13-2026		

	Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date			
Receiver	R&S	ESCI	100435	04-08-2025	04-07-2026			
Temperature/ Humidity Indicator	Defu	TH128	/	03-31-2025	03-30-2026			
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025			
Barometer	changchun	DYM3	1188	6,7	(6)			

Page	10	∩f	125
raue	ıυ	OI.	100

Test software	Fara	EZ-EMC	EMC-CON 3A1.1	((6)
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025
ISN	TESEQ	ISN T800	30297	12-05-2024	12-04-2025

3N	l Semi-anechoic	Chamber (2)- Rad	diated distur	bance Test		
Equipment	nt Manufacturer Model No.		Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
M Chamber & Accessory Equipment TDK SAC-3		SAC-3	<u>(j)</u>	01/23/2024	01/22/2027	
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025	
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025	
TRILOG Broadband Antenna	OG Broadband schwarzbeck VULB 9163		9163-618	05/22/2022 05/14/2025	05/21/2025 05/13/2026	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/07/2025	04/06/2026	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/05/2024	12/04/2025	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/07/2025	04/06/2026	
Preamplifier	Agilent	11909A	12-1	03/03/2025	03/02/2026	
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025	
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre		<u> </u>	
Cable line	Cable line Fulai(7M) SF106		5219/6A	01/23/2024	01/22/2027	
Cable line	Fulai(6M)	SF106	5220/6A	01/23/2024	01/22/2027	
Cable line	Fulai(3M)	SF106	5216/6A	01/23/2024	01/22/2027	
Cable line	Fulai(3M)	SF106	5217/6A	01/23/2024	01/22/2027	

Report No. : EED32R80589102 Page 11 of 135

1-16-11		3M full-anechoid	: Chamber	1.6	21
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3	(01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-04-2025	01-03-2026
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-14-2025	01-13-2026
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-14-2025	01-13-2026
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-12-2025	04-11-2026
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-12-2025	04-11-2026
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-03-2025	03-02-2026
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-05-2024	12-04-2025
Communication test set	R&S	CMW500	102898	01-04-2025	01-03-2026
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	03-31-2025	03-30-2026
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2024	01-08-2027
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2024	01-08-2027
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2024	01-08-2027

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

5 Radio Technical Requirements Specification

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

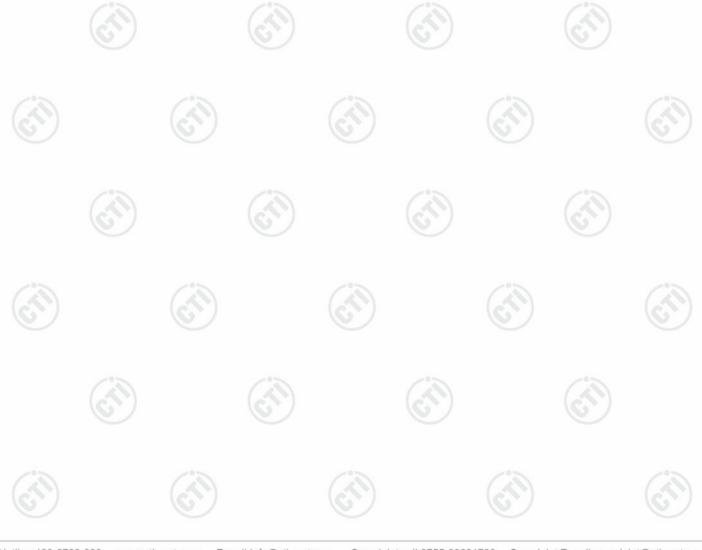
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is:

U-NII-1:


ANT0: 3.86 dBi, ANT1: 3.49 dBi, ANT2: 3.64 dBi

U-NII-2A:

ANT0: 4.15 dBi, ANT1: 3.67 dBi, ANT2: 3.77 dBi

U-NII-3:

ANT0: 3.80 dBi, ANT1: 3.90 dBi, ANT2: 3.94 dBi

Report No. : EED32R80589102 Page 13 of 135

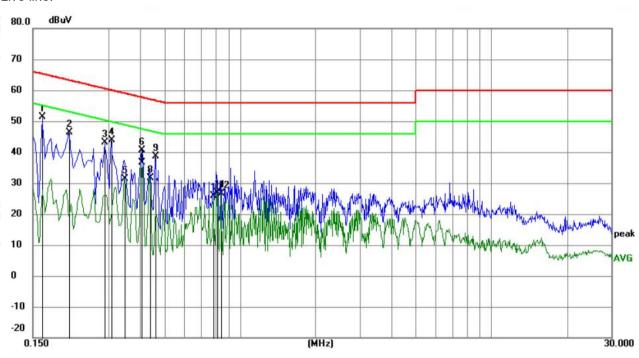
5.2 AC Power Line Conducted Emissions

0.2	120.0	Conducted Emission	(C.)	(6,9)	
	Test Requirement:	47 CFR Part 15C Section 15.	207		
	Test Method:	ANSI C63.10: 2013			
0.1	Test Frequency Range:	150kHz to 30MHz			
Š	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto		
	Limit:	Frequency range (MHz)	Limit (dl	BuV)	
		1 requericy range (Wiriz)	Quasi-peak	Average	
		0.15-0.5	66 to 56*	56 to 46*	
		0.5-5	56	46	
		5-30	60	50	
		* Decreases with the logarithr	n of the frequency.		
	Test Setup:				
		Shielding Room EUT AC Mains LISN1	AE LISN2 AC Main Ground Reference Plane	Test Receiver	
5		1.0000			
	Test Procedure:	 The mains terminal disturbation. The EUT was connected Impedance Stabilization Not impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided their ground reference plane. Applaced on the horizontal ground reference with the EUT shall be 0.4 movertical ground reference reference plane. The LISN unit under test and bor mounted on top of the ground associated equipments. In order to find the maximal and all of the interface contains. 	to AC power source letwork) which provides cables of all other uses 2, which was bonded as the LISN 1 for the was used to connect mating of the LISN was not aced upon a non-metall and for floor-standing arround reference plane. It a vertical ground reference plane was bonded to 1 was placed 0.8 m for a ground reference plane. The LISN 1 and the EUT. At was at least 0.8 m from um emission, the relatives.	through a LISN 1 (Line a $50\Omega/50\mu H + 5\Omega$ linear units of the EUT wered to the ground reference unit being measured. A nultiple power cables to a ot exceeded. It table 0.8m above the rangement, the EUT was been cereated by the presence plane. The rear of the horizontal ground from the boundary of the erence plane for LISNs his distance was between all other units of the EUT in the LISN 2.	
		and all of the interface ca ANSI C63.10: 2013 on cor	/ 25.76.1	according to	

Page 14 of 135

Test Mode:	All modes were tested, only the worst case was recorded in the report.
Test Results:	Pass



