FCC 47 CFR PART 15 SUBPART C TEST REPORT

For

Product Name: Wireless Concurrent Dual-Band PoE Access Point

Brand Name: AIR802 Model No.: AP25N01 Series Model: N/A **Test Report Number:** KS120716A02-RPB

Issued for

AIR802 LLC

424 FORT HILL DRIVE, Suite105 NAPERVILLE ILLINOIS 60540 USA

Issued by

Compliance Certification Services Inc.

Kun shan Laboratory

No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China

TEL: 86-512-57355888

FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	TEST RESULT CERTIFICATION	3
2.	EUT DESCRIPTION	4
3.	TEST METHODOLOGY	5
	EUT CONFIGURATION	
	GENERAL TEST PROCEDURES.	
3.4.	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS DESCRIPTION OF TEST MODES	6
4.	INSTRUMENT CALIBRATION	8
4.1.	MEASURING INSTRUMENT CALIBRATION	8
5.	FACILITIES AND ACCREDITATIONS	10
	FACILITIES	
	EQUIPMENTLABORATORY ACCREDITATIONS AND LISTING	
	TABLE OF ACCREDITATIONS AND LISTINGS	
6.	SETUP OF EQUIPMENT UNDER TEST	12
	SETUP CONFIGURATION OF EUTSUPPORT EQUIPMENT	
7.	FCC PART 15.247 REQUIREMENTS	13
	6DB BANDWIDTH	
	POWER OUTPUT	
	PEAK POWER SPECTRAL DENSITY	
	RADIATED EMISSIONS	
	POWERLINE CONDUCTED EMISSIONS	

1. TEST RESULT CERTIFICATION

Product Name:	Wireless Concurrent Dual-Band PoE Access Point	
Trade Name:	AIR802	
Model Name.: AP25N01		
Series Model:	N/A	
Applicant Discrepancy:	Initial	
Device Category:	MOBILE DEVICES	
Date of Test:	October 06, 2012~ October 09, 2012	
Applicant:	AIR802 LLC 424 FORT HILL DRIVE, Suite 105 NAPERVILLE ILLINOIS 60540 USA	
Manufacturer:	AIR802 LLC 424 FORT HILL DRIVE, Suite 105 NAPERVILLE ILLINOIS 60540 USA	
Application Type:	Certification	

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 15 Subpart C	No non-compliance noted			

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Tested by:

Hadiif Hoo RF Manager

Compliance Certification Service Inc.

adiit. 400

Sean Yu Test Engineer

Compliance Certification Service Inc.

sean. yu

2. EUT DESCRIPTION

Product Name:	Wireless Concurrent Dual-Band PoE Access Point			
Brand Name:	AIR802			
Model Name:	AP25N01			
Series Model:	N/A			
Model Discrepancy:	N/A			
Frequency Range:	WIFI b/g Mode:2412 ~ 2462 MHz 802.11n(-20MHz): 2412 ~ 2462 MHz 802.11n(-40MHz): 2422 ~ 2452 MHz a Mode:5745 ~ 5825 MHz 802.11n(-20MHz):5745 ~ 5825 MHz 802.11n(-40MHz):5755~ 5795 MHz			
Transmit Power:	IEEE 802.11b mode: 25.38dBm (345.14mW) IEEE 802.11g mode: 24.58dBm (287.08mW) 802.11n Standard-20 MHz Channel mode: 26.98 dBm (489.96mW) 802.11n Wide-40 MHz Channel mode: 27.43 dBm (552.85mW) IEEE 802.11a mode: 21.12dBm (129.42 mW) 802.11n Standard-20 MHz Channel mode:23.92 dBm(246.42mW) 802.11n Wide-40 MHz Channel mode: 25.11 dBm (323.99mW) (the EUT transmitting and receiving with two antennas simultaneously working at n mode)			
Modulation Technique:	IEEE 802.11b mode: DSSS (1, 2, 5.5 and 11 Mbps) IEEE 802.11g mode: DSSS /OFDM (6, 9, 12, 18, 24, 36, 48 and 54 Mbps)			
Number of Channels:	IEEE 802.11b/g mode: 11 Channels 802.11n Standard-20 MHz Channel mode: 11 Channels 802.11n Wide-40 MHz Channel mode: 7 Channels			
Antenna Specification:	Dinale entenne			
,	Mode	gian	TX function	numeric antenna gian
	802.11a	2dBi	1TX	1.58
MAX gian	802.11b	2dBi	1TX	1.58
	802.11g	2dBi	1TX	1.58
	802.11n(20MHz)	5.1 dBi	2TX	3.23
	802.11n(40MHz) 5.1 dBi 2TX 3.23			

Remark:

- The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- This submittal(s) (test report) is intended for FCC ID: V6U- AP25N01 filing to comply with Section 2. 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. Total gain (dBm) = chain gian+10*log N from KDB 622911

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 2003and FCC CFR 47 15.207, 15.209 and 15.247.

3.1. EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2. EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3. GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 2003 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4 2003.

3.4. FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

Report No: KS120716A02-RPB

FCC ID: V6U- AP25N0^o

Date of Issue :October 10, 2012

3.5. DESCRIPTION OF TEST MODES

The EUT transmitting and receiving with one (chain 0) antenna working at a/b/g mode, so one antenna working configuration was used for a/b/g mode testing in this report.

The EUT transmitting and receiving with two antennas simultaneously working at n mode, so 2x2 configuration was used for all testing in this report.

The worst-case data rates are determined to be as follows for each mode based on investigation by measuring the average power, peak power and PPSD across all data rates, bandwidths, and modulations.

The worst-case data rates:

IEEE802.11b mode:

Channel Low (2412MHz)

Channel Mid (2437MHz)

Channel High (2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE802.11g mode:

Channel Low (2412MHz)

Channel Mid (2437MHz)

Channel High (2462MHz) with 6Mbps data rate were chosen for full testing.

EEE802.11a:

Channel low(5745MHz),

Channel middle(5785MHz)

Channel high(5805MHz)

with preliminary test 54/48/36/24/18/12/9/6 Mbps, After the preliminary scan, the following test mode 6Mbps data rate (the worst case) are chosen for the final testing.

802.11n Standard-20 MHz Channel mode:

Channel Low (2412MHz)

Channel Mid (2437MHz)

Channel High (2462MHz) with MCS0data rate were chosen for full testing.

802.11n Wide-40 MHz Channel mode:

Channel Low (2422MHz)

Channel Mid (2437MHz)

Channel High (2452MHz) with MCS0 data rate were chosen for full testing.

802.11n Wide-20 MHz Channel mode:

Channel low(5745MHz),

Channel middle(5785MHz)

Channel high(5805MHz) with MCS0 data rate were chosen for full testing.

802.11n Wide-40 MHz Channel mode:

Channel Low (5755MHz),

Channel High (5795MHz) with MCS0 data rate were chosen for full testing.

4. INSTRUMENT CALIBRATION

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Equipment Used for Emissions Measurement

Conducted Emissions Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY44020154	2013-5-13	
DETECTOR NEGATIVE	Agilent	8473B	MY42240176	2013-5-13	
OSCILLOSCOPE	Agilent	DSO6104A	MY44002585	2013-3-25	
Peak and Avg Power Sensor	Agilent	E9327A	US40441788	2013-3-25	
EPM-P Series Power Meter	Agilent	E4416A	GB41292714	2013-5-13	
Power SPLITTER	Mini-Circuits	ZN2PD-9G	SF078500430	2013-5-13	
DC POWER SUPPLY	GW instek	GPS-3303C	E903131	2013-5-13	
Temp. / Humidity Chamber	Kingson	THS-M1	242	2013-3-13	
Test Software	EZ-EMC				

977 Chamber				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	2013-5-13
EMI Test Receiver	R&S	ESPI3	101026	2013-3-16
Pre-Amplfier	MINI	ZFL-1000VH2	d041703	2013-5-13
Pre-Amplfier	Miteq	NSP4000-NF	870629	2013-5-13
Bilog Antenna	Sunol	JB1	A110204-2	2013-5-13
Horn-antenna	SCHWARZBECK	BBHA9120D	D:266	2013-6-8
Turn Table	СТ	CT123	4165	N.C.R
Antenna Tower	СТ	CTERG23	3256	N.C.R
Controller	СТ	CT100	95637	N.C.R
Test Software	EZ-EMC			

Conducted Emission						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI TEST RECEIVER	R&S	ESCI3	100781	2013-3-16		
V (V-LISN)	Schwarzbeck	NNLK 8129	8129-143	2013-3-16		
LISN (EUT)	FCC	FCC-LISN-50/250-50-2-02	SN:05012	2013-3-16		
TRANSIENT LIMITER	SCHAFFNER	CFL9206	1710	2013-4-8		
Test Software	EZ-EMC					

Remark: The measurement uncertainty is less than +/- 2.81dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Expanded Uncertainty (95% CONFIDENCE INTERVAL): K=2

5. FACILITIES AND ACCREDITATIONS

5.1. FACILITIES

All measurement facilities used to collect the measurement data are located at CCS China Kunshan Lab at 10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone

Kunshan city JiangSu, (215300), CHINA.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 2003 and CISPR Publication 22.

5.2. EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3. LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under Lab Code: 200581-0 to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC5743 for 10m chamber 10m, IC5743 for 10m chamber 3m.

5.4. TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	A2LA	47 CFR FCC Part 15/18 (using ANSI C63.4:2003); VCCI V3; CNS 13438; CNS 13439; CNS 13803; CISPR 11; EN 55011; CISPR 13; EN 55013; CISPR 22:2005; CISPR 22:1997 +A1:2000+A2:2002; EN 55022:2006; EN55022:1998 +A1:2001+A2:2003; EN 61000-6-3 (excluding discontinuous interference); EN 61000-6-4; AS/NZS CISPR 22; CAN/CSA-CEI/IEC CISPR 22; EN 61000-3-2; EN 61000-3-3; EN550024; EN 61000-4-2; EN 61000-4-3; EN61000-4-4; EN 61000-4-5; EN 61000-4-6; IEC 61000-3-3; IEC 61000-4-11; IEC61000-3-2; IEC61000-3-3; IEC 61000-4-5; IEC 61000-4-6; IEC 61000-4-8; IEC 61000-4-1; EN 300 220-3; EN 300 328; EN 300 330-2; EN 300 440-1; EN 300-440-2; EN 300 893; EN 301 489-01; EN 301 489-3; EN 301 489-07; EN 301 489-17; 47 CFR FCC Part 15, 22, 24	ACCREDITED TESTING CERT #2541.01
USA	FCC	3/10 meter Sites to perform FCC Part 15/18 measurements	93105, 90471
Japan	VCCI	3/10 meter Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-1600 C-1707 G-216

^{*} No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1. SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

6.2. SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID
1.	NOTEBOOK	IBM	62P7043	998W21C	DOC

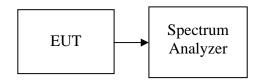
Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Report No: KS120716A02-RPB

FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012


7. FCC PART 15.247 REQUIREMENTS

7.1. 6DB BANDWIDTH

LIMIT

According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

Test Configuration

TEST PROCEDURE

KDB 558074 D01 DTS Measurement Guidance V02 dated 10-04-2012.

TEST RESULTS

No non-compliance noted

2.4G Test Data

IEEE 802.11b mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result		
Low	2412	12.125	>500	PASS		
Mid	2437	12.598		PASS		
High	2462	12.066		PASS		

IEEE 802.11g mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	16.439	>500	PASS
Mid	2437	16.515		PASS
High	2462	16.417		PASS

TRANSMIT CHAIN 0

802.11n Standard-20 MHz Channel mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result	
Low	2412	17.671		PASS	
Mid	2437	17.672	>500	PASS	
High	2462	17.656		PASS	

802.11n Wide-40 MHz Channel mode

Channel	Frequency (MHz)			Result	
Low	2422	36.397		PASS	
Mid	2437	36.384	>500	PASS	
High	2452	36.409		PASS	

TRANSMIT CHAIN 1

802.11n Standard-20 MHz Channel mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	17.688		PASS
Mid	2437	17.666	>500	PASS
High	2462	17.646		PASS

802.11n Wide-40 MHz Channel mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result	
Low	2422	36.401		PASS	
Mid	2437	36.390	>500	PASS	
High	2452	36.400		PASS	

5.8G Test data

IEEE 802.11a mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	5745	20.982		PASS
Mid	5785	20.896	>500	PASS
High	5805	21.363		PASS

TRANSMIT CHAIN 0

802.11an Standard-20 MHz Channel mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	5745	21.233		PASS
Mid	5785	21.568	>500	PASS
High	5805	21.290		PASS

802.11an Wide-40 MHz Channel mode

Channel	Frequency Bandwidth (MHz) (MHz)		Limit (kHz)	Result	
Low	5755	40.899	· E00	PASS	
High	5795	40.406	>500	PASS	

TRANSMIT CHAIN 1

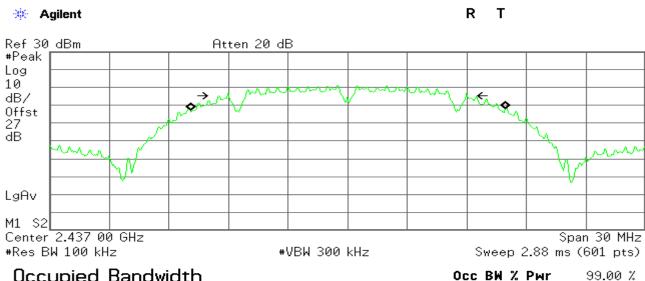
802.11an Standard-20 MHz Channel mode

Channel	Frequency Bandwidth (MHz) (MHz)		Limit (kHz)	Result
Low	5745	21.547		PASS
Mid	5785	21.989	>500	PASS
High	5805	21.715		PASS


802.11an Wide-40 MHz Channel mode

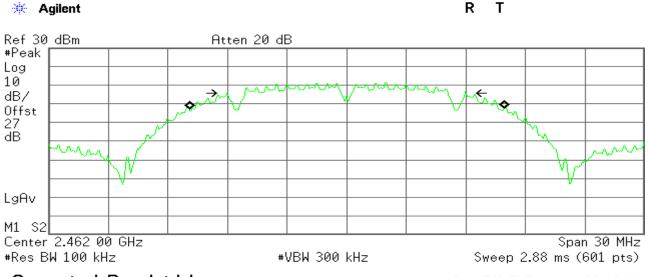
Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	5755	40.596	, F00	PASS
High	5795	42.561	>500	PASS

Test Plot IEEE 802.11b MODE


6dB Bandwidth (CH Low)

