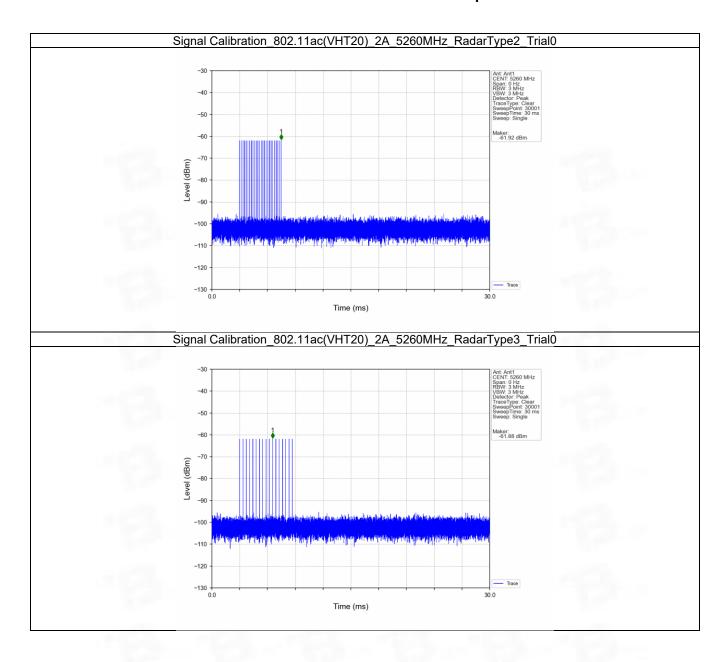
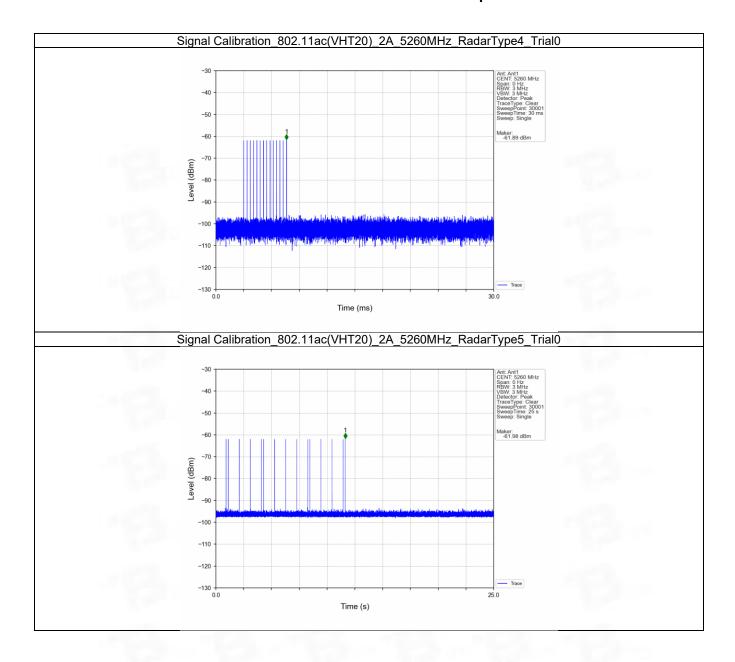
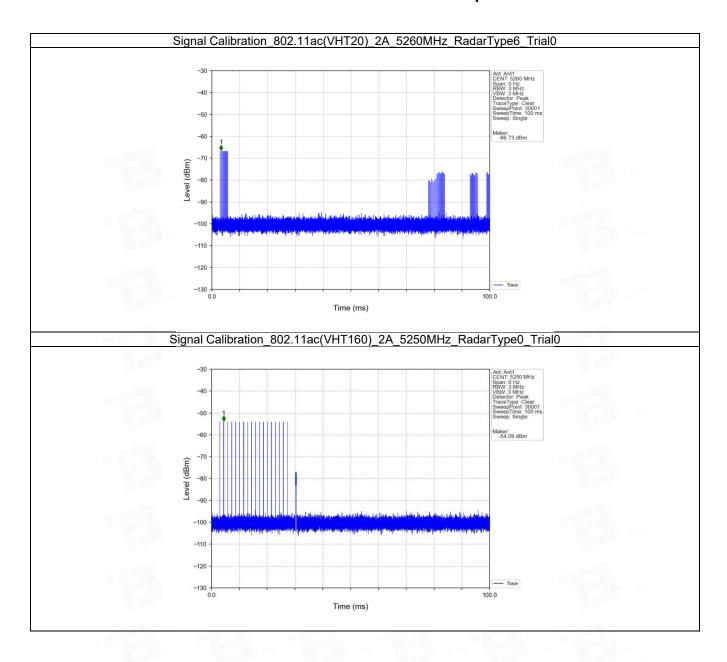