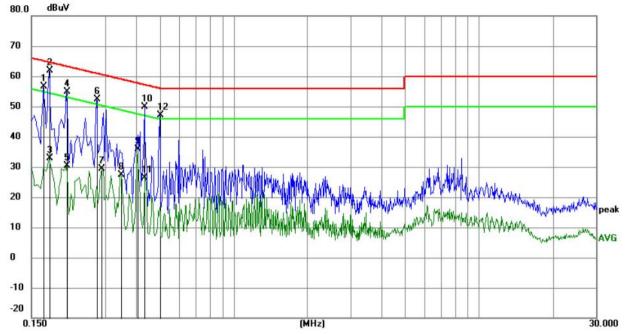


Measurement Data

Live line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1635	41.06	10.26	51.32	65.28	-13.96	QP	
2	0.2085	36.27	10.20	46.47	63.26	-16.79	QP	
3	0.2895	32.95	10.14	43.09	60.54	-17.45	QP	
4	0.3075	33.85	10.13	43.98	60.04	-16.06	QP	
5	0.3480	21.38	10.11	31.49	49.01	-17.52	AVG	
6	0.4065	30.45	10.09	40.54	57.72	-17.18	QP	
7 *	0.4065	26.47	10.09	36.56	47.72	-11.16	AVG	
8	0.4380	21.63	10.09	31.72	47.10	-15.38	AVG	
9	0.4605	28.55	10.08	38.63	56.68	-18.05	QP	
10	0.7845	15.80	10.17	25.97	46.00	-20.03	AVG	
11	0.8115	16.76	10.18	26.94	46.00	-19.06	AVG	
12	0.8430	16.48	10.18	26.66	46.00	-19.34	AVG	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1680	46.48	10.26	56.74	65.06	-8.32	QP	
2	*	0.1770	51.76	10.24	62.00	64.63	-2.63	QP	
3		0.1770	22.52	10.24	32.76	54.63	-21.87	AVG	
4		0.2085	44.60	10.20	54.80	63.26	-8.46	QP	-
5		0.2085	20.23	10.20	30.43	53.26	-22.83	AVG	
6		0.2760	42.33	10.15	52.48	60.94	-8.46	QP	
7		0.2895	19.16	10.14	29.30	50.54	-21.24	AVG	
8		0.3480	17.37	10.11	27.48	49.01	-21.53	AVG	-
9		0.4065	25.84	10.09	35.93	47.72	-11.79	AVG	
10		0.4335	39.82	10.09	49.91	57.19	-7.28	QP	
11		0.4335	16.37	10.09	26.46	47.19	-20.73	AVG	
12		0.5010	37.14	10.08	47.22	56.00	-8.78	QP	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Maximum Conducted Output Power

	100								
Test Requirem	ent: 47 CFR Part 15C	Section 15.407 (a)	6						
Test Method:	KDB789033 D02 E	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E							
Test Setup:		30							
	Control Computer Power Supply TEMPERATURE C. Table	Attenuator	RF test System Instrument						
	(6		(0,)	(0,1)					
Test Procedure	General UNII Test 2. The RF output of attenuator. The particular measurement. 3. Set to the maxicontinuously.	t Procedures New of EUT was conne ath loss was comp mum power setting	ent Procedure of KDB78 Rules v02r01 Section E, cted to the power meter ensated to the results fo g and enable the EUT tra wer and record the results	3, a by RF cable and r each ansmit					
Limit:		41)							
	Frequency band (MHz)	Limit		0					
		≤1W(30dBm) fc	or master device						
	5150-5250	≤250mW(24dBm) for client device							
	5250-5350	≤250mW(24dBı	m) for client device or 11	dBm+10logB*					
	5470-5725	≤250mW(24dBı	m) for client device or 11	dBm+10logB*					
	5725-5850	≤1W(30dBm)							
	Remark:	* Where B is the 26dB emission bandwidth in MHz The maximum conducted output power must be measured over any interval of continuous transmissio using instrumentation calibrated in terms of an rms- equivalent voltage.							
	Transmitting mode	o with modulation							
Test Mode:	Transmitting mode	e with modulation							

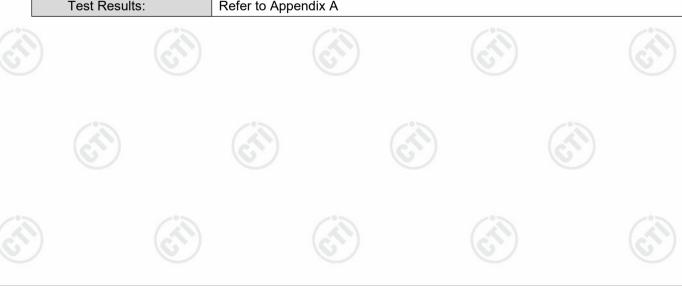


5.4 6dB Emission Bandwidth

Test Procedure: Remark: Offset=Cable loss+ attenuation factor. Test Procedure: 1. KDB789033 D02 General UNII Test Procedures New Rules v020 Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In o		
Test Setup: Remark: Offset=Cable loss+ attenuation factor. Remark: Offset=Cable loss+ attenuation factor.	Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Remark: Offset=Cable loss+ attenuation factor. Test Procedure: 1. KDB789033 D02 General UNII Test Procedures New Rules v020 Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution I (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In o make an accurate measurement. The 6dB bandwidth must be great 500 kHz. 1. KDB789033 D02 General UNII Test Procedures New Rules v020 Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution I (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In o make an accurate measurement. The 6dB bandwidth must be great 500 kHz. 4. Measure and record the results in the test report. Limit: ≥ 500 kHz Transmitting mode with modulation	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Remark: Offset=Cable loss+ attenuation factor. Test Procedure: 1. KDB789033 D02 General UNII Test Procedures New Rules v02r Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution I (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In o make an accurate measurement. The 6dB bandwidth must be great 500 kHz. 4. Measure and record the results in the test report. Limit: ≥ 500 kHz Test Mode: Transmitting mode with modulation	Test Setup:	
Test Procedure: 1. KDB789033 D02 General UNII Test Procedures New Rules v02n Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution I (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In o make an accurate measurement. The 6dB bandwidth must be greated 500 kHz. 4. Measure and record the results in the test report. Limit: ≥ 500 kHz Test Mode: Transmitting mode with modulation		Control Computer Power Supply Power Supply Control Control Power Power Poort TEMPERATURE CABNET RF test System System Instrument
Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution I (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In o make an accurate measurement. The 6dB bandwidth must be greated 500 kHz. 4. Measure and record the results in the test report. Limit: ≥ 500 kHz Test Mode: Transmitting mode with modulation		Remark: Offset=Cable loss+ attenuation factor.
Test Mode: Transmitting mode with modulation	Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
	Limit:	≥ 500 kHz
Test Results: Refer to Appendix A	Test Mode:	Transmitting mode with modulation
	Test Results:	Refer to Appendix A

5.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)							
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D							
Test Setup:								
	Control Computer Power Supply Power Supply Table RF test System System Instrument							
	Remark: Offset=Cable loss+ attenuation factor.							
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.							
Limit:	No restriction limits							
Test Mode:	Transmitting mode with modulation							
Test Results:	Refer to Appendix A							

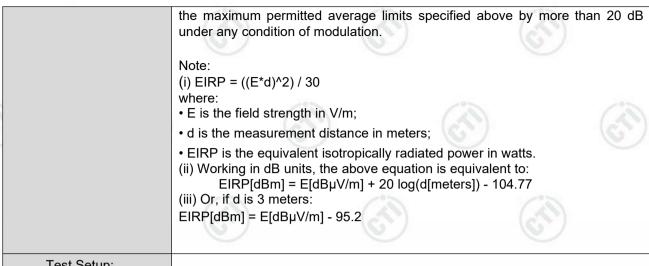


5.6 Maximum Power Spectral Density

		170								
Test Requirement:	47 CFR Part 15C S	47 CFR Part 15C Section 15.407 (a)								
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F									
Test Setup:	~	0	(cir)							
	Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test - System Instrument							
	Pomark: Offset=Cable least attenuation factor									
	Remark: Offset=Cable loss+ attenuation factor. 1. Set the spectrum analyzer or EMI receiver span to view the entire emission									
Test Procedure:	 bandwidth. 1. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. 2. Allow the sweeps to continue until the trace stabilizes. 3. Use the peak marker function to determine the maximum amplitude level. 									
Limit:	(25)	(2))	(25)						
	Frequency band (MHz)	Limit								
	5450 5050	≤17dBm in 1MHz for master device								
	5150-5250	≤11dBm in 1MF	Hz for client device	ce						
	5250-5350	≤11dBm in 1MF	Hz for client device	ce						
	5470-5725	≤11dBm in 1MF	Hz for client device	ce						
	5725-5850	≤30dBm in 500	kHz							
	Remark:	The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test.								
Test Mode:	Transmitting mode with modulation									
Test Results:	Refer to Appendix	A								
	. to to the man to									