Occupied Bandwidth 15.8175 MHz Occ BW % Pwr 99.00 % x dB -6.00 dB

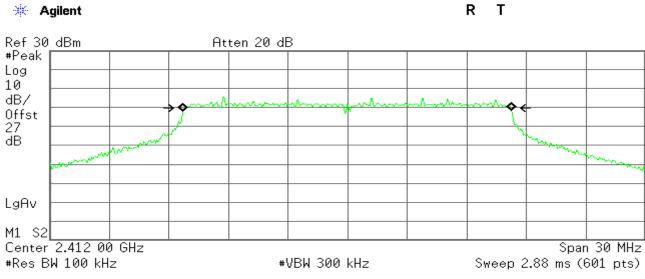
Transmit Freq Error 8.784 kHz x dB Bandwidth 12.125 MHz


6dB Bandwidth (CH Mid)

Occupied Bandwidth 15.8618 MHz Occ BW % Pwr 99.00 % -6.00 dB x dB

Transmit Freq Error 6.295 kHz x dB Bandwidth 12.589 MHz

6dB Bandwidth (CH High)

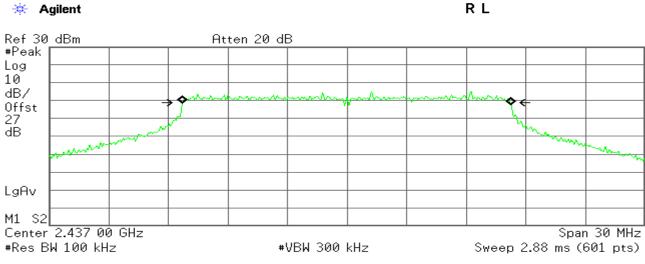


Occupied Bandwidth 15.8497 MHz Occ BW % Pwr 99.00 % x dB -6.00 dB

Transmit Freq Error 3.593 kHz x dB Bandwidth 12.066 MHz

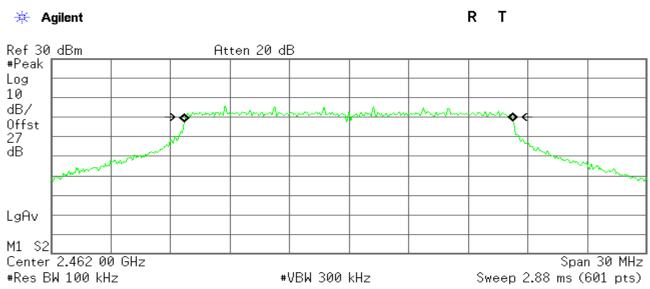
IEEE 802.11g MODE

6dB Bandwidth (CH Low)



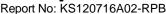
Occupied Bandwidth 16.5587 MHz Occ BW % Pwr 99.00 % -6.00 dB x dB

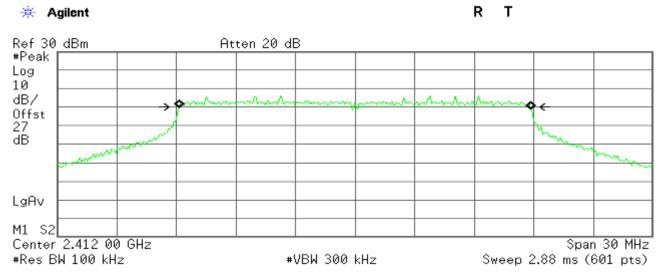
Transmit Freq Error -18.339 kHz x dB Bandwidth 16.439 MHz


6dB Bandwidth (CH Mid)

Occupied Bandwidth 16.5785 MHz Occ BW % Pwr 99.00 % x dB -6.00 dB

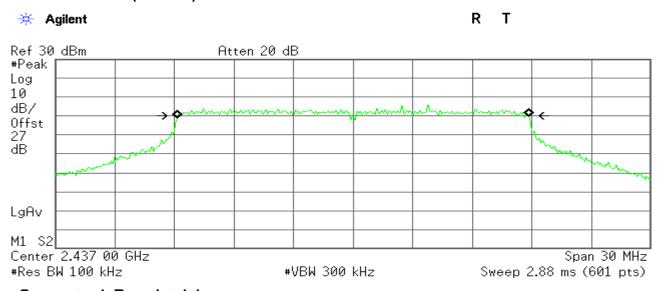
Transmit Freq Error -15.408 kHz x dB Bandwidth 16.515 MHz


6dB Bandwidth (CH High)


Occupied Bandwidth 16.5789 MHz

Occ BW % Pwr 99.00 % x dB -6.00 dB

-19.986 kHz Transmit Freq Error x dB Bandwidth 16.417 MHz


802.11n Standard-20 MHz Channel mode / Chain 0 6dB Bandwidth (CH Low)

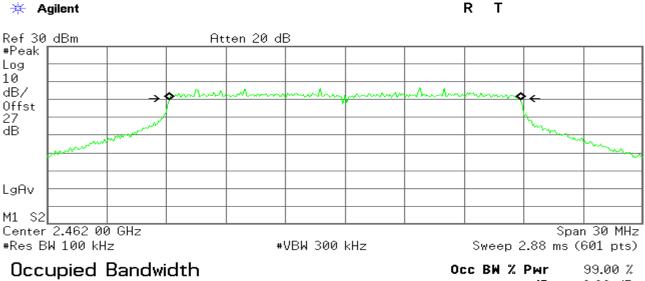
Occupied Bandwidth 17.7158 MHz Occ BW % Pwr 99.00 % x dB -6.00 dB

Transmit Freg Error -10.783 kHz x dB Bandwidth 17.671 MHz

6dB Bandwidth (CH Mid)

Occupied Bandwidth 17.7223 MHz

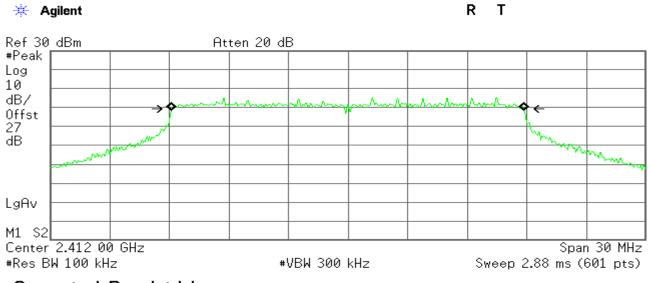
Occ BW % Pwr 99.00 % x dB -6.00 dB


Transmit Freg Error 4.461 kHz x dB Bandwidth 17.672 MHz

FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012

6dB Bandwidth (CH High)

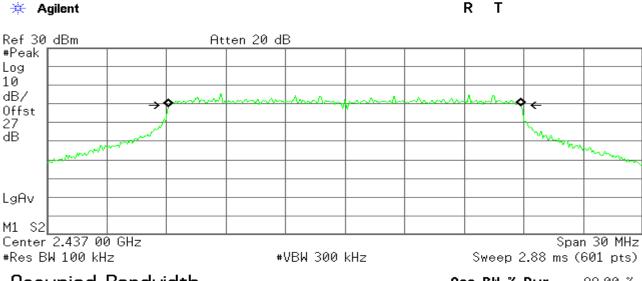


17.6910 MHz

x dB -6.00 dB

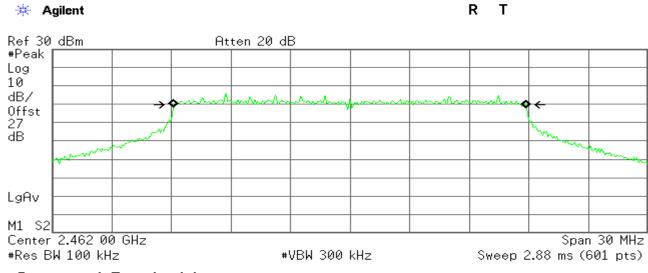
Transmit Freq Error -8.005 kHz x dB Bandwidth 17.656 MHz


802.11n Standard-20 MHz Channel mode / Chain 1 6dB Bandwidth (CH Low)


Occupied Bandwidth 17.7551 MHz

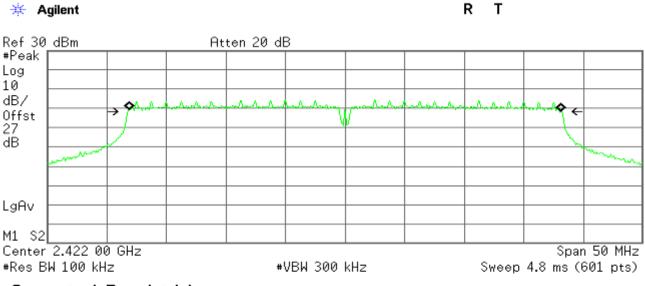
Occ BW % Pwr 99.00 % **x dB** -6.00 dB

Transmit Freq Error -7.040 kHz x dB Bandwidth 17.688 MHz


6dB Bandwidth (CH Mid)

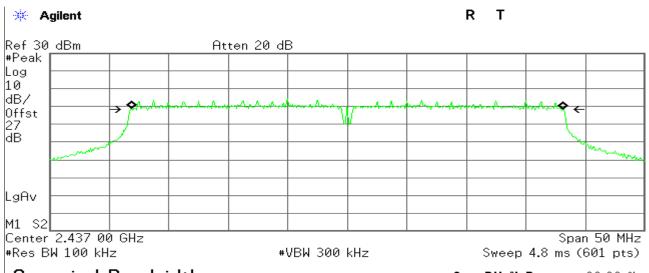
Occupied Bandwidth 17.7588 MHz Occ BW % Pwr 99.00 % x dB -6.00 dB

Transmit Freq Error -11.657 kHz x dB Bandwidth 17.666 MHz

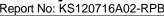

6dB Bandwidth (CH High)

Occupied Bandwidth 17.7416 MHz Occ BW % Pwr 99.00 % -6.00 dB x dB

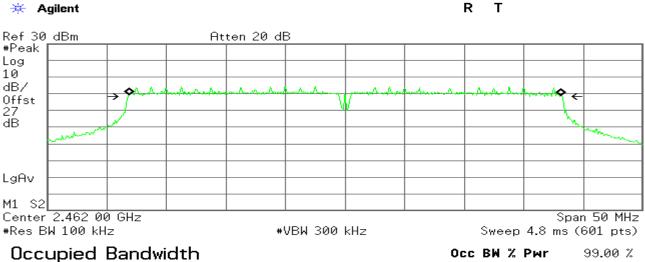
Transmit Freq Error -8.080 kHz x dB Bandwidth 17.646 MHz


802.11n Wide-40 MHz Channel mode / Chain 0 6dB Bandwidth (CH Low)

Occupied Bandwidth 36.1229 MHz Occ BW % Pwr 99.00 % x dB -6.00 dB


Transmit Freq Error -16.168 kHz x dB Bandwidth 36.397 MHz

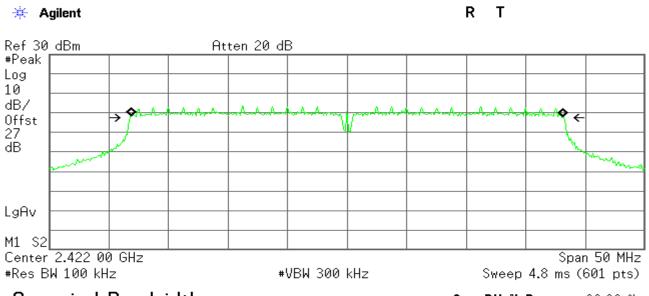
6dB Bandwidth (CH Mid)



Occupied Bandwidth 36.1426 MHz Occ BW % Pwr 99.00 % **x dB** -6.00 dB

Transmit Freq Error -24.133 kHz x dB Bandwidth 36.384 MHz

6dB Bandwidth (CH High)

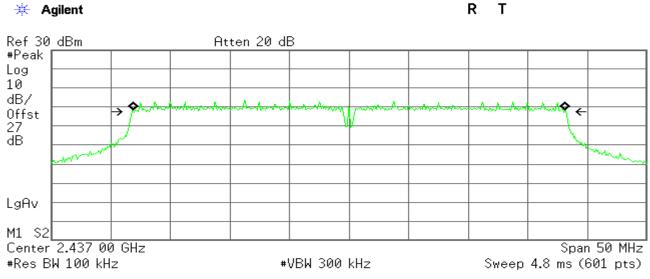


36.1377 MHz

Occ BW % Pwr -6.00 dB x dB

Transmit Freq Error -6.419 kHz x dB Bandwidth 36.409 MHz

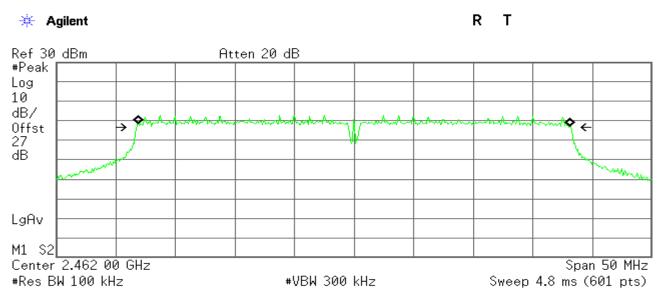
802.11n Wide-40 MHz Channel mode / Chain 1 6dB Bandwidth (CH Low)



Occupied Bandwidth 36.1646 MHz

Occ BW % Pwr 99.00 % x dB -6.00 dB

Transmit Freg Error -9.951 kHz x dB Bandwidth 36.401 MHz


6dB Bandwidth (CH Mid)

Occupied Bandwidth 36.1912 MHz Occ BW % Pwr 99.00 % x dB -6.00 dB

Transmit Freq Error -10.091 kHz x dB Bandwidth 36.390 MHz

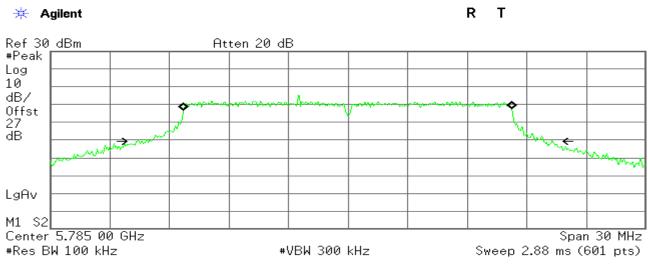
6dB Bandwidth (CH High)