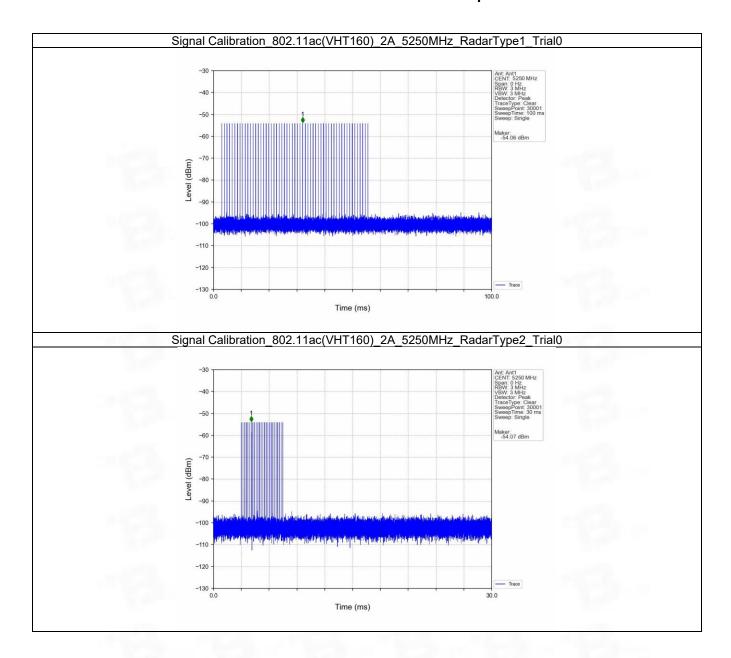
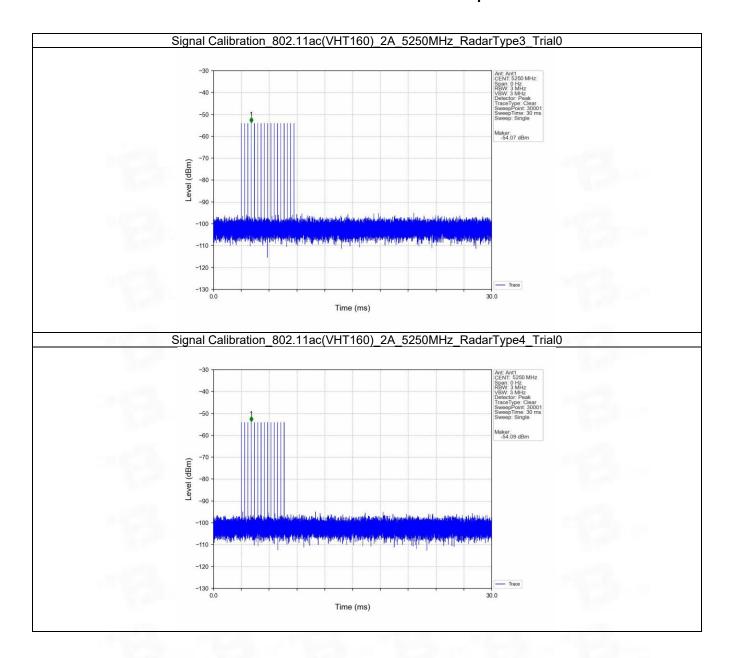

