



# Test report

23-0148RP15-005-A

Product / EUT: *RFID Reader*

Type designation: *ARE i2.0x HF*

Tested type: *ARE i2.0x HF*

EUT authorization:  Certification  
 Suppliers Declaration of Conformity

Production level: *n/a*

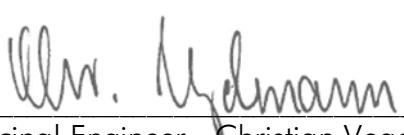
S/N: *000593*

FCC ID: *V7IAREI20XHF*

Manufacturer: *AEG Identifikationssysteme GmbH  
Hörvelsinger Weg 47  
89081 Ulm / Germany*

Test remit: 47 CFR Part 15 – Subpart C – Intentional radiators

in accordance with the procedures given in  
ANSI C63.10-2013 and ANSI C63.4a-2017


The standards were:  kept  
 kept, for the limited scope of testing  
 not kept

Remark:  Validation covered by the accredited scope  
 Validation not covered by the accredited scope  
according: \_\_\_\_\_  
 Validation of the EMC-requirements partly proceeded

**Applicant:** AEG Identifikationssysteme GmbH  
Hörvelsinger Weg 47  
89081 Ulm / Germany

**EUT-**  
**Date of arrival:** 02/15/2024  
**Test ID:** 23-0148PR07-004  
**Date(s) of test:** 03/05/2024 – 03/12/2024

Burgrieden, 05/26/2024

Released by:  
  
Principal Engineer - Christian Vogelmann

**Test laboratory:** EMCE GmbH  
Ingenieurbüro für EMV-Prüfungen und  
Schaltungsentwicklung  
Untere Wiesen 1 / 88483 Burgrieden / Germany

DAkkS-Registration No: D-PL-12122-01-00  
CAB-Registration No.: BNetzA-CAB-02/21-01/4  
FCC-Registration No.: 239304

**Accredited by:**

Bundesnetzagentur



BNetzA-CAB-02/21-01

Deutsche Akkreditierungsstelle GmbH





## Scope:

|       |                                                                       |    |
|-------|-----------------------------------------------------------------------|----|
| 1     | General information .....                                             | 4  |
| 2     | EUT information.....                                                  | 5  |
| 3     | Decision rules for conformity assessment .....                        | 8  |
| 4     | Test equipment list of EMCE GmbH.....                                 | 9  |
| 5     | Testplan provided by customer .....                                   | 13 |
| 6     | Test(s) according 47 CFR Part 15 Subpart C - 03/08/2024.....          | 14 |
| 6.1   | Requirements and conformance test specifications.....                 | 14 |
| 6.2   | Antenna requirements .....                                            | 15 |
| 6.3   | Restricted bands of operation .....                                   | 16 |
| 6.3.1 | Test set up .....                                                     | 18 |
| 6.3.2 | Test.....                                                             | 19 |
| 6.4   | Terminal voltage on powerline.....                                    | 21 |
| 6.4.1 | Test set up .....                                                     | 23 |
| 6.4.2 | Test.....                                                             | 27 |
| 6.5   | Radiated emissions H-Field of intentional radiators .....             | 37 |
| 6.5.1 | Test set up .....                                                     | 40 |
| 6.5.2 | Test.....                                                             | 45 |
| 6.6   | Radiated emissions E-Field of intentional radiators.....              | 50 |
| 6.6.1 | Test set up .....                                                     | 53 |
| 6.6.2 | Test.....                                                             | 58 |
| 6.7   | Emission bandwidth inside the operating frequency band.....           | 65 |
| 6.7.1 | Test set up .....                                                     | 67 |
| 6.7.2 | Test.....                                                             | 72 |
| 6.8   | Field strength mask within the operation band 13.110-14.010 MHz ..... | 74 |
| 6.8.1 | Test set up .....                                                     | 76 |
| 6.8.2 | Test.....                                                             | 80 |
| 6.9   | Frequency stability.....                                              | 84 |
| 6.9.1 | Test set up .....                                                     | 86 |
| 6.9.2 | Test.....                                                             | 88 |
| 7     | Summary.....                                                          | 90 |

## 1 General information

**Project manager:** Mr. S. Vogelmann  
**Inspector:** Mr. S. Vogelmann

EMCE GmbH  
Ingenieurbüro für EMV-Prüfungen und Schaltungsentwicklung

**Contact person:** Mr. Waitzinger / AEG Identifikationssysteme GmbH

**Remarks:** n/a

### State of revision:

| Source document | New Document      | Date / Reviser                     | Modifications                                                                                                                                                       |
|-----------------|-------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23-0148PR15-005 | 23-0148PR15-005-A | 05/23/2024<br>Steffen<br>Vogelmann | The measurement performed in the OATS to evaluate the fundamental has been moved from chapter 6.5 to chapter 6.8. Adjustment of the test setup to ANSI C63.10-2013. |
|                 |                   |                                    |                                                                                                                                                                     |
|                 |                   |                                    |                                                                                                                                                                     |



## 2 EUT information

**Sampling:** The device was selected and provided by the customer.

**Description:** *RFID Reader operating in the frequency range 13.56 MHz with an external antenna.*

**Voltage supply:** 120 V / 60 Hz

**Frequency list:** 13.56 MHz

**Max. clock frequency:** n/a

**Temperature range:** n/a

**Dimension:** (LxWxH) / mm<sup>3</sup> - 130 x 70 x 35

**Used antennas:**

| Antenna designation          | Manufacturer                       | Connector / cable length | Gain (dBi) @ f / GHz |
|------------------------------|------------------------------------|--------------------------|----------------------|
| AAN Xi9F – HF<br>Ser. 000580 | AEG Identifikationssysteme<br>GmbH | 2.0 m                    | n/a                  |

**Supplied /  
used equipment:**

| Designation           | Type               | Manufacturer       | S/N                         |
|-----------------------|--------------------|--------------------|-----------------------------|
| Laptop                | W25CSW             | Terra              | n/a                         |
| Power supply – Laptop | A12-065N2A         | Chicony            | F134091506009041            |
| USB A Converter       | 151801             | Manhattan          | n/a                         |
| Power supply – EUT    | LIF120-10B12R2S-EX | RS Components GmbH | 220B22-<br>727220855585000J |

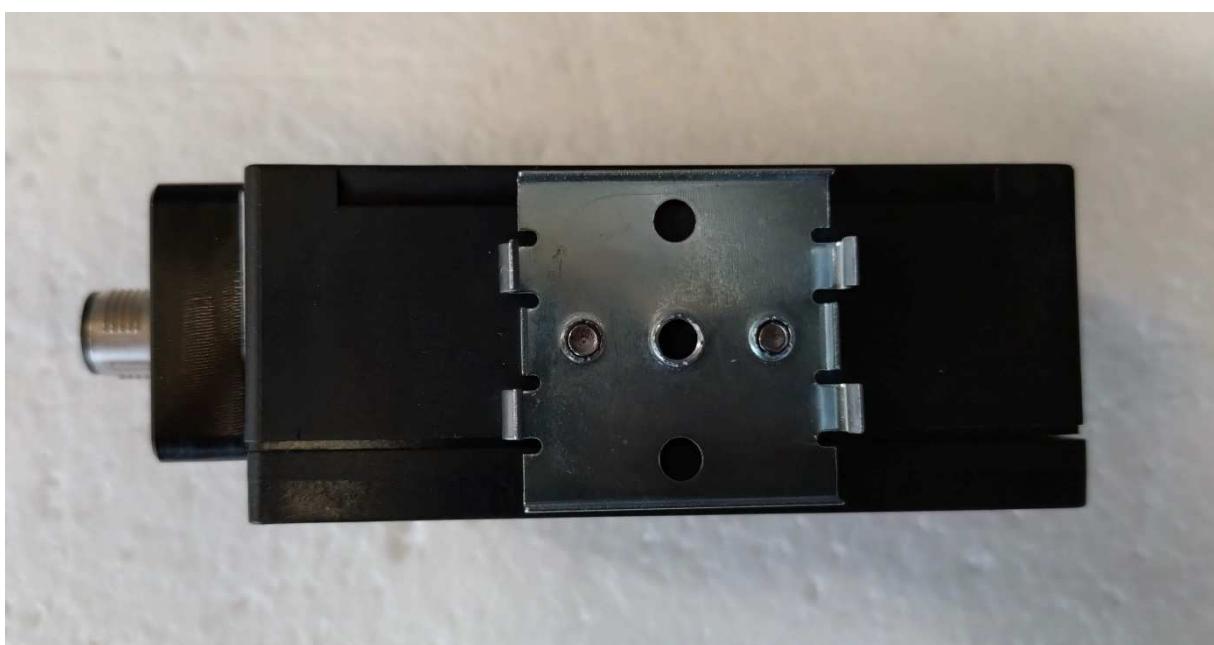
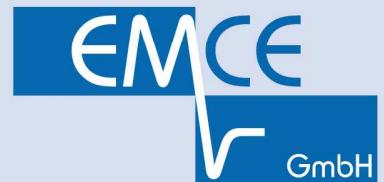
**Configuration:**  As-delivered condition



Modified

\*

\_\_\_\_\_


| Cable designation               | Type         | Length | Remarks                                       |
|---------------------------------|--------------|--------|-----------------------------------------------|
| <i>Antenna cable</i>            | n/a          | 2.0 m  | n/a                                           |
| <i>Interconnection cable</i>    | 5-core       | 1.6 m  | n/a                                           |
| <i>Power cord (AC) Notebook</i> | 3-core       | 1.0 m  | n/a                                           |
| <i>Power cord (DC) Notebook</i> | 2-core       | 1.8 m  | n/a                                           |
| <i>Power Cord (AC) PSU</i>      | 3-core       | 1.9 m  | n/a                                           |
| <i>Data cable</i>               | Sub-D 9-core | 1.5 m  | n/a                                           |
| <i>USB to SUB-D converter</i>   | 151801       | 0.5 m  | <i>Ferrite with 2 turns<br/>WE 742 712 21</i> |

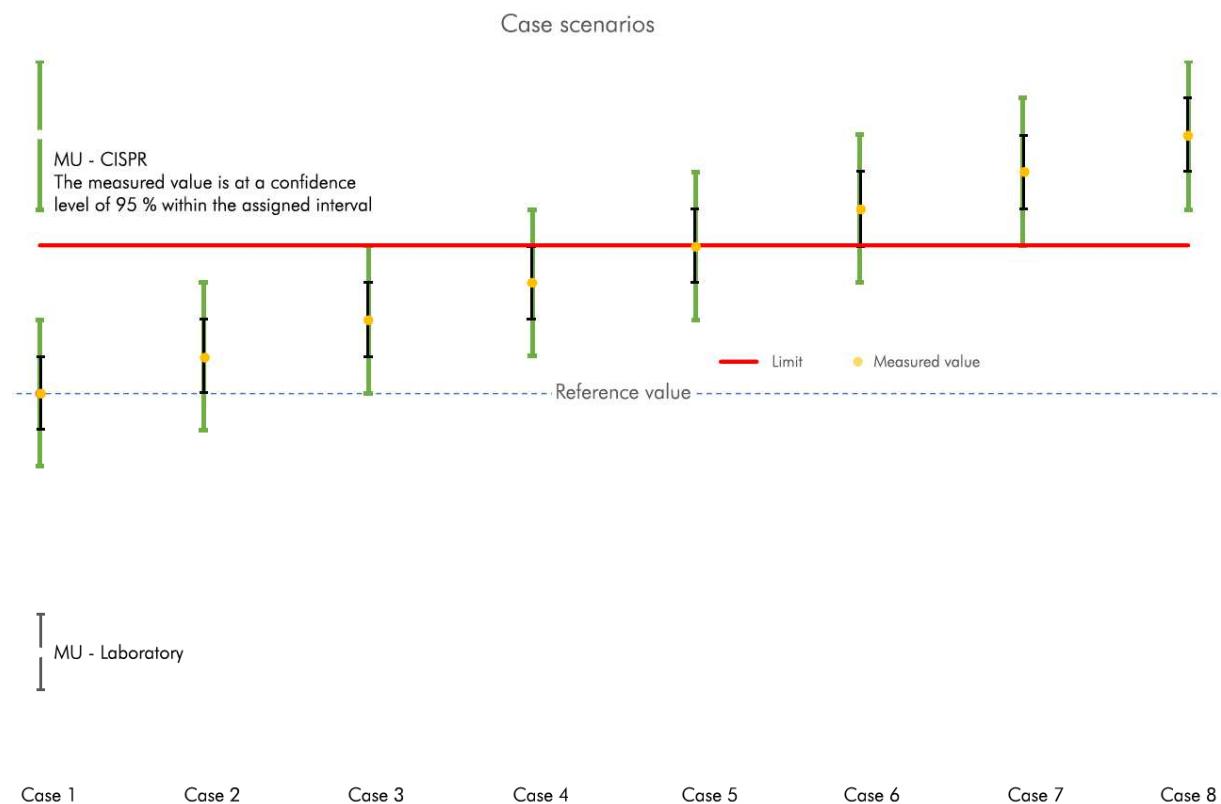
| Software designation       | Type                   | Manufacturer                               | Version |
|----------------------------|------------------------|--------------------------------------------|---------|
| <i>Evaluation software</i> | <i>ARE i9 Terminal</i> | <i>AEG Identifikationssysteme<br/>GmbH</i> | 1.084   |

### Pictures of the EUT








### **3 Decision rules for conformity assessment**

"Binary" decision rule - pass / fail

Unless otherwise stated in the test module, the following specifications apply:

Interference emission

No measurement uncertainties are taken into account for the statement of conformity. In the case of conducted and radiated interference emission, the measurement is considered passed if the measurement result is below the permitted limit value. The accepted measurement uncertainties for a direct statement of conformity, determined for the  $U_{\text{Lab}}$  laboratory, must be less than the  $U_{\text{CISPR}}$  values determined in the CISPR16-4-2 standard. The measurement uncertainties are stated with a confidence level of 95 %. In this case the uncertainty of measurement is not taken into account for the conformity statement.



The test is passed for case 1 - 5. A rejection is made in case 6 - 8.

The test is considered as passed if the evaluation criteria for immunity to interference and the limits of emitted interference of the specified standard are met. Measurement uncertainties are not considered.



#### 4 Test equipment list of EMCE GmbH

| Inv.-No. | Designation               | Type                                        | Manufacturer          | S/N                   | Calibration: Interval /valid until |
|----------|---------------------------|---------------------------------------------|-----------------------|-----------------------|------------------------------------|
| 002      | Passive probe             | ESH2-Z3                                     | Rohde & Schwarz       |                       | 1 Year(s)/ 2024-12-31              |
| 003      | LISN 1                    | ESH3-Z5                                     | Rohde & Schwarz       | 835268/007            | 1 Year(s)/ 2025-03-31              |
| 004      | LISN 2                    | ESH3-Z5                                     | Rohde & Schwarz       | 835268/003            | 1 Year(s)/ 2025-03-31              |
| 006      | LISN                      | NNBM 8125                                   | Schwarzbeck           | 8125371               | 1 Year(s)/ 2025-02-28              |
| 007      | Absorbing clamp           | MDS 21                                      | Schwarzbeck           | 942436                | 1 Year(s)/ 2025-01-31              |
| 008      | Loop antenna 9kHz-30MHz   | HFH2-Z2                                     | Rohde & Schwarz       | 835776/0002           | 3 Year(s)/ 2026-02-28              |
| 009      | Antenna 30-300MHz         | VHBA9123 / BBA9106                          | Schwarzbeck           | 435                   | 3 Year(s)/ 2024-12-22              |
| 010      | Antenna 250-1200MHz       | UHALP 9108A                                 | Schwarzbeck           | 108                   | 3 Year(s)/ 2025-12-20              |
| 013      | Antenna 9 kHz-30 MHz      | Ø 1.5 m                                     | EMCE GmbH             |                       | 1 Year(s)/ 2024-12-31              |
| 014      | OATS                      | Test site 3 m referred to ANSI C63.4a-2017  | EMCE GmbH             |                       | 3 Year(s)/ 2024-04-23              |
| 015      | OATS                      | Test site 10 m referred to ANSI C63.4a-2017 | EMCE GmbH             |                       | 3 Year(s)/ 2024-04-26              |
| 041      | Loop antenna shielded     | HZ-10 0816.2511.02                          | Rohde & Schwarz       | 849788/0020           | 3 Year(s)/ 2026-01-10              |
| 042-2    | AC-Source                 | EMV D 5000/PAS/SyCore                       | Spitzenberger & Spies | A274700 / 00501       | 3 Year(s)/ 2026-02-10              |
| 042-1    | Analyser Reference System | ARS 16/3                                    | Spitzenberger & Spies | A274707 / 00501       | 3 Year(s)/ 2024-12-28              |
| 043      | Receiver                  | 3DH/E Fieldmeter ESM-100                    | Maschek               | 971521                | 3 Year(s)/ 2026-09-11              |
| 058      | Receiver                  | ESIB 40                                     | Rohde & Schwarz       | 100200/ Firmware 4.35 | 1 Year(s)/ 2024-08-18              |
| 059      | Log.-per. antenna         | HL050                                       | Rohde & Schwarz       | 100006                | 3 Year(s)/ 2025-10-21              |
| 067      | LISN                      | ESH2-Z5                                     | Rohde & Schwarz       | 872460/043            | 1 Year(s)/ 2025-03-31              |
| 068      | LISN                      | ESH2-Z5                                     | Rohde & Schwarz       | 872460/042            | 1 Year(s)/ 2025-03-31              |



| Inv.-No. | Designation                                 | Type                | Manufacturer                        | S/N                              | Calibration: Interval / valid until |
|----------|---------------------------------------------|---------------------|-------------------------------------|----------------------------------|-------------------------------------|
| 070      | Pulse limiter + 10 dB Attenuator            | ESH3-Z2             | Rohde & Schwarz                     | n/a                              | 1 Year(s)/ 2024-08-31               |
| 116      | Vertical rod antenna                        | VAMP 9243           | Schwarzbeck                         | 9243-205                         | 3 Year(s)/ 2026-05-19               |
| 117      | LISN                                        | ESH3-Z6             | Rohde & Schwarz                     | 100521                           | 1 Year(s)/ 2025-02-28               |
| 118      | Current Probe                               | F-52                | Fischer Customs Communication, Inc. | 08398                            | 1 Year(s)/ 2025-01-31               |
| 151      | DSO Infiniium 2500 MHz                      | DSO9254A            | Agilent Technologies                | MY52090137                       | 2 Year(s)/ 2024-05-18               |
| 155      | Impedance stabilisation network             | ISN T400A           | Teseq GmbH                          | 26541                            | 3 Year(s)/ 2025-01-31               |
| 174      | LISN                                        | ESH3-Z6             | Rohde & Schwarz                     | 101003                           | 1 Year(s)/ 2025-02-28               |
| 175      | EMI Test receiver                           | ESR7                | Rohde & Schwarz                     | 101108<br>Firmware: FW V3.46 SP3 | 1 Year(s)/ 2024-11-15               |
| 178      | V-LISN 5 µH                                 | NNHV 8123-400       | Schwarzbeck                         | 018                              | 1 Year(s)/ 2025-02-28               |
| 184      | V-LISN 5 µH                                 | NNHV8123-400        | Schwarzbeck                         | 019                              | 1 Year(s)/ 2025-02-28               |
| 222      | Broadband Preamplifier 0.5-18 GHz           | BBV 9718            | Schwarzbeck                         | 9718-316                         | 1 Year(s)/ 2024-07-31               |
| 223      | Broadband Preamplifier 12-28 GHz            | BBV 9719            | Schwarzbeck                         | 9719-024                         | 1 Year(s)/ 2024-07-31               |
| 224      | SMB100A Signal Generator                    | SMB100A             | Rohde & Schwarz                     | 108055                           | 3 Year(s)/ 2026-01-25               |
| 225      | Electric and Magnetic Field Probe-Analyzer  | EHP-200A            | Narda S.T.S. / PMM                  | 170WX70205                       | 3 Year(s)/ 2025-07-22               |
| 226      | HL050 Log.-Per. Antenna 850 MHz to 26.5 GHz | HL050 4062.4063.02  | Rohde & Schwarz                     | 100829                           | 3 Year(s)/ 2026-07-27               |
| 229      | Test receiver                               | ESS 5 Hz - 1000 MHz | Rohde & Schwarz                     | 845420/0005                      | 1 Year(s)/ 2025-01-19               |
| 230      | FSV40 Signal Analyzer 40 GHz                | FSV40               | Rohde & Schwarz                     | 101717                           | 2 Year(s)/ 2026-02-06               |
| 236      | Broad-Band Horn Antenna 0.5-6 GHz           | BBHA 9120 E         | Schwarzbeck                         | 00831                            | 5 Year(s)/ 2024-05-13               |
| 237      | Exposure Level Tester                       | ELT-400             | Narda Safety Test Solutions         | O-0028                           | 3 Year(s)/ 2026-03-03               |