Occupied Bandwidth 36.1576 MHz Occ BW % Pwr 99.00 % x dB -6.00 dB

Transmit Freg Error -26.463 kHz x dB Bandwidth 36.400 MHz

5725MHz-5825MHz

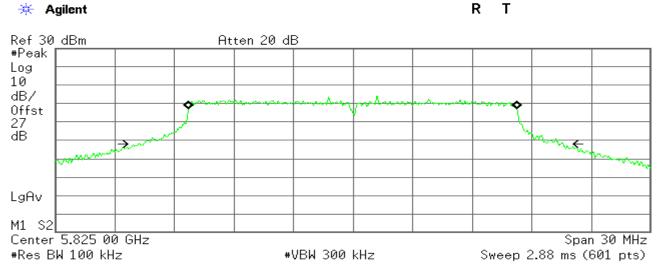
IEEE 802.11a mode


6dB Bandwidth (CH Low)

Occupied Bandwidth 16.5245 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -27.095 kHz x dB Bandwidth 20.982 MHz

6dB Bandwidth (CH Mid)

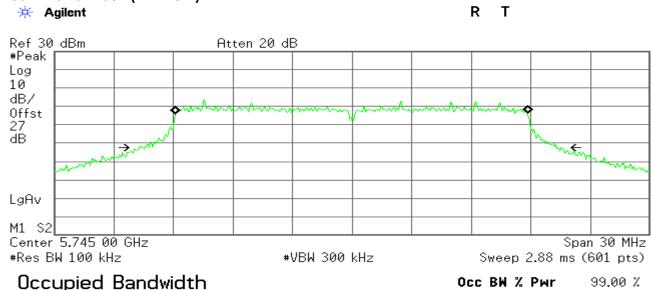


Occupied Bandwidth 16.5283 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -26.129 kHz x dB Bandwidth 20.896 MHz

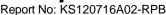
6dB Bandwidth (CH High)

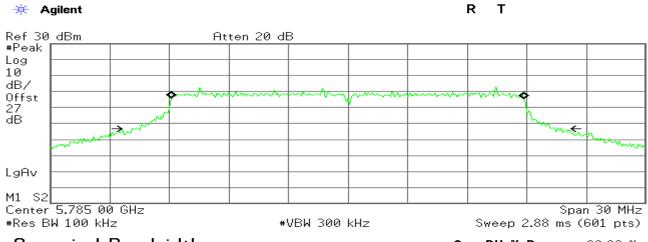


Occupied Bandwidth 16.5219 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -26.528 kHz 21.363 MHz x dB Bandwidth

802.11an Standard-20 MHz Channel mode / Chain 0


6dB Bandwidth (CH Low)


Transmit Freq Error -22.911 kHz x dB Bandwidth 21.233 MHz

17.7063 MHz

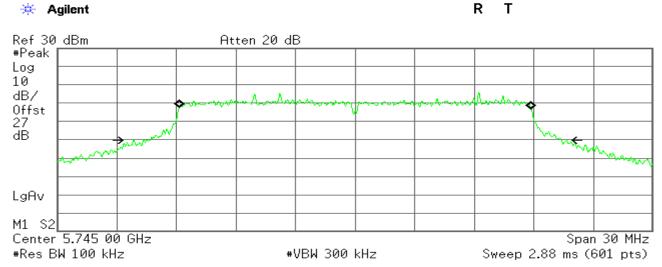
x dB -26.00 dB

6dB Bandwidth (CH Mid)

Occupied Bandwidth 17.7321 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -22.472 kHz x dB Bandwidth 21.568 MHz

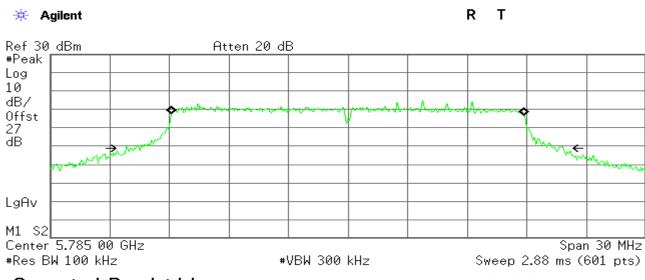
6dB Bandwidth (CH High)



Occupied Bandwidth 17.7075 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

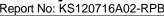
Transmit Freq Error -17.570 kHz x dB Bandwidth 21.290 MHz

802.11an Standard-20 MHz Channel mode / Chain 1


6dB Bandwidth (CH Low)

Occupied Bandwidth 17.7077 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -643.055 Hz x dB Bandwidth 21.547 MHz

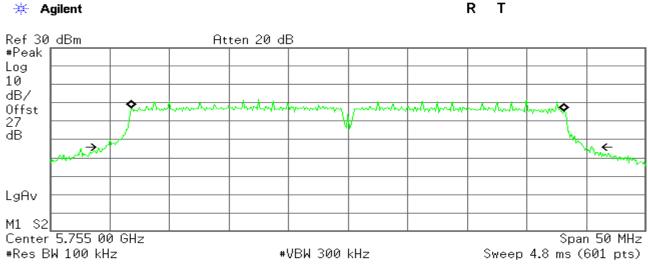

6dB Bandwidth (CH Mid)

Occupied Bandwidth 17.7397 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -19.687 kHz x dB Bandwidth 21.989 MHz

6dB Bandwidth (CH High)

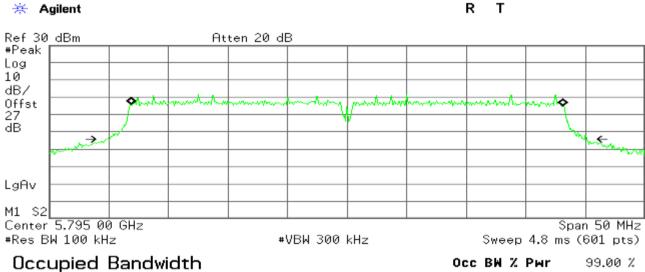


Occupied Bandwidth 17.7280 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freg Error -22.882 kHz x dB Bandwidth 21.715 MHz

802.11an Standard-40 MHz Channel mode / Chain 0

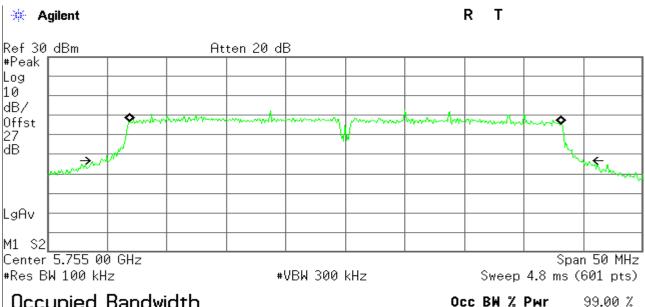
6dB Bandwidth (CH Low)



Occupied Bandwidth 36.2038 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -28.101 kHz x dB Bandwidth 40.899 MHz

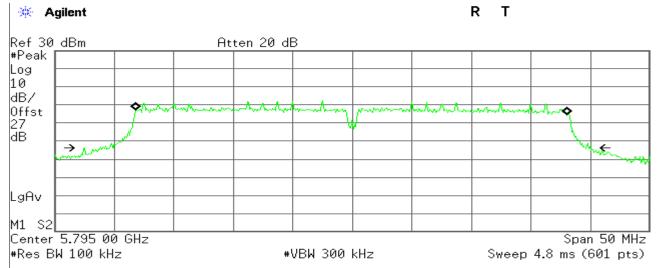
6dB Bandwidth (CH High)


36.1753 MHz

x dB -26.00 dB

Transmit Freq Error -20.136 kHz x dB Bandwidth 40.406 MHz

802.11an Standard-40 MHz Channel mode / Chain 1


6dB Bandwidth (CH Low)

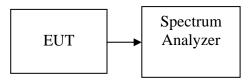
Occupied Bandwidth 36.1750 MHz x dB -26.00 dB

Transmit Freq Error -33.693 kHz x dB Bandwidth 40.596 MHz

6dB Bandwidth (CH High)

Occupied Bandwidth 36.1668 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -54.497 kHz x dB Bandwidth 42.561 MHz


7.2. POWER OUTPUT

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz. and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Configuration

TEST PROCEDURE

KDB 558074 D01 DTS Measurement Guidance V02 dated 10-04-2012.

TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequenc y (MHz)	Output Power (dBm)	Output Power (mw)	Limit	Result
Low	2412	25.38	345.14		PASS
Mid	2437	24.84	304.79		PASS
High	2462	25.08	322.11	30dBm	PASS

Test mode: IEEE 802.11g mode

	Frequenc Output Output y Power Power				
Channel	(MHz)	(dBm)	(mw)	Limit	Result
Low	2412	24.40	275.42		PASS
Mid	2437	24.34	271.64		PASS
High	2462	24.58	287.08	30dBm	PASS

Test mode: 802.11n Standard-20 MHz Channel mode

Channel	Frequenc y (MHz)	Chain 0 Output Power (dBm)	Chain 1 Output Power (dBm)	Output Power (dBm)	Output Power (mW)	Limit	Result
Low	2412	24.32	23.59	26.98	498.96		PASS
Mid	2437	24.19	23.02	26.65	462.87		PASS
High	2462	24.5	23.37	26.98	499.11	30dBm	PASS

Test mode: 802.11n Wide-40 MHz Channel mode

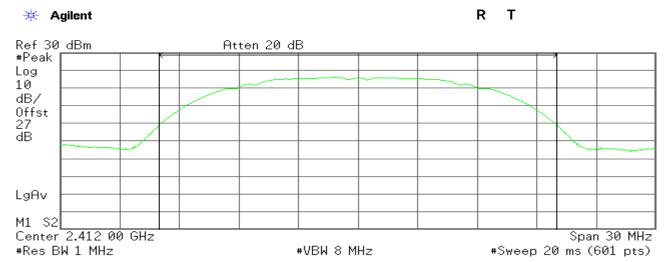
Channel	Frequenc y (MHz)	Chain 0 Output Power (dBm)	Chain 1 Output Power (dBm)	Output Power (dBm)	Output Power (mW)	Limit	Result
Low	2422	24.72	23.8	27.29	536.37		PASS
Mid	2437	24.56	23.9	27.25	531.23		PASS
High	2452	24.77	24.03	27.43	552.85	30dBm	PASS

Test mode: IEEE 802.11a mode

Frequenc		Output Power	Output Power		
Channel	(MHz)	(dBm)	(mw)	Limit	Result
Low	5745	20.51	112.46		PASS
Mid	5785	21.03	126.77		PASS
High	5825	21.12	129.42	30dBm	PASS

Test mode: 802.11an Standard-20 MHz Channel mode

Channel	Frequenc y (MHz)	Chain 0 Output Power (dBm)	Chain 1 Output Power (dBm)	Output Power (dBm)	Output Power (mW)	Limit	Result
Low	5745	20.71	20.78	23.76	237.43		PASS
Mid	5785	21.02	20.79	23.92	246.42		PASS
High	5825	20.9	20.9	23.91	246.05	30dBm	PASS

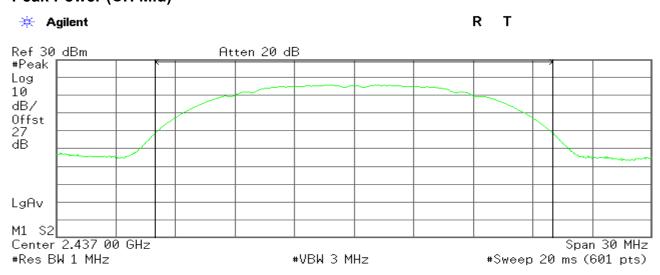

Test mode: 802.11an Wide-40 MHz Channel mode

	Frequenc			Output	Output		
	у	Chain 0	Chain 1	Power	Power		
Channel	(MHz)	Output Power (dBm)	Output Power (dBm)	(dBm)	(mW)	Limit	Result
Low	5755	22.00	22.04	25.03	318.45		PASS
High	5795	22.09	22.1	25.11	323.99	30dBm	PASS

Test Plot

IEEE 802.11b mode

Peak Power (CH Low)

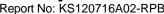

Channel Power

25.38 dBm /20.0000 MHz

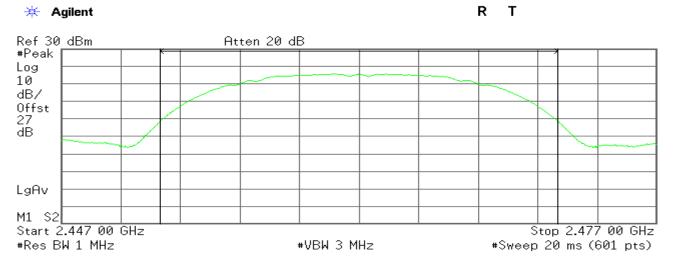
Power Spectral Density

-47.63 dBm/Hz

Peak Power (CH Mid)



Channel Power

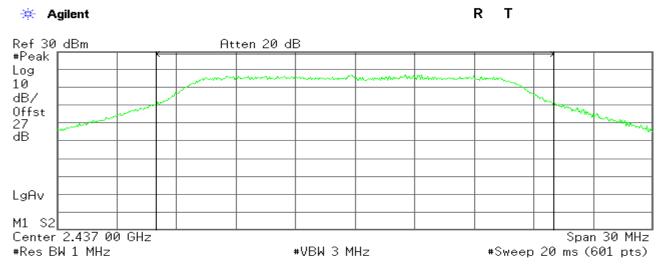

24.84 dBm /20.0000 MHz

Power Spectral Density

-48.17 dBm/Hz

Peak Power (CH High)

Channel Power

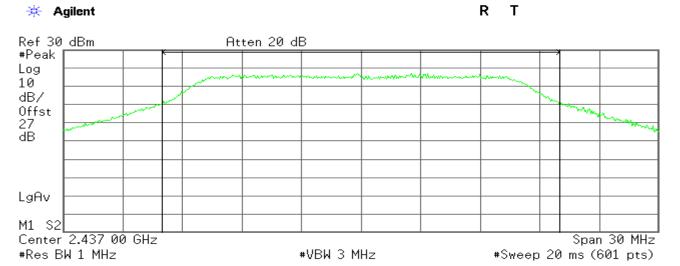

25.08 dBm /20.0000 MHz

Power Spectral Density

-47.93 dBm/Hz

IEEE 802.11g mode

Peak Power (CH Low)

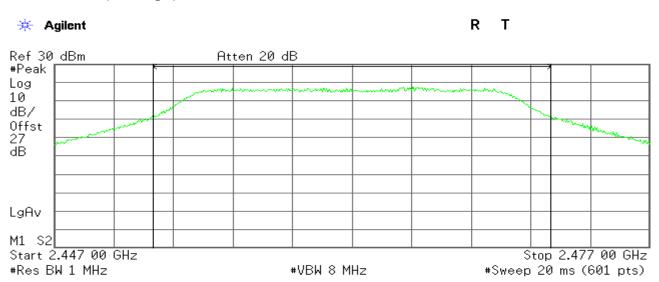

Channel Power

24.34 dBm /20.0000 MHz

Power Spectral Density

-48.67 dBm/Hz

Peak Power (CH Mid)