5.7 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)
Test Method:	ANSI C63.10: 2013
Test Setup:	
	Control Computer Power John Power John Attenuator Temperature Cabnet Table RF test System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix A


Report No. : EED32R80589102 Page 22 of 135

5.8 Radiated Emission

Test Requirement:	47 CFR Part 15C Sect	ion 1	5 200 and 1	5 407 (b)		160	/			
Test Method:	ANSI C63.10 2013									
Test Site:	Measurement Distance	e: 3m	(Semi-Ane	choic Char	mbe	r)				
Receiver Setup:	Frequency	1	Detector		RBW		Remark			
·	0.009MHz-0.090MH	17	Peak	10kH		VBW 30kHz	Peak			
	0.009MHz-0.090MH		Average			30kHz	Average			
	0.090MHz-0.110MH		Quasi-pea			30kHz	Quasi-peak			
	0.110MHz-0.490MH		Peak	10kl		30kHz	Peak			
	0.110MHz-0.490MH		Average			30kHz	Average			
	0.490MHz -30MHz	<u>Z</u>	Quasi-pea			30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-pea			300kHz	Quasi-peak			
		10	Peak	1MH	łz	3MHz	Peak			
	Above 1GHz	Peak	1MH	łz	10kHz	Average				
Limit:										
	Frequency		d strength	Limit	R	Remark	Measurement			
		•	ovolt/meter)	(dBuV/m)		(0)	distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)		-	- (3)		300			
	0.490MHz-1.705MHz	24000/F(kHz		-			30			
	1.705MHz-30MHz	30		-	-		30			
	30MHz-88MHz	100		40.0		asi-peak	3			
	88MHz-216MHz	150		10.7		asi-peak	3			
	216MHz-960MHz	/	200	46.0	Quasi-peak		3			
	960MHz-1GHz		500	54.0	Quasi-peak Average		3			
	Above 1GHz	500		54.0	54.0 A		3			
	*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters open of the 5.15-5.35 GHz is (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters open (i) All emissions shall is above or below the base above or below the base edge increasing linear the band edge, and folinearly to a level of 27 Remark: The emission measurements employed frequency bands 9-9 emission limits in the san average detector, to	eratinopera opera 5.725 eratinopera oe linand e and e and o ly to rom dBm on li oying 0kHz se thr	GHz band ng in the 5.2 shall not excepting in the GHz band ng in the 5.7 nited to a level edge increase edge, and finate a level of 18 5 MHz above n/MHz at the mits shown a CISPR c, 110-490k free bands a	shall not 5-5.35 GH ceed an e. 5.47-5.72 shall no 25-5.85 Grel of -27 ing linearl rom 25 Ml com 25 Ml ce or belo band edg in the quasi-pearl rom 25 Ml ce or belo band edg in the quasi-pearl rom 25 Ml ce or belo band edg in the quasi-pearl rom 25 Ml ce or belo band edg in the quasi-pearl rom 25 Ml ce or belo band edg in the quasi-pearl rom 25 Ml ce or belo ce or	ex e	and: All em of -27 dB GHz band: acceed an oand: n/MHz at 7 10 dBm/N above or b at 5 MHz a ne band e ve table detector e re 1000 N	e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 hissions outside Bm/MHz or more decirate based on except for the missions of the missions outside Bm/MHz. Radiated ents employing			

Report No.: EED32R80589102 Page 23 of 135

Test Setup:

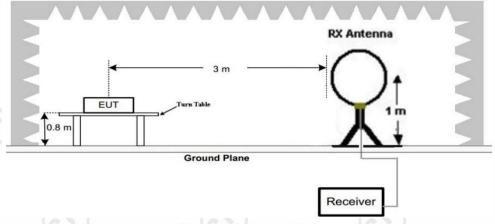
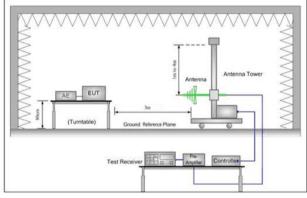



Figure 1. Below 30MHz

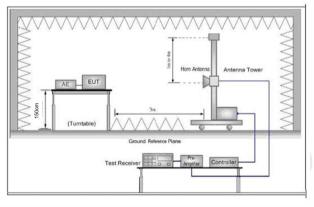


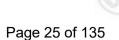
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

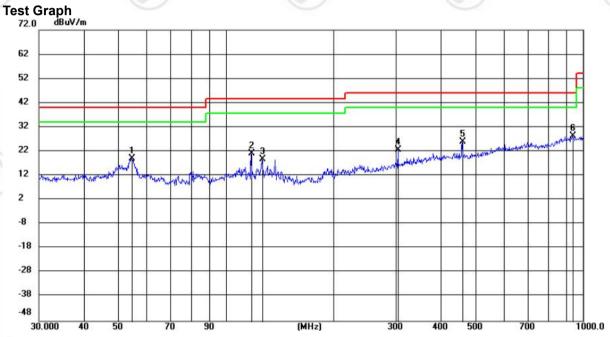
Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Page 24 of 135 Report No.: EED32R80589102

	Place the measurement antenna away from each area of the EUT
	determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel and the highest
	channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass

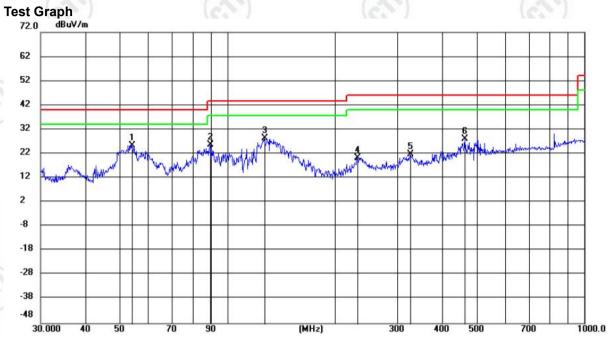


Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case middle channel of 6Mbps for 802.11a was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		54.4611	4.99	14.01	19.00	40.00	-21.00	QP	100	201	
2		118.0205	8.96	12.11	21.07	43.50	-22.43	QP	100	149	
3		126.5946	7.68	11.15	18.83	43.50	-24.67	QP	199	43	
4		304.1830	6.07	16.70	22.77	46.00	-23.23	QP	100	231	_
5		460.3234	5.52	20.32	25.84	46.00	-20.16	QP	199	85	
6	*	937.1880	1.07	27.43	28.50	46.00	-17.50	QP	100	282	



Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	311
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	53.8818	11.40	14.08	25.48	40.00	-14.52	QP	100	235	
2		89.5429	14.41	11.38	25.79	43.50	-17.71	QP	100	3	
3		126.9280	17.12	11.13	28.25	43.50	-15.25	QP	100	109	
4		231.1093	6.20	13.97	20.17	46.00	-25.83	QP	100	289	
5		325.0824	4.26	17.34	21.60	46.00	-24.40	QP	100	182	
6		463.2381	7.78	20.36	28.14	46.00	-17.86	QP	100	352	

Page 27 of 135

Transmitter Emission above 1GHz

Remark: During the test, the Radiates Emission above 1G was performed in all modes, only the worst case ant0 ant1 and ant3 transmit simultaneously was recorded in the report.