| Inv.-No. | Designation                           | Type                    | Manufacturer         | S/N         | Calibration: Interval /valid until |
|----------|---------------------------------------|-------------------------|----------------------|-------------|------------------------------------|
| 239      | Broadband Horn Antenna 15-40 GHz      | BBHA 9170               | Schwarzbeck          | 00932       | 5 Year(s)/ 2024-05-23              |
| 240      | Broadband Preamplifier 18-40 GHz      | BBV 9721                | Schwarzbeck          | 54          | 1 Year(s)/ 2024-07-31              |
| 253      | Broadband Preamplifier 20-1000 MHz    | ESV-Z3                  | Rohde & Schwarz      | 881 909/030 | 1 Year(s)/ 2024-08-31              |
| 257      | Pulse limiter + 10 dB Attenuator      | ESH3-Z2                 | Rohde & Schwarz      | 102769      | 1 Year(s)/ 2024-08-31              |
| 262      | EM Clamp                              | KEMZ 801A               | Teseq                | 78033       | 1 Year(s)/ 2025-01-31              |
| 718      | EMC-Software                          | BAT-EMC Vers. 3.18.0.19 | Nexio                | n/a         |                                    |
| 997      | EMC Software                          | EMC32 Vers. 10.60.20    | Rohde & Schwarz      | n/a         |                                    |
| 1046     | Environmental Simulation Chamber      | MKF 115 (E3.1)          | Binder GmbH          | 12-02215    | 3 Year(s)/ 2026-03-24              |
| 1212     | EMC Software                          | WMS32 Vers. 10.60.20    | Rohde & Schwarz      | n/a         |                                    |
| 1341     | Multimeter                            | 8845A                   | Fluke                | 5905001     | 3 Year(s)/ 2025-11-30              |
| 8004     | Broadband Preamplifier 18-40 GHz      | BLMA 1840-5G            | BONN Elektronik GmbH | 2113300     | 1 Year(s)/ 2024-07-31              |
| 8007     | LPDA Broadband Antenna 180 - 1500 MHz | VULP 9118A              | Schwarzbeck          | 899         | 3 Year(s)/ 2024-10-27              |
| 8008     | LPDA Broadband Antenna 180 - 1500 MHz | VULP 9118A              | Schwarzbeck          | 900         | 3 Year(s)/ 2024-10-27              |
| 8009     | Field Monitoring Loop                 | FESP 5134-1             | Schwarzbeck          | 00078       | 3 Year(s)/ 2024-12-20              |
| 8013     | Antenna 9 - 150 kHz                   | Ø 120 mm, 20 Turns      | EMCE GmbH            | n/a         |                                    |
| 8015     | Amplifier 2.5 - 6 GHz                 | BBA150-E100             | Rohde & Schwarz      | 105302      | 1 Year(s)/ 2024-08-31              |
| 8016     | Circular Loop Antenna 0.01 - 120 MHz  | HFRA 5164               | Schwarzbeck          | 00152       |                                    |
| 8017     | Compensation network for 13.56 MHz    | NFCN 1356               | Schwarzbeck          | 00122       |                                    |
| 8025     | Monopole Antenna 144 - 148 MHz        | HLC 146                 | Schwarzbeck          | 00057       | 3 Year(s)/ 2026-02-28              |



| Inv.-No. | Designation                     | Type               | Manufacturer    | S/N                    | Calibration: Interval /valid until |
|----------|---------------------------------|--------------------|-----------------|------------------------|------------------------------------|
| 8033     | Antenna 30-300 MHz              | VHBB9124 / BBA9106 | Schwarzbeck     | 1808                   | 3 Year(s)/ 2026-04-21              |
| 8034     | Antenna 30-300 MHz              | VHBB9124 / BBA9106 | Schwarzbeck     | 1812                   | 3 Year(s)/ 2026-04-21              |
| 8039     | Impedance Stabilisation Network | Pilot ISN          | Schwarzbeck     | 82                     | 1 Year(s)/ 2024-08-31              |
| 8042     | Manual Attenuator               | 8494B+8495B        | Keysight        | TH61358076+ TH61354943 | 1 Year(s)/ 2025-02-28              |
| 8044     | EMI Test Receiver               | ESW44              | Rohde & Schwarz | 103371                 | 1 Year(s)/ 2025-02-28              |

## 5 Testplan provided by customer

- Test according to the test plan provided by the customer
- Deviation from the test plan authorised by the customer
- Test according standard

| Source document | Date / Reviser | Modifications |
|-----------------|----------------|---------------|
|                 |                |               |
|                 |                |               |
|                 |                |               |



## 6 Test(s) according 47 CFR Part 15 Subpart C - 03/08/2024

### 6.1 Requirements and conformance test specifications

Standard

47 CFR Part 15 Subpart C

ANSI C63.10-2013

KDB n/a

| Requirement                                                                                         | Regulation section                  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------|
|                                                                                                     | 47 CFR Part 15 Subpart C            |
| <input checked="" type="checkbox"/> Antenna requirement                                             | § 15.203                            |
| <input checked="" type="checkbox"/> Restricted bands of operation                                   | § 15.205<br>(a) (b) (c) (d)(7))     |
| <input checked="" type="checkbox"/> Terminal voltage on powerline                                   | § 15.207<br>(a)                     |
| <input checked="" type="checkbox"/> Radiated emissions H-Field of intentional radiators             | § 15.209<br>(a) (b) (c) (d) (e) (f) |
| <input checked="" type="checkbox"/> Radiated emissions E-Field of intentional radiators             | § 15.209<br>(a) (b) (c) (d) (e) (f) |
| <input checked="" type="checkbox"/> Emission bandwidth inside the operating frequency band          | § 15.215<br>(c)                     |
| <input checked="" type="checkbox"/> Field strength mask within the operation band 13.110-14.010 MHz | § 15.225<br>(a) (b) (c) (d)         |
| <input checked="" type="checkbox"/> Frequency stability                                             | § 15.225<br>(e) (f)                 |

## 6.2 Antenna requirements

- No deviation from the standard
- Deviation from the standard\*
- Test not requested\*
- Test not carried out\*

\* \_\_\_\_\_

Measurement procedure:  
 Rules and specification  
 Guide

47 CFR Part 15 Section 15.203  
 n/a

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficiently to comply with the provisions of this section.

Antenna:

- Print antenna
- Internal antenna
- External antenna

|                                                    |                                        |
|----------------------------------------------------|----------------------------------------|
| <input checked="" type="checkbox"/> Single Antenna | <input type="checkbox"/> Antenna array |
| <input type="checkbox"/> MIMO                      | <input type="checkbox"/> _____         |

Antenna connector:

|                                                                                 |                                |
|---------------------------------------------------------------------------------|--------------------------------|
| <input type="checkbox"/> Permanent attached                                     | <input type="checkbox"/> _____ |
| <input checked="" type="checkbox"/> Unique coupling to the intentional radiator | <input type="checkbox"/> _____ |
| <input type="checkbox"/> SMA                                                    | <input type="checkbox"/> UFL   |
| <input type="checkbox"/> _____                                                  | <input type="checkbox"/> _____ |

### Test result

Requirement:

- kept
- not kept

Remarks: n/a



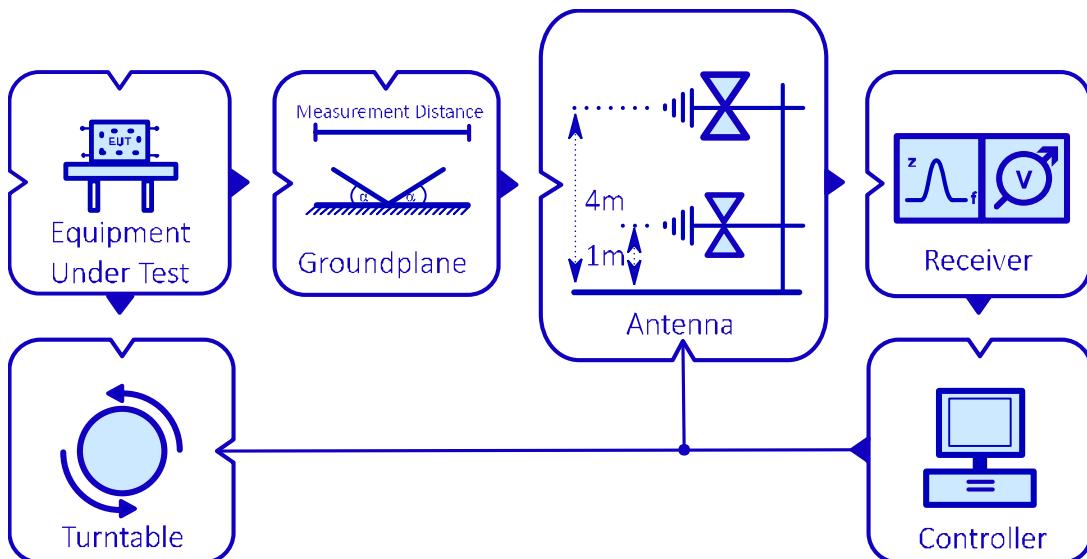
### 6.3 Restricted bands of operation

- No deviation from the standard
- Deviation from the standard
- Test not requested
- Test not carried out

\* \_\_\_\_\_

Requirement: 47 CFR Part 15 Section 15.205 (a)(b)(c)(d)(7))  
Guide n/a

#### Restricted bands


| f / MHz           | f / MHz             | f / MHz       | f / GHz     |
|-------------------|---------------------|---------------|-------------|
| 0.090-0.110       | 12.57675-12.57725   | 322-335.4     | 4.500-5.150 |
| 0.495 – 0.505     | 13.36-13.41         | 399.9-410     | 5.350-5.460 |
| 2.1735-2.1905     | 16.42-16.423        | 608-614       | 7.250-7.750 |
| 4.125-4.128       | 16.69475-16.69525   | 960-1427      | 8.025-8.500 |
| 4.17725-4.17775   | 16.80425-16.80475   | 1435-1626.5   | 9.0-9.2     |
| 4.20725-4.20775   | 25.5-25.67          | 1645.5-1646.5 | 9.3-9.5     |
| 5.677-5.683       | 37.5-38.25          | 1660-1710     | 10.6-12.7   |
| 6.215-6.218       | 73-74.6             | 1718.8-1722.2 | 13.25-13.4  |
| 6.26775-6.26825   | 74.8-75.2           | 2200-2300     | 14.47-14.5  |
| 6.31175-6.31225   | 108-138             | 2310-2390     | 15.35-16.2  |
| 8.291-8.294       | 149.9-150.05        | 2483.5-2500   | 17.7-21.4   |
| 8.362-8.366       | 156.52475-156.52525 | 2655-2900     | 22.01-23.12 |
| 8.37625-8.38675   | 156.7-156.9         | 3260-3267     | 23.6-24.0   |
| 8.41425-8.41475   | 162.0125-167.17     | 3332-3339     | 31.2-31.8   |
| 12.29-12.293      | 167.72-173.2        | 3345.8-3358   | 36.43-36.5  |
| 12.51975-12.52025 | 240-285             | 3500-4400     | above 38.6  |



Only spurious emissions are permitted in any of the frequency bands listed before. The field strength of emissions appearing within these frequency bands shall not exceed the radiated emission limits; general requirements. At frequencies equal to or less than 1000 MHz, compliance with the radiated emission limits; general requirements shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions.

#### Basic structure - Setup

#### OATS / SAC





### 6.3.1 Test set up

See test for radiated emissions of intentional radiators.

### Test location

See test for radiated emissions of intentional radiators.

### Used test equipment

See test for radiated emissions of intentional radiators.



### 6.3.2 Test

Used frequency band:  13.110-14.010 MHz

Nearest restricted band:  13.360-13.410 MHz

Limits for radiated emissions in the restricted bands

| Technical requirements |                 |                     |                          |
|------------------------|-----------------|---------------------|--------------------------|
| Detector               | Frequency / MHz | Limit / $\mu$ V/m   | Measurement distance / m |
| AV                     | 0.009 – 0.09    | 2400/F(kHz)         | 300                      |
| QP                     | 0.09 – 0.110    | 2400/F(kHz)         | 300                      |
| AV                     | 0.110 – 0.49    | 2400/F(kHz)         | 300                      |
| QP                     | 0.49 – 1.705    | 24000/F(kHz)        | 30                       |
| QP                     | 1.705 – 30.0    | 30                  | 30                       |
| Detector               | Frequency / MHz | Limit / $dB\mu$ V/m | Measurement distance / m |
| QP                     | 30.0 – 88.0     | 40.0                | 3                        |
| QP                     | 88.0 – 216.0    | 43.5                | 3                        |
| QP                     | 216.0 – 960.0   | 46.0                | 3                        |
| QP                     | 960.0 – 1000.0  | 54.0                | 3                        |
| AV                     | > 1000          | 54.0                | 3                        |
| PK                     | > 1000          | 74.0                | 3                        |

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

Devices operated pursuant to §15.225 [13.110-14.010 MHz] are exempt from complying with this section for the 13.36-13.41 MHz band only.



## Test procedure

See test for radiated emissions of intentional radiators.

## Test result

Used frequency range outside of restricted bands

kept\*  
 not kept

General emission limits for restricted frequency bands:

kept\*  
 not kept

See test for radiated emissions of intentional radiators.

Limits for next restricted frequency band:

kept\*  
 not kept

See test for spectrum mask within the operation band.

\*Devices operated pursuant to §15.225 [13.110-14.010 MHz]  
are exempt from complying with this section for the 13.36-13.41 MHz band only.

Remarks: n/a



## 6.4 Terminal voltage on powerline

- No deviation from the standard
- Deviation from the standard
- Test not requested
- Test not carried out

\* \_\_\_\_\_

### Measurement procedure:

Rules and specification  
Guide

47 CFR Part 15 Section 15.207 (a)  
ANSI C63.10-2013

The conducted disturbances are recorded in the frequency range from 150 kHz to 30 MHz. For this purpose line impedance stabilization networks (LISNs) are used which are inserted between the DUT and the mains supply. The output of one LISN is connected directly to a receiver according to CISPR 16 guidelines via a pulse limiter and 10 dB fixed attenuator. Not used ports of the LISN are terminated by 50  $\Omega$ . The Average- and Quasi-Peak-Detectors are provided to evaluate the spectrum. To speed up the measurement process, a pre-measurement is performed with the Peak- and Average-Detectors. The 10 frequencies with the smallest distance to the limit and priority with the highest exceeding are selected and re-measured. The Average and Quasi-Peak-Detectors are used for the final measurement. This measurement procedure is performed for each individual current conductor.

Depending on the limit lines, 6 final measurements are documented. The highest limit exceeding or, in case of compliance with the limit, the emissions found with the smallest distance to the limit are documented.

If less than six emission frequencies with a distance of 20 dB are below the limit value, the noise level of the measuring device at representative frequencies is indicated.

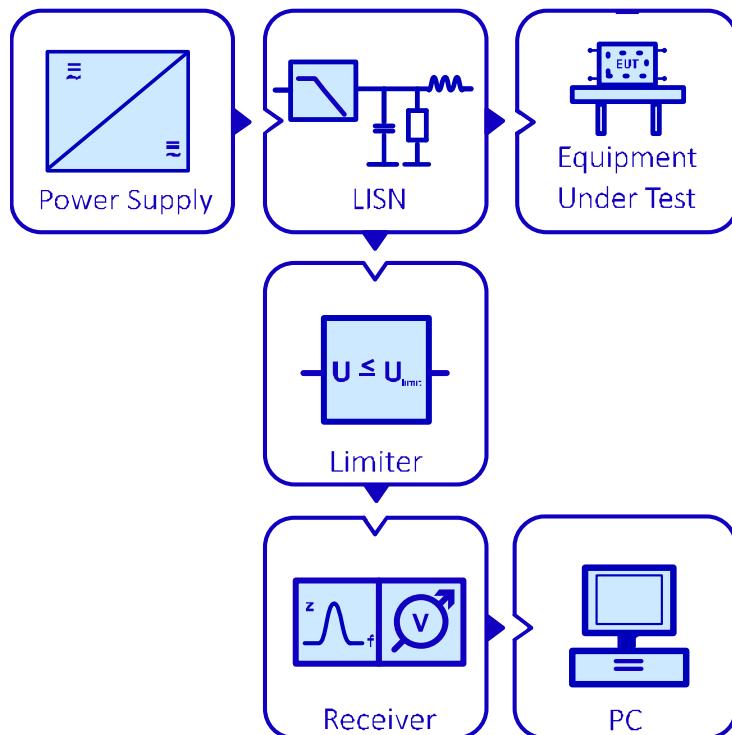
For the measurement, it may be necessary to terminate the antenna output to distinguish the interference level caused by the unintentional part from the intentional part (see ANSI C63.4 section 13.1.3.1).