Channel Power

24.34 dBm /20.0000 MHz

Power Spectral Density

-48.67 dBm/Hz

Peak Power (CH High)

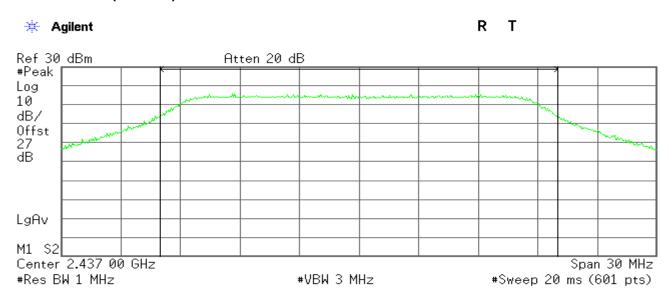
Channel Power

24.58 dBm /20.0000 MHz

Power Spectral Density

-48.43 dBm/Hz

802.11n Standard-20 MHz Channel mode / Chain 0 Peak Power (CH Low)

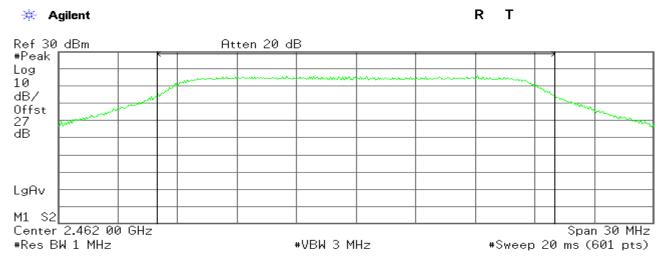

Channel Power

24.32 dBm /20.0000 MHz

Power Spectral Density

-48.69 dBm/Hz

Peak Power (CH Mid)

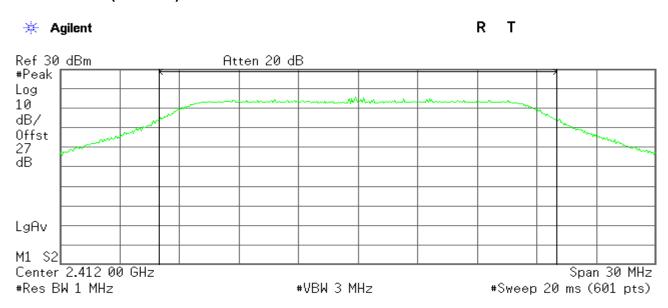

Channel Power

24.19 dBm /20.0000 MHz

Power Spectral Density

-48.82 dBm/Hz

Peak Power (CH High)


Channel Power

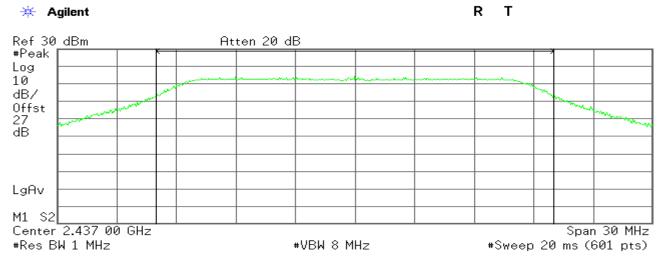
24.50 dBm /20.0000 MHz

Power Spectral Density

-48.51 dBm/Hz

802.11n Standard-20 MHz Channel mode / Chain 1 Peak Power (CH Low)

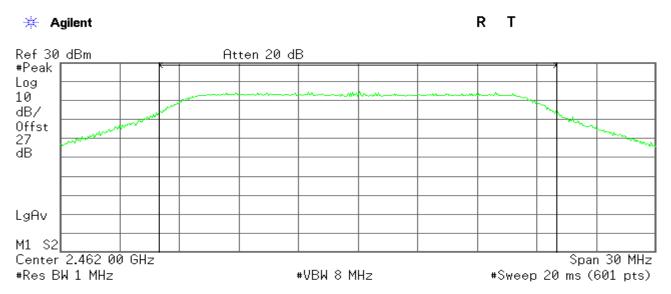
Channel Power


23.59 dBm /20.0000 MHz

Power Spectral Density

-49.42 dBm/Hz

Peak Power (CH Mid)

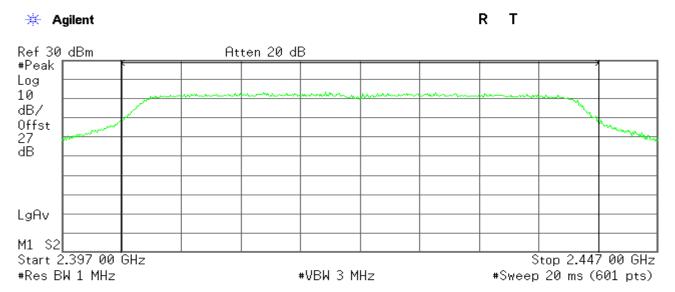

Channel Power

23.02 dBm /20.0000 MHz

Power Spectral Density

-49.99 dBm/Hz

Peak Power (CH High)

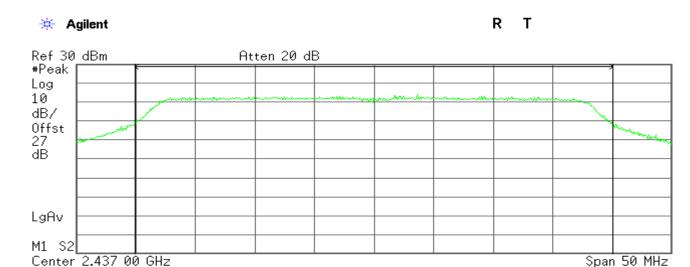

Channel Power

23.37 dBm /20.0000 MHz

Power Spectral Density

-49.64 dBm/Hz

802.11n Wide-40 MHz Channel mode / Chain 0 Peak Power (CH Low)


Channel Power

24.72 dBm /40.0000 MHz

Power Spectral Density

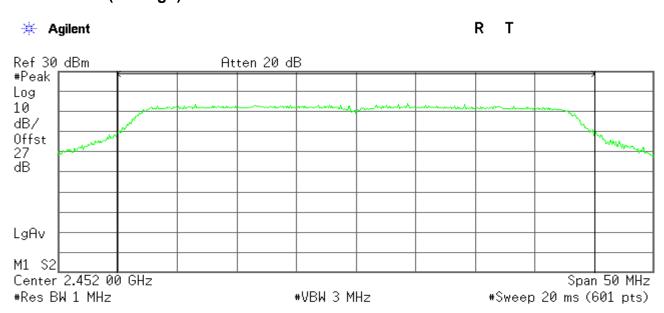
-51.30 dBm/Hz

Peak Power (CH Mid)

#VBW 3 MHz

Channel Power

#Res BW 1 MHz


24.56 dBm /40.0000 MHz

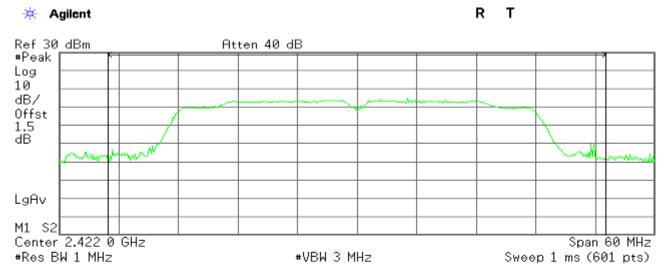
Power Spectral Density

-51.46 dBm/Hz

#Sweep 20 ms (601 pts)

Peak Power (CH High)

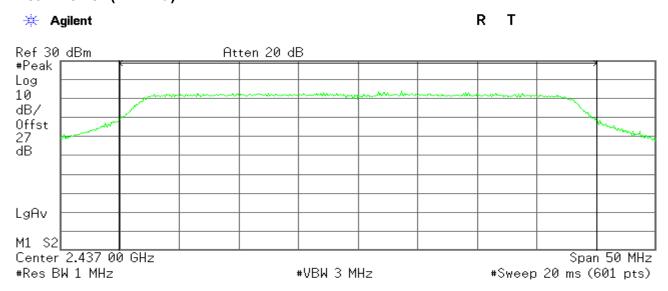
Channel Power


24.77 dBm /40.0000 MHz

Power Spectral Density

-51.25 dBm/Hz

802.11n Wide-40 MHz Channel mode / Chain 1 Peak Power (CH Low)

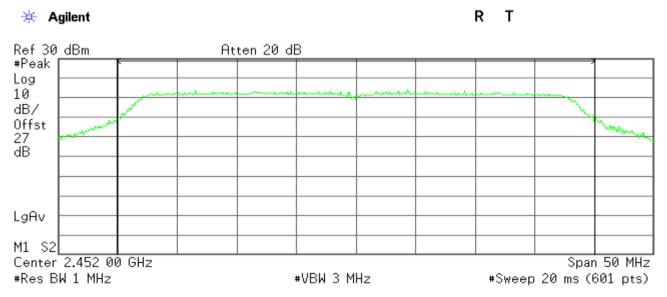

Channel Power

12.90 dBm /50.0000 MHz

Power Spectral Density

-64.09 dBm/Hz

Peak Power (CH Mid)


Channel Power

24.56 dBm /40.0000 MHz

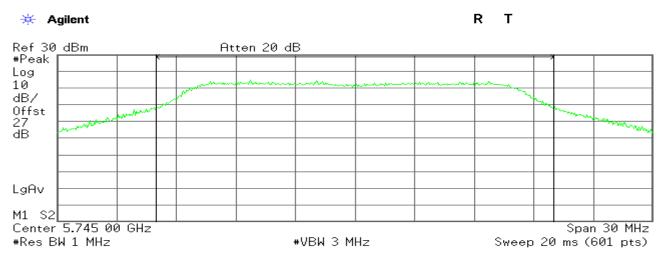
Power Spectral Density

-51.46 dBm/Hz

Peak Power (CH High)

Channel Power

24.77 dBm /40.0000 MHz


Power Spectral Density

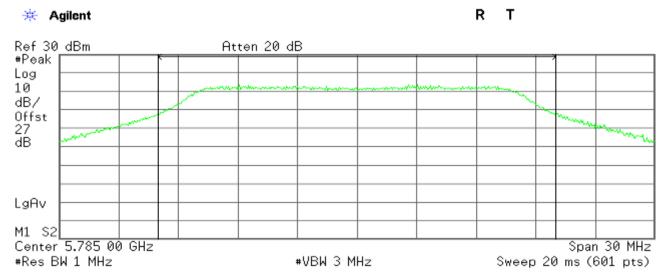
-51.25 dBm/Hz

5725-5825

IEEE 802.11a mode

Peak Power (CH Low)

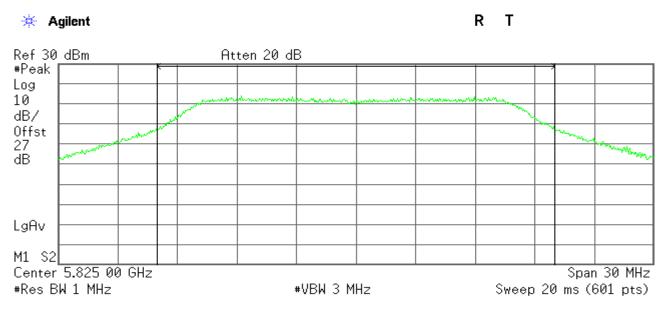
Channel Power


20.51 dBm /20.0000 MHz

Power Spectral Density

-52.50 dBm/Hz

Peak Power (CH Mid)


Channel Power

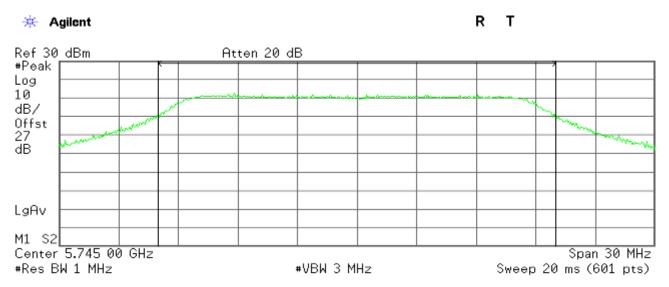
21.03 dBm /20.0000 MHz

Power Spectral Density

-51.98 dBm/Hz

Peak Power (CH Hgih)

Channel Power

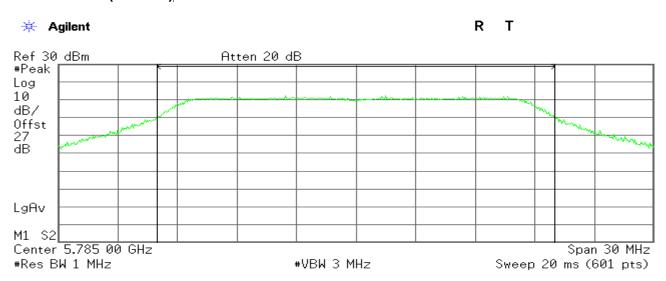

21.12 dBm /20.0000 MHz

Power Spectral Density

-51.89 dBm/Hz

802.11an Standard-20 MHz Channel mode / Chain 0

Peak Power (CH Low)


Channel Power

20.71 dBm /20.0000 MHz

Power Spectral Density

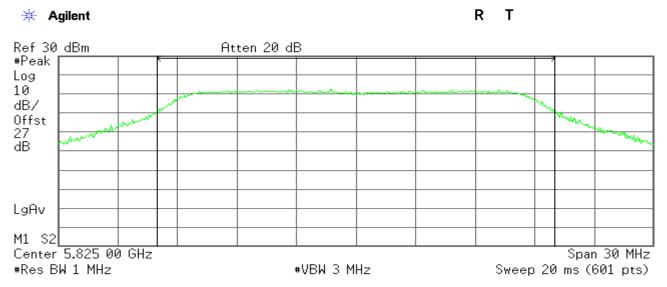
-52.30 dBm/Hz

Peak Power (CH Mid)

Channel Power

21.02 dBm /20.0000 MHz

Power Spectral Density

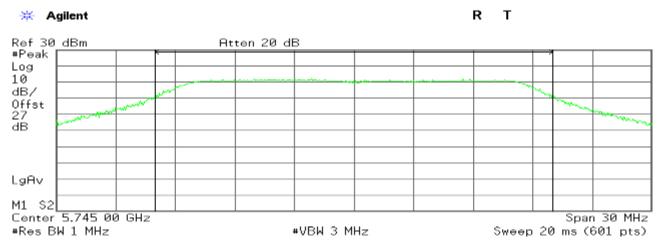

-51.99 dBm/Hz

FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012

Peak Power (CH High)