1. Signal Calibration

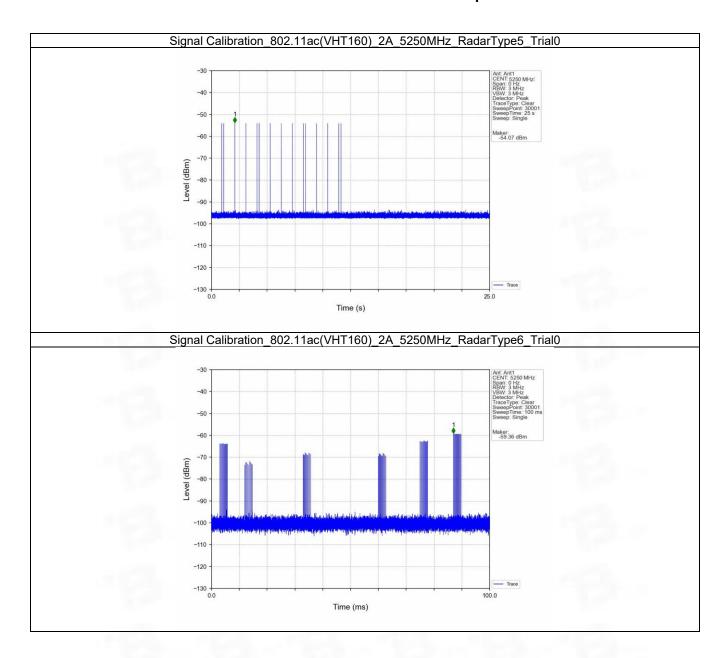

1.1 Test Result

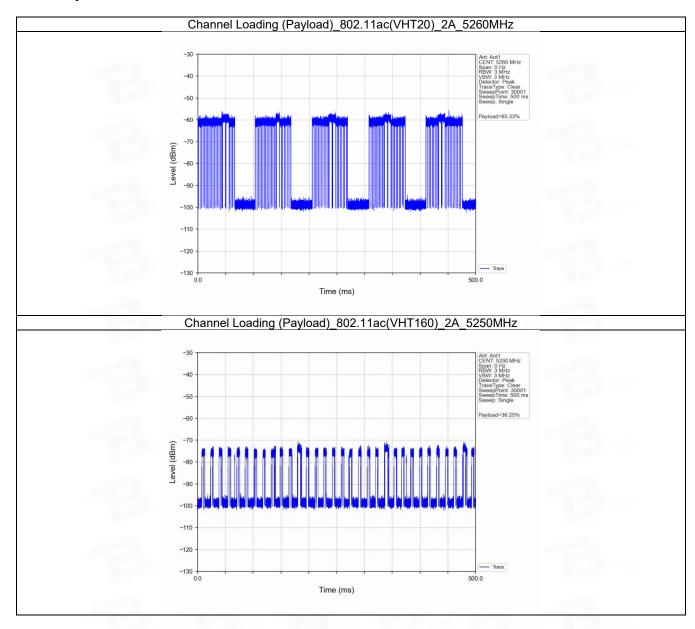

1.1.1 SC


			E	Band: 2A			
Mode	Bandwidth	Frequency	Rada	r Signal	Signal Calib	oration	Vardiet
wode	(MHz)	(MHz)	Type	Trial Id	Result	Limit	verdict
			0	0	Refer To Tes	t Graph	Pass
			1	0	Refer To Tes	t Graph	
802.11ac			2	0	Refer To Tes	t Graph	Pass
	20	5260	3	0	Refer To Tes	t Graph	Pass Pass Pass Pass Pass Pass Pass Pass
(VHT20)			4	0	Refer To Tes	t Graph	Pass
			5	0	Refer To Tes	t Graph	Pass
			6	0	Refer To Tes	t Graph	Pass
			0	0	Refer To Tes	t Graph	Pass
			1	0	Refer To Tes	t Graph	Pass
000 11			2	0	Refer To Tes	t Graph	Pass
802.11ac (VHT160)	160	5250	3	0	Refer To Tes	t Graph	Pass Pass Pass Pass Pass Pass Pass
(1111100)				0	Refer To Tes	t Graph	Pass
			5	0	Refer To Tes	t Graph	Pass
			6	0	Refer To Tes	t Graph	Pass