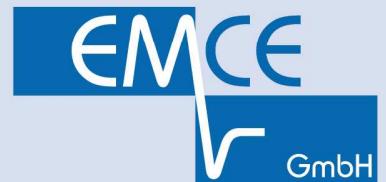


The documented final test results are calculated using the following formula:

$$U(f) \text{ (dB}\mu\text{V)} = \text{Measured Value (dB}\mu\text{V)} + \text{ATF (dB)} + \text{CF (dB)}$$

|                  |                                                            |
|------------------|------------------------------------------------------------|
| $U(f) =$         | Final result of the terminal voltage at the test frequency |
| Measured Value = | Reading of the uncorrected measured value                  |
| ATF =            | Correction factor for the pulse limiter + 10 dB attenuator |
| CF =             | Correction factor for the cable attenuation                |

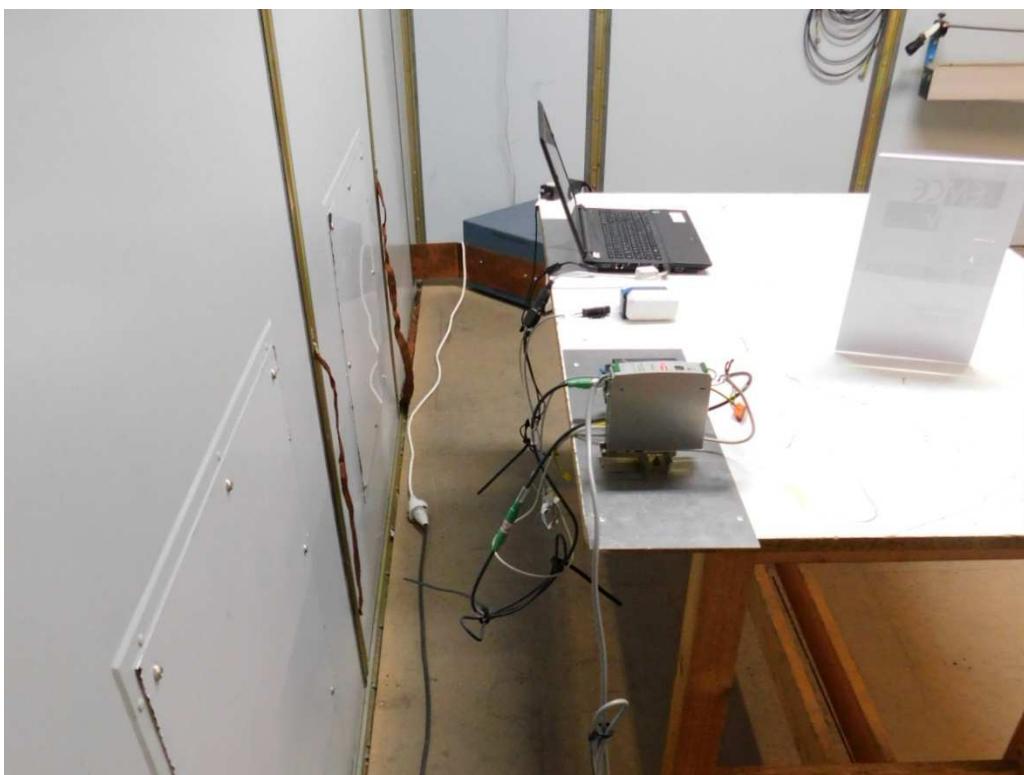

Example:

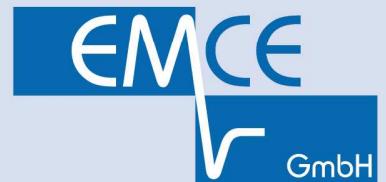

|                            |                 |
|----------------------------|-----------------|
| Test frequency             | 13.56 MHz       |
| Reading                    | 31.5 dB $\mu$ V |
| AFT <sub>(13.56 MHz)</sub> | 10.2 dB         |
| CF <sub>(13.56 MHz)</sub>  | 0.4 dB          |

Calculated final result for the terminal voltage  $U(f)$ :

$$U_{(13.56 \text{ MHz})} = 31.5 \text{ dB}\mu\text{V} + 10.2 \text{ dB} + 0.4 \text{ dB} = 42.1 \text{ dB}\mu\text{V}$$

Basic structure – Setup








#### 6.4.1 Test set up

According ANSI C63.10-2013







## Test location

| <input checked="" type="checkbox"/> | Inv.-No. | Designation       | Type<br>(L x W x H)          | Manufacturer                  | Location                                         |
|-------------------------------------|----------|-------------------|------------------------------|-------------------------------|--------------------------------------------------|
| <input checked="" type="checkbox"/> | 588      | Shielded room # 2 | 8.3/5.8 x 5.5/2.9<br>x 3.4 m | EMC-Technik & Consulting GmbH | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |
|                                     | 1319     | Shielded room #5  | 5.6 x 5.0 x 3.8 m            | Albatross Projects GmbH       | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |

## Used test equipment

| <input checked="" type="checkbox"/> | Inv.-No. | Designation                           | Type                   | Manufacturer          | S/N             |
|-------------------------------------|----------|---------------------------------------|------------------------|-----------------------|-----------------|
| <input checked="" type="checkbox"/> | 003      | LISN 1                                | ESH3-Z5                | Rohde & Schwarz       | 835268/007      |
|                                     | 004      | LISN 2                                | ESH3-Z5                | Rohde & Schwarz       | 835268/003      |
|                                     | 005      | LISN 3                                | NNB 4/32T              | Rolf Heine HF-Technik | 4/32T-96015     |
| <input checked="" type="checkbox"/> | 042      | AC-Source / Analyzer / Norm impedance | EMV D5000/PAS          | Spitzenberger + Spies | A274700/ 0 0501 |
|                                     | 058      | Test receiver                         | ESIB 40                | Rohde & Schwarz       | 100200          |
|                                     | 067      | LISN 5                                | ESH2-Z5                | Rohde & Schwarz       | 0872460/043     |
| <input checked="" type="checkbox"/> | 068      | LISN 4                                | ESH2-Z5                | Rohde & Schwarz       | 0872460/042     |
| <input checked="" type="checkbox"/> | 070      | Pulse limiter / 10 dB attenuator      | ESH3-Z2                | Rohde & Schwarz       | 357.8810.52     |
| <input checked="" type="checkbox"/> | 175      | EMI Test receiver                     | ESR7                   | Rohde & Schwarz       | 101108          |
|                                     | 229      | Test receiver                         | ESS<br>5 Hz – 1000 MHz | Rohde & Schwarz       | 845420/0005     |
| <input checked="" type="checkbox"/> | 997      | Software                              | EMC32                  | Rohde & Schwarz       | n/a             |

All used test equipment are checked resp. calibrated periodically.

Test equipment was checked and complied to the requirements



### Test-/Measurement uncertainty

The measurement uncertainty in the test met the guideline of CISPR16-4-2 or better.

Measurement uncertainty of the terminal voltage with an extended coverage factor of  $k = 2$ :

| Frequency        | Measurement uncertainty |
|------------------|-------------------------|
| 9 kHz – 150 kHz  | 4.0 dB                  |
| 150 kHz – 30 MHz | 3.6 dB                  |



## 6.4.2 Test

Requirement 47 CFR Part 15 Section 15.207 (a)

Frequency range: 150 kHz – 30 MHz

Limits for conducted emissions

| Technical requirements |                 |                                |                                |
|------------------------|-----------------|--------------------------------|--------------------------------|
| Detector               | Frequency / MHz | Limit QP-Detector / dB $\mu$ V | Limit AV-Detector / dB $\mu$ V |
| QP<br>AV               | 0.15 – 0.5      | 66.0 – 56.0                    | 56.0 – 46.0                    |
| QP<br>AV               | 0.5 – 5.0       | 56.0                           | 46.0                           |
| QP<br>AV               | 5.0 – 30.0      | 60                             | 50.0                           |

### Rationale for selecting the EUT test set up

Equipment units:

Minimal setup with EUT and external power supply unit. The DIN rail housing of the EUT and the power supply unit were mounted together on a metal plate at a distance of >10 cm from each other. The metal plate was earthed via the power supply unit. This design was chosen because it corresponds to the later intended use. The antenna was positioned away from the metal plate above a non-conductive surface. A remote laptop was provided for displaying the data from the reader.

Cabling:

- Standard cables
- Special cables provided by the manufacturer

| Port # | Designation         | Remarks |
|--------|---------------------|---------|
| # 1    | AC power line (EUT) | L1/N/PE |
| # 2    | AC power line (AE)  | L1/N/PE |
| # 3    |                     |         |



## Operation mode

EUT arrangement:

Tabletop

Floor standing

Power supply:

120 V/60 Hz

240 V/60 Hz

The EUT was operated in read mode at maximum read speed, where the ID of a tag was read out cyclically every 80 ms. This ID was sent to a remote PC which was connected to the EUT via a USB interface. The tag was placed at a distance of 2 cm in front of the antenna.

## Environmental conditions

Temperature [10 – 40 °C]:

24 °C

Relative humidity [10 – 90 %]:

32 %

Environmental conditions during the test:

kept

not kept

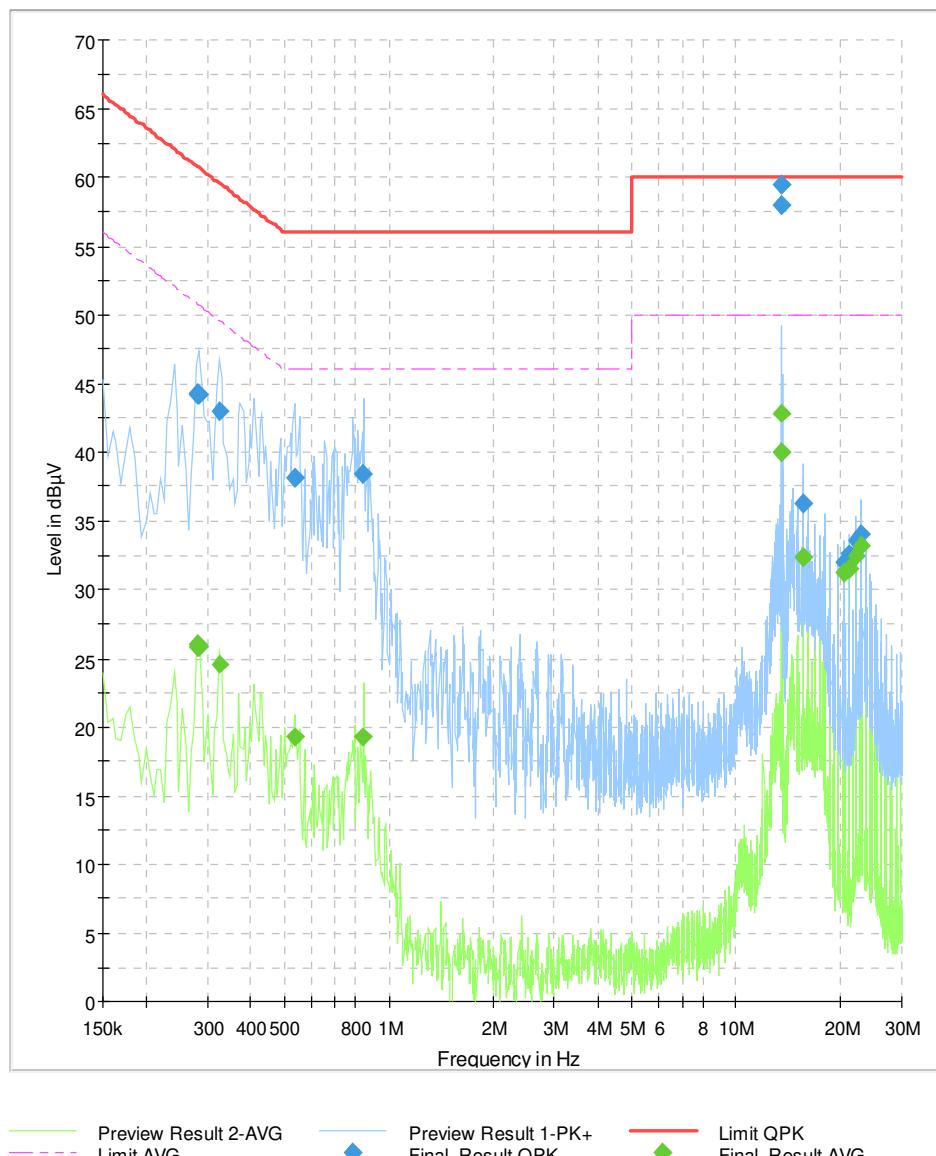
## Test result

Limits for conducted powerline emissions:

kept

not kept

Remarks: n/a


## Protocol scope

- Readings – emissions for EUT
- Diagrams - emissions for EUT
- Readings - emissions for AE
- Diagrams - emissions for AE

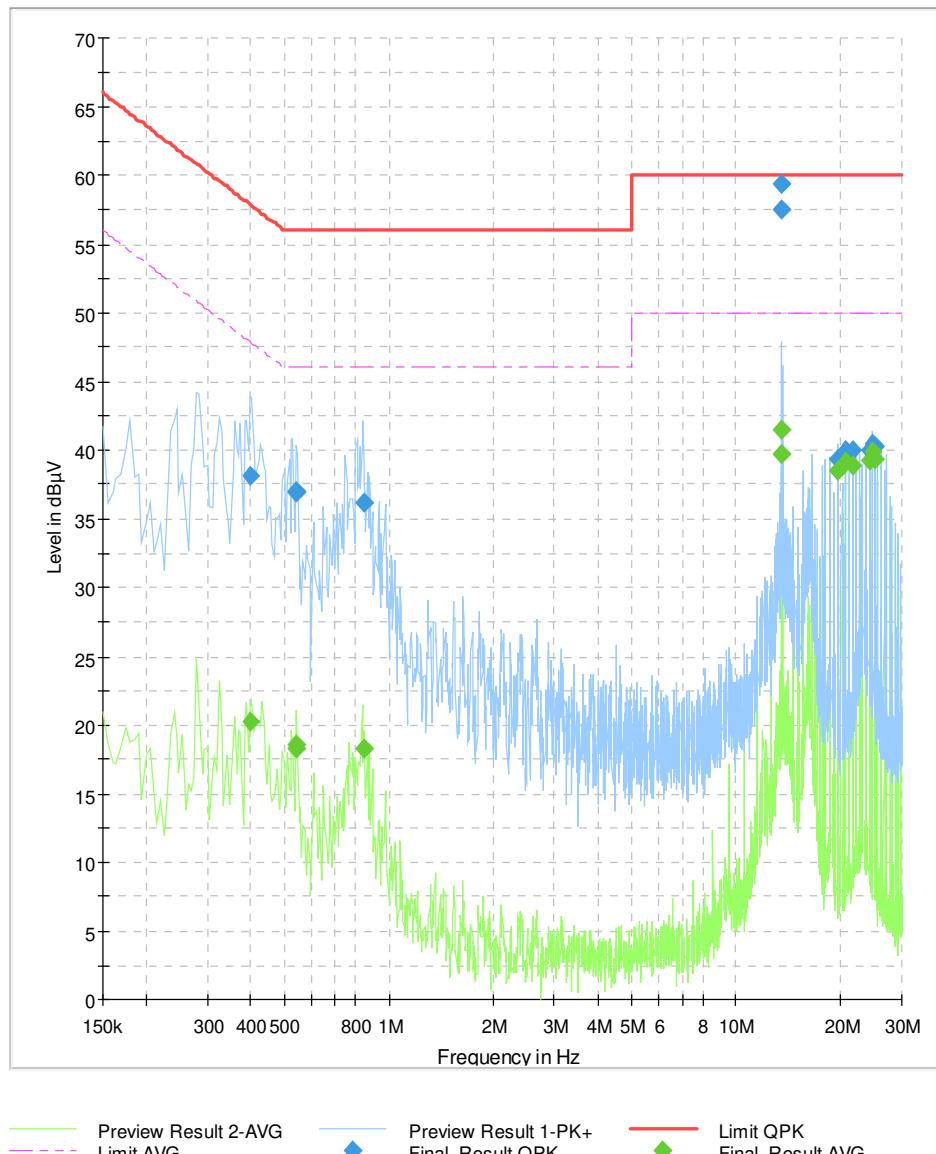


## EUT Information

EUT Name: ARE i2.0x HF  
Test\_ID: / SN: 23-0148PR07-004  
Customer: AEG Identifikationssysteme GmbH  
Operational condition: Reading mode (cyclical reading every 80 ms)  
Test specification: 47 CFR Part 15 Subpart C §15.207  
LISN port N / EUT  
Operator: S. Vogelmann  
File #: 23-0148RC10-004-001  
Comment #1:  
Comment #2:






## Final Result

| Frequency (MHz) | QuasiPeak (dB $\mu$ V) | Average (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Corr. (dB) |
|-----------------|------------------------|----------------------|--------------------|-------------|-----------------|-----------------|------|------------|
| 0.281000        | ---                    | 25.81                | 50.79              | 24.98       | 15000.0         | 9.000           | N    | 10.1       |
| 0.281000        | 44.17                  | ---                  | 60.79              | 16.62       | 15000.0         | 9.000           | N    | 10.1       |
| 0.283000        | ---                    | 26.03                | 50.73              | 24.70       | 15000.0         | 9.000           | N    | 10.1       |
| 0.283000        | 44.35                  | ---                  | 60.73              | 16.38       | 15000.0         | 9.000           | N    | 10.1       |
| 0.284000        | 44.17                  | ---                  | 60.70              | 16.53       | 15000.0         | 9.000           | N    | 10.1       |
| 0.284000        | ---                    | 25.85                | 50.70              | 24.85       | 15000.0         | 9.000           | N    | 10.1       |
| 0.326000        | 42.93                  | ---                  | 59.55              | 16.62       | 15000.0         | 9.000           | N    | 10.1       |
| 0.326000        | ---                    | 24.56                | 49.55              | 24.99       | 15000.0         | 9.000           | N    | 10.1       |
| 0.537000        | 38.11                  | ---                  | 56.00              | 17.89       | 15000.0         | 9.000           | N    | 10.1       |
| 0.537000        | ---                    | 19.26                | 46.00              | 26.74       | 15000.0         | 9.000           | N    | 10.1       |
| 0.843000        | 38.41                  | ---                  | 56.00              | 17.59       | 15000.0         | 9.000           | N    | 10.2       |
| 0.843000        | ---                    | 19.24                | 46.00              | 26.76       | 15000.0         | 9.000           | N    | 10.2       |
| 13.562000       | ---                    | 42.78                | 50.00              | 7.22        | 15000.0         | 9.000           | N    | 10.7       |
| 13.562000       | 59.47                  | ---                  | 60.00              | 0.53        | 15000.0         | 9.000           | N    | 10.7       |
| 13.564000       | ---                    | 39.95                | 50.00              | 10.05       | 15000.0         | 9.000           | N    | 10.7       |
| 13.564000       | 58.04                  | ---                  | 60.00              | 1.96        | 15000.0         | 9.000           | N    | 10.7       |
| 15.646000       | 36.35                  | ---                  | 60.00              | 23.65       | 15000.0         | 9.000           | N    | 10.8       |
| 15.646000       | ---                    | 32.31                | 50.00              | 17.69       | 15000.0         | 9.000           | N    | 10.8       |
| 20.379000       | 31.97                  | ---                  | 60.00              | 28.03       | 15000.0         | 9.000           | N    | 10.9       |
| 20.379000       | ---                    | 31.22                | 50.00              | 18.78       | 15000.0         | 9.000           | N    | 10.9       |
| 21.226000       | 32.61                  | ---                  | 60.00              | 27.39       | 15000.0         | 9.000           | N    | 11.0       |
| 21.226000       | ---                    | 31.45                | 50.00              | 18.55       | 15000.0         | 9.000           | N    | 11.0       |
| 22.075000       | 33.54                  | ---                  | 60.00              | 26.46       | 15000.0         | 9.000           | N    | 11.0       |
| 22.075000       | ---                    | 32.49                | 50.00              | 17.51       | 15000.0         | 9.000           | N    | 11.0       |
| 22.926000       | 34.10                  | ---                  | 60.00              | 25.90       | 15000.0         | 9.000           | N    | 10.9       |
| 22.926000       | ---                    | 33.19                | 50.00              | 16.81       | 15000.0         | 9.000           | N    | 10.9       |

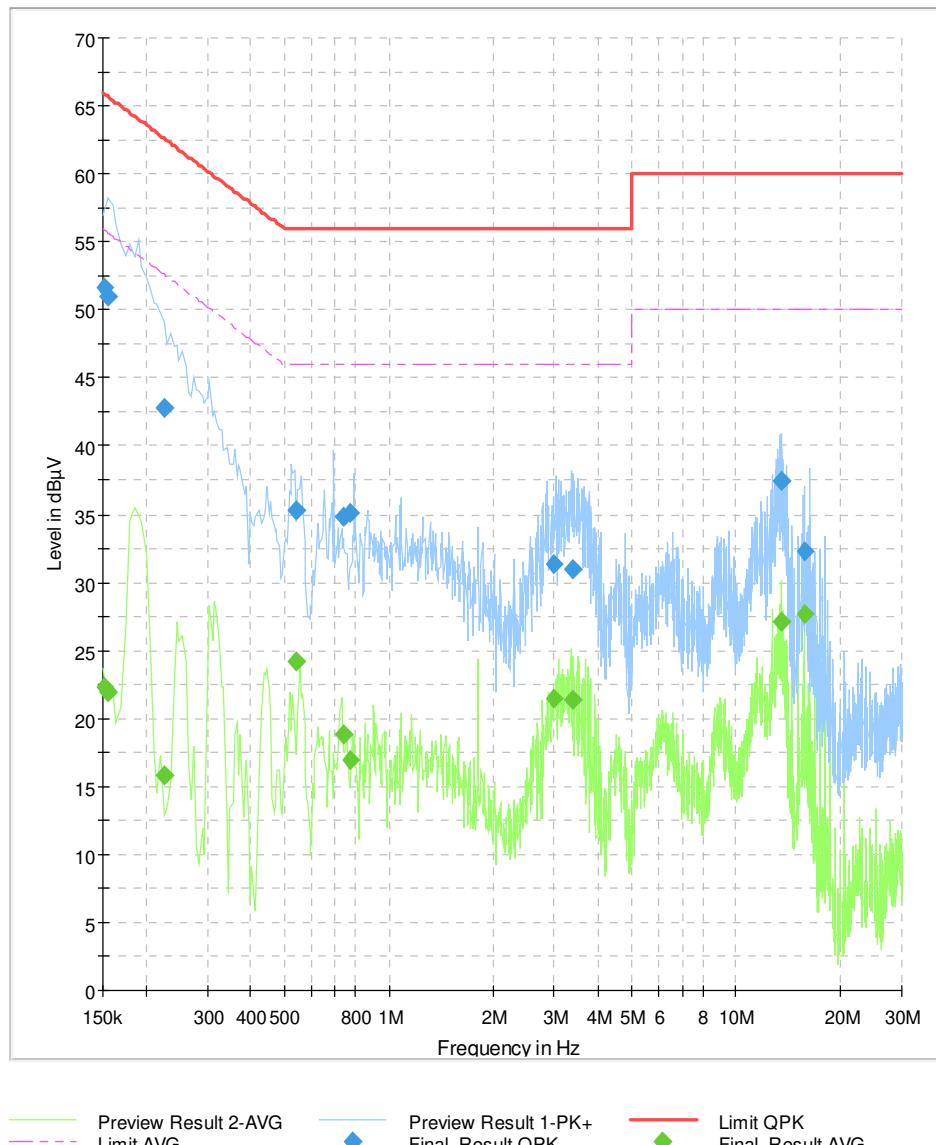


## EUT Information

EUT Name: ARE i2.0x HF  
Test\_ID: / SN: 23-0148PR07-004  
Customer: AEG Identifikationssysteme GmbH  
Operational condition: Reading mode (cyclical reading every 80 ms)  
Test specification: 47 CFR Part 15 Subpart C §15.207  
LISN port L1 / EUT  
Operator: S. Vogelmann  
File #: 23-0148RC10-004-002  
Comment #1:  
Comment #2:






## Final Result

| Frequency (MHz) | QuasiPeak (dB $\mu$ V) | Average (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Corr. (dB) |
|-----------------|------------------------|----------------------|--------------------|-------------|-----------------|-----------------|------|------------|
| 0.400000        | ---                    | 20.25                | 47.85              | 27.61       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.400000        | 38.15                  | ---                  | 57.85              | 19.71       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.538000        | ---                    | 18.55                | 46.00              | 27.45       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.538000        | 37.00                  | ---                  | 56.00              | 19.00       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.540000        | ---                    | 18.26                | 46.00              | 27.74       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.540000        | 36.88                  | ---                  | 56.00              | 19.12       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.844000        | ---                    | 18.27                | 46.00              | 27.73       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.844000        | 36.21                  | ---                  | 56.00              | 19.79       | 15000.0         | 9.000           | L1   | 10.1       |
| 13.563000       | ---                    | 41.50                | 50.00              | 8.50        | 15000.0         | 9.000           | L1   | 10.7       |
| 13.563000       | 59.40                  | ---                  | 60.00              | 0.60        | 15000.0         | 9.000           | L1   | 10.7       |
| 13.564000       | ---                    | 39.79                | 50.00              | 10.21       | 15000.0         | 9.000           | L1   | 10.7       |
| 13.564000       | 57.54                  | ---                  | 60.00              | 2.46        | 15000.0         | 9.000           | L1   | 10.7       |
| 19.625000       | ---                    | 38.58                | 50.00              | 11.42       | 15000.0         | 9.000           | L1   | 10.8       |
| 19.625000       | 39.44                  | ---                  | 60.00              | 20.56       | 15000.0         | 9.000           | L1   | 10.8       |
| 20.628000       | ---                    | 39.13                | 50.00              | 10.87       | 15000.0         | 9.000           | L1   | 10.9       |
| 20.628000       | 39.99                  | ---                  | 60.00              | 20.01       | 15000.0         | 9.000           | L1   | 10.9       |
| 21.633000       | ---                    | 38.87                | 50.00              | 11.13       | 15000.0         | 9.000           | L1   | 11.0       |
| 21.633000       | 40.01                  | ---                  | 60.00              | 19.99       | 15000.0         | 9.000           | L1   | 11.0       |
| 24.152000       | ---                    | 39.29                | 50.00              | 10.71       | 15000.0         | 9.000           | L1   | 10.9       |
| 24.152000       | 40.05                  | ---                  | 60.00              | 19.95       | 15000.0         | 9.000           | L1   | 10.9       |
| 24.653000       | ---                    | 39.87                | 50.00              | 10.13       | 15000.0         | 9.000           | L1   | 10.9       |
| 24.653000       | 40.51                  | ---                  | 60.00              | 19.49       | 15000.0         | 9.000           | L1   | 10.9       |
| 25.158000       | ---                    | 39.37                | 50.00              | 10.63       | 15000.0         | 9.000           | L1   | 10.9       |
| 25.158000       | 40.27                  | ---                  | 60.00              | 19.73       | 15000.0         | 9.000           | L1   | 10.9       |

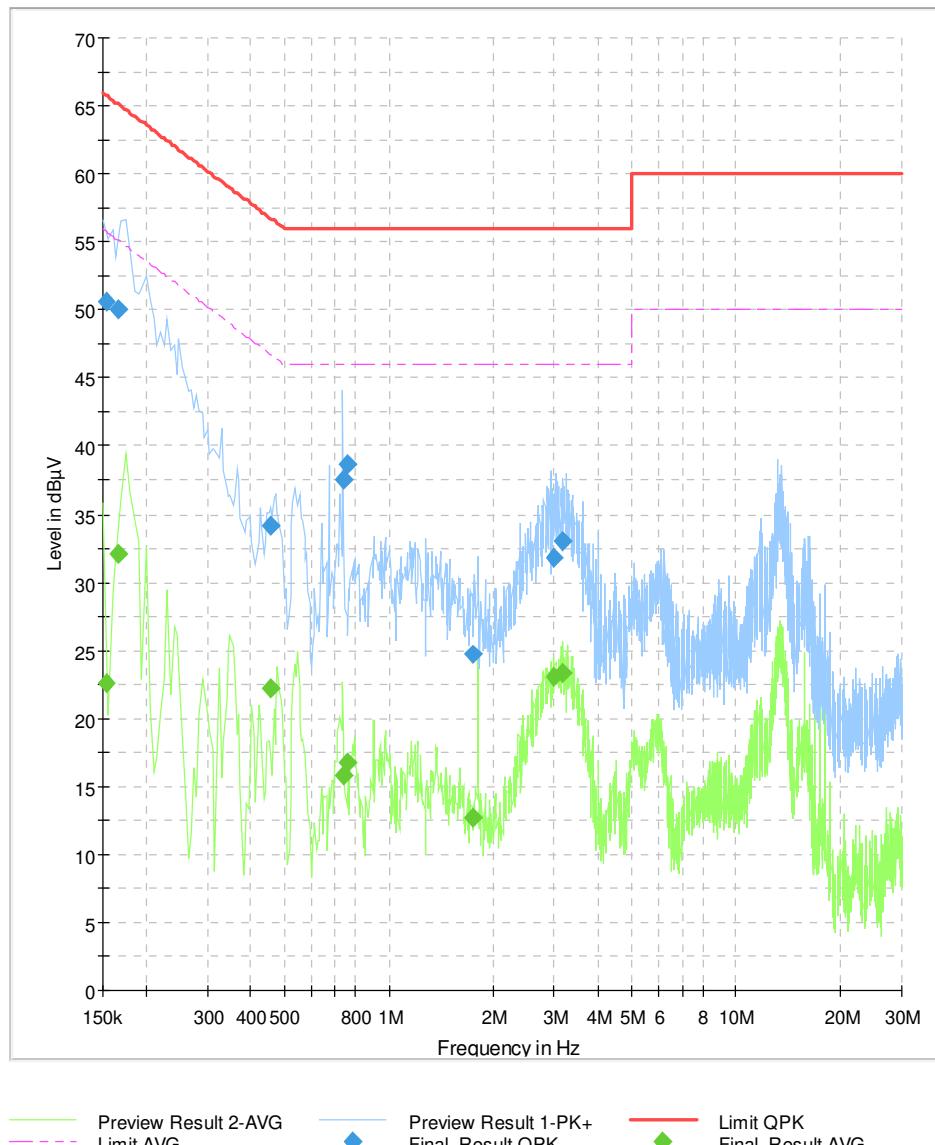


## EUT Information

EUT Name: ARE i2.0x HF  
Test\_ID: / SN: 23-0148PR07-004  
Customer: AEG Identifikationssysteme GmbH  
Operational condition: Reading mode (cyclical reading every 80 ms)  
Test specification: 47 CFR Part 15 Subpart C §15.207  
LISN port N / AE  
Operator: S. Vogelmann  
File #: 23-0148RC10-004-003  
Comment #1:  
Comment #2:






## Final Result

| Frequency (MHz) | QuasiPeak (dB $\mu$ V) | Average (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Corr. (dB) |
|-----------------|------------------------|----------------------|--------------------|-------------|-----------------|-----------------|------|------------|
| 0.152000        | 51.72                  | ---                  | 65.89              | 14.17       | 15000.0         | 9.000           | N    | 10.0       |
| 0.152000        | ---                    | 22.33                | 55.89              | 33.56       | 15000.0         | 9.000           | N    | 10.0       |
| 0.156000        | 51.08                  | ---                  | 65.67              | 14.60       | 15000.0         | 9.000           | N    | 10.0       |
| 0.156000        | ---                    | 21.97                | 55.67              | 33.70       | 15000.0         | 9.000           | N    | 10.0       |
| 0.225000        | 42.77                  | ---                  | 62.63              | 19.87       | 15000.0         | 9.000           | N    | 10.1       |
| 0.225000        | ---                    | 15.79                | 52.63              | 36.84       | 15000.0         | 9.000           | N    | 10.1       |
| 0.543000        | 35.37                  | ---                  | 56.00              | 20.63       | 15000.0         | 9.000           | N    | 10.1       |
| 0.543000        | ---                    | 24.19                | 46.00              | 21.81       | 15000.0         | 9.000           | N    | 10.1       |
| 0.741000        | 34.84                  | ---                  | 56.00              | 21.16       | 15000.0         | 9.000           | N    | 10.2       |
| 0.741000        | ---                    | 18.84                | 46.00              | 27.16       | 15000.0         | 9.000           | N    | 10.2       |
| 0.773000        | 35.02                  | ---                  | 56.00              | 20.98       | 15000.0         | 9.000           | N    | 10.2       |
| 0.773000        | ---                    | 16.96                | 46.00              | 29.04       | 15000.0         | 9.000           | N    | 10.2       |
| 3.004000        | 31.28                  | ---                  | 56.00              | 24.72       | 15000.0         | 9.000           | N    | 10.3       |
| 3.004000        | ---                    | 21.44                | 46.00              | 24.56       | 15000.0         | 9.000           | N    | 10.3       |
| 3.402000        | 30.93                  | ---                  | 56.00              | 25.07       | 15000.0         | 9.000           | N    | 10.3       |
| 3.402000        | ---                    | 21.29                | 46.00              | 24.71       | 15000.0         | 9.000           | N    | 10.3       |
| 13.561000       | 37.41                  | ---                  | 60.00              | 22.59       | 15000.0         | 9.000           | N    | 10.7       |
| 13.561000       | ---                    | 27.10                | 50.00              | 22.90       | 15000.0         | 9.000           | N    | 10.7       |
| 15.726000       | 32.31                  | ---                  | 60.00              | 27.69       | 15000.0         | 9.000           | N    | 10.8       |
| 15.726000       | ---                    | 27.67                | 50.00              | 22.33       | 15000.0         | 9.000           | N    | 10.8       |



## EUT Information

EUT Name: ARE i2.0x HF  
Test\_ID: / SN: 23-0148PR07-004  
Customer: AEG Identifikationssysteme GmbH  
Operational condition: Reading mode (cyclical reading every 80 ms)  
Test specification: 47 CFR Part 15 Subpart C §15.207  
LISN port L1 / AE  
Operator: S. Vogelmann  
File #: 23-0148RC10-004-004  
Comment #1:  
Comment #2:





## Final Result

| Frequency (MHz) | QuasiPeak (dB $\mu$ V) | Average (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Corr. (dB) |
|-----------------|------------------------|----------------------|--------------------|-------------|-----------------|-----------------|------|------------|
| 0.154000        | ---                    | 22.63                | 55.78              | 33.16       | 15000.0         | 9.000           | L1   | 10.0       |
| 0.154000        | 50.71                  | ---                  | 65.78              | 15.07       | 15000.0         | 9.000           | L1   | 10.0       |
| 0.166000        | ---                    | 32.02                | 55.16              | 23.14       | 15000.0         | 9.000           | L1   | 10.0       |
| 0.166000        | 50.06                  | ---                  | 65.16              | 15.10       | 15000.0         | 9.000           | L1   | 10.0       |
| 0.455000        | 34.22                  | ---                  | 56.78              | 22.56       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.455000        | ---                    | 22.19                | 46.78              | 24.60       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.745000        | 37.56                  | ---                  | 56.00              | 18.44       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.745000        | ---                    | 15.88                | 46.00              | 30.12       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.761000        | 38.66                  | ---                  | 56.00              | 17.34       | 15000.0         | 9.000           | L1   | 10.1       |
| 0.761000        | ---                    | 16.69                | 46.00              | 29.31       | 15000.0         | 9.000           | L1   | 10.1       |
| 1.735000        | 24.68                  | ---                  | 56.00              | 31.32       | 15000.0         | 9.000           | L1   | 10.2       |
| 1.735000        | ---                    | 12.77                | 46.00              | 33.23       | 15000.0         | 9.000           | L1   | 10.2       |
| 3.003000        | 31.76                  | ---                  | 56.00              | 24.24       | 15000.0         | 9.000           | L1   | 10.3       |
| 3.003000        | ---                    | 23.07                | 46.00              | 22.93       | 15000.0         | 9.000           | L1   | 10.3       |
| 3.180000        | 33.11                  | ---                  | 56.00              | 22.89       | 15000.0         | 9.000           | L1   | 10.3       |
| 3.180000        | ---                    | 23.33                | 46.00              | 22.67       | 15000.0         | 9.000           | L1   | 10.3       |



## 6.5 Radiated emissions H-Field of intentional radiators

- No deviation from the standard
- Deviation from the standard
- Test not requested
- Test not carried out

\* \_\_\_\_\_

### Measurement procedure:

Rules and specification  
Guide

47 CFR Part 15 Section 15.209 (a)(b)(c)(d)(e)(f)  
ANSI C63.10-2013

The radiated magnetic fields are measured in a frequency range from 9 kHz to 30 MHz. For this purpose, a shielded active loop antenna is used, which is directly connected to a receiver according to CISPR 16 specifications. For the measurement, the loop antenna is successively aligned once parallel to the DUT and once perpendicular to the DUT. The center of the loop antenna is 1 m above the ground. This setup is also used to determine the spectrum of intentional radiators.

The test is performed at a distance of 3 m between the antenna and the EUT in the frequency range up to 30MHz. A Quasi-Peak or Average-Detector is used, depending on the frequency range. The Average-Detector is used in the frequency bands 9-90 kHz and 110-490 kHz, otherwise the quasi-peak is determined. For pulse modulated devices with a pulse repetition frequency of 20 Hz or less, the Peak-Detector is used (§15.35a Note).

To speed up the measurement process, a pre-measurement is performed with the Peak- and Average-Detectors. The spectrum is determined by rotating the EUT by 360° and the antenna orientation changed accordingly. The maxhold function is used. Hand-held or body-worn devices are rotated through three orthogonal axes to determine maximum emanation. Also the placement and layout of the equipment and the cables are arranged to maximize the disturbance level.

For the re-measurement, the 10 frequencies with the highest exceedance or the smallest distance to the limit are selected. The Average and Quasi-Peak-Detectors are used for the final measurement. Depending on the limit lines, 6 final measurements are documented. The highest limit exceeding or, in case of compliance with the limit, the emissions found with the smallest distance to the limit are documented.

If less than six emission frequencies with a distance of 20 dB are below the limit value, the noise level of the measuring device at representative frequencies is indicated.



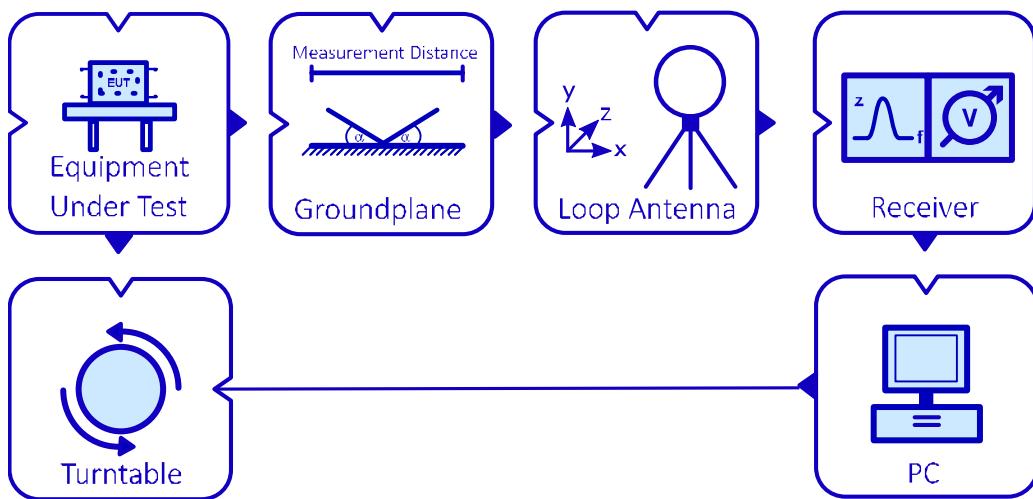
The final measurement is performed at a test distance of 3 m. In case the regulation requires testing at different distances, the result is extrapolated by an extrapolation factor 40 dB / decade to the required distance. Frequency, the measured value, antenna information and the limit will be printed out.