Channel Power

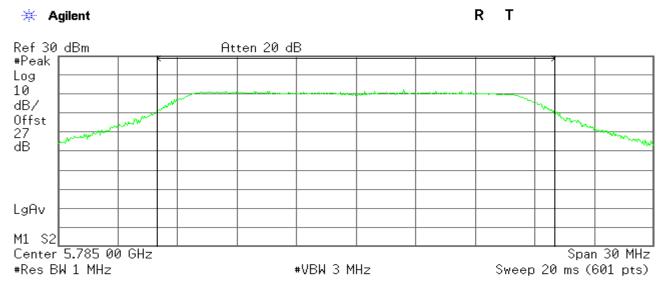

20.90 dBm /20.0000 MHz

Power Spectral Density

-52.11 dBm/Hz

802.11an Standard-20 MHz Channel mode / Chain 1

Peak Power (CH Low)

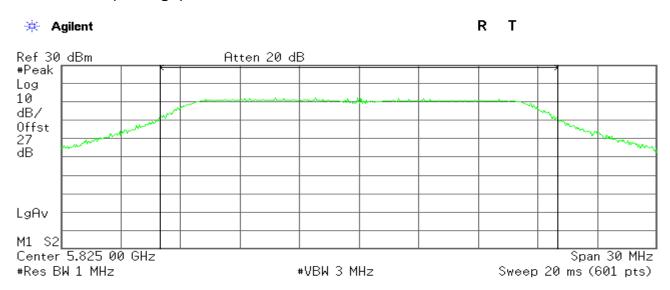


Channel Power

20.78 dBm /20.0000 MHz

Power Spectral Density
-52.23 dBm/Hz

Peak Power (CH Mid)


Channel Power

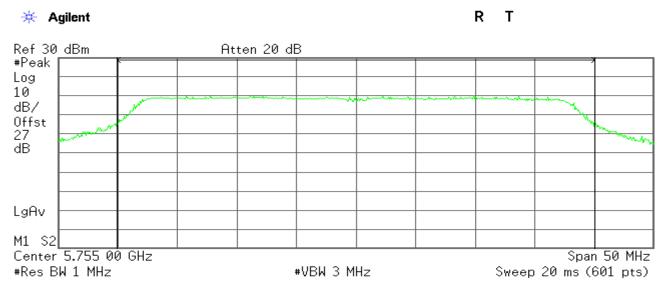
20.79 dBm /20.0000 MHz

Power Spectral Density

-52.22 dBm/Hz

Peak Power (CH High)

Channel Power

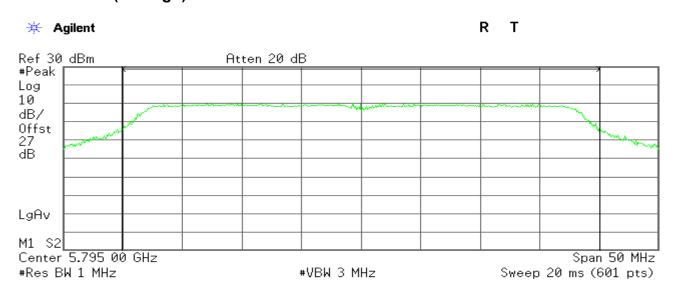

20.90 dBm /20.0000 MHz

Power Spectral Density

-52.11 dBm/Hz

802.11an Standard-40 MHz Channel mode / Chain 0

Peak Power (CH Low)


Channel Power

22.00 dBm /40.0000 MHz

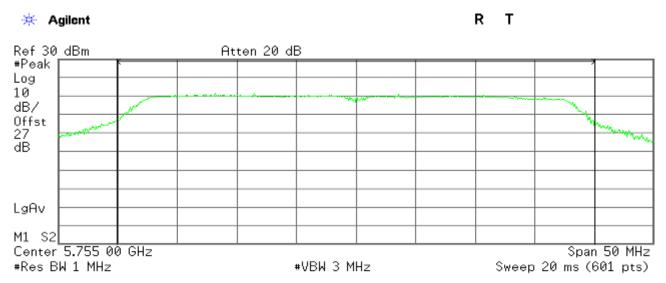
Power Spectral Density

-54.02 dBm/Hz

Peak Power (CH High)

Channel Power

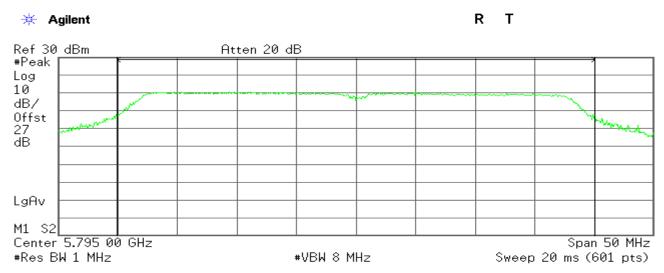
22.09 dBm /40.0000 MHz


Power Spectral Density

-53.93 dBm/Hz

802.11an Standard-40 MHz Channel mode / Chain 1

Peak Power (CH Low)


Channel Power

22.84 dBm /40.0000 MHz

Power Spectral Density

-53.18 dBm/Hz

Peak Power (CH High)

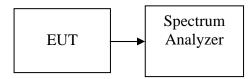
Channel Power

22.70 dBm /40.0000 MHz

Power Spectral Density

-53.32 dBm/Hz

FCC ID: V6U- AP25N01


Date of Issue :October 10, 2012

7.3. PEAK POWER SPECTRAL DENSITY

LIMIT

- 1. According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
- 2. According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

Test Configuration

TEST PROCEDURE

KDB 558074 D01 DTS Measurement Guidance V02 dated 10-04-2012.

TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequenc y Channel (MHz)		Limit (dBm)	Result	
Low	2412	-3.48	8	PASS	
Mid	2437	-3.29	8	PASS	
High	2462	-1.93	8	PASS	

Test mode: IEEE 802.11g mode

Channel	Frequenc y Channel (MHz)		Limit (dBm)	Result	
Low	2412	1.63	8	PASS	
Mid	2437	1.06	8	PASS	
High	2462	80.0	8	PASS	

Test mode: 802.11n Standard-20 MHz Channel mode

	Frequenc	PPSD	PPSD			
	У	Chain 0	Chain 1	PPSD Total	Limit	
Channel	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	Result
Low	2412	-0.32	-1.19	2.28	8	PASS
Mid	2437	-0.83	0.09	2.66	8	PASS
High	2462	-0.03	0.23	3.11	8	PASS

Remark: Total PPSD $(dBm) = 10*LOG(10^{\circ}(Chain\ 0\ PPSD\ /\ 10) + 10^{\circ}(Chain\ 1\ PPSD\ /\ 10))$

Test mode: 802.11n Wide-40 MHz Channel mode

Channel	Frequenc y (MHz)	PPSD Chain 0 (dBm)	PPSD Chain 1 (dBm)	PPSD Total (dBm)	Limit (dBm)	Result
Low	2422	-0.76	-1.01	2.13	8	PASS
Mid	2437	-0.5	-0.05	2.74	8	PASS
High	2452	-1.52	-0.76	1.89	8	PASS

Remark: Total PPSD $(dBm) = 10*LOG(10^{(Chain 0 PPSD / 10)} + 10^{(Chain 1 PPSD / 10)})$

Test mode: IEEE 802.11a mode

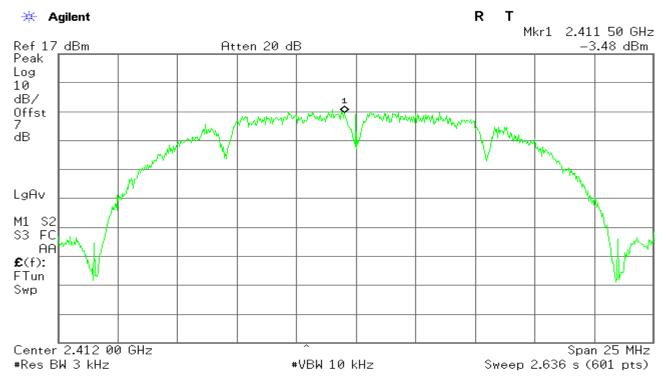
Channel	Frequenc y (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	5745	-8.15	8	PASS
Mid	5785	-8.4	8	PASS
High	5825	-9.32	8	PASS

Test mode: 802.11an Standard-20 MHz Channel mode

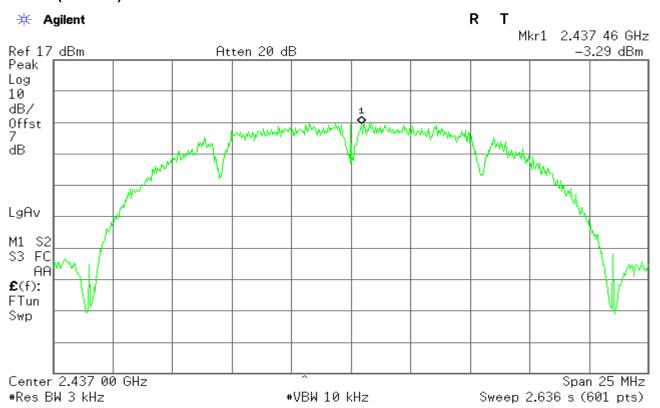
Channel	Frequenc y (MHz)	PPSD Chain 0 (dBm)	PPSD Chain 1 (dBm)	PPSD Total (dBm)	Limit (dBm)	Result
Low	5745	-1.88	-8.23	-0.97	8	PASS
Mid	5785	-1.19	-9.79	-0.63	8	PASS
High	5825	-2.76	-10.08	-2.02	8	PASS

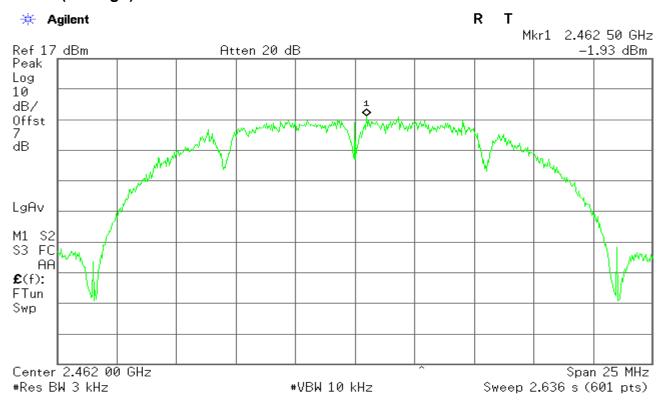
Remark: Total PPSD $(dBm) = 10*LOG(10^{\circ}(Chain\ 0\ PPSD\ /\ 10) + 10^{\circ}(Chain\ 1\ PPSD\ /\ 10))$

Test mode: 802.11an Wide-40 MHz Channel mode

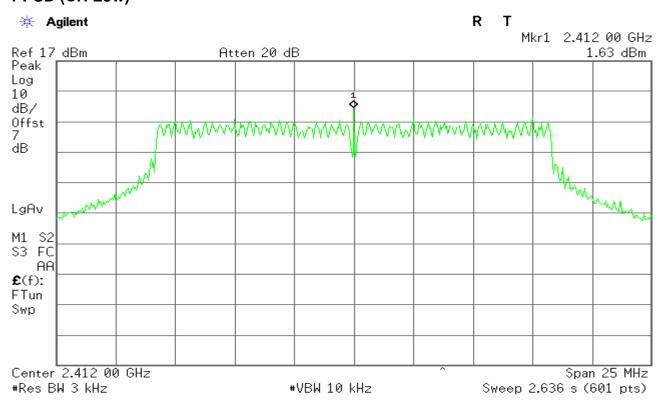

Channel	Frequenc y (MHz)	PPSD Chain 0 (dBm)	PPSD Chain 1 (dBm)	PPSD Total (dBm)	Limit (dBm)	Result
Low	5755	-9.49	-9.12	-6.29	8	PASS
High	5795	-9.75	-9.71	-6.72	8	PASS

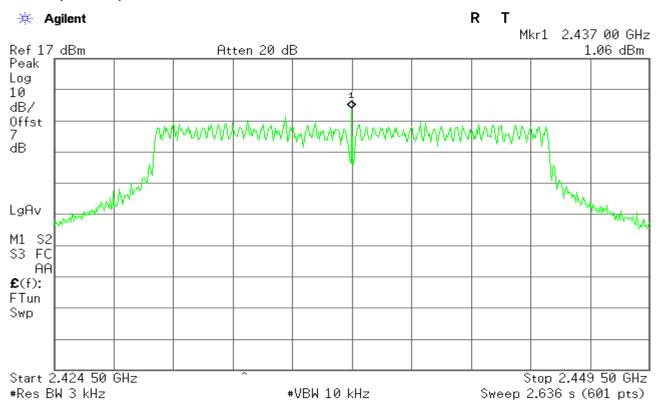
Remark: Total PPSD $(dBm) = 10*LOG(10^{(Chain\ 0\ PPSD\ /\ 10)} + 10^{(Chain\ 1\ PPSD\ /\ 10)})$


Test Plot


IEEE 802.11b mode

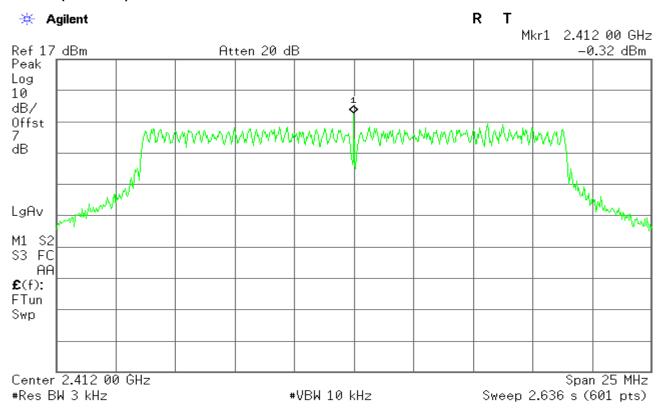
PPSD (CH Low)