1.2.1 SC






2. Channel Loading (Payload)

2.1 Test Result

2.1.1 Payload

Band: 2A								
Mode	Bandwidth	Frequency	Channel Loadin	g (Payload) (%)	\/a =diat			
woue	(MHz)	(MHz)	Result	Limit	Verdict			
802.11ac (VHT20)	20	5260	65.33	>=17	Pass			
802.11ac (VHT160)	160	5250	36.25	>=17	Pass			

2.2.1 Payload

3. U-NII Detection Bandwidth

3.1 Test Result

3.1.1 20MHz_5260MHz

			Band: 2/	4			
Mode	Bandwidth	Frequency		Detection Ba	ndwidth (MHz)		Verdict
wode	(MHz)	(MHz)	FL	FH	Result	Limit	verdict
802.11ac (VHT20)	20	5260	5251.762	5268.349	16.587	17.5	Pass

3.1.2 20MHz_5260MHz_Data

			Band:	: 2A / Ba	andwidt	h: 20Ml	Iz / Fre	quency	: 5260N	1Hz / Ra	adarType:	0		
Frequency	Tria	al Numb	er and	Detecti	on resu	lt (Y: De	etected;	N: Nor	n-detect	ed)	Detecti	on Probab	ility (%)	Verdict
(MHz)	0	1	2	3	4	5	6	7	8	9	Result	FL/FH	Limit	Veruici
5240	Υ	Υ	Υ	Υ	Υ	Υ	Z	Υ	Υ	Υ	90	F	>=60	Pass
5245	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5250	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5255	Υ	Υ	Υ	Υ	Ν	Y	Υ	Υ	Υ	Υ	90	/	>=60	Pass
5265	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5250	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5275	Υ	Υ	Υ	Υ	N	Υ	Υ	Υ	Υ	Υ	90	1	>=60	Pass
5280	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	Υ	90	FH	>=60	Pass

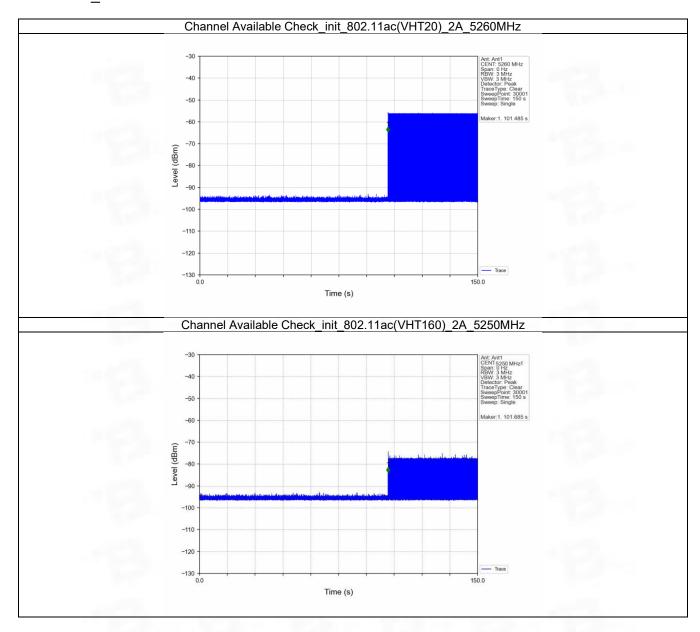
3.1.3 160MHz_5250MHz

			Band: 2/	4			
Mode	Bandwidth	Frequency		Detection Ba	ndwidth (MHz)		Verdict
Wode	(MHz)	(MHz)	FL	FH	Result	Limit	verdict
802.11ac (VHT160)	80	5250	5172.506	5327.566	155.060	75	Pass