The reported test results are calculated using the following formula to normalize the results for the requested test distance:

$$\text{Field strength (dB}\mu\text{V/m)} = \text{Reading (dB}\mu\text{V)} + \text{AF (dB/m)} + \text{CF (dB)} + 40 * (\text{DT/DR}) \text{ (dB)}$$

AF = Correction factor for the antenna

CF = Correction factor for the cable loss

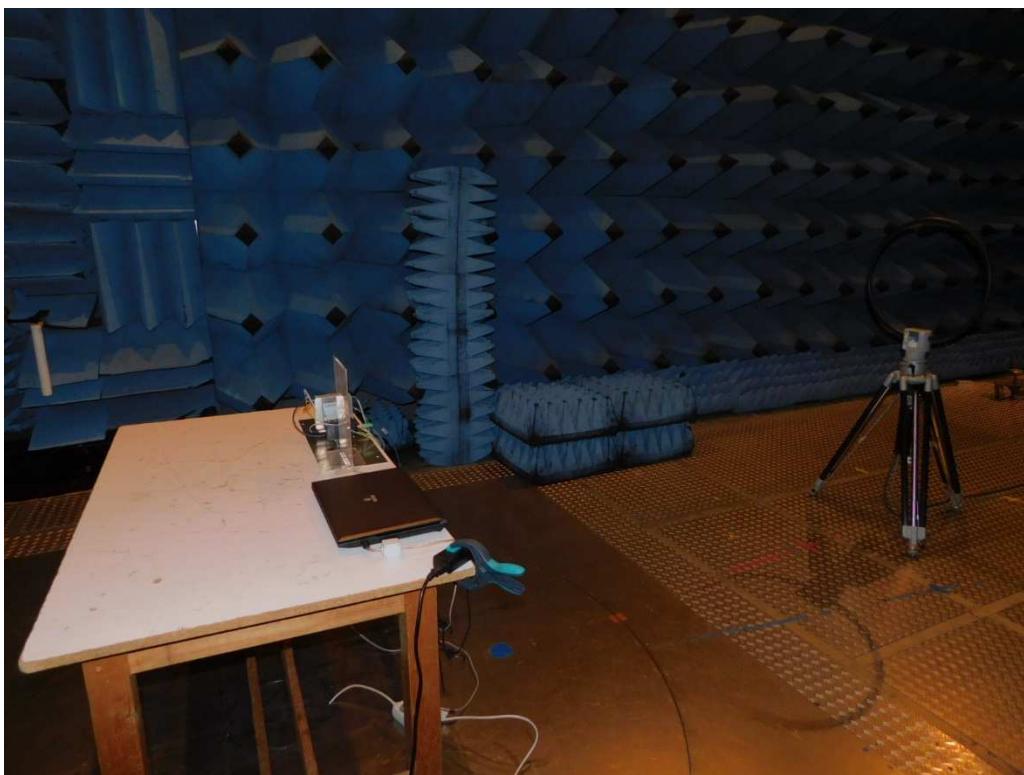
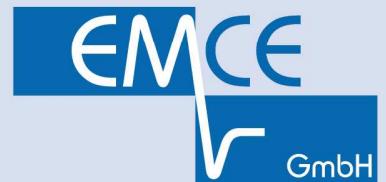

DT = Test distance

DR = Reference distance for the limit defined in the standard



## Basic structure - Setup

### OATS / SAC




### 6.5.1 Test set up

According ANSI C63.10-2013







## Test location

| Pre-compliance test                 |          |                                 |                     |                                  |                                                  |
|-------------------------------------|----------|---------------------------------|---------------------|----------------------------------|--------------------------------------------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                     | Type<br>(L x W x H) | Manufacturer                     | Location                                         |
| <input checked="" type="checkbox"/> | 062      | Semi anechoic<br>chamber<br># 2 | 13.5 x 6.1 x 5.5 m  | EMC-Technik &<br>Consulting GmbH | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |

| Final test                          |          |                                 |                     |                                  |                                                  |
|-------------------------------------|----------|---------------------------------|---------------------|----------------------------------|--------------------------------------------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                     | Type<br>(L x W x H) | Manufacturer                     | Location                                         |
| <input checked="" type="checkbox"/> | 062      | Semi anechoic<br>chamber<br># 2 | 13.5 x 6.1 x 5.5 m  | EMC-Technik &<br>Consulting GmbH | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |
|                                     | 1345     | Open area test site             | 3 - 30 m            | EMCE GmbH                        | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |



## Used test equipment

| Pre-compliance test                 |          |                                             |               |                          |                 |
|-------------------------------------|----------|---------------------------------------------|---------------|--------------------------|-----------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                                 | Type          | Manufacturer             | S/N             |
| <input checked="" type="checkbox"/> | 008      | Antenna<br>9 kHz – 30 MHz                   | HFH2-Z2       | Rohde & Schwarz          | 835776/0002     |
| <input checked="" type="checkbox"/> | 042      | AC-Source /<br>Analyzer / Norm<br>impedance | EMV D5000/PAS | Spitzenberger<br>+ Spies | A274700/ 0 0501 |
| <input checked="" type="checkbox"/> | 058      | Test receiver                               | ESIB 40       | Rohde & Schwarz          | 100200          |
| <input checked="" type="checkbox"/> | 997      | Software                                    | EMC32         | Rohde & Schwarz          | n/a             |

| Final test                          |          |                                             |                        |                          |                 |
|-------------------------------------|----------|---------------------------------------------|------------------------|--------------------------|-----------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                                 | Type                   | Manufacturer             | S/N             |
| <input checked="" type="checkbox"/> | 008      | Antenna<br>9 kHz – 30 MHz                   | HFH2-Z2                | Rohde & Schwarz          | 835776/0002     |
| <input checked="" type="checkbox"/> | 042      | AC-Source /<br>Analyzer / Norm<br>impedance | EMV D5000/PAS          | Spitzenberger<br>+ Spies | A274700/ 0 0501 |
|                                     | 058      | Test receiver                               | ESIB 40                | Rohde & Schwarz          | 100200          |
| <input checked="" type="checkbox"/> | 229      | Test receiver                               | ESS<br>5 Hz – 1000 MHz | Rohde & Schwarz          | 845420/0005     |
| <input checked="" type="checkbox"/> | 997      | Software                                    | EMC32                  | Rohde & Schwarz          | n/a             |

All used test equipment are checked resp. calibrated periodically.

Test equipment was checked and complied to the requirements



### Test-/Measurement uncertainty

The measurement uncertainty in the test met the guideline of CISPR16-4-2 or better.

Measurement uncertainty of the radiated emission with an extended coverage factor of  $k = 2$ :

|                             |                                       |
|-----------------------------|---------------------------------------|
| Frequency<br>9 kHz – 30 MHz | Measurement uncertainty<br>on request |
|-----------------------------|---------------------------------------|



### 6.5.2 Test

Rules and specification 47 CFR Part 15 Section 15.209 (a)(b)(c)(d)(e)(f)

Frequency range: 9 kHz – 30 MHz

Limits for radiated emissions

| Technical requirements |                 |                   |                          |
|------------------------|-----------------|-------------------|--------------------------|
| Detector               | Frequency / MHz | Limit / $\mu$ V/m | Measurement distance / m |
| AV                     | 0.009 – 0.09    | 2400/F(kHz)       | 300                      |
| QP                     | 0.09 – 0.110    | 2400/F(kHz)       | 300                      |
| AV                     | 0.110 – 0.49    | 2400/F(kHz)       | 300                      |
| QP                     | 0.49 – 1.705    | 24000/F(kHz)      | 30                       |
| QP                     | 1.705 – 30.0    | 30                | 30                       |

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz

The level of any unwanted emissions shall not exceed the level of the fundamental frequency.

#### Antenna Orientation

Parallel to EUT  Orthogonal to EUT

#### Antenna Height

1 m - Loop center above ground

#### Antenna Distance - EUT

3 m  10 m  30 m

#### EUT Orientation to Antenna

X-Axis  Y-Axis  Z-Axis



## Rationale for selecting the EUT test set up

### Equipment units:

Minimal setup with EUT and external power supply unit. The DIN rail housing of the EUT and the power supply unit were mounted together on a metal plate at a distance of >10 cm from each other. The metal plate was earthed via the power supply unit. This design was chosen because it corresponds to the later intended use. The antenna was positioned away from the metal plate above a non-conductive surface. A remote laptop was provided for displaying the data from the reader.

### Operation mode

EUT arrangement:  Tabletop  Floor standing  
Power supply:  120 V/60 Hz  Internal battery

The EUT was operated in read mode at maximum read speed, with a read cycle being started every 80 ms. The data read was sent to a PC connected to the EUT via a USB interface. No tag was used during the measurement.

### Environmental conditions

Temperature [10 – 40 °C]: 26 °C  
Relative humidity [10 – 90 %]: 32 %

Environmental conditions during the test:  kept  
 not kept

### Test result

Limits for unwanted radiated emissions:  kept  
 not kept

No unwanted radiated emissions exceed the level of the fundamental frequency:  kept  
 not kept

Remarks: n/a

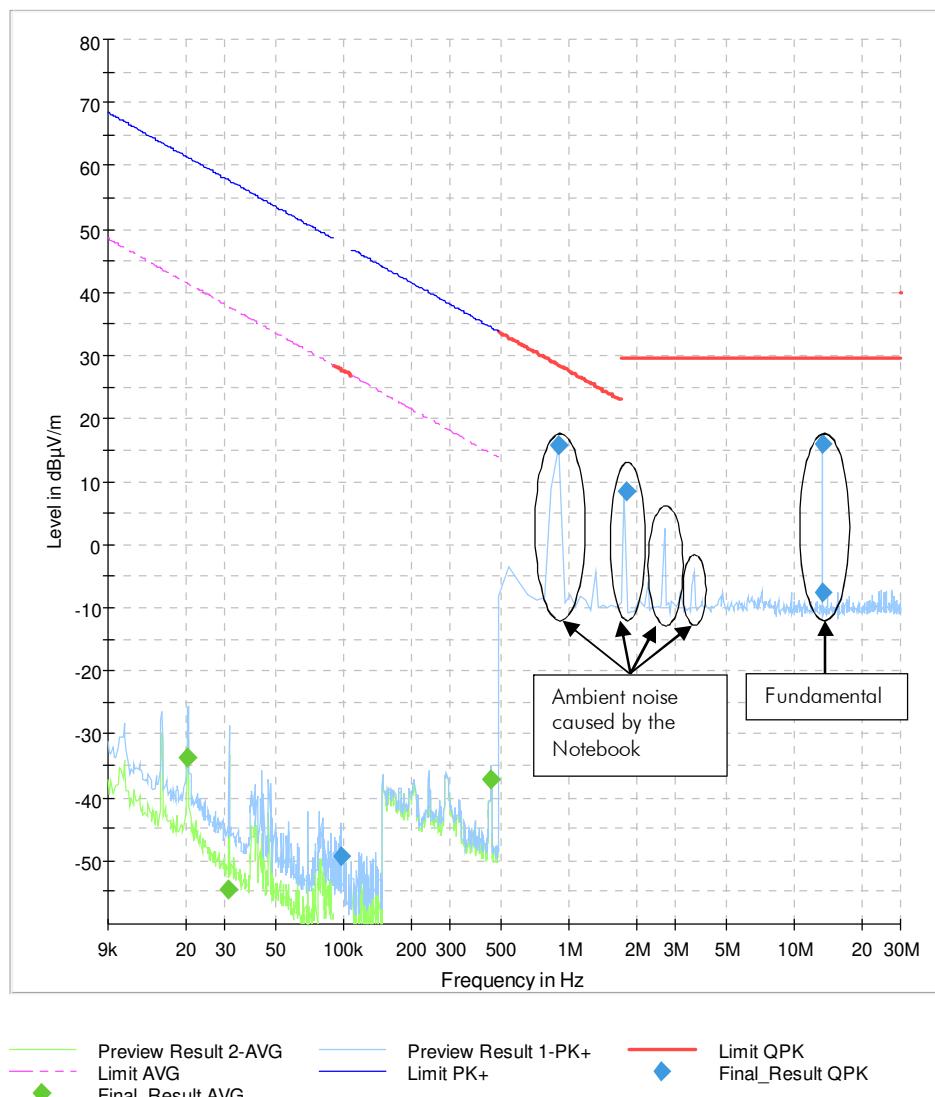


## Records

Pre-compliance measurement

- Readings
- Diagram

Final measurement


- Readings
- Diagram



Pre-compliance measurement

## EUT Information

EUT Name: ARE i2.0x HF  
Test\_ID: / SN: 23-0148PR07-004  
Customer: AEG Identifikationssysteme GmbH  
Operational condition: Reading mode (cyclical reading every 80 ms)  
Test specification: 47 CFR Part 15 Subpart C §15.209  
Antenna information: Distance EUT-Ant.: 3.0 m / Polarisation: Para./Orth./ Ant.Height: 1.0 m.  
Operator: S. Vogelmann  
File #: 23-0148RC10-004-007  
Comment #1: Test results normalized to antenna distances according to §15.209.  
Comment #2:





## Pre-Test Result – SAC @3.0 m antenna distance

| Frequency (MHz) | QuasiPeak (dB $\mu$ V/m) | Average (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Pol      | Azimuth (deg) | Corr. (dB/m) |
|-----------------|--------------------------|------------------------|----------------------|-------------|-----------------|-----------------|----------|---------------|--------------|
| 0.020385        | ---                      | -33.69                 | 41.42 @300m          | 75.11       | 5000.0          | 0.200           | Parallel | 17.0          | -59.8        |
| 0.030587        | ---                      | -54.63                 | 37.89 @300m          | 92.53       | 5000.0          | 0.200           | Parallel | 25.0          | -59.9        |
| 0.097930        | -49.20                   | ---                    | 27.79 @300m          | 76.99       | 5000.0          | 0.200           | Parallel | 268.0         | -60.0        |
| 0.452380        | ---                      | -37.13                 | 14.49 @300m          | 51.62       | 5000.0          | 9.000           | Parallel | 289.0         | -60.1        |
| 0.902265*       | 15.85                    | ---                    | 28.50 @30m           | 12.65       | 5000.0          | 9.000           | Parallel | 286.0         | -20.0        |
| 1.804569*       | 8.55                     | ---                    | 29.54 @30m           | 20.99       | 5000.0          | 9.000           | Parallel | 292.0         | -20.1        |
| 13.522585**     | -7.62                    | ---                    | ---                  | ---         | 5000.0          | 9.000           | Parallel | 34.0          | -19.7        |
| 13.559559**     | 16.08                    | ---                    | ---                  | ---         | 5000.0          | 9.000           | Parallel | 26.0          | -19.7        |

Test results normalized to reference distance for limit value with 40 dB/Dec.

\* Ambient noise caused by notebook inside the field.

\*\* Evaluation of the fundamental in chapter 6.8

## Final Result

No result - Margin  $\geq$  20 dB.



## 6.6 Radiated emissions E-Field of intentional radiators

- No deviation from the standard
- Deviation from the standard
- Test not requested
- Test not carried out

\* \_\_\_\_\_

### Measurement procedure:

Rules and specification  
Guide

47 CFR Part 15 Section 15.209 (a)(b)(c)(d)(e)(f)  
ANSI C63.10-2013

The radiated interference emission is measured on an alternative open area test site OATS in the frequency range 30 - 1000 MHz. The measurement distance is 3 m or 10 m, depending on the standard. Above 1 GHz, the measurement is performed in a 3 m semi-anechoic chamber with floor absorber to reduce ground reflections. For the measurement of the field strength a biconical antenna up to 200 MHz, a logperiodic antenna from 200 MHz to 1 GHz and horn antennas or double stacked logperiodic antenna above 1 GHz are used. All antennas are linearly polarized. External low-noise preamplifiers are used in the range above 1 GHz to improve measurement sensitivity. Special measures, such as filters or attenuators, are taken to avoid overloading the amplifiers. The antenna height is varied between 1 m and 4 m as required. The elevation angle of the antenna can be corrected via the antenna mast to ensure that the main lobe of the antenna is always directed at the EUT. A turntable allows the alignment of the EUT towards the antenna to maximize the radiated emission. The test sites are located above a metallic ground plane. Table-top devices are placed on a non-conductive wooden table. Hand-held, body-worn, or ceiling-mounted devices are examined in 3 orthogonal axis orientations to determine the maximum emission level. Floor-standing devices are placed directly on the grounded metal turntable/reference insulated from ground plane by an insulating material <12 mm.

During an initial automated pre-test run in a semi-anechoic chamber, the desired frequency range is measured. The receiver is operated as an analyzer and the frequency ranges are run sequentially depending on the antenna. For the measurement, the turntable is continuously rotated from 0° - 360° and back, and the antenna height is changed in 0.5 m increments after each complete turntable cycle. The antenna position is then changed from 1.0 m to 4.0 m in 0.5 m steps for vertical polarization and back for horizontal polarization. During a cycle, the frequency range is continuously swept with peak detector and max hold function. Depending on the test specification, an average detector is also used if required. For each discrete antenna polarization over all positions, the maximum peak values are recorded with frequency, level, turntable position, antenna height and antenna



polarization. Significant peaks or clock frequencies are marked and re-measured with increased frequency accuracy. The recordings are used to determine the exact frequency and to optimize the interference level. At the predefined position, the turntable position is fine-adjusted in the range of  $\pm 20^\circ$  and then the antenna height is varied by  $\pm 0.3$  m. At the maximized position, the emission is measured with quasi-peak or average detector and listed. The six highest emissions are selected for final measurement in the OATS.

In a final test run, an open area test site measurement is made at selected frequencies determined by the previous test procedure. For each selected frequency, the frequency setting is optimized again in the OATS and the field strength value is maximized, rotating the EUT  $360^\circ$  at an antenna height of 1.0 m for vertical antenna polarization and 2.0 m for horizontal antenna polarization. At the azimuth position of the EUT for the highest radiation, the antenna height is varied within 1.0 m and 4.0 m until the highest interference level is reached. To maximize the interference level at the determined position, the turntable azimuth is fine-adjusted by  $\pm 45^\circ$  and the antenna height is fine-adjusted by  $\pm 0.3$  m. The setup of the instrument and the cables are manipulated within the range to produce the highest emission.

Final measurement is made using a receiver conforming to CISPR 16 guidelines with a quasi-peak and average detector.

The identified frequency and amplitude of the six highest radiated emissions relative to the limit lines are listed. If fewer than six emission frequencies are within 20 dB of the limit, the noise level of the instrument at representative frequencies is reported. For documentation of final testing below 1 GHz on the OATS the plots recorded in den SAC are indicated as pre-compliance.

In case the regulation requires testing at different distances, the result is extrapolated by an extrapolation factor 20 dB / decade to the required distance.

The reported test results are calculated using the following formula to normalize the results to the requested test distance:

$$\text{Result (dB}\mu\text{V/m)} = \text{Reading (dB}\mu\text{V)} + \text{AF (dB/m)} + \text{CF (dB)} + 20 * (\text{D}_T / \text{D}_R) \text{ (dB)}$$

AF = Correction factor for the antenna

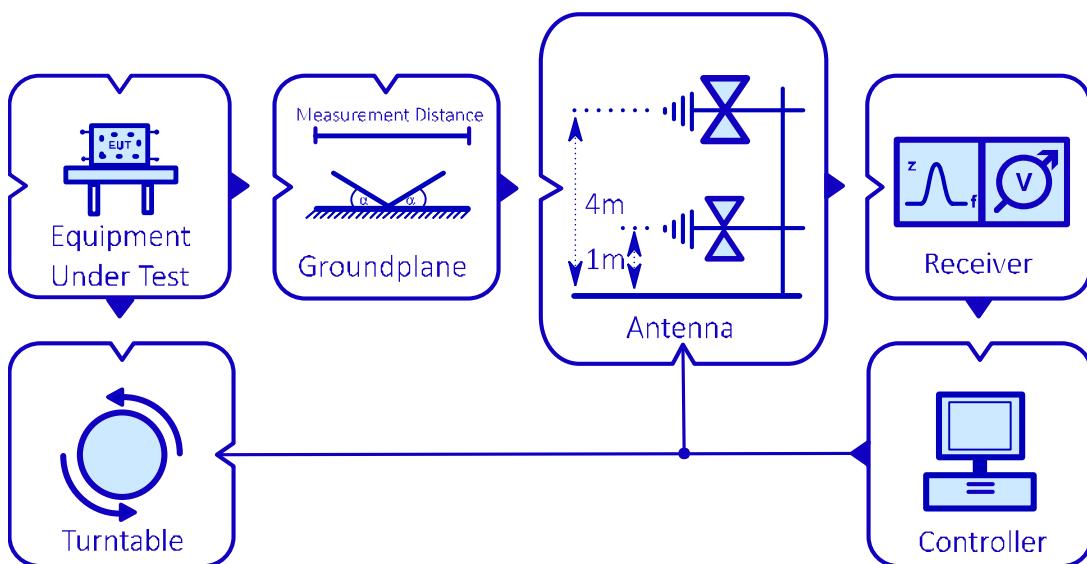
CF = Correction factor for the cable loss

D<sub>T</sub> = Test distance

D<sub>R</sub> = Reference distance for the limit defined in the standard



Example:


|                            |                 |
|----------------------------|-----------------|
| Test frequency             | 500.00 MHz      |
| Reading                    | 12.3 dB $\mu$ V |
| AF <sub>(500.00 MHz)</sub> | 17.1 dB/m       |
| CF <sub>(500.00 MHz)</sub> | 1.4 dB          |
| DT =                       | 3 m             |
| DR =                       | 3 m             |

Calculated final result for the electrical field strength E(f):

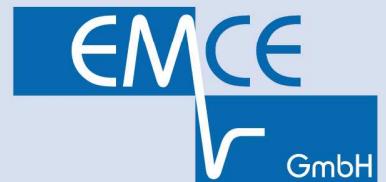
$$E_{(500.00 \text{ MHz})} = 12.3 \text{ dB}\mu\text{V} + 17.1 \text{ dB/m} + 1.4 \text{ dB} + 0 \text{ dB} = 30.8 \text{ dB}\mu\text{V/m}$$