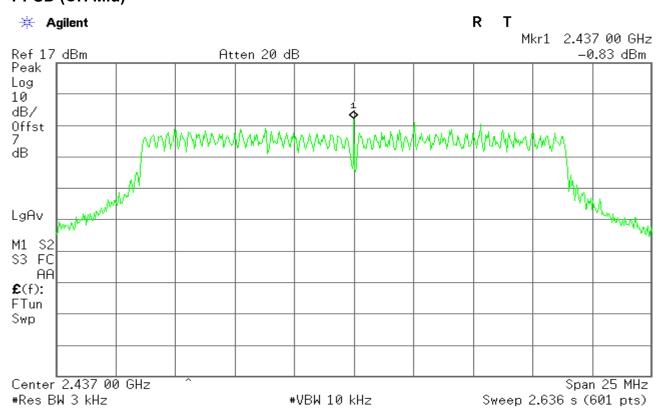

PPSD (CH Mid)

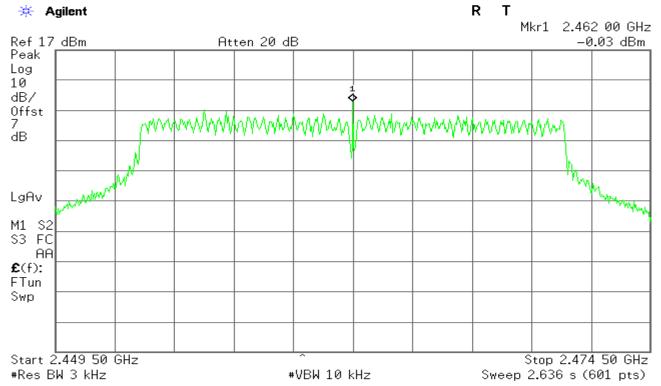


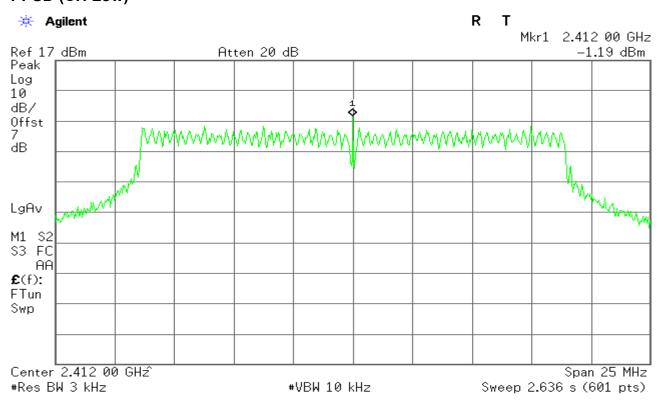
IEEE 802.11g mode

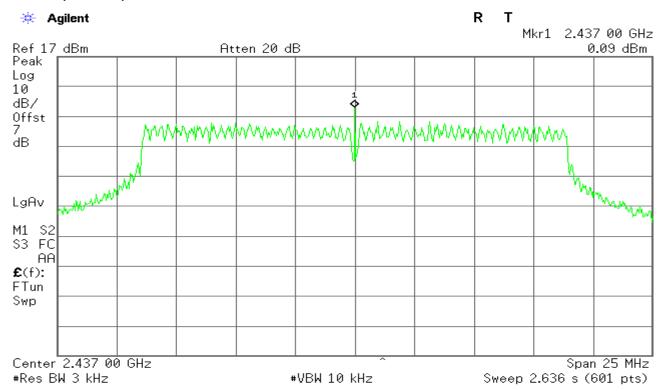
PPSD (CH Low)

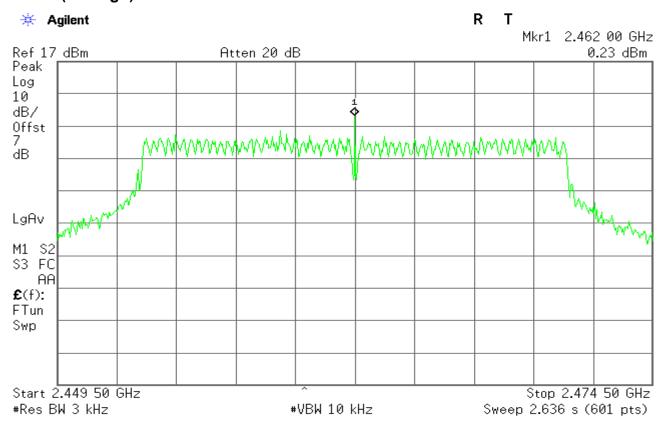

PPSD (CH Mid)

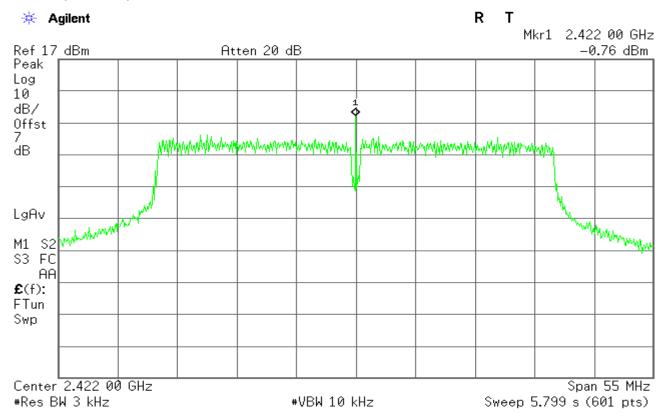

PPSD (CH High)

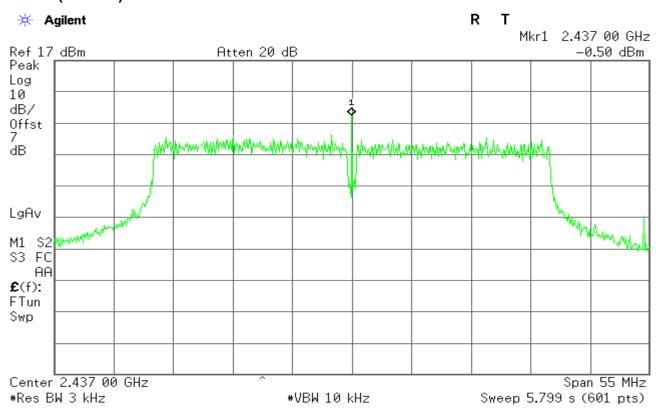

802.11n Standard-20 MHz Channel mode / Chain 0 PPSD (CH Low)

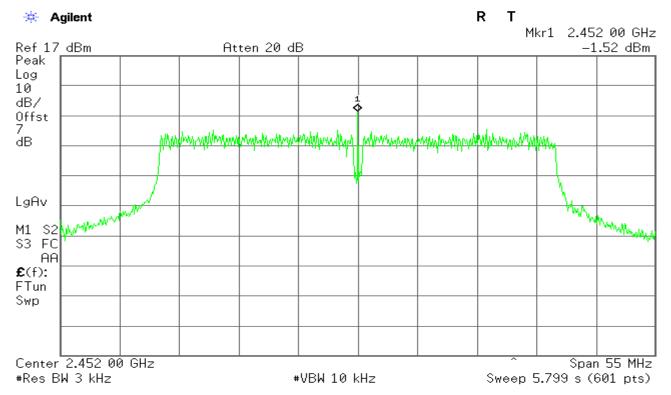

PPSD (CH Mid)


PPSD (CH High)

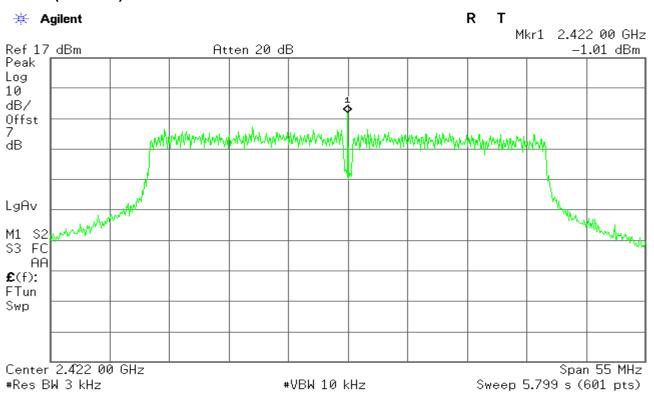

802.11n Standard-20 MHz Channel mode / Chain 1 PPSD (CH Low)


PPSD (CH Mid)

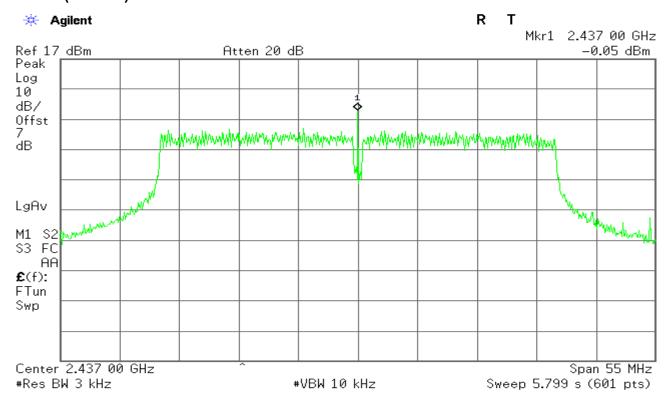

PPSD (CH High)

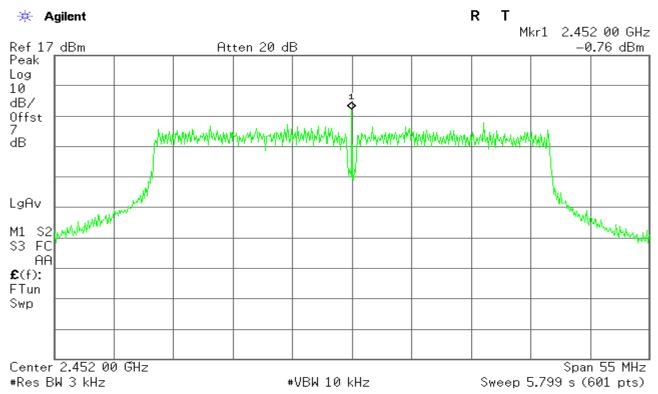


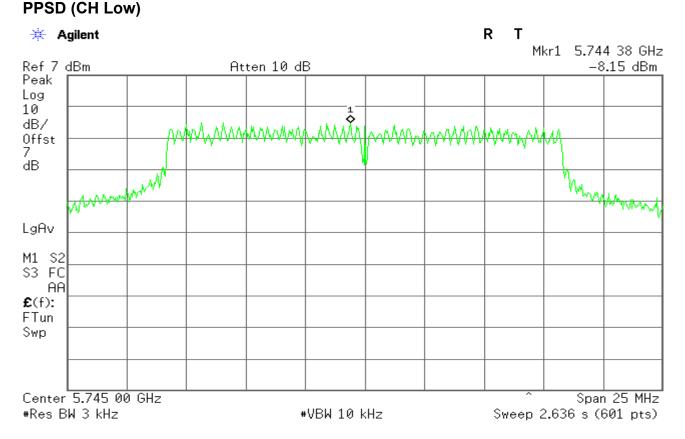
802.11n Wide-40 MHz Channel mode / Chain 0 PPSD (CH Low)

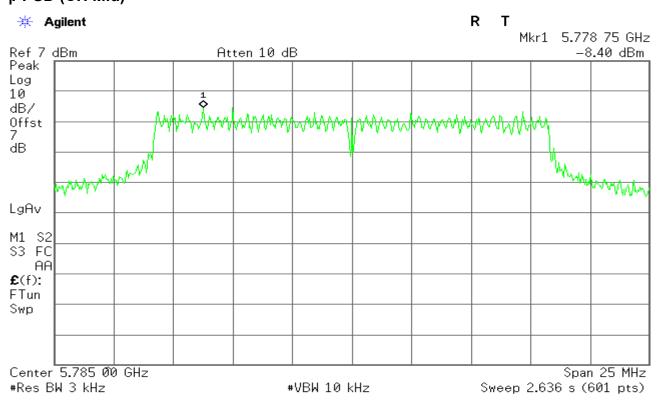


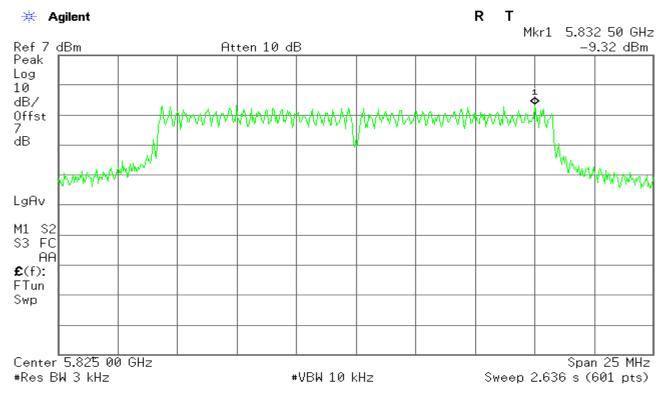
PPSD (CH Mid)



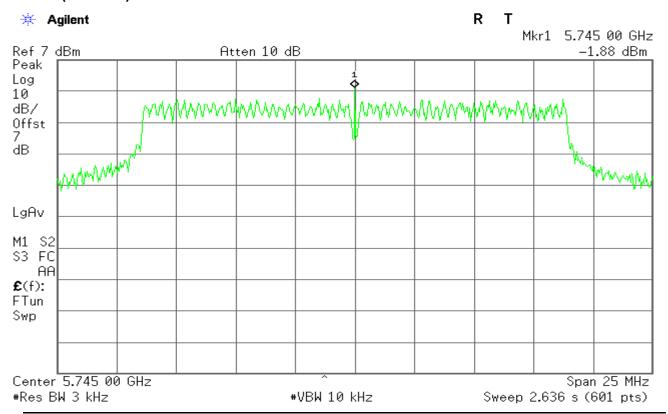

802.11n Wide-40 MHz Channel mode / Chain 1 PPSD (CH Low)


PPSD (CH Mid)

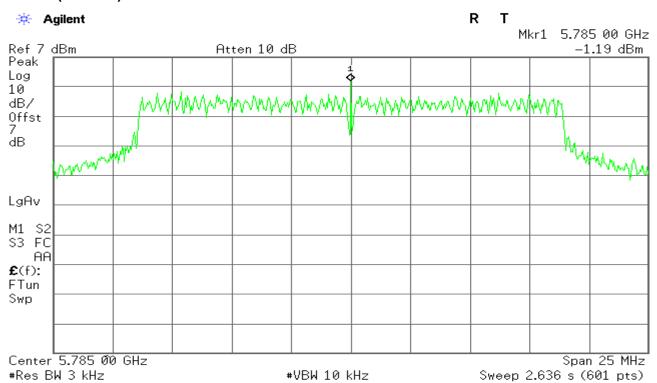

PPSD (CH High)

