

FCC RF EXPOSURE REPORT

FCC ID: V7TA301V4

Project No. : 1909C113

Equipment: N300 Mini WiFi Range Extender

Brand Name : Tenda Test Model : A301 Series Model : N/A

Applicant: SHENZHEN TENDA TECHNOLOGY CO.,LTD

Address: 6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan

District, Shenzhen, China. 518052

Manufacturer : SHENZHEN TENDA TECHNOLOGY CO.,LTD

Address: 6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan

District, Shenzhen, China. 518052

Date of Receipt : Sep. 19, 2019

Date of Test : Sep. 19, 2019 ~ Oct. 19, 2019

Issued Date : Oct. 23, 2019

Report Version : R00

Test Sample: Engineering Sample No.: DG201909206

Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part

2.1091

FCC Title 47 Part 2.1091, OET Bulletin 65 Supplement C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by: Vincent Tan

Approved by : Ethan $\overline{\text{Ma}}$

INCOME ACCREDITED

Certificate #5123.02

Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

Tel: +86-769-8318-3000 Web: www.newbtl.com

REPORT ISSUED HISTORY

Report Version	Description	Issued Date	
R00	Original Issue	Oct. 23, 2019	

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Tenda °	N/A	Dipole	N/A	3.46
2	Tenda °	N/A	Dipole	N/A	3.46

Note:

The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and receivers (2T2R), any transmit signals are correlated with each other, so Directional gain = G_{ANT} +10log(N)dBi, that is Directional gain=3.46+10log(2)dBi=6.47. So, the output power limit is 30-6.47+6=29.53

the power spectral density limit is 8-6.47+6=7.53

Table for Antenna Configuration:

Operating Mode TX Mode	1TX	2TX
IEEE 802.11b	V (Ant. 1)	-
IEEE 802.11g	V (Ant. 1)	-
IEEE 802.11n(20 MHz)	-	V (Ant. 1 + Ant. 2)
IEEE 802.11n(40 MHz)	-	V (Ant. 1 + Ant. 2)

2. TEST RESULTS

Tune up tolerance(dBm)	
2.4GHz	
1.5	

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
6.47	4.4361	30.32	1076.4652	0.95050	1	Complies

Note: The calculated distance is 20 cm.

Output power including tune up tolerance(tune up tolerance: 1.5 dBm).

End of Test Report