Basic structure - Setup

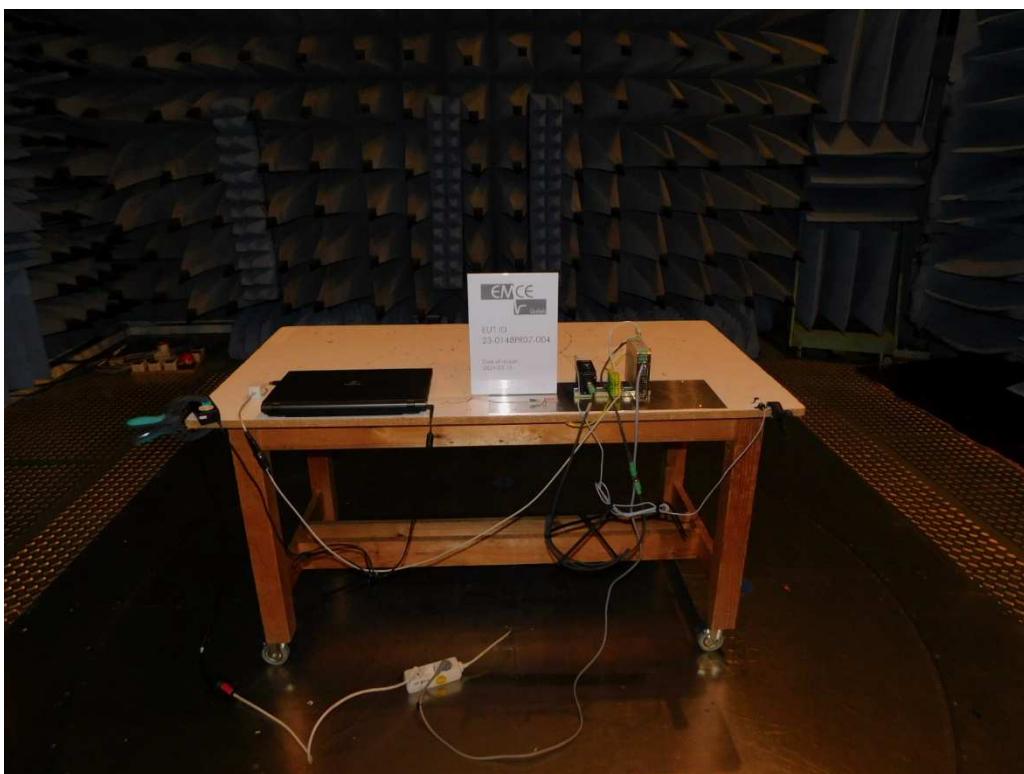
OATS / SAC






### 6.6.1 Test set up

According ANSI C63.10-2013


Photo(s) showing the interconnection of the major function units

Final test setup





Precompliance test setup





### Test location

| Pre-compliance test                 |          |                              |                     |                                  |                                                  |
|-------------------------------------|----------|------------------------------|---------------------|----------------------------------|--------------------------------------------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                  | Type<br>(L x W x H) | Manufacturer                     | Location                                         |
| <input checked="" type="checkbox"/> | 062      | Semi anechoic<br>chamber # 2 | 13.5 x 6.1 x 5.5 m  | EMC-Technik &<br>Consulting GmbH | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |

| Final test                          |          |                              |                     |                                  |                                                  |
|-------------------------------------|----------|------------------------------|---------------------|----------------------------------|--------------------------------------------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                  | Type<br>(L x W x H) | Manufacturer                     | Location                                         |
|                                     | 062      | Semi anechoic<br>chamber # 2 | 13.5 x 6.1 x 5.5 m  | EMC-Technik &<br>Consulting GmbH | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |
|                                     | 014      | Open area test site          | 10 m                | EMCE GmbH                        | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |
| <input checked="" type="checkbox"/> | 015      | Open area test site          | 3 m                 | EMCE GmbH                        | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |



## Used test equipment

| Pre-compliance test                 |          |                                                       |                    |                       |                 |
|-------------------------------------|----------|-------------------------------------------------------|--------------------|-----------------------|-----------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                                           | Type               | Manufacturer          | S/N             |
| <input checked="" type="checkbox"/> | 042      | AC-Source / Analyzer / Norm impedance                 | EMV D5000/PAS      | Spitzenberger + Spies | A274700/ 0 0501 |
| <input checked="" type="checkbox"/> | 058      | Test receiver                                         | ESIB 40            | Rohde & Schwarz       | 100200          |
|                                     | 059      | Logper. Antenna                                       | HL050              | Rohde & Schwarz       | 100006          |
| <input checked="" type="checkbox"/> | 997      | Software                                              | EMC32              | Rohde & Schwarz       | n/a             |
| <input checked="" type="checkbox"/> | 8008     | Logarithmic Periodic Broadband Antenna 180 - 1500 MHz | VULP 9118A         | Schwarzbeck           | 900             |
| <input checked="" type="checkbox"/> | 8034     | Antenna 30-300 MHz                                    | VHBB9124 / BBA9106 | Schwarzbeck           | 1812            |

| Final test                          |          |                                                       |                     |                       |                 |
|-------------------------------------|----------|-------------------------------------------------------|---------------------|-----------------------|-----------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                                           | Type                | Manufacturer          | S/N             |
| <input checked="" type="checkbox"/> | 042      | AC-Source / Analyzer / Norm impedance                 | EMV D5000/PAS       | Spitzenberger + Spies | A274700/ 0 0501 |
|                                     | 058      | Test receiver                                         | ESIB 40             | Rohde & Schwarz       | 100200          |
|                                     | 059      | Logper. Antenna                                       | HL050               | Rohde & Schwarz       | 100006          |
| <input checked="" type="checkbox"/> | 229      | Test receiver                                         | ESS 5 Hz – 1000 MHz | Rohde & Schwarz       | 845420/0005     |
|                                     | 236      | Broad-Band Horn Antenna 0.5-6 GHz                     | BBHA 9120 E         | Schwarzbeck           | 00831           |
|                                     | 997      | Software                                              | EMC32               | Rohde & Schwarz       | n/a             |
| <input checked="" type="checkbox"/> | 8007     | Logarithmic Periodic Broadband Antenna 180 - 1500 MHz | VULP 9118A          | Schwarzbeck           | 899             |
| <input checked="" type="checkbox"/> | 8033     | Antenna 30-300 MHz                                    | VHBB9124 / BBA9106  | Schwarzbeck           | 1808            |

All used test equipment are checked resp. calibrated periodically.

Test equipment was checked and complied to the requirements

## Test-/Measurement uncertainty

The measurement uncertainty in the test met the guideline of CISPR16-4-2 or better.

Measurement uncertainty of the radiated emission with an extended coverage factor of  $k = 2$ :

| Frequency        | Measurement uncertainty      |
|------------------|------------------------------|
| 30 MHz – 225 MHz | 4.8 dB (valid for 10 m-OATS) |
| 225 MHz – 1 GHz  | 4.9 dB (valid for 10 m-OATS) |
| 30 MHz – 225 MHz | 4.8 dB (valid for 3 m-OATS)  |
| 225 MHz – 1 GHz  | 6.2 dB (valid for 3 m-OATS)  |



## 6.6.2 Test

Rules and specification 47 CFR Part 15 Section 15.209 (a)(b)(c)(d)(e)(f)

Highest frequency generated or used in the device or on which the device operates or tunes:

<10 GHz

Upper frequency of measurement:

10<sup>th</sup> harmonic of the highest frequency or 40 GHz, whichever is lower

10 GHz – 30 GHz

5<sup>th</sup> harmonic of the highest frequency or 100 GHz, whichever is lower

30 GHz – 95 GHz

5<sup>th</sup> harmonic of the highest frequency or 200 GHz, whichever is lower

≥95 GHz

3<sup>rd</sup> harmonic of the highest frequency or 750 GHz, whichever is lower

Frequency range:

9 kHz – 30 MHz

30 MHz – 1000 MHz

1 – 5 GHz

5 – 18 GHz

18 – 26 GHz

26 – 40 GHz

Limits for radiated emissions

| Technical requirements |                 |                      |                          |
|------------------------|-----------------|----------------------|--------------------------|
| Detector               | Frequency / MHz | Limit / dB $\mu$ V/m | Measurement distance / m |
| QP                     | 30.0 – 88.0     | 40.0                 | 3                        |
| QP                     | 88.0 – 216.0    | 43.5                 | 3                        |
| QP                     | 216.0 – 960.0   | 46.0                 | 3                        |
| QP                     | 960.0 – 1000.0  | 54.0                 | 3                        |
| AV                     | > 1000          | 54.0                 | 3                        |
| PK                     | > 1000          | 74.0                 | 3                        |

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.



## Rationale for selecting the EUT test set up

### Equipment units:

Minimal setup with EUT and external power supply unit. The DIN rail housing of the EUT and the power supply unit were mounted together on a metal plate at a distance of >10 cm from each other. The metal plate was earthed via the power supply unit. This design was chosen because it corresponds to the later intended use. The antenna was positioned away from the metal plate above a non-conductive surface. A remote laptop was provided for displaying the data from the reader.

### EUT Orientation

X-Direction       Y-Direction       Z-Direction

### Operation mode

EUT arrangement:  Tabletop       Floor standing  
Power supply:  120 V/60 Hz       Internal battery

The EUT was operated in read mode at maximum read speed, with a read cycle being started every 80 ms. The data read was sent to a PC connected to the EUT via a USB interface. No tag was used during the measurement.

### Environmental conditions - SAC

Temperature [10 – 40 °C]: 22 °C

Relative humidity [10 – 90 %]: 31 %

Environmental conditions during the test:  kept  
 not kept

### Environmental conditions - OATS

Temperature [10 – 40 °C]: 16 °C

Relative humidity [10 – 90 %]: 43 %

Environmental conditions during the test:  kept  
 not kept

## Test result

Limits for unwanted radiated emissions:

- kept
- not kept

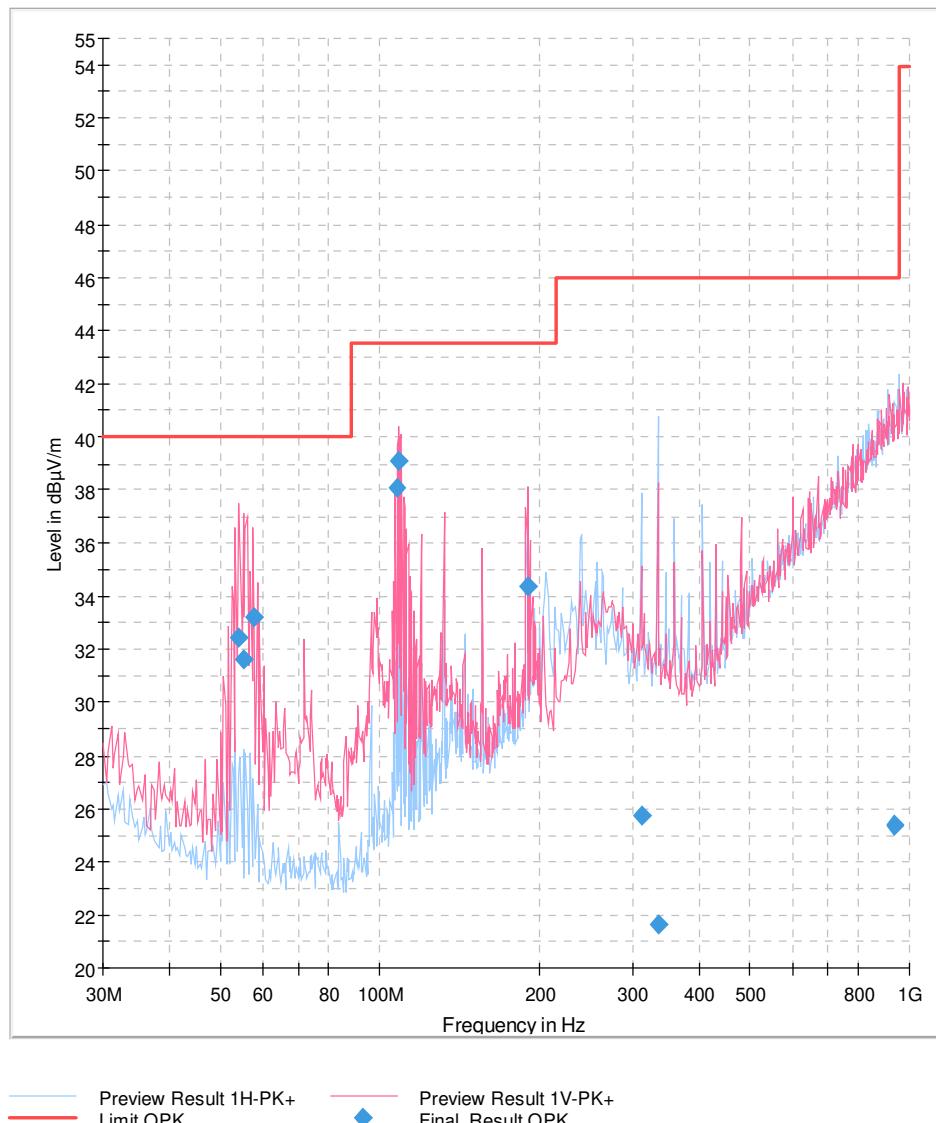
Remarks: n/a

## Records

Pre-compliance measurement

- Readings
- Diagram

Final measurement


- Readings
- Diagram



Pre-compliance measurement

## EUT Information

EUT Name: ARE i2.0x HF  
Test\_ID: / SN: 23-0148PR07-004  
Customer: AEG Identifikationssysteme GmbH  
Operational condition: Reading mode (cyclical reading every 80 ms)  
Test specification: 47 CFR Part 15 Subpart C §15.209 SAC @3 m  
Antenna information: Distance EUT-Ant.: 3.0 m / Polarisation: H/V / Ant.Height: 1.0-4.0 m.  
Operator: S. Vogelmann  
File #: 23-0148RC10-007-009  
Comment #1: No tag inside the field.



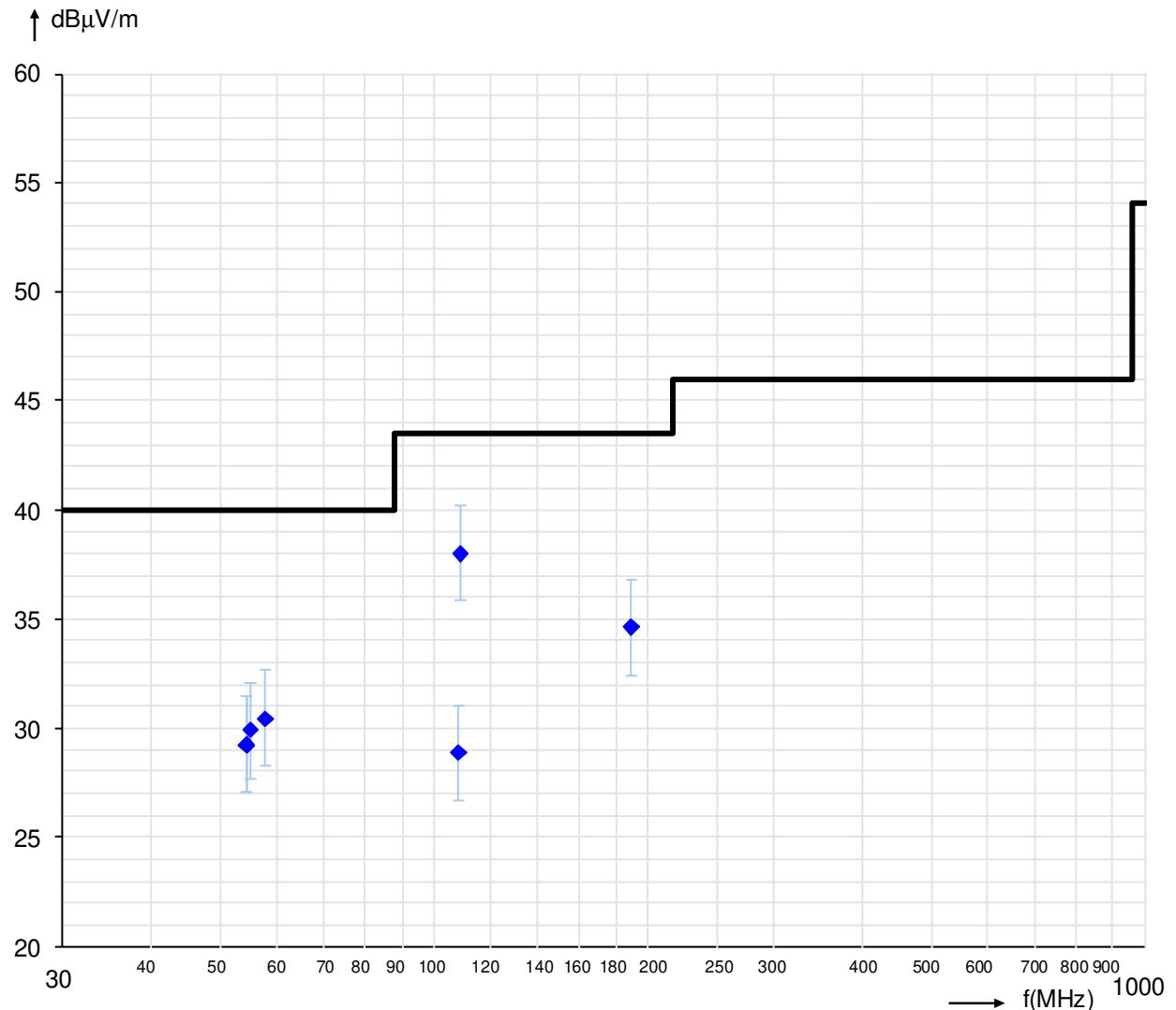


## Final Result

| Frequency (MHz) | QuasiPeak (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Height (cm) | Pol | Azimuth (deg) | Corr. (dB) |
|-----------------|--------------------------|----------------------|-------------|-----------------|-----------------|-------------|-----|---------------|------------|
| 54.341082       | 32.47                    | 40.00                | 7.53        | 5000.0          | 120.000         | 112.0       | V   | 10.0          | 10.3       |
| 55.192385       | 31.62                    | 40.00                | 8.38        | 5000.0          | 120.000         | 120.0       | V   | 4.0           | 10.3       |
| 57.776753       | 33.25                    | 40.00                | 6.75        | 5000.0          | 120.000         | 179.0       | V   | -3.0          | 10.1       |
| 107.896994      | 38.05                    | 43.50                | 5.45        | 5000.0          | 120.000         | 103.0       | V   | 49.0          | 10.9       |
| 108.710622      | 39.11                    | 43.50                | 4.39        | 5000.0          | 120.000         | 113.0       | V   | 73.0          | 10.9       |
| 189.866533      | 34.38                    | 43.50                | 9.12        | 5000.0          | 120.000         | 105.0       | V   | 184.0         | 15.1       |
| 310.935071      | 25.77                    | 46.00                | 20.23       | 5000.0          | 120.000         | 105.0       | H   | 311.0         | 14.7       |
| 334.194389      | 21.63                    | 46.00                | 24.37       | 5000.0          | 120.000         | 135.0       | H   | 344.0         | 15.4       |
| 406.283367      | 18.41                    | 46.00                | 27.59       | 5000.0          | 120.000         | 330.0       | H   | 1.0           | 17.2       |
| 932.926253      | 25.38                    | 46.00                | 20.62       | 5000.0          | 120.000         | 208.0       | H   | 131.0         | 25.1       |
| 935.822445      | 25.43                    | 46.00                | 20.57       | 5000.0          | 120.000         | 172.0       | H   | 0.0           | 25.1       |



## Final measurement


### Readings – Antenna horizontal / vertical polarized

| Frequency | Readings   | + AF<br>Antenna correction<br>factor | + KF<br>Cable correction<br>factor | Field strength | Limit        | Margin | Antenna-<br>Polarization | Antenna-<br>Height | Turn Table-<br>Position |
|-----------|------------|--------------------------------------|------------------------------------|----------------|--------------|--------|--------------------------|--------------------|-------------------------|
| MHz       | dB $\mu$ V | dB/m                                 | dB                                 | dB $\mu$ V/m   | dB $\mu$ V/m | dB     | hor./ver.                | m                  | Degree                  |
| 54.341    | 18.8       | 9.6                                  | 0.9                                | 29.3           | 40.0         | 10.7   | V                        | 1.00               | 170                     |
| 55.192    | 19.5       | 9.5                                  | 0.9                                | 29.9           | 40.0         | 10.1   | V                        | 1.00               | 175                     |
| 57.729    | 20.2       | 9.4                                  | 0.9                                | 30.5           | 40.0         | 9.5    | V                        | 1.00               | 90                      |
| 107.960   | 17.6       | 10.0                                 | 1.2                                | 28.9           | 43.5         | 14.6   | V                        | 1.00               | 90                      |
| 108.650   | 26.7       | 10.1                                 | 1.2                                | 38.0           | 43.5         | 5.5    | V                        | 1.00               | 90                      |
| 189.847   | 19.1       | 13.9                                 | 1.7                                | 34.6           | 43.5         | 8.9    | V                        | 1.00               | 0                       |