3.1.4 160MHz_5250MHz_Data

			Band:	2A / Ba	ndwidth	n: 160M	Hz / Fre	equency	/: 5250 l	MHz / R	RadarType:	0		
Frequency	Tria	al Numb	per and	Detecti	on resu	It (Y: De	etected;	N: Nor	n-detect	ed)	Detecti	on Probab	ility (%)	Verdict
(MHz)	0	1	2	3	4	5	6	7	8	9	Result	FL/FH	Limit	verdict
5090	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	FL	>=60	Pass
5095	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5100	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5105	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5110	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5115	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5120	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5125	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5130	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5135	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5140	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass

E44E											100	,		_
5145	Y	Y	Y	Y	Υ	Υ	Y	Y	Y	Y	100	1	>=60	Pass
5150	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5155	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5160	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5165	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5170	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5175	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5180	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5185	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5190	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5195	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5200	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5205	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5210	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5215	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5220	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5225	Υ	Υ	Y	Υ	Υ	Υ	Υ	Y	Υ	Υ	100	1	>=60	Pass
5230	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
5235	Y	Y	Y	Y	Y	Y	Y	Y	Ý	Y	100	1	>=60	Pass
5240	Y	Y	Y	Y	Y	Y	Y	Ÿ	Ÿ	Ý	100	1	>=60	Pass
5245	Ÿ	Y	Y	Y	Ÿ	Ÿ	Y	Ÿ	Y	Ÿ	100	1	>=60	Pass
5255	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
5260	Y	Y	Ý	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
5265	Ý	Y	Ý	Y	Y	Y	Y	Y	Ý	Y	100	1	>=60	Pass
5270	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
5275	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
5275	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
5285	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
5290	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
5295	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	
5300	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
										_		1		Pass
5305	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
5310	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
5315	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	1	>=60	Pass
5320	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	/	>=60	Pass
5325	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Y	100	/	>=60	Pass
5330	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100		>=60	Pass
5335	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y	100	/	>=60	Pass
5340	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	/	>=60	Pass
5345	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	/	>=60	Pass
5350	Y	Y	Y	Y	Y	Υ	Y	Y	Y	Y	100	/	>=60	Pass
5355	Y	Y	Y	Y	Υ	Υ	Y	Y	Y	Υ	100	/	>=60	Pass
5360	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5365	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5370	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5375	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5380	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5385	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5390	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	/	>=60	Pass
5395	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5400	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5405	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	1	>=60	Pass
5410	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100	FH	>=60	Pass
1 Chan		- 1	11 /	N	. !!4									

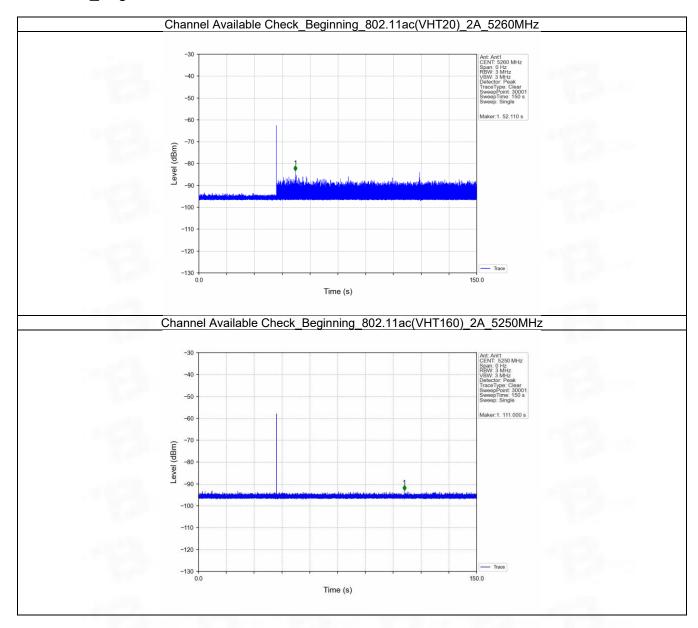

4. Channel Available Check_init

4.1 Test Result

4.1.1 CAC_init

			Band: 2A		
Mode	Bandwidth	Frequency	Channel Availab	nnel Available Check_init (s)	
iviode	(MHz)	(MHz)	Result	Limit	Verdict
802.11ac (VHT20)	20	5260	101.49	>=60	Pass
802.11ac (VHT160)	160	5250	101.69	>=60	Pass