MIMO:

Mode:		80	2.11 n(HT2	0) Transmitti	ng	Channe	el:	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1310.4324	12.34	35.89	48.23	74.00	25.77	PASS	Horizontal	PK
2	1894.5558	14.62	34.76	49.38	74.00	24.62	PASS	Horizontal	PK
3	2886.3555	17.68	34.29	51.97	74.00	22.03	PASS	Horizontal	PK
4	8474.0737	-0.71	47.07	46.36	74.00	27.64	PASS	Horizontal	PK
5	11639.032	2.46	44.87	47.33	74.00	26.67	PASS	Horizontal	PK
6	15755.6628	10.03	41.66	51.69	74.00	22.31	PASS	Horizontal	PK
7	1437.3775	13.08	35.53	48.61	74.00	25.39	PASS	Vertical	PK
8	2087.9435	15.24	35.20	50.44	74.00	23.56	PASS	Vertical	PK
9	2822.7729	17.34	34.46	51.80	74.00	22.20	PASS	Vertical	PK
10	8397.0199	-0.60	46.78	46.18	74.00	27.82	PASS	Vertical	PK
11	10781.0891	2.01	48.07	50.08	74.00	23.92	PASS	Vertical	PK
12	15282.4141	10.66	40.67	51.33	74.00	22.67	PASS	Vertical	PK

Mode	:	80	802.11 n(HT20) Transmitting			Channe	el:	5200MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1366.3147	12.75	35.48	48.23	74.00	25.77	PASS	Horizontal	PK
2	1896.3159	14.67	35.32	49.99	74.00	24.01	PASS	Horizontal	PK
3	2649.186	17.08	34.32	51.40	74.00	22.60	PASS	Horizontal	PK
4	7574.7287	-2.02	49.08	47.06	74.00	26.94	PASS	Horizontal	PK
5	10394.0947	1.84	46.24	48.08	74.00	25.92	PASS	Horizontal	PK
6	15376.1438	9.87	42.14	52.01	74.00	21.99	PASS	Horizontal	PK
7	1317.6927	12.40	35.51	47.91	74.00	26.09	PASS	Vertical	PK
8	1836.0334	14.49	35.15	49.64	74.00	24.36	PASS	Vertical	PK
9	2629.1652	16.83	33.84	50.67	74.00	23.33	PASS	Vertical	PK
10	7603.4802	-1.64	48.51	46.87	74.00	27.13	PASS	Vertical	PK
11	11275.6138	2.42	45.64	48.06	74.00	25.94	PASS	Vertical	PK
12	14947.7474	9.23	41.32	50.55	74.00	23.45	PASS	Vertical	PK

Page 28 of 135

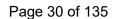
	Mode	:	80)2.11 n(HT2	0) Transmitti	ng	Chann	el:	5240MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1247.9499	11.76	35.21	46.97	74.00	27.03	PASS	Horizontal	PK
3	2	1863.5345	14.73	34.85	49.58	74.00	24.42	PASS	Horizontal	PK
	3	2795.7118	17.38	34.13	51.51	74.00	22.49	PASS	Horizontal	PK
	4	7594.8547	-1.71	47.78	46.07	74.00	27.93	PASS	Horizontal	PK
	5	10484.9492	2.11	44.86	46.97	74.00	27.03	PASS	Horizontal	PK
	6	15374.9938	9.84	41.09	50.93	74.00	23.07	PASS	Horizontal	PK
	7	1307.3523	12.31	36.61	48.92	74.00	25.08	PASS	Vertical	PK
	8	1930.1972	14.77	34.99	49.76	74.00	24.24	PASS	Vertical	PK
	9	2775.691	17.28	33.78	51.06	74.00	22.94	PASS	Vertical	PK
0	10	7669.6085	-1.82	48.22	46.40	74.00	27.60	PASS	Vertical	PK
4	11	11093.3297	2.01	46.19	48.20	74.00	25.80	PASS	Vertical	PK
2	12	15415.2458	10.14	40.82	50.96	74.00	23.04	PASS	Vertical	PK

Mode):	80	802.11 n(HT40) Transmitting			Channel:		5190MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1214.0686	11.69	36.44	48.13	74.00	25.87	PASS	Horizontal	PK
2	1741.4297	14.17	35.92	50.09	74.00	23.91	PASS	Horizontal	PK
3	2768.8708	17.18	34.48	51.66	74.00	22.34	PASS	Horizontal	PK
4	8492.4746	-0.66	47.34	46.68	74.00	27.32	PASS	Horizontal	PK
5	11197.9849	2.72	45.93	48.65	74.00	25.35	PASS	Horizontal	PK
6	14922.4461	9.30	41.16	50.46	74.00	23.54	PASS	Horizontal	PK
7	1309.7724	12.34	36.74	49.08	74.00	24.92	PASS	Vertical	PK
8	2122.9249	15.44	35.69	51.13	74.00	22.87	PASS	Vertical	PK
9	2904.6162	17.84	34.22	52.06	74.00	21.94	PASS	Vertical	PK
10	7631.6566	-1.77	47.73	45.96	74.00	28.04	PASS	Vertical	PK
11	9657.4829	1.17	47.46	48.63	74.00	25.37	PASS	Vertical	PK
12	14297.3899	8.44	42.15	50.59	74.00	23.41	PASS	Vertical	PK

Page 29 of 135

г		200.44 (1)(7.10) 7 (1)					27	/ / /		201	
	Mode	Mode: 802.11 n(HT40) Transmitti					Channe	nel: 5230MF			
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
- 0	1	1138.1655	11.41	36.92	48.33	74.00	25.67	PASS	Horizontal	PK	
	2	1890.3756	14.50	34.96	49.46	74.00	24.54	PASS	Horizontal	PK	
	3	2733.8894	17.15	34.40	51.55	74.00	22.45	PASS	Horizontal	PK	
	4	8368.2684	-0.99	48.69	47.70	74.00	26.30	PASS	Horizontal	PK	
	5	10248.0374	1.93	44.80	46.73	74.00	27.27	PASS	Horizontal	PK	
	6	14916.6958	9.32	41.37	50.69	74.00	23.31	PASS	Horizontal	PK	
	7	1168.5267	11.58	36.07	47.65	74.00	26.35	PASS	Vertical	PK	
	8	1920.2968	14.91	36.00	50.91	74.00	23.09	PASS	Vertical	PK	
	9	2844.5538	17.52	34.38	51.90	74.00	22.10	PASS	Vertical	PK	
4.0	10	7579.904	-1.93	48.71	46.78	74.00	27.22	PASS	Vertical	PK	
A	11	9651.1576	1.17	47.19	48.36	74.00	25.64	PASS	Vertical	PK	
2	12	14385.9443	9.12	41.65	50.77	74.00	23.23	PASS	Vertical	PK	

Mode	: :	3	302.11 ac(VH	T80) Transm	nitting	Channel:		5210MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1466.8587	13.20	35.07	48.27	74.00	25.73	PASS	Horizontal	PK
2	2072.1029	15.01	35.08	50.09	74.00	23.91	PASS	Horizontal	PK
3	2730.3692	17.23	34.31	51.54	74.00	22.46	PASS	Horizontal	PK
4	7578.7539	-1.95	48.29	46.34	74.00	27.66	PASS	Horizontal	PK
5	10203.1852	1.66	45.28	46.94	74.00	27.06	PASS	Horizontal	PK
6	15851.1176	9.72	41.56	51.28	74.00	22.72	PASS	Horizontal	PK
7	1284.4714	11.93	36.68	48.61	74.00	25.39	PASS	Vertical	PK
8	1808.5323	14.44	35.26	49.70	74.00	24.30	PASS	Vertical	PK
9	2826.7331	17.38	34.89	52.27	74.00	21.73	PASS	Vertical	PK
10	7080.204	-3.05	49.16	46.11	74.00	27.89	PASS	Vertical	PK
11	10419.971	1.96	49.31	51.27	74.00	22.73	PASS	Vertical	PK
12	15408.9204	10.20	40.45	50.65	74.00	23.35	PASS	Vertical	PK