Diagram radio disturbances – Antenna horizontal / vertical polarized

Limit: 47 CFR Part 15 Subpart C §15.209



## 6.7 Emission bandwidth inside the operating frequency band

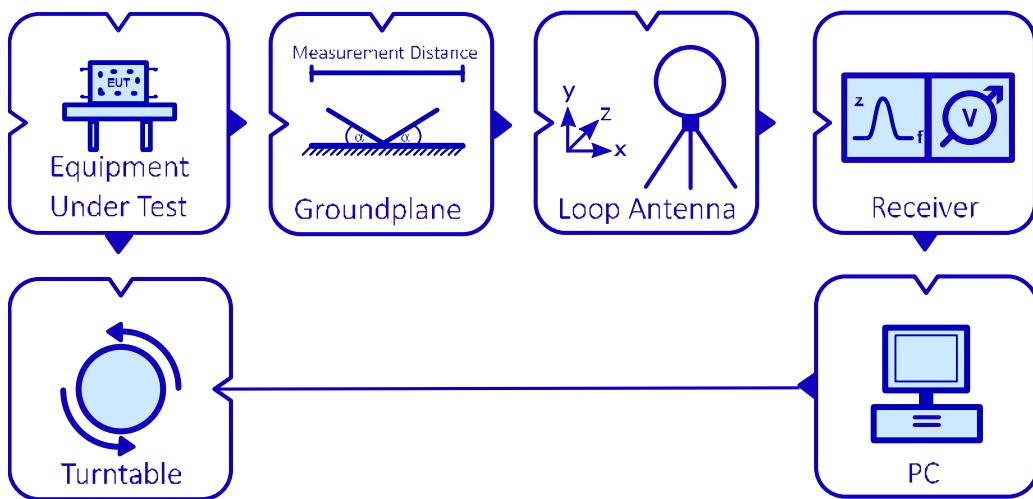
- No deviation from the standard
- Deviation from the standard
- Test not requested
- Test not carried out

\*

### Measurement procedure:

Rules and specification  
Guide

47 CFR Part 15 Section 15.215 (c)  
ANSI C63.10-2013

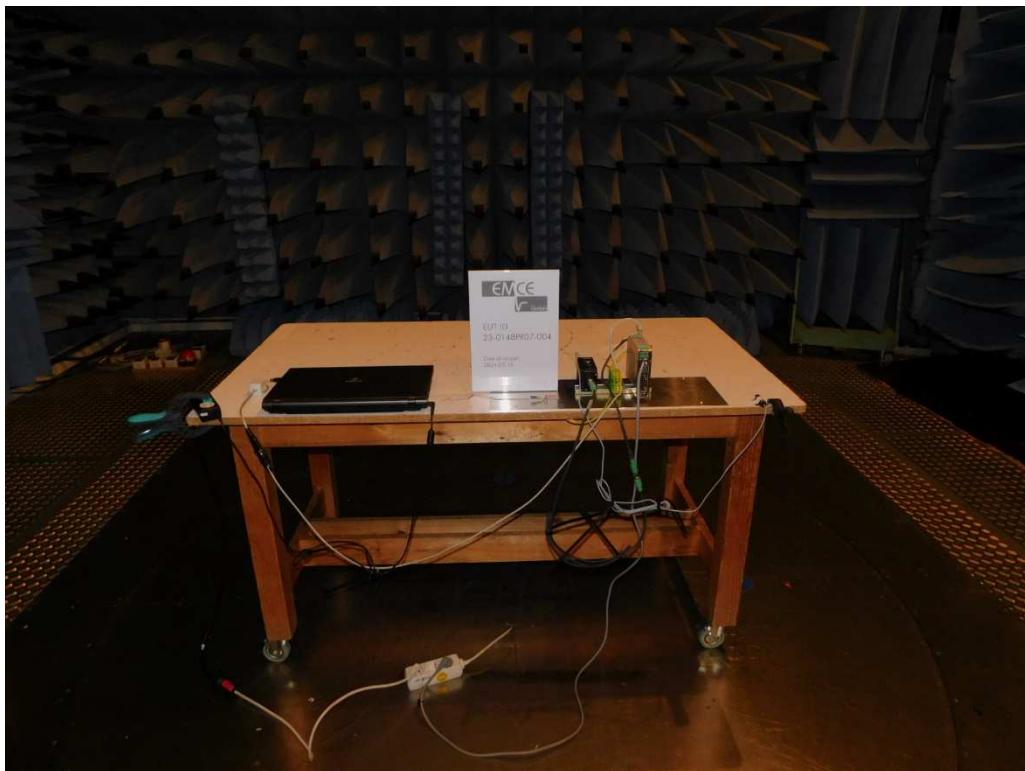

The occupied bandwidth is measured as the width of the spectral envelope of the modulated signal, at an amplitude level reduced from a reference value by 20 dB. The reference value is either the level of the unmodulated carrier or the highest level of the spectral envelope of the modulated signal, as stated by the applicable requirement. The test is performed in a semi anechoic chamber while the EUT is positioned to a receiving antenna for maximum output power. The modulated signal is recorded with an analyzer.

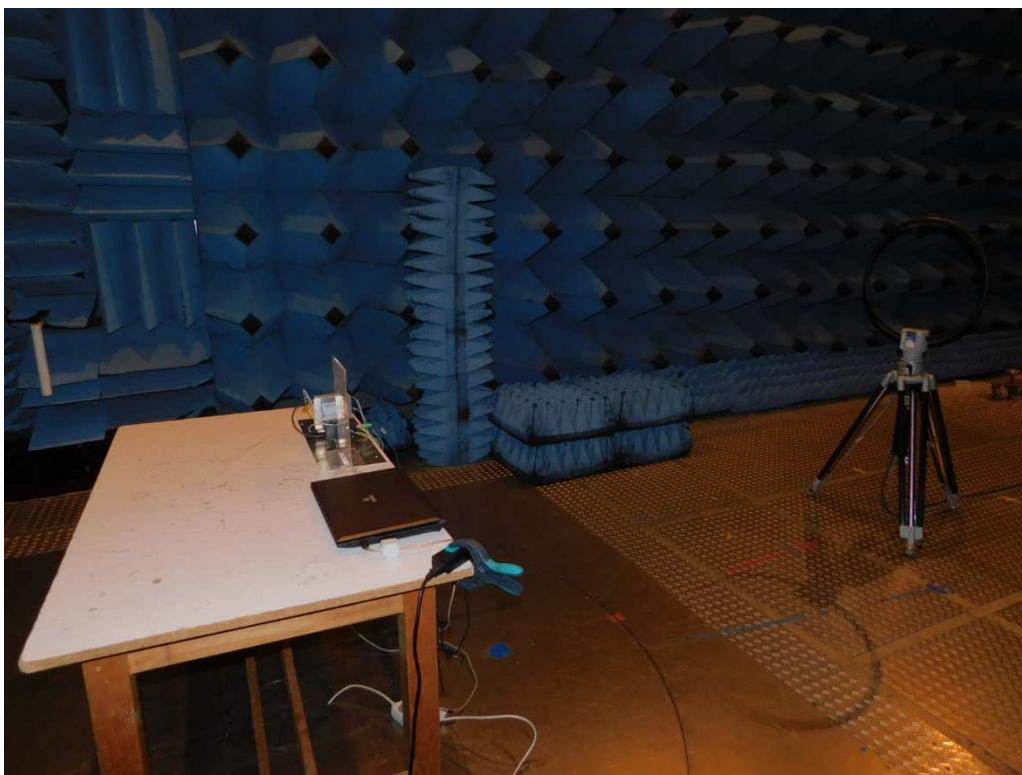
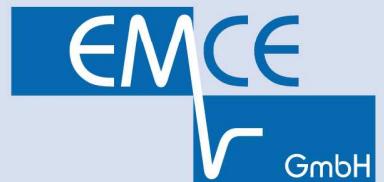
The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. After the trace of the spectrum analyzer is stabilized the envelope of the signal the amplitude -20 dB below the reference value is determined. The occupied bandwidth is the calculated value between both specific - 20 dB frequency positions.



## Basic structure - Setup

### OATS / SAC




### 6.7.1 Test set up

According ANSI C63.10-2013

Photo(s) showing the interconnection of the major function units





**Test location**

| Pre-compliance test                 |          |                                 |                     |                                  |                                                  |
|-------------------------------------|----------|---------------------------------|---------------------|----------------------------------|--------------------------------------------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                     | Type<br>(L x W x H) | Manufacturer                     | Location                                         |
|                                     | 062      | Semi anechoic<br>chamber<br># 2 | 13.5 x 6.1 x 5.5 m  | EMC-Technik &<br>Consulting GmbH | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |

| Final test                          |          |                                 |                     |                                  |                                                  |
|-------------------------------------|----------|---------------------------------|---------------------|----------------------------------|--------------------------------------------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                     | Type<br>(L x W x H) | Manufacturer                     | Location                                         |
| <input checked="" type="checkbox"/> | 062      | Semi anechoic<br>chamber<br># 2 | 13.5 x 6.1 x 5.5 m  | EMC-Technik &<br>Consulting GmbH | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |
|                                     | 014      | Open area test site             | 10 m                | EMCE GmbH                        | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |
|                                     | 015      | Open area test site             | 3 m                 | EMCE GmbH                        | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |



### Used test equipment

| Pre-compliance test                 |          |                                             |               |                          |                 |
|-------------------------------------|----------|---------------------------------------------|---------------|--------------------------|-----------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                                 | Type          | Manufacturer             | S/N             |
|                                     | 008      | Antenna<br>9 kHz – 30 MHz                   | HFH2-Z2       | Rohde & Schwarz          | 835776/0002     |
|                                     | 042      | AC-Source /<br>Analyzer / Norm<br>impedance | EMV D5000/PAS | Spitzenberger<br>+ Spies | A274700/ 0 0501 |
|                                     | 058      | Test receiver                               | ESIB 40       | Rohde & Schwarz          | 100200          |
|                                     | 997      | Software                                    | EMC32         | Rohde & Schwarz          | n/a             |

| Final test                          |          |                                             |               |                          |                 |
|-------------------------------------|----------|---------------------------------------------|---------------|--------------------------|-----------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                                 | Type          | Manufacturer             | S/N             |
| <input checked="" type="checkbox"/> | 008      | Antenna<br>9 kHz – 30 MHz                   | HFH2-Z2       | Rohde & Schwarz          | 835776/0002     |
| <input checked="" type="checkbox"/> | 042      | AC-Source /<br>Analyzer / Norm<br>impedance | EMV D5000/PAS | Spitzenberger<br>+ Spies | A274700/ 0 0501 |
| <input checked="" type="checkbox"/> | 058      | Test receiver                               | ESIB 40       | Rohde & Schwarz          | 100200          |
|                                     | 230      | FSV40<br>Signal Analyzer 40<br>GHz          | FSV40         | Rohde & Schwarz          | 101717          |
| <input checked="" type="checkbox"/> | 997      | Software                                    | EMC32         | Rohde & Schwarz          | n/a             |

All used test equipment are checked resp. calibrated periodically.

Test equipment was checked and complied to the requirements



### Test-/Measurement uncertainty

The measurement uncertainty in the test met the guideline of CISPR16-4-2 or better.

Measurement uncertainty of the radiated emission with an extended coverage factor of  $k = 2$ :

|                             |                                       |
|-----------------------------|---------------------------------------|
| Frequency<br>9 kHz – 30 MHz | Measurement uncertainty<br>on request |
|-----------------------------|---------------------------------------|



### 6.7.2 Test

Rules and specification 47 CFR Part 15 Section 15.215 (c)  
Frequency range: 9 kHz – 30 MHz  
20 dB Emission BW Inside operating frequency band

#### Operation mode

EUT arrangement:  Tabletop  Floor standing  
Power supply:  120 V/60 Hz  Internal battery

The EUT was operated in read mode at maximum read speed, where the ID of a tag was read out cyclically every 80 ms. This ID was sent to a remote PC which was connected to the EUT via a USB interface. The tag was placed at a distance of 2 cm in front of the antenna.

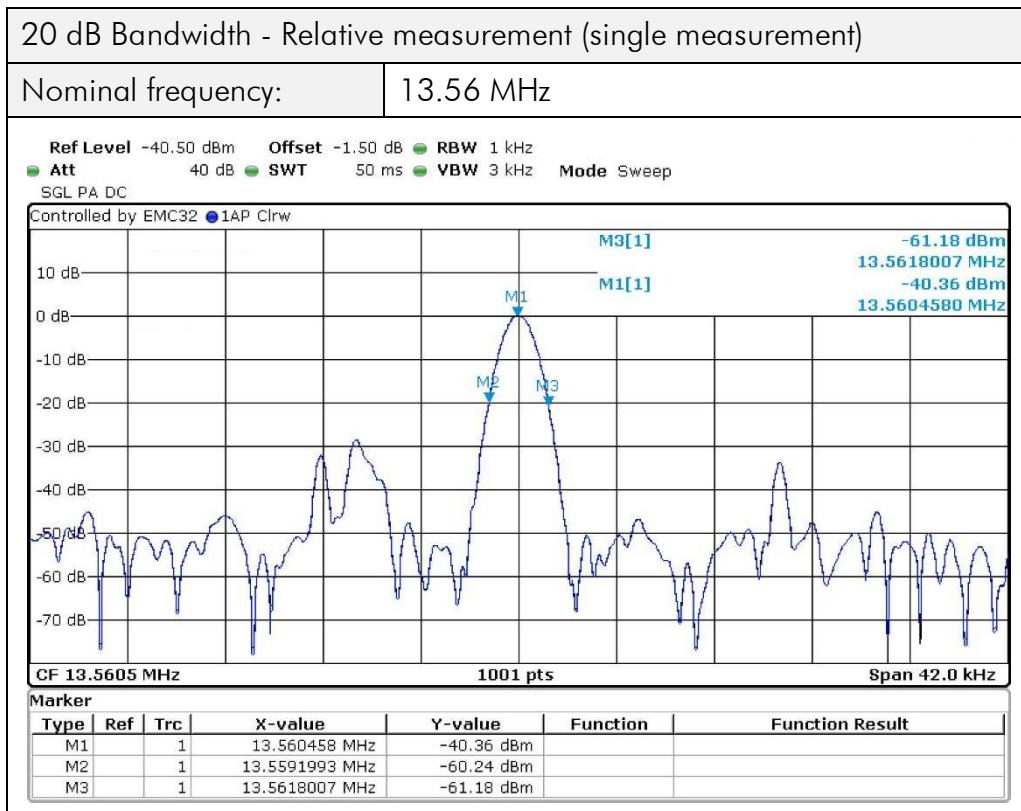
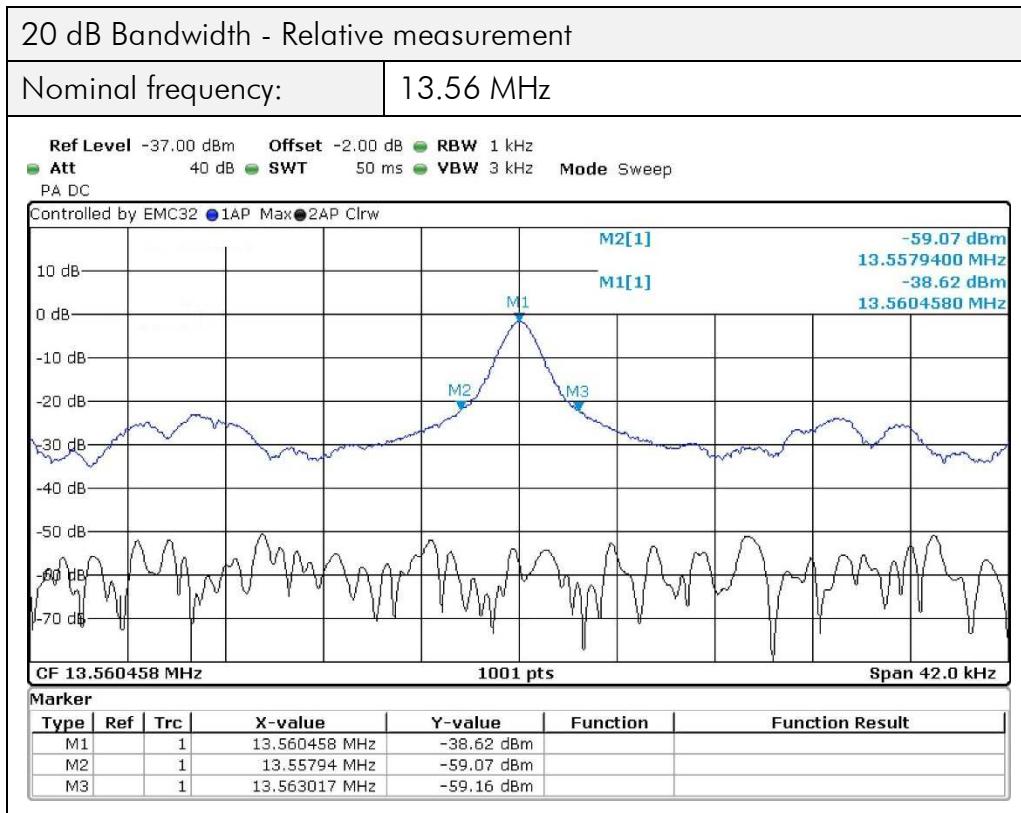
#### Environmental conditions

Temperature [10 – 40 °C]: 16 °C  
Relative humidity [10 – 90 %]: 43 %

Environmental conditions during the test:  kept  
 not kept

#### Test result

| Nominal frequency / MHz | -20 dBc @ lower frequency / MHz | -20 dBc @ upper frequency / MHz | 20 dB BW / kHz |
|-------------------------|---------------------------------|---------------------------------|----------------|
| 13.560000               | 13.557940                       | 13.563017                       | 5.077          |



20 dB BW within the used frequency band  
13.110 – 14.010 MHz:

kept  
 not kept.

Remarks: n/a

#### Records

Readings  
 Diagram





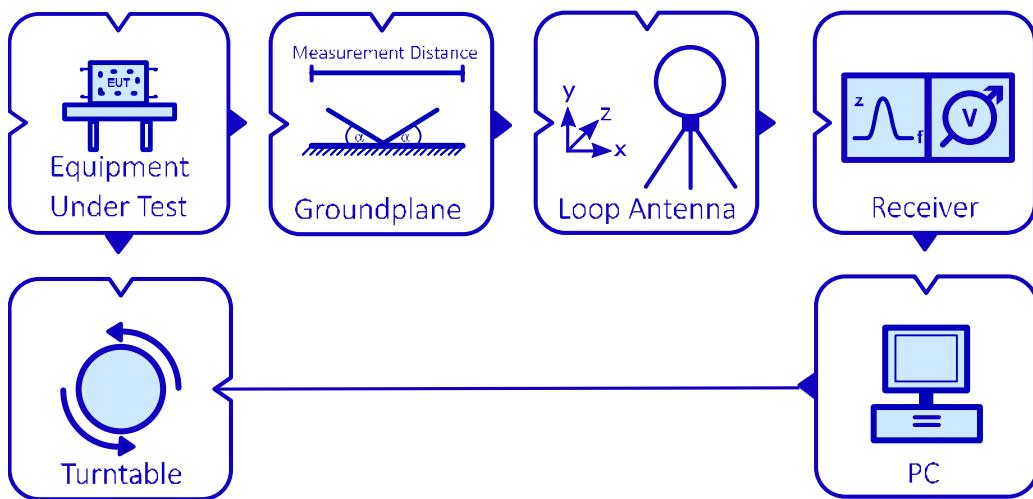
## 6.8 Field strength mask within the operation band 13.110-14.010 MHz

- No deviation from the standard
- Deviation from the standard
- Test not requested
- Test not carried out

\* \_\_\_\_\_

### Measurement procedure:

Rules and specification  
Guide


47 CFR Part 15 Section 15.225 (a)(b)(c)(d)  
ANSI C63.10-2013

The radiated magnetic fields are measured in a frequency range from 9 kHz to 30 MHz. For this purpose, a shielded active loop antenna is used, which is directly connected to a receiver according to CISPR 16 specifications. For the measurement, the loop antenna is successively aligned once parallel to the DUT and once perpendicular to the DUT. The center of the loop antenna is 1 m above the ground. This setup is also used to determine the field strength mask. Measurements shall be made around the EUT and the orientation of the measurement antenna shall be investigated to determine the maximum radiated emission level. Cables or wires shall be manipulated within the range of likely arrangements to maximize the measured emission levels. External antenna(s) shall be positioned for maximum radiated emissions. If the EUT is equipped with or uses an adjustable antenna, then the EUT antenna shall be manipulated through typical positions and lengths during exploratory testing to maximize emission levels. Where EUTs are designed to be installed in one of two orientations (be located horizontally on a table or mounted vertically to the wall), these devices shall be tested in both orientations. EUTs that can be operated in multiple orientations (such as handheld, portable, or modular devices) shall be tested in three orientations. However, in all cases, the antenna shall be adjusted and the EUT orientated to permit the measurement of the maximum emission from the EUT. When rotating the EUT, the maximum antenna coupling between the EUT and the measurement antenna must be achieved at some point during the rotation.