4.2.1 CAC_init

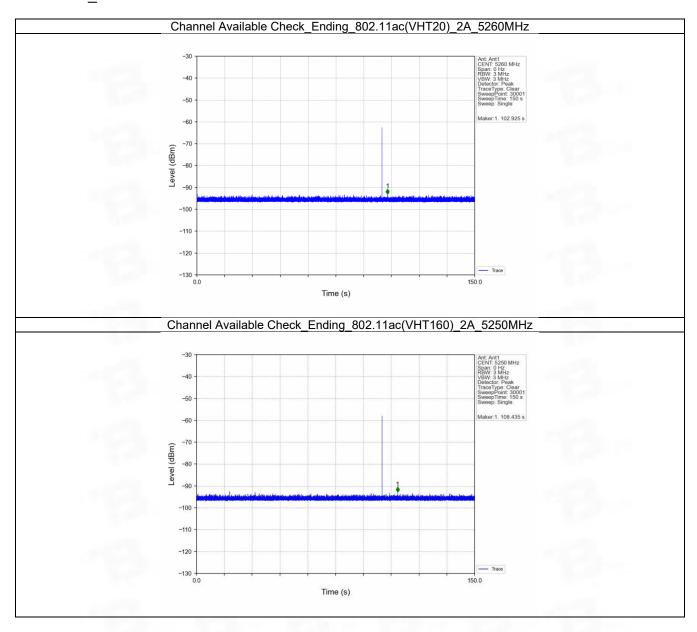

5. Channel Available Check_Beginning

5.1 Test Result

5.1.1 CAC_Begin

			Band: 2A			
Mode	Bandwidth	Frequency	Channel Available	Channel Available Check_Beginning		
Mode	(MHz)	(MHz)	Result	Limit	Verdict	
802.11ac (VHT20)	20	5260	Refer To	Test Graph	Pass	
802.11ac (VHT160)	160	5250	Refer To	Test Graph	Pass	

5.2.1 CAC_Begin

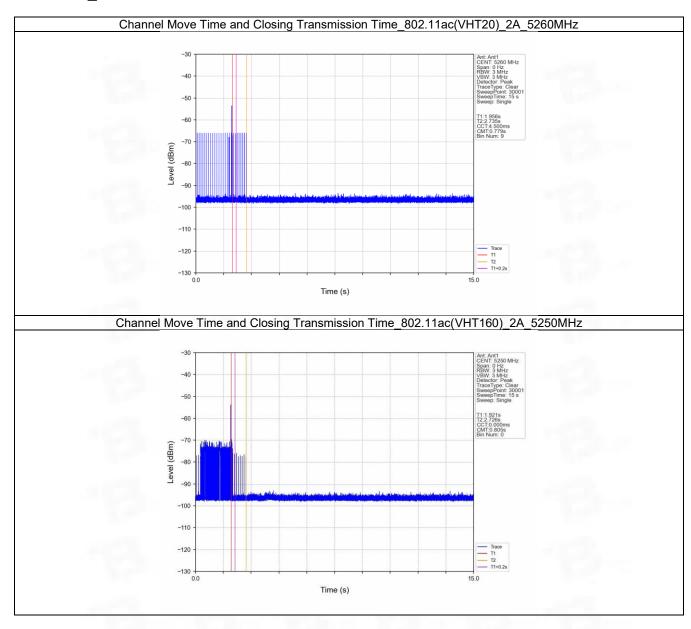

6. Channel Available Check_Ending

6.1 Test Result

6.1.1 CAC_End

		E	Band: 2A		
Mode	Bandwidth	Frequency Channel Available Check Ending			Verdict
woue	(MHz)	(MHz)	Result	Limit	verdict
802.11ac (VHT20)	20	5260	Refer To T	Pass	
802.11ac (VHT160)	160	5250	Refer To T	est Graph	Pass