Mode	:		802.11 be(EH	T160) Trans	mitting	Channe	el:	5250MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1335.5134	12.46	36.34	48.80	74.00	25.20	PASS	Horizontal	PK
2	1951.7581	14.92	35.45	50.37	74.00	23.63	PASS	Horizontal	PK
3	2615.0846	16.64	34.55	51.19	74.00	22.81	PASS	Horizontal	PK
4	7596.5798	-1.67	47.84	46.17	74.00	27.83	PASS	Horizontal	PK
5	11850.0675	3.11	45.55	48.66	74.00	25.34	PASS	Horizontal	PK
6	15415.2458	10.14	40.66	50.80	74.00	23.20	PASS	Horizontal	PK
7	1288.8716	12.06	35.90	47.96	74.00	26.04	PASS	Vertical	PK
8	1950.658	14.94	34.78	49.72	74.00	24.28	PASS	Vertical	PK
9	2793.9518	17.38	34.52	51.90	74.00	22.10	PASS	Vertical	PK
10	7597.1549	-1.66	48.00	46.34	74.00	27.66	PASS	Vertical	PK
11	10781.6641	2.01	44.97	46.98	74.00	27.02	PASS	Vertical	PK
12	15503.2252	10.05	40.55	50.60	74.00	23.40	PASS	Vertical	PK


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32R80589102 Page 31 of 135

5.9 Radiated Emission which fall in the restricted bands

0.009MHz-0.090MHz	10.2	15.2		10.0			10.2	
Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)	Test Requirement:	47 CFR Part 15C Sect	tion 1	5.209 and 1	5.407 (b)			
Frequency	Test Method:	ANSI C63.10 2013						
0.009MHz-0.090MHz	Test Site:	Measurement Distance	n (Semi-Anechoic Chamber)					
0.099MHz-0.090MHz	Receiver Setup:	Frequency	193			N	VBW	Remark
0.090MHz-0.110MHz Quasi-peak 10kHz 30kHz Quasi- 0.110MHz-0.490MHz Peak 10kHz 30kHz Peak 0.110MHz-0.490MHz Average 10kHz 30kHz Average 0.490MHz -30MHz Quasi-peak 10kHz 30kHz Quasi- 30MHz-1GHz Quasi-peak 10kHz 30kHz Quasi- Above 1GHz Peak 1MHz 3MHz Peak Peak 1MHz 10kHz Average 10.099MHz-0.490MHz 2400/F(kHz) 30kHz 24000/F(kHz) 30kHz 24000/F(0.009MHz-0.090MF	Ηz	Peak	10kl	Ηz	30kHz	Peak
0.110MHz-0.490MHz Peak 10kHz 30kHz Peak 0.110MHz-0.490MHz Average 10kHz 30kHz Average 0.490MHz -30MHz Quasi-peak 10kHz 30kHz Quasi-30MHz-1GHz Quasi-peak 10kHz 300kHz Quasi-30MHz-1GHz Peak 1MHz 3MHz Peak 1MHz 10kHz Average 10.099MHz-0.490MHz 2400/F(kHz) - 30kHz Average 10.099MHz-0.490MHz 2400/F(kHz) - 30kHz 2400/F(kHz) - 30kHz 300MHz-1.705MHz 24000/F(kHz) - 30kHz-30MHz 30kHz-30MHz 30kHz-30MHz 30kHz-30MHz 30kHz-30MHz 30kHz-30MHz 30kHz-30MHz 30kHz-30MHz 30kHz-30kHz 30kHz 30kHz-30kHz 30kHz-30kHz 30kHz 3		0.009MHz-0.090MF	Ηz	Average	10kl	Ηz	30kHz	Average
0.110MHz-0.490MHz Average 10kHz 30kHz Average 0.490MHz -30MHz Quasi-peak 10kHz 30kHz Quasi-30MHz-1GHz Quasi-peak 100 kHz 30kHz Quasi-Beak 1MHz Above 1GHz Peak 1MHz 10kHz Average 10.009MHz-0.490MHz 10kHz Average 10.009MHz-0.490MHz 10.009KHz-0.490MHz 10.009KHz-0.009KHz-0.490MHz 10.009KHz-0.490MHz 10.009KHz-0.009KHz-0.490MHz 10.009KHz-0.009KHz-0.990MHz-0.009KHz-0.990MHz-0.009KHz-0.009		0.090MHz-0.110MF	Ηz	Quasi-pea	ık 10kl	Ηz	30kHz	Quasi-peak
0.490MHz -30MHz Quasi-peak 10kHz 30kHz Quasi-30MHz-1GHz Quasi-peak 10kHz 300kHz Quasi-4kHz Peak 1MHz 10kHz Averation Peak Peak 1MHz 10kHz Averation Peak Peak 1MHz 10kHz Averation Peak Peak 1MHz Peak Peak Peak 10kHz Peak P		0.110MHz-0.490MF	Ηz	Peak	10kH	Ηz	30kHz	Peak
Above 1GHz Peak 100 kHz 300kHz Quasi-Peak 1MHz 10kHz Average		0.110MHz-0.490MF	Ηz	Average	10kH	Ηz	30kHz	Average
Above 1GHz Peak 1MHz 3MHz Average		0.490MHz -30MHz	Z	Quasi-pea	ık 10kl	Ηz	30kHz	Quasi-peak
Limit: Frequency Field strength Climit Remark Measur Glave Glav		30MHz-1GHz		Quasi-pea	ık 100 k	Hz	300kHz	Quasi-peak
Limit: Frequency Field strength Limit Memark Measure		Abovo 1CHz		Peak	1MH	łz	3MHz	Peak
Frequency Field strength (microvolt/meter) 0.009MHz-0.490MHz 2400/F(kHz) 30 0.490MHz-1.705MHz 24000/F(kHz) 30 1.705MHz-30MHz 30 31 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Average 3 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emioutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emioutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emioutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: All emioutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: All emioutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (5) For transmitters operating in the 5.725-5.85 GHz band: All emioutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (6) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of above or below the band edge, and from 25 MHz above or below the edge increasing linearly to 10 dBm/MHz at 2 above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge. Remark: The emission limits shown in the above table are bas		Above 1G112	<u>ال</u>	Peak	1MF	lz	10kHz	Average
Frequency (microvolt/meter) (dBuV/m) Remark distance of the 5.15-5.35 GHz band: All emissions of the 5.15-5.25 GHz band: All emissions of the 5.15-5.36 GHz band shall not exceed an e.i.r.p. of the 5.15-5.25 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.725-5.85 GHz band: All emissions of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of band: All emissions of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of band: All emissions of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of band: All emissions of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of above or below the band edge increasing linearly to 10 dBm/MHz at 2 above or below the band edge, and from 25 MHz above or below the edge increasing linearly to a level of 75 dBm/MHz at 5 MHz above or the band edge, and from 5 MHz above or below the band edge. Remark: The emission limits shown in the above table are bas	Limit:		·					Measurement
0.009MHz-0.490MHz 2400/F(kHz) 30 0.490MHz-1.705MHz 24000/F(kHz) 30 1.705MHz-30MHz 30 30 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 400ve 1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Average 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emoutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emioutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of above or below the band edge, and from 25 MHz above or below the edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or the band edge, and from 5 MHz above or below the band edge. Remark: The emission limits shown in the above table are bas		Frequency		•		R	Remark	distance (m)
0.490MHz-1.705MHz 24000/F(kHz) 30 1.705MHz-30MHz 30 30 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Quasi-peak 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emoutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emioutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of above or below the band edge increasing linearly to 10 dBm/MHz at 2 above or below the band edge, and from 25 MHz above or below the edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or the band edge, and from 5 MHz above or below the band edge. Remark: The emission limits shown in the above table are bas		0 000MHz-0 490MHz	·		(dDd v/iii)		- (2)	300
1.705MHz-30MHz 30 33 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Average 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emoutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emioutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of above or below the band edge, and from 25 MHz above or below the edge increasing linearly to 10 dBm/MHz at 2 above or below the band edge, and from 25 MHz above or below the band edge. Remark: The emission limits shown in the above table are bas		1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		14/3 /	_		(e.)	30
30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Average 3 ** *(1) For transmitters operating in the 5.15-5.25 GHz band: All emoutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emioutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of above or below the band edge increasing linearly to 10 dBm/MHz at 2 above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge. Remark: The emission limits shown in the above table are bas			2-7	, ,	_		_	30
88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Average 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emoutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of above or below the band edge, and from 25 MHz above or below the edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: The emission limits shown in the above table are bas					40.0	Qu	asi-peak	
216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Average 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emoutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emioutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of above or below the band edge increasing linearly to 10 dBm/MHz at 2 above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge. Remark: The emission limits shown in the above table are bas			0		7.0			7.5
960MHz-1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Average 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emoutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emioutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of above or below the band edge increasing linearly to 10 dBm/MHz at 2 above or below the band edge, and from 25 MHz above or below the edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: The emission limits shown in the above table are bas		102	7		163	-		16.3
*(1) For transmitters operating in the 5.15-5.25 GHz band: All emoutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of above or below the band edge increasing linearly to 10 dBm/MHz at 2 above or below the band edge, and from 25 MHz above or below the edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or the band edge, and from 5 MHz above or below the band edge. Remark: The emission limits shown in the above table are bas								
*(1) For transmitters operating in the 5.15-5.25 GHz band: All emoutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emioutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz of above or below the band edge increasing linearly to 10 dBm/MHz at 2 above or below the band edge, and from 25 MHz above or below the edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: The emission limits shown in the above table are bas		Above 1GHz		500	54.0		-	3
frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Ra emission limits in these three bands are based on measurements empty.		outside of the 5.15-6 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz because of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall be above or below the because of the because	eratii band bpera 5.725 eratii be lir and and ly to rom dBn on ii bying	GHz band ng in the 5.2 shall not excepting in the 5.7 nited to a level of 18 5 MHz above 1/MHz at the 19 6 miles shown 1/10-490k a CISPR 1/2, 110-490k	shall not 5-5.35 GH ceed an e. 5.47-5.72 I shall no 25-5.85 G rel of -27 sing linearl rom 25 M o.6 dBm/W ve or below band edg in the quasi-pea Hz and a	ex exize back to exist e	ceed an and: All em of -27 dB GHz band: ceed an and: n/MHz at 7 10 dBm/Nabove or bat 5 MHz ane band e detector e e 1000 N	e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 hissions outside Bm/MHz or more builded. Hissions outside Bm/