## Basic structure - Setup

### OATS / SAC





### 6.8.1 Test set up

According ANSI C63.10-2013

Photo(s) showing the interconnection of the major function units

Test setup – EUT X-Direction





Pre-compliance test setup  
Test setup 3 m – Antenna orientation vertical / parallel





## Test location

| Pre-compliance test                 |          |                                 |                     |                                  |                                                  |
|-------------------------------------|----------|---------------------------------|---------------------|----------------------------------|--------------------------------------------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                     | Type<br>(L x W x H) | Manufacturer                     | Location                                         |
| <input checked="" type="checkbox"/> | 062      | Semi anechoic<br>chamber<br># 2 | 13.5 x 6.1 x 5.5 m  | EMC-Technik &<br>Consulting GmbH | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |

| Final test                          |          |                                 |                     |                                  |                                                  |
|-------------------------------------|----------|---------------------------------|---------------------|----------------------------------|--------------------------------------------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                     | Type<br>(L x W x H) | Manufacturer                     | Location                                         |
|                                     | 062      | Semi anechoic<br>chamber<br># 2 | 13.5 x 6.1 x 5.5 m  | EMC-Technik &<br>Consulting GmbH | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |
| <input checked="" type="checkbox"/> | 1345     | Open area test site             | 3 - 30 m            | EMCE GmbH                        | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |



## Used test equipment

| Pre-compliance test                 |          |                                             |               |                          |                 |
|-------------------------------------|----------|---------------------------------------------|---------------|--------------------------|-----------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                                 | Type          | Manufacturer             | S/N             |
| <input checked="" type="checkbox"/> | 008      | Antenna<br>9 kHz – 30 MHz                   | HFH2-Z2       | Rohde & Schwarz          | 835776/0002     |
| <input checked="" type="checkbox"/> | 042      | AC-Source /<br>Analyzer / Norm<br>impedance | EMV D5000/PAS | Spitzenberger<br>+ Spies | A274700/ 0 0501 |
| <input checked="" type="checkbox"/> | 058      | Test receiver                               | ESIB 40       | Rohde & Schwarz          | 100200          |
| <input checked="" type="checkbox"/> | 997      | Software                                    | EMC32         | Rohde & Schwarz          | n/a             |

| Final test                          |          |                                             |                        |                          |                 |
|-------------------------------------|----------|---------------------------------------------|------------------------|--------------------------|-----------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                                 | Type                   | Manufacturer             | S/N             |
| <input checked="" type="checkbox"/> | 008      | Antenna<br>9 kHz – 30 MHz                   | HFH2-Z2                | Rohde & Schwarz          | 835776/0002     |
| <input checked="" type="checkbox"/> | 042      | AC-Source /<br>Analyzer / Norm<br>impedance | EMV D5000/PAS          | Spitzenberger<br>+ Spies | A274700/ 0 0501 |
| <input checked="" type="checkbox"/> | 229      | Test receiver                               | ESS<br>5 Hz – 1000 MHz | Rohde & Schwarz          | 845420/0005     |
| <input checked="" type="checkbox"/> | 997      | Software                                    | EMC32                  | Rohde & Schwarz          | n/a             |

All used test equipment are checked resp. calibrated periodically.

Test equipment was checked and complied to the requirements

## Test-/Measurement uncertainty

The measurement uncertainty in the test met the guideline of CISPR16-4-2 or better.

Measurement uncertainty of the radiated emission with an extended coverage factor of  $k = 2$ :

Frequency  
9 kHz – 30 MHz

Measurement uncertainty  
on request



## 6.8.2 Test

Rules and specification 47 CFR Part 15 Section 15.225 (a)(b)(c)(d)

Limits for radiated emissions

| Technical requirements |                 |                         |           |                          |
|------------------------|-----------------|-------------------------|-----------|--------------------------|
| Detector               | Frequency / MHz | QP-Limit / dB $\mu$ V/m | RBW / kHz | Measurement distance / m |
| QP                     | 13.110 – 13.410 | 40.5                    | 10        | 30                       |
| QP                     | 13.410 – 13.553 | 50.5                    | 10        | 30                       |
| QP                     | 13.553 – 13.567 | 84.0                    | 10        | 30                       |
| QP                     | 13.567 – 13.710 | 50.5                    | 10        | 30                       |
| QP                     | 13.710 – 14.010 | 40.5                    | 10        | 30                       |

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

### Operation mode

EUT arrangement:

Tabletop

Floor standing

Power supply:

120 V/60 Hz

Internal battery

The EUT was operated in read mode at maximum read speed, with a read cycle being started every 80 ms. The data read was sent to a PC connected to the EUT via a USB interface. No tag was used during the measurement.

### Environmental conditions

Temperature [10 – 40 °C]:

16 °C

Relative humidity [10 – 90 %]:

43 %

Environmental conditions during the test:

kept

not kept



### Test result

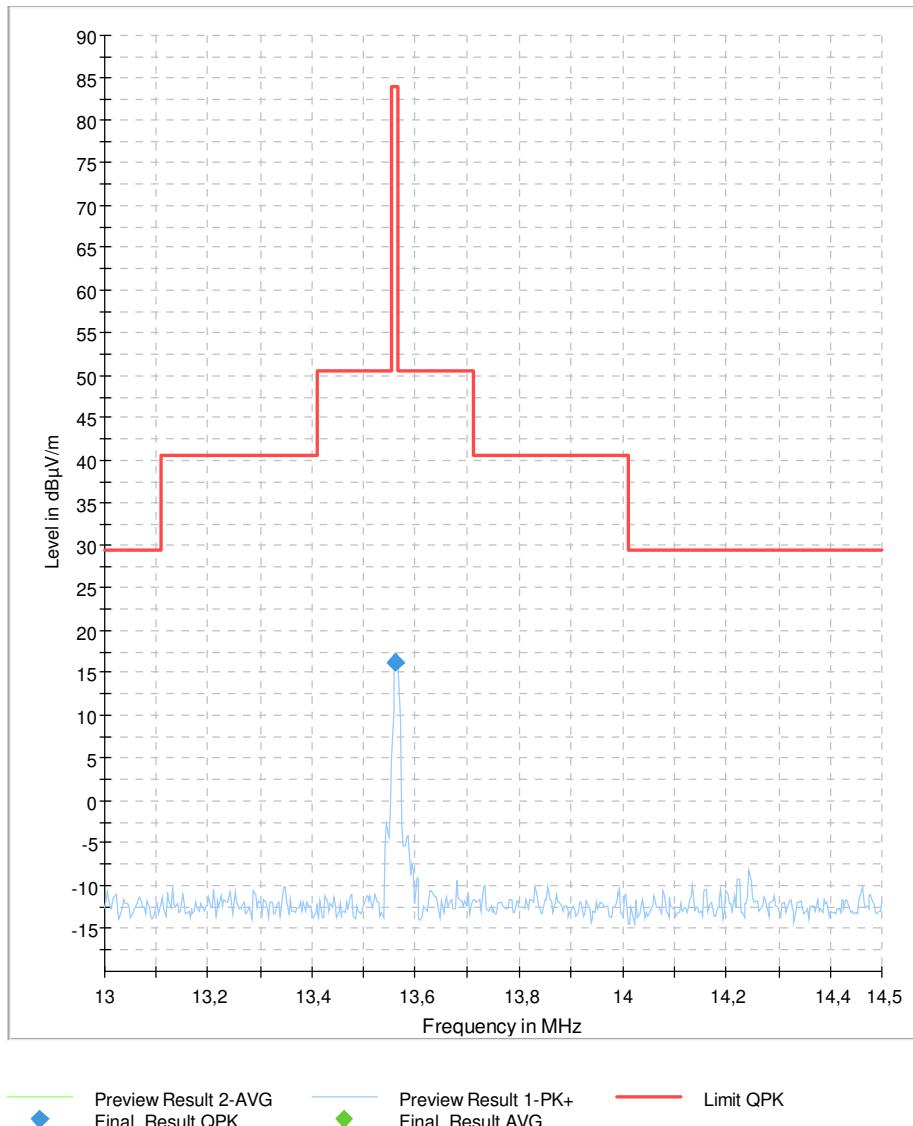
Limits for the field strength mask:

13.110 – 14.010 MHz:

- kept
- not kept.

| Remarks: n/a

### Records


- Readings
- Diagram



Pre-compliance measurement

## EUT Information

EUT Name: ARE i2.0x HF  
Test\_ID: / SN: 23-0148PR07-004  
Customer: AEG Identifikationssysteme GmbH  
Operational condition: Reading mode (cyclical reading every 80 ms)  
Test specification: 47 CFR Part 15 Subpart C §15.225 SAC @30 m  
Antenna information: Distance EUT-Ant.: 3.0 m / Polarisation: Para./Orth./ Ant.Height: 1.0 m.  
Operator: S. Vogelmann  
File #: 23-0148RC10-007-009  
Comment #1: Test results normalized to 30 m test distance.  
Comment #2:





## Pre-Test Result – SAC @3.0 m antenna distance

| Frequency (MHz) | QuasiPeak (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Pol      | Azimuth (deg) | Corr. (dB/m) |
|-----------------|--------------------------|----------------------|-------------|-----------------|-----------------|----------|---------------|--------------|
| 13.560124       | 16.32                    | 84.00                | 67.68       | 5000.0          | 9.000           | Parallel | 25.0          | -19.7        |

## Final Result - OATS @10.0 m antenna distance

| Frequency (MHz) | QuasiPeak (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Meas. Time (ms) | Receiver 6dB BW (kHz) | Ant.-Orientation | Azimuth (deg) | Corr. (dB/m) |
|-----------------|--------------------------|----------------------|-------------|-----------------|-----------------------|------------------|---------------|--------------|
| 13.5600         | 22.42                    | 84.00 @30m           | 61.58       | 5000.0          | 9.000                 | Parallel         | 75            | 0.92         |
| 13.5600         | 22.62                    | 84.00 @30m           | 61.38       | 5000.0          | 9.000                 | Orthogonal       | 75            | 0.92         |

Test results normalized to reference distance for limit value with 40 dB/Dec.



## 6.9 Frequency stability

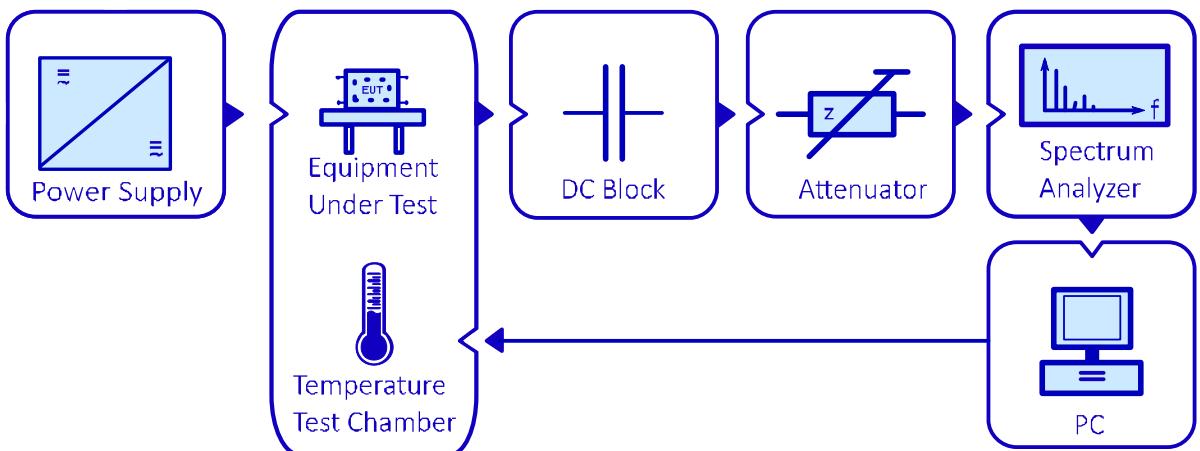
- No deviation from the standard
- Deviation from the standard
- Test not requested
- Test not carried out

\* \_\_\_\_\_

### Measurement procedure:

Rules and specification  
Guide

47 CFR Part 15 Section 15.225 (e)(f)  
ANSI C63.10-2013


The frequency stability of the carrier frequency of an intentional radiator is determined over a temperature range of -20° C to + 50° C and at supply voltages of 85 % to 115 % of the nominal voltage at 20 °C ambient temperature. For battery-powered devices, a new battery is used or, if possible, an external power supply is used to set 115 %, 100% and 85 % of the battery normal voltage. If an antenna connection is available, the transmitter is connected directly to the input of a spectrum analyzer. If necessary, an impedance matching network and a DC blocking filter are also connected in between. Alternatively, a test fixture is used. The transmitter is operated unmodulated. The peak detector of the spectrum analyzer is used, whereby the resolution bandwidth and video bandwidth are selected accordingly to achieve the highest possible accuracy. Starting from the highest temperature, the temperature range is lowered in 10° steps to the lowest temperature. At each temperature, the DUT is switched on after reaching a stable value and the carrier frequency is determined at switch-on, after 2, 5 and 10 minutes.

Frequency stability test with respect to supply voltage variation is performed when, the EUT is supplied by nominal voltage at ambient temperature of +20 °C. The EUT is turned on and its output coupled to a spectrum analyzer by a test antenna placed near (approx.. 15 cm) the EUT. The spectrum analyzer is adjusted to obtain a suitable signal. The frequency is recorded at 85 %; 100 % and 115 % nominal voltage.



## Basic structure - Setup

### OATS / SAC





### 6.9.1 Test set up

According ANSI C63.10-2013

Photo(s) showing the interconnection of the major function units





### Test location

| Final test                          |          |                                                                          |                              |              |                                                  |
|-------------------------------------|----------|--------------------------------------------------------------------------|------------------------------|--------------|--------------------------------------------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                                                              | Type<br>(L x W x H)          | Manufacturer | Location                                         |
| <input checked="" type="checkbox"/> | 1046     | Environmental<br>Simulation Chamber<br>-40 - +180 °C<br>10 % - 98 % r.H. | Indoor<br>0.6 x 0.4 x 0.48 m | Binder GmbH  | EMCE GmbH<br>Untere Wiesen 1<br>88483 Burgrieden |

### Used test equipment

| Final test                          |          |                                             |               |                          |                 |
|-------------------------------------|----------|---------------------------------------------|---------------|--------------------------|-----------------|
| <input checked="" type="checkbox"/> | Inv.-No. | Designation                                 | Type          | Manufacturer             | S/N             |
|                                     | 008      | Antenna<br>9 kHz – 30 MHz                   | HFH2-Z2       | Rohde & Schwarz          | 835776/0002     |
| <input checked="" type="checkbox"/> | 042      | AC-Source /<br>Analyzer / Norm<br>impedance | EMV D5000/PAS | Spitzenberger<br>+ Spies | A274700/ 0 0501 |
| <input checked="" type="checkbox"/> | 230      | FSV40<br>Signal Analyzer<br>40 GHz          | FSV40         | Rohde & Schwarz          | 101717          |
|                                     | 997      | Software                                    | EMC32         | Rohde & Schwarz          | n/a             |

All used test equipment are checked resp. calibrated periodically.

Test equipment was checked and complied to the requirements



### 6.9.2 Test

|                         |                                           |
|-------------------------|-------------------------------------------|
| Rules and specification | 47 CFR Part 15 Section 15.225 (e)(f)      |
| Frequency range:        | 13.110 - 14.010 MHz                       |
| Temperature range:      | +50 °C down to -20 °C                     |
| Voltage range:          | 85 % to 115 % of the rated supply voltage |
| Frequency tolerance:    | ±0.01% of the operating frequency         |

#### Operation mode

EUT arrangement:  Tabletop  Floor standing  
Power supply:  120 V/60 Hz  Internal battery

The EUT was operated in read mode at maximum read speed, with a read cycle being started every 80 ms. The data read was sent to a PC connected to the EUT via a USB interface. No tag was used during the measurement.

#### Test result

Limits for frequency tolerance over

Temperature variations:  kept  
 not kept

Supply voltage variations:  kept  
 not kept

Remarks: n/a

#### Records

Readings



### Carrier Frequency Stability vs. Temperature

Fundamental frequency at

| Temp.<br>/ °C | Frequency of fundamental / kHz |             |             |              | Max.<br>frequency<br>tolerance<br>/ ppm | Limit / ppm |
|---------------|--------------------------------|-------------|-------------|--------------|-----------------------------------------|-------------|
|               | at start                       | after 2 min | after 5 min | after 10 min |                                         |             |
| 50            | 13,560.471                     | 13,560.470  | 13,560.467  | 13,560.465   | 2                                       | ±100        |
| 40            | 13,560.475                     | 13,560.467  | 13,560.472  | 13,560.473   | 2                                       | ±100        |
| 30            | 13,560.487                     | 13,560.487  | 13,560.487  | 13,560.480   | 1                                       | ±100        |
| 20            | 13,560.518                     | 13,560.509  | 13,560.502  | 13,560.498   | 1                                       | ±100        |
| 10            | 13,560.544                     | 13,560.535  | 13,560.529  | 13,560.524   | 3                                       | ±100        |
| 0             | 13,560.550                     | 13,560.549  | 13,560.547  | 13,560.545   | 4                                       | ±100        |
| -10           | 13,560.532                     | 13,560.543  | 13,560.548  | 13,560.550   | 4                                       | ±100        |
| -20           | 13,560.474                     | 13,560.502  | 13,560.519  | 13,560.528   | 2                                       | ±100        |

Operating frequency - Reference

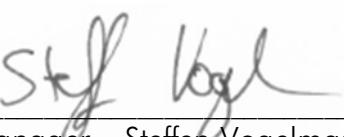
### Carrier Frequency Stability vs. Supply Voltage Variation

Fundamental frequency at 20 °C, 35 % rH

| Nominal<br>Voltage $U_N$ | Frequency of fundamental / kHz |             |             | Max.<br>frequency<br>tolerance<br>/ ppm | Limit / ppm |
|--------------------------|--------------------------------|-------------|-------------|-----------------------------------------|-------------|
|                          | 85 % $U_N$                     | 100 % $U_N$ | 115 % $U_N$ |                                         |             |
| 120 V / 60 Hz            | 13,560.497                     | 13,560.497  | 13,560.497  | 0                                       | ±100        |
|                          |                                |             |             |                                         |             |

Operating frequency - Reference




## 7 Summary

### 47 CFR Part 15 Subpart C

| Requirement                                                     | Regulation section                  | Result | Remarks |
|-----------------------------------------------------------------|-------------------------------------|--------|---------|
| Antenna requirement                                             | § 15.203                            | Pass   | n/a     |
| Restricted bands of operation                                   | § 15.205<br>(a) (b) (c) (d)(7))     | Pass   | n/a     |
| Terminal voltage on powerline                                   | § 15.207<br>(a)                     | Pass   | n/a     |
| Radiated emissions H-Field of intentional radiators             | § 15.209<br>(a) (b) (c) (d) (e) (f) | Pass   | n/a     |
| Radiated emissions E-Field of intentional radiators             | § 15.209<br>(a) (b) (c) (d) (e) (f) | Pass   | n/a     |
| Emission bandwidth inside the operating frequency band          | § 15.215<br>(c)                     | Pass   | n/a     |
| Field strength mask within the operation band 13.110-14.010 MHz | § 15.225<br>(a) (b) (c) (d) (f)     | Pass   | n/a     |
| Frequency stability                                             | § 15.225<br>(e) (f)                 | Pass   | n/a     |

Burgrieden, 05/26/2024

Responsible inspector:

  
Project manager – Steffen Vogelmann

- End of Test Report -