6.2.1 CAC_End

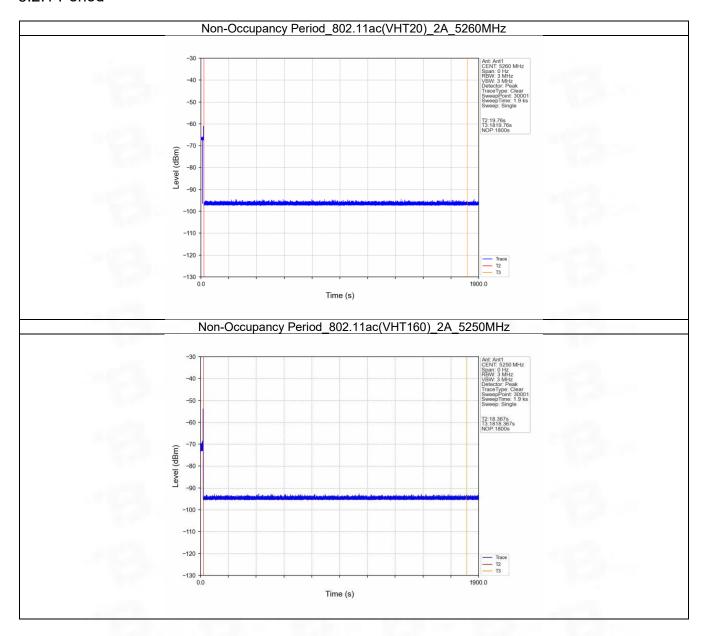

7. Channel Move Time and Closing Transmission Time

7.1 Test Result

7.1.1 CMT_CTT

			Ban	d: 2A			
Mode	Bandwidth	Frequency	Channel Closing Tra	nsmission Time (ms)	Channel Mo	ove Time (s)	Verdict
Mode	(MHz)	(MHz)	Result	Limit	Result	Limit	Verdict
802.11ac (VHT20)	20	5260	4.500	<= 60	0.779	<=10	Pass
802.11ac (VHT160)	160	5250	0.000	<= 60	0.805	<=10	Pass

7.2.1 CMT_CTT


8. Non-Occupancy Period

8.1 Test Result

8.1.1 Period

		Ва	nd: 2A			
Mode	Bandwidth	Frequency	Frequency Non-Occupancy Period			
woue	(MHz)	(MHz)	Result	Limit	Verdict	
802.11ac (VHT20)	20	5260	Refer To Test Graph		Pass	
802.11ac (VHT160)	160	5250	Refer To Te	est Graph	Pass	

8.2.1 Period

9. Statistical Performance Check

9.1 Test Result

9.1.1 SPC

	D 1 1 111		Band: 2A	D : " D	1 1 1111 (0/)	
Mode	Bandwidth	Frequency (MHz)	Radar Signal Type	Detection Pro	Verdict	
Wicdo	(MHz)		rtadar eigilai Type	Result	Limit	VOIGIOU
		5260	1	100	>=60	Pass
	20		2	100	>=60	Pass
802.11ac (VHT20)			3	100	>=60	Pass
			4	100	>=60	Pass
			ADP ¹	100	>=80	Pass
			5	100	>=80	Pass
			6	100	>=70	Pass
	160	5250	1	100	>=60	Pass
802.11ac (VHT160)			2	100	>=60	Pass
			3	100	>=60	Pass
			4	100	>=60	Pass
			ADP ¹	100	>=80	Pass
			5	100	>=80	Pass
			6	100	>=70	Pass