Report No.: EED32R80589102 Page 32 of 135

the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Note: (i) EIRP = $((E*d)^2) / 30$ where: • E is the field strength in V/m; • d is the measurement distance in meters; • EIRP is the equivalent isotropically radiated power in watts. (ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$ (iii) Or, if d is 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

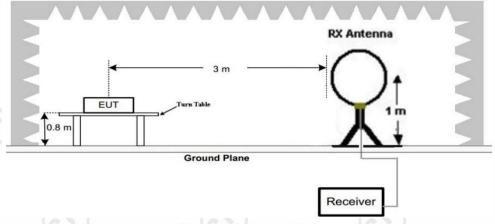
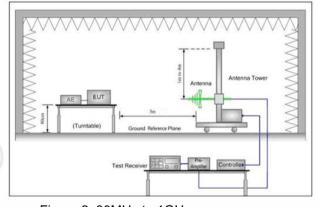



Figure 1. Below 30MHz

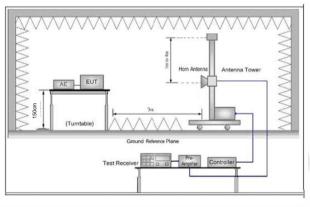


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

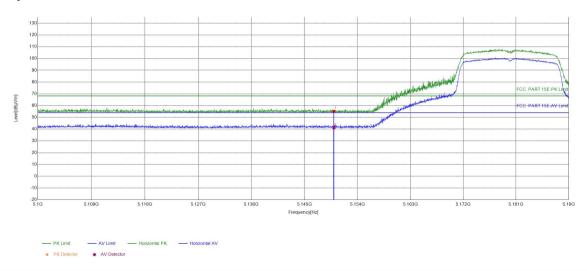
Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Page 33 of 135 Report No.: EED32R80589102

	Place the measurement antenna away from each area of the EUT
	determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
	k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. p. Test the EUT in the lowest channel, the Highest channel
	q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	r. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass



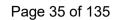
Page 34 of 135 Report No.: EED32R80589102

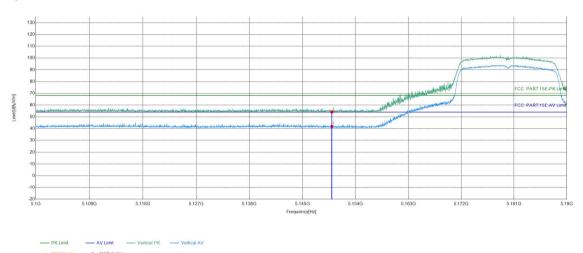
Test Data:

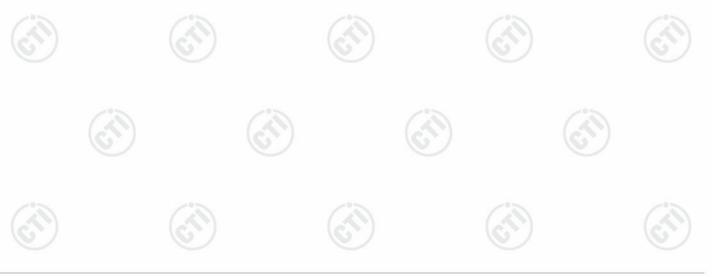
EUT_Name		Test_Model	
Test_Mode	802.11 a Transmitting	Test_Frequency	5180Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(41)	(641)	(5/1)

Test Graph

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	23.98	31.20	55.18	68.20	13.02	PASS	Horizontal	PK
2	5150	23.98	17.05	41.03	54.00	12.97	PASS	Horizontal	AV



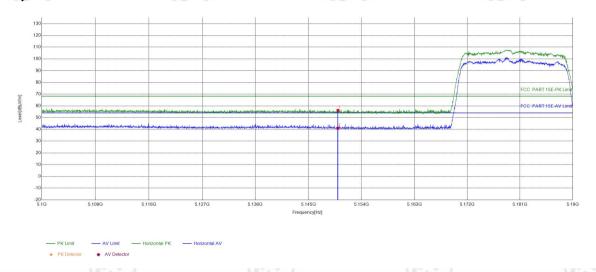


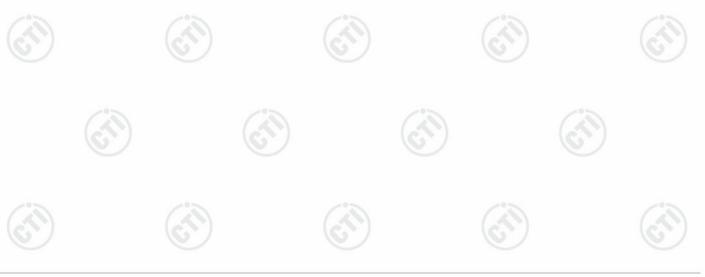


3 /	100		
EUT_Name		Test_Model	
Test_Mode	802.11 a Transmitting	Test_Frequency	5180Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark			Cán)