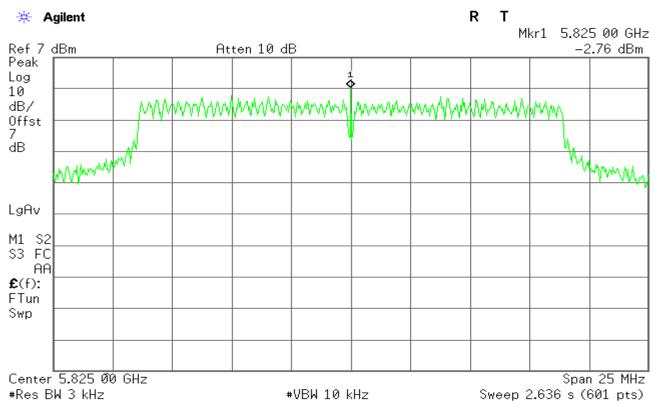


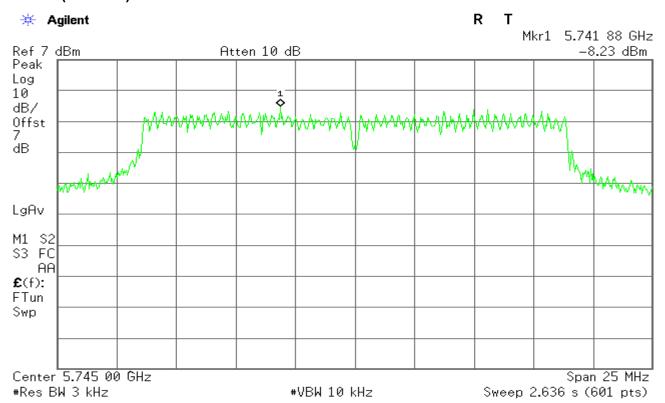
5725-5825 **IEEE 802.11a mode**

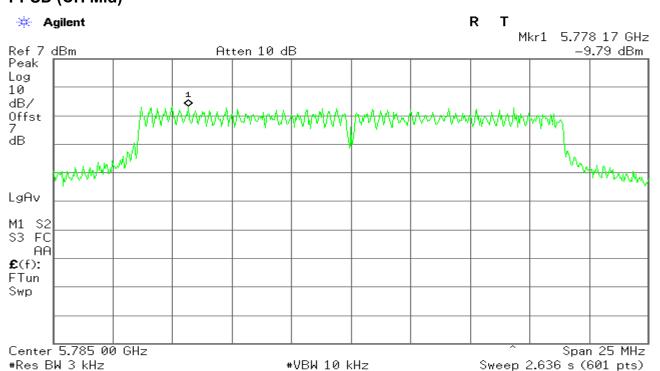


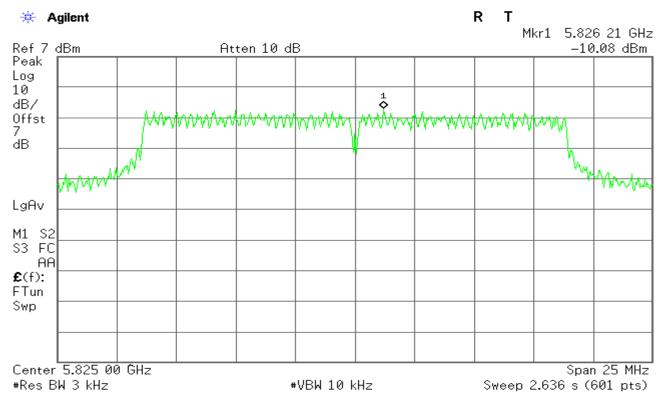
PPSD (CH Mid)



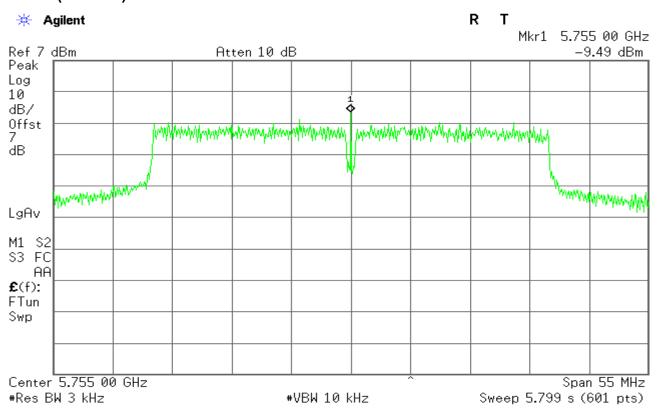

802.11an Standard-20 MHz Channel mode / Chain 0 PPSD (CH Low)

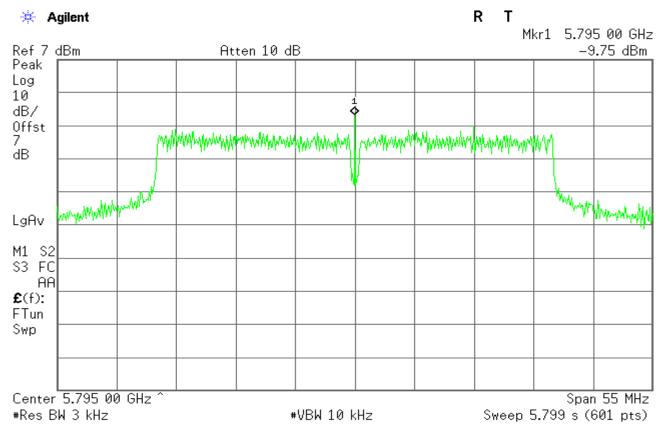

PPSD (CH Mid)

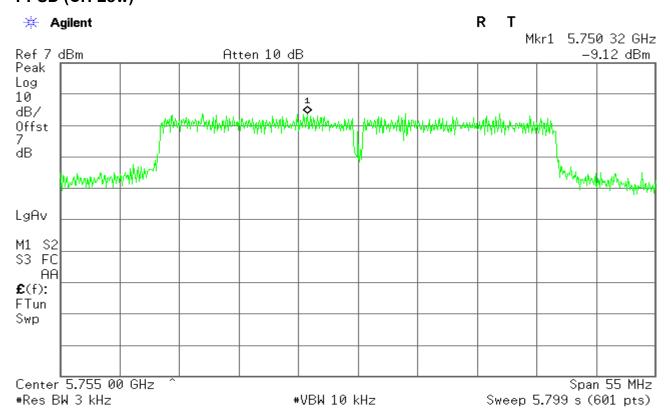

PPSD (CH High)

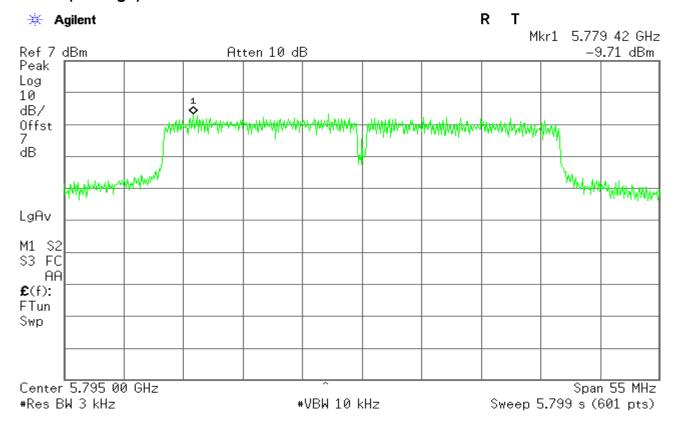


802.11an Standard-20 MHz Channel mode / Chain 1 PPSD (CH Low)




PPSD (CH Mid)



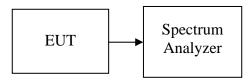

802.11an Standard-40 MHz Channel mode / Chain 0 PPSD (CH Low)

802.11an Standard-40 MHz Channel mode / Chain 1 **PPSD (CH Low)**

Report No: KS120716A02-RPB

FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012


7.4. SPURIOUS EMISSIONS 1.1.1. CONDUCTED MEASUREMENT

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Conducted power was measured based on the use of RMS averaging over a time interval, therefore the required attenuation is 30 dB.

Test Configuration

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

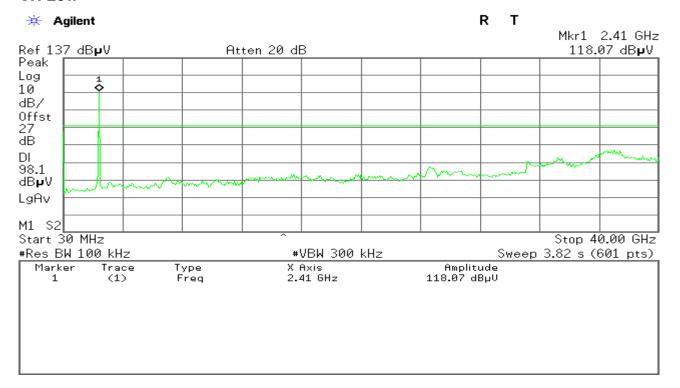
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

Measurements are made over the 30MHz to 40GHz range with the transmitter set to the lowest, middle, and highest channels.

