

MAXIMUM PERMISSIBLE EXPOSURE

1. RF Exposure Calculation

According to the FCC rule 1.1310 table 1B, the limit for the maximum permissible RF exposure for an uncontrolled environment is 1mW/cm².

The electric field generated for a 1mW/cm²exposure is calculated as follows:

$$E = \sqrt{(30 * P * G) / d}, \text{ and } S = E^2 / Z = E^2 / 377, \text{ because } 1\text{mW/cm}^2 = 10\text{W/m}^2$$

Where

S = Power density in mW/cm², Z = Impedance of free space, 377Ω

E = Electric filed strength in Volts/m, G = Numeric antenna gain, and d = distance in meter

Combining equations and rearranging the terms to express the distance as a function of the remaining variable

$$d = \sqrt{(30*P*G) / (3770 * S)}$$

Changing to units of mW and cm, using P (mW) = P (W) / 1000, d (cm) = 100 * d (m)

$$d = 0.282 * \sqrt{(P*G) / S}$$

Where

d = distance in cm, P = Power in mW, G = Numeric antenna gain, and S = Power density in mW/cm²

2. Calculated MPE Safe Distance and Density

According to above equation, the following result was obtained.

Peak Output Power		Antenna Gain		Safe Distance	Power Density (mW/cm ²)	FCC Limit
(dBm)	(mW)	Log	Linear	(cm)	@ 20cm Separation	(mW/cm ²)
2.50	1.78	0.0	1.0	0.29	0.0841	1

According to above table, separation distance, $D = 0.282 * \sqrt{1.78} = 0.29 \text{ cm}$,

And the power density at 20cm, $S = 0.282 * \sqrt{1.78/20} = 0.0841$