Test Graph

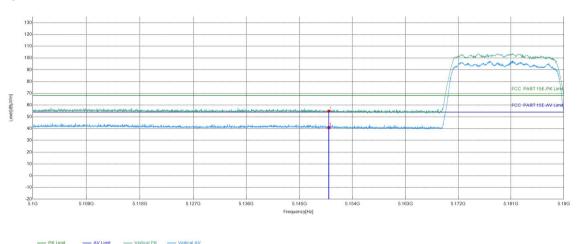
Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5150	23.98	30.22	54.20	68.20	14.00	PASS	Vertical	PK			
2	5150	23.98	17.86	41.84	54.00	12.16	PASS	Vertical	AV			

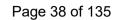


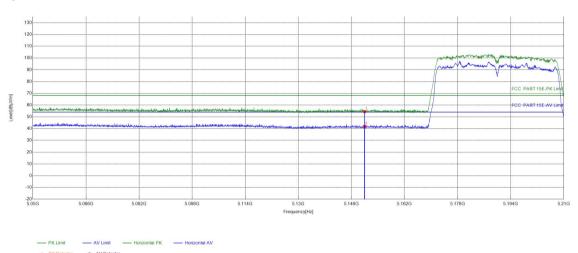

Page	36	Ωf	135

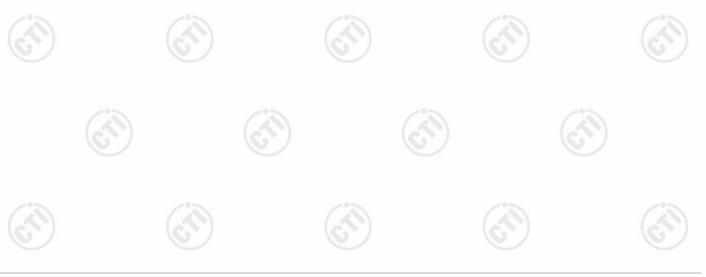
EUT_Name	(0)	Test_Model	(6)		
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180Mhz		
Tset_Engineer	chenjun	Test_Date	2025/04/27		
Remark		25	200		

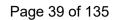
Test Graph

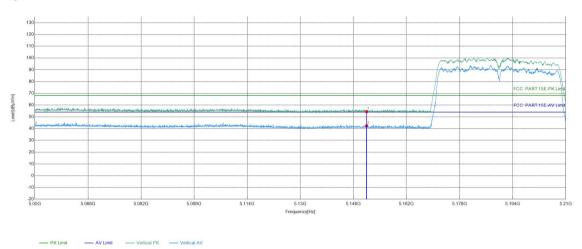

1	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150	23.98	32.28	56.26	68.20	11.94	PASS	Horizontal	PK
	2	5150	23.98	17.00	40.98	54.00	13.02	PASS	Horizontal	AV

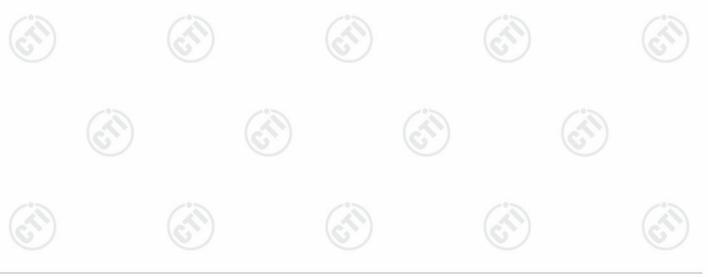

EUT_Name		Test_Model	
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(1)	(i)	(4)


S	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150	23.98	30.90	54.88	68.20	13.32	PASS	Vertical	PK
	2	5150	23.98	16.93	40.91	54.00	13.09	PASS	Vertical	AV



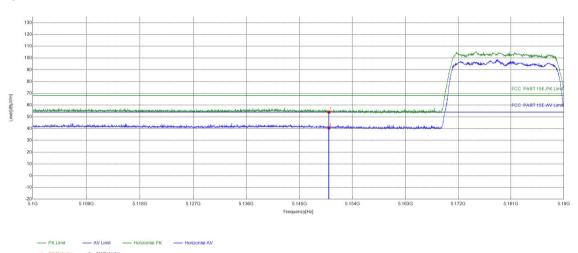

EUT_Name		Test_Model	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(ii)		(20)


5	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150	24.08	30.36	54.44	68.20	13.76	PASS	Horizontal	PK
	2	5150	24.08	17.81	41.89	54.00	12.11	PASS	Horizontal	AV

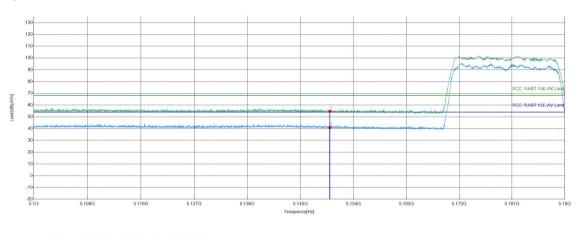


EUT_Name		Test_Model	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(ii)	(3)	(3)

5	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150	24.08	30.39	54.47	68.20	13.73	PASS	Vertical	PK
	2	5150	24.08	18.27	42.35	54.00	11.65	PASS	Vertical	AV

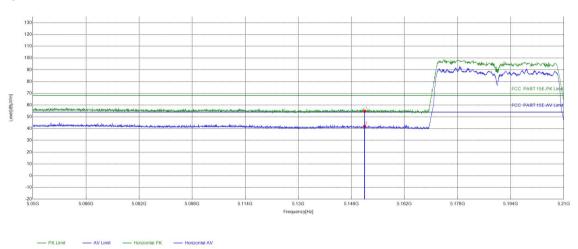


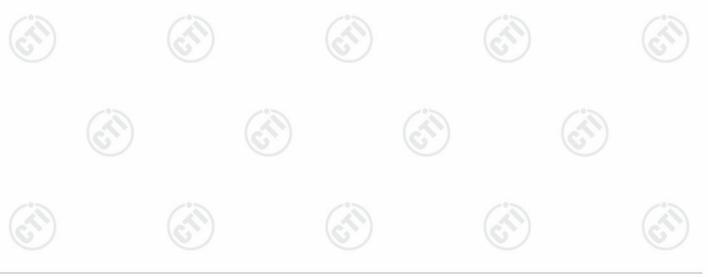
2 /			
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5180Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(4)	(i)	(4)


•	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5150	23.98	30.09	54.07	68.20	14.13	PASS	Horizontal	PK	
	2	5150	23.98	16.61	40.59	54.00	13.41	PASS	Horizontal	AV	