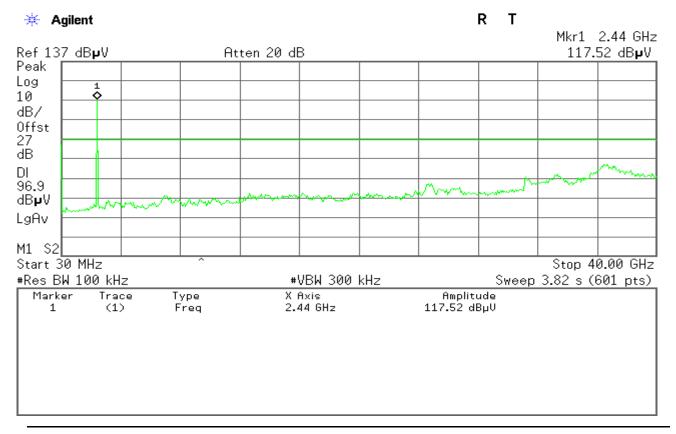
TEST RESULTS

No non-compliance noted

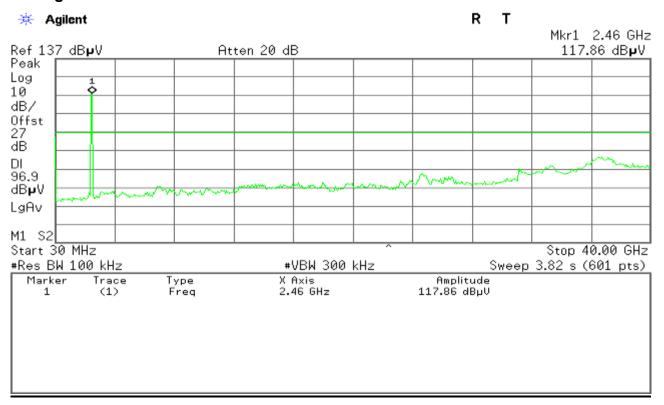
Report No: KS120716A02-RPB


FCC ID: V6U- AP25N01

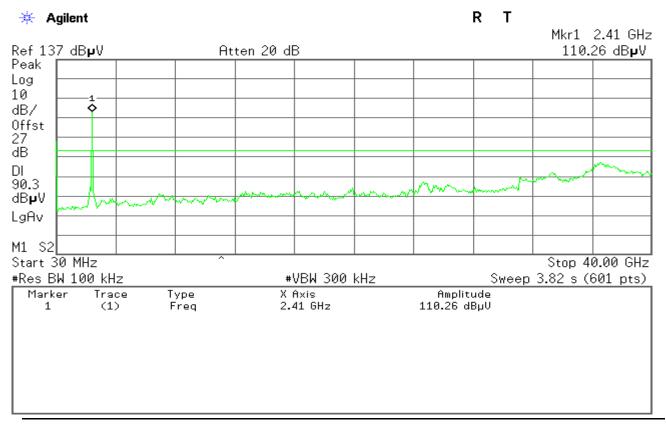
Date of Issue :October 10, 2012


Test Plot

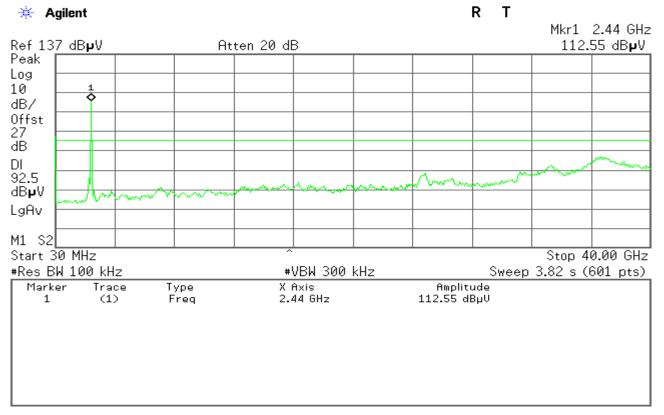
IEEE 802.11b mode


CH Low

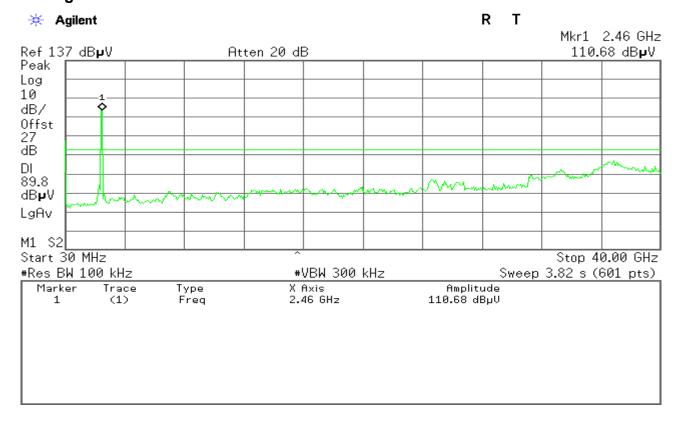
CH Mid



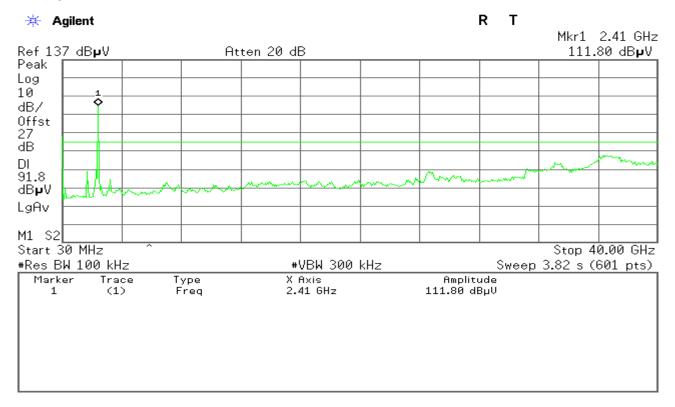
CH High



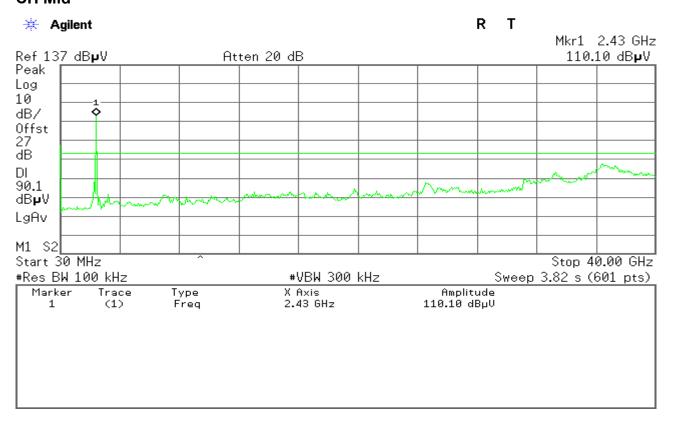
IEEE 802.11g mode


CH Low

CH Mid

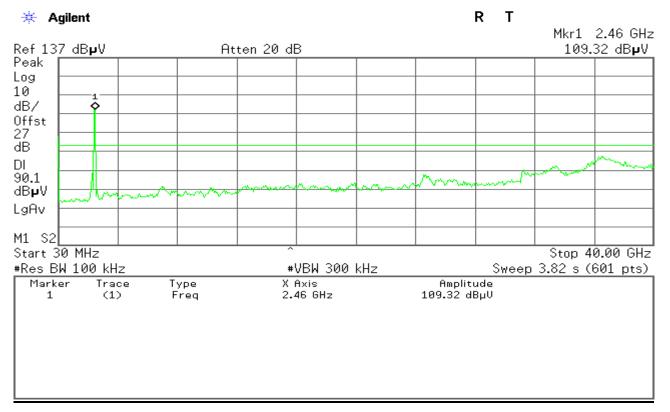


CH High

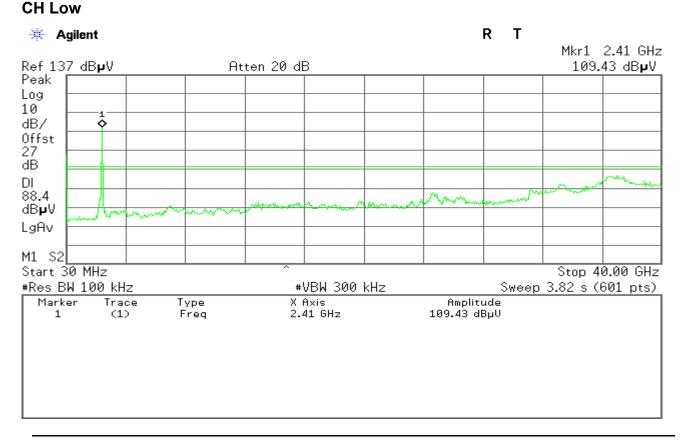


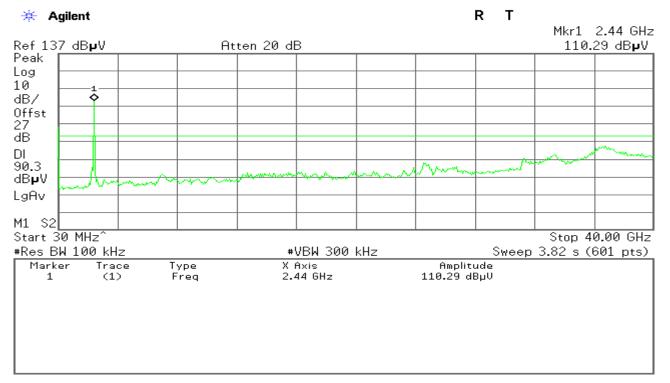
802.11n Standard-20 MHz Channel mode / Chain 0

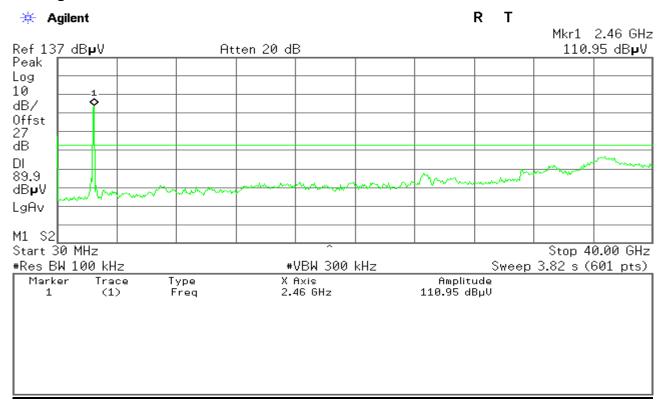
CH Low



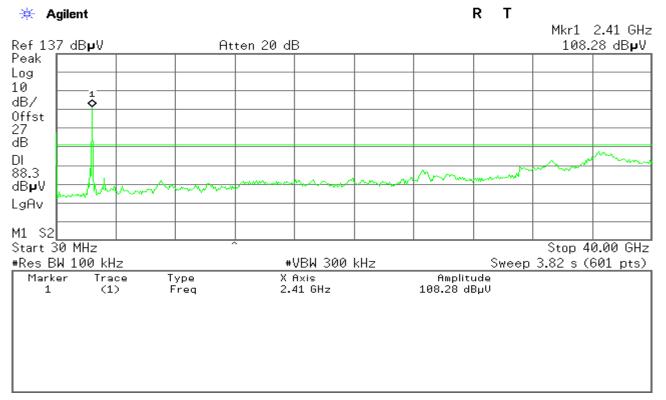
CH Mid



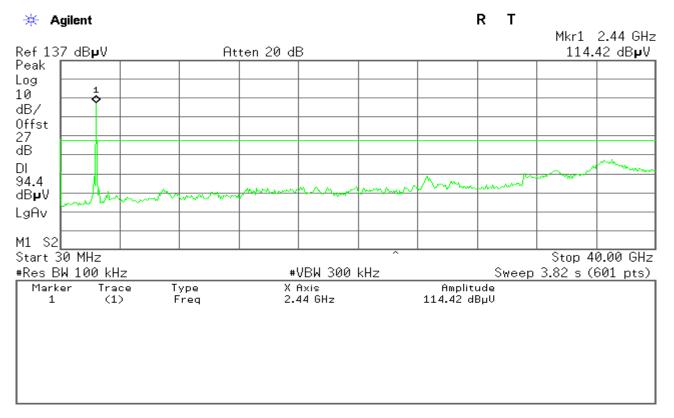



802.11n Standard-20 MHz Channel mode / Chain 1

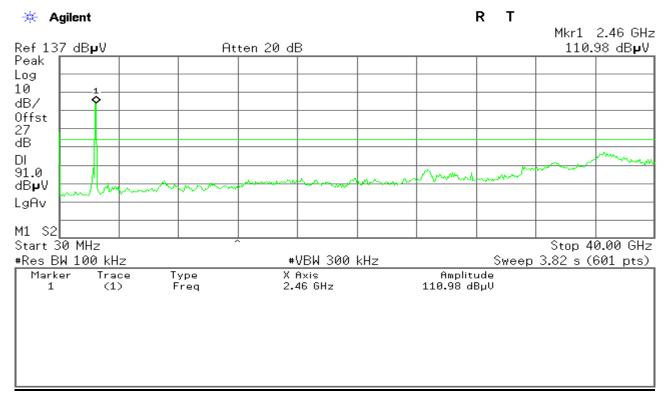
CH Mid

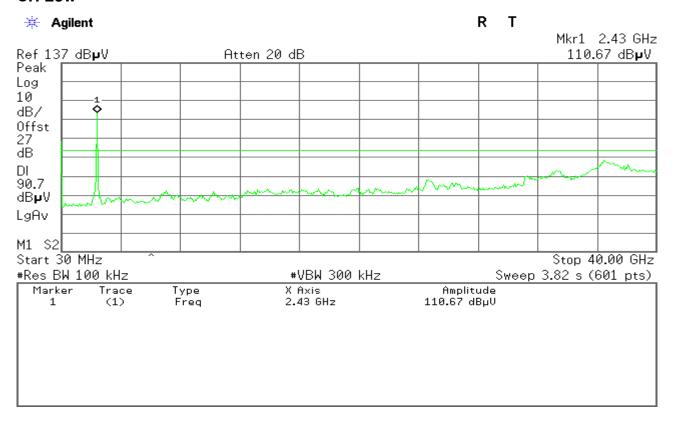


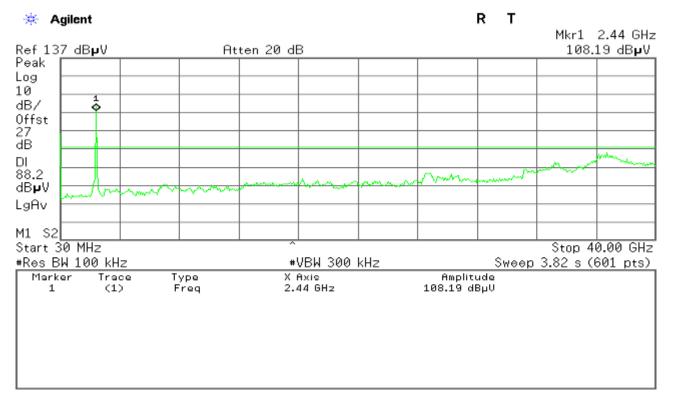
CH High

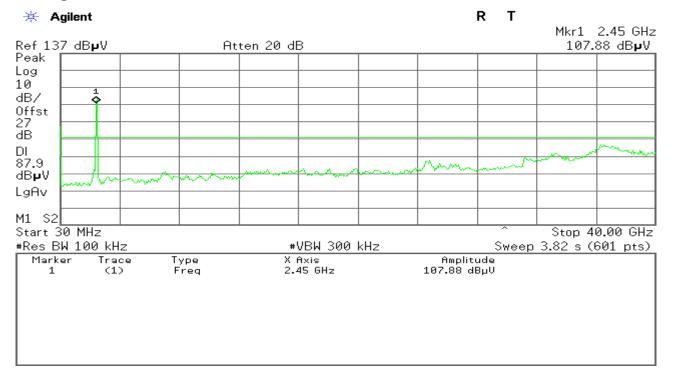


802.11n Standard-20 MHz Channel mode / Chain 0+ Chain 1

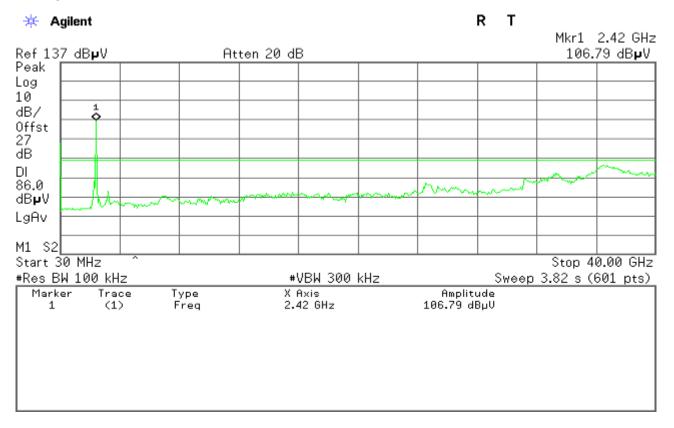



CH Mid

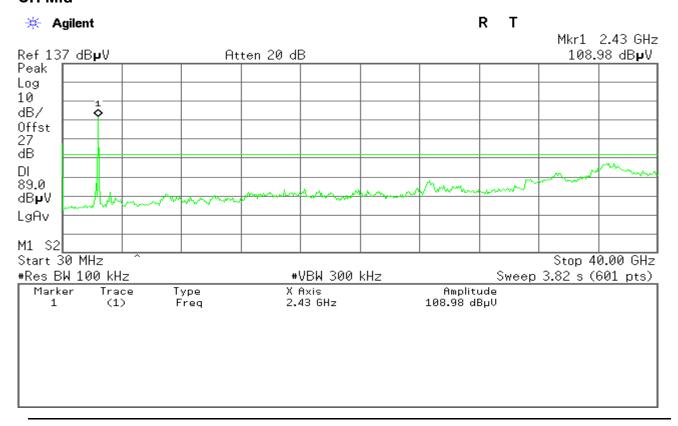



802.11n Wide-40 MHz Channel mode / Chain 0

CH Mid

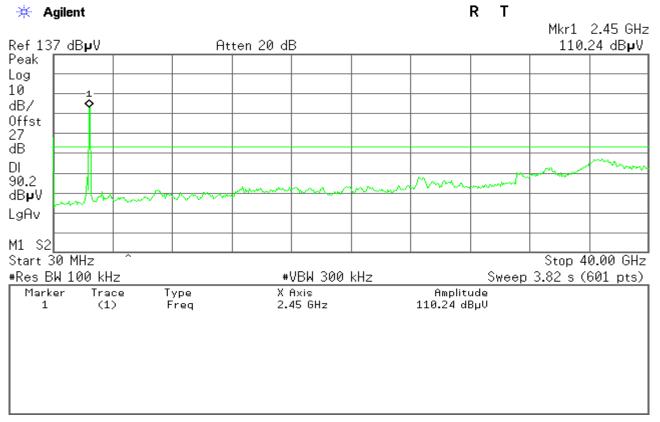


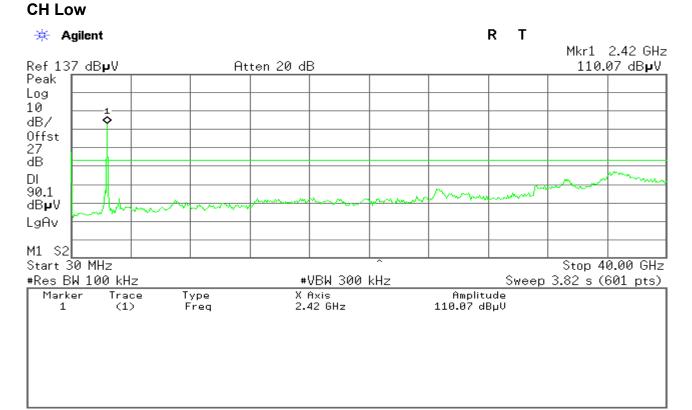
CH