9.1.2 SPC_Data

			Ва	and: 2A					
Mode	Bandwidth (MHz)	Frequency (MHz)	Trial ld	Radar Signal Type					
				1	2	3	4	5	6
	20	5260	0	Υ	Υ	Υ	Υ	Υ	Υ
			1	Υ	Υ	Υ	Y	Υ	Υ
			2	Υ	Υ	Υ	Y	Υ	Υ
			3	Y	Υ	Υ	Y	Υ	Υ
			4	Υ	Υ	Υ	Υ	Υ	Υ
			5	Υ	Υ	Υ	Υ	Υ	Υ
			6	Υ	Υ	Υ	Υ	Υ	Υ
			7	Υ	Υ	Υ	Υ	Υ	Υ
			8	Υ	Υ	Υ	Υ	Υ	Υ
			9	Υ	Υ	Υ	Υ	Υ	Υ
			10	Υ	Υ	Υ	Υ	Υ	Υ
802.11ac			11	Υ	Υ	Υ	Υ	Υ	Υ
(VHT20)			12	Υ	Υ	Υ	Υ	Υ	Υ
,			13	Υ	Υ	Υ	Υ	Y	Υ
			14	Υ	Υ	Υ	Υ	Υ	Υ
			15	Υ	Υ	Υ	Υ	Υ	Υ
			16	Υ	Υ	Υ	Υ	Υ	Υ
			17	Υ	Y	Υ	Υ	Y	Υ
			18	Υ	Υ	Υ	Υ	Y	Υ
			19	Υ	Υ	Υ	Υ	Υ	Υ
			20	Y	Υ	Υ	Y	Υ	Y
			21	Y	Y	Y	Y	Y	Y
			22	Y	Υ	Y	Y	Υ	Y
			23	Y	Y	Y	Y	Y	Y

			24	Υ	Υ	Υ	Υ	Υ	Υ
			25	Υ	Υ	Υ	Υ	Υ	Υ
			26	Υ	Υ	Y	Υ	Υ	Υ
			27	Υ	Υ	Υ	Υ	Υ	Υ
			28	Υ	Υ	Y	Υ	Υ	Υ
			29	Υ	Υ	Υ	Υ	Υ	Υ
			0	Y	Υ	Υ	Y	Y	Υ
	160		1	Y	Υ	Υ	Y	Y	Υ
			2	Υ	Υ	Υ	Υ	Υ	Υ
		5250	3	Υ	Υ	Υ	Υ	Υ	Υ
			4	Y	Υ	Υ	Υ	Υ	Υ
			5	Y	Υ	Υ	Y	Y	Υ
			6	Y	Υ	Υ	Υ	Υ	Υ
			7	Y	Υ	Υ	Υ	Υ	Υ
			8	Y	Υ	Υ	Υ	Y	Υ
			9	Y	Υ	Υ	Y	Y	Υ
			10	Υ	Υ	Υ	Υ	Υ	Υ
			11	Υ	Υ	Υ	Υ	Υ	Υ
			12	Υ	Υ	Υ	Υ	Υ	Υ
			13	Υ	Υ	Υ	Υ	Υ	Υ
802.11ac			14	Υ	Υ	Υ	Υ	Υ	Υ
(VHT160)			15	Υ	Υ	Υ	Υ	Υ	Υ
			16	Υ	Υ	Υ	Υ	Υ	Υ
			17	Υ	Υ	Υ	Υ	Υ	Υ
			18	Υ	Υ	Υ	Υ	Υ	Υ
			19	Υ	Υ	Υ	Υ	Υ	Υ
			20	Υ	Υ	Υ	Υ	Υ	Υ
			21	Υ	Υ	Υ	Υ	Υ	Υ
			22	Υ	Υ	Υ	Υ	Υ	Υ
			23	Υ	Υ	Υ	Υ	Υ	Υ
			24	Υ	Υ	Υ	Υ	Υ	Υ
			25	Υ	Υ	Υ	Υ	Υ	Υ
			26	Υ	Υ	Υ	Υ	Υ	Υ
			27	Υ	Υ	Υ	Υ	Υ	Υ
			28	Υ	Υ	Υ	Υ	Υ	Υ
			29	Υ	Υ	Υ	Υ	Υ	Υ