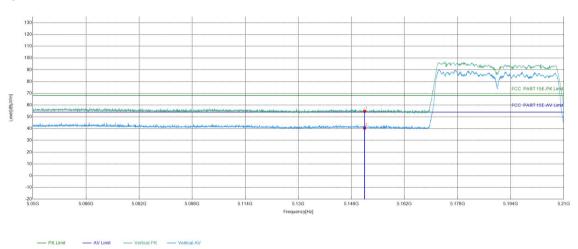


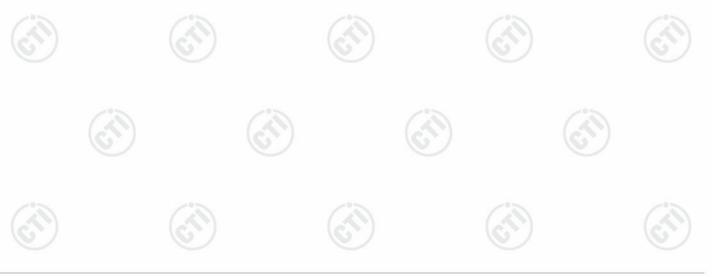
2 /			
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5180Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(4)	(i)	(4)


Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	23.98	30.79	54.77	68.20	13.43	PASS	Vertical	PK		
2	5150	23.98	17.00	40.98	54.00	13.02	PASS	Vertical	AV		

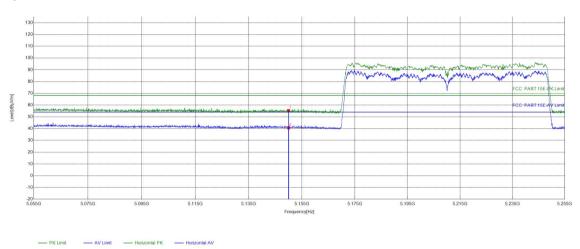



9 /			
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5190Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(ii)		(3)

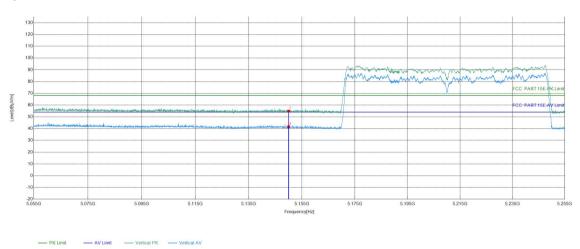

,	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150	24.08	30.76	54.84	68.20	13.36	PASS	Horizontal	PK
	2	5150	24.08	17.75	41.83	54.00	12.17	PASS	Horizontal	AV

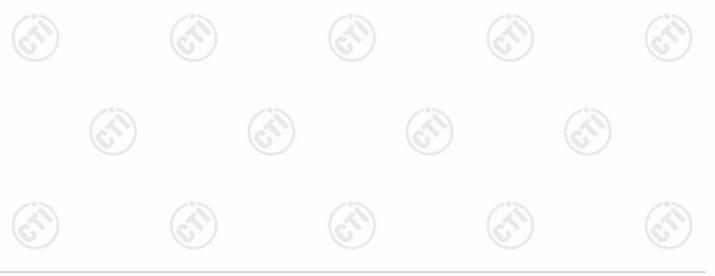


9 /			
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5190Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(ii)		(3)

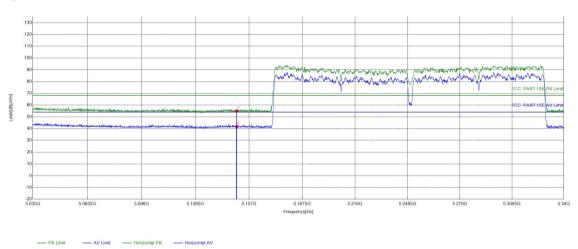

Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	24.08	30.65	54.73	68.20	13.47	PASS	Vertical	PK	
2	5150	24.08	16.38	40.46	54.00	13.54	PASS	Vertical	AV	

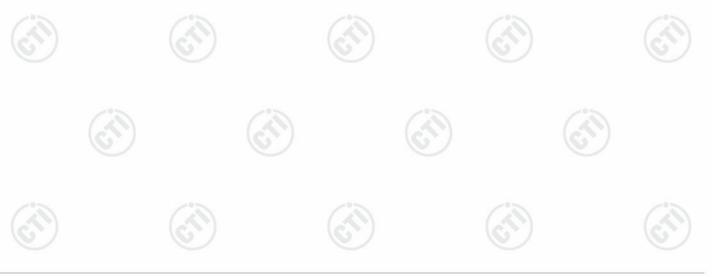
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5210Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(ii)		(2)


Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	24.08	31.34	55.42	68.20	12.78	PASS	Horizontal	PK	
2	5150	24.08	16.45	40.53	54.00	13.47	PASS	Horizontal	AV	

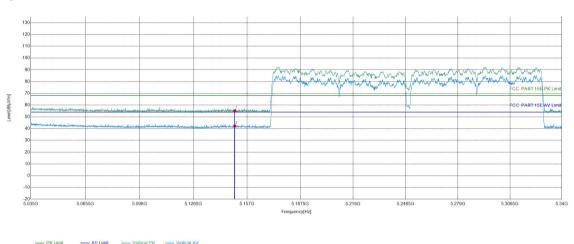


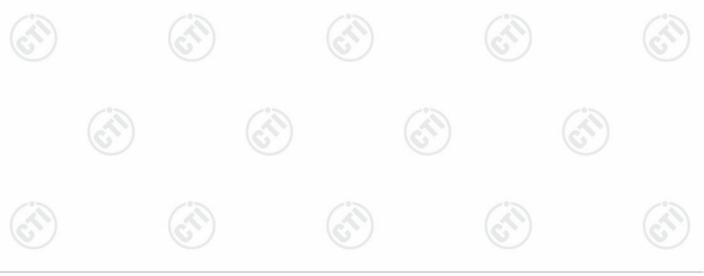
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5210Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(in)		(10)


Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	24.08	30.76	54.84	68.20	13.36	PASS	Vertical	PK	
2	5150	24.08	17.47	41.55	54.00	12.45	PASS	Vertical	AV	

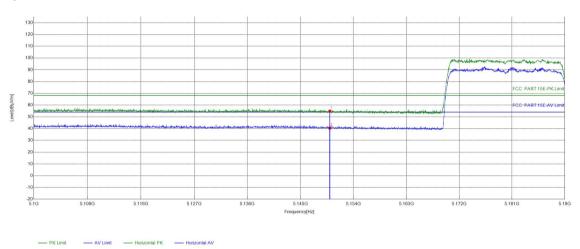


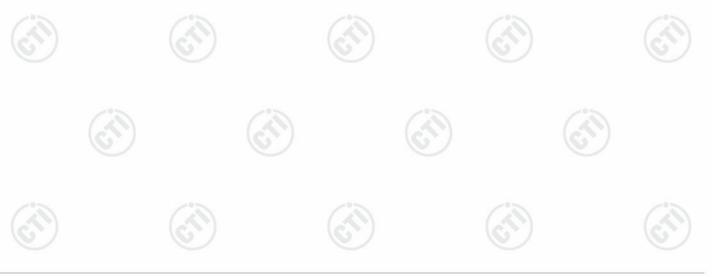
EUT_Name		Test_Model		
Test_Mode	802.11 ac(VHT160) Transmitting	Test_Frequency	5250Mhz	
Tset_Engineer	chenjun	Test_Date	2025/04/27	
Remark	(4)		(3)	


Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	24.08	31.02	55.10	68.20	13.10	PASS	Horizontal	PK	
2	5150	24.08	17.55	41.63	54.00	12.37	PASS	Horizontal	AV	



EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT160) Transmitting	Test_Frequency	5250Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(1)		(40)


Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	24.08	31.10	55.18	68.20	13.02	PASS	Vertical	PK
2	5150	24.08	18.05	42.13	54.00	11.87	PASS	Vertical	AV



2/			
EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE20)Transmittin g	Test_Frequency	5180Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/27
Remark	(3)	(3)	

Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	23.98	30.96	54.94	68.20	13.26	PASS	Horizontal	PK	
2	5150	23.98	16.46	40.44	54.00	13.56	PASS	Horizontal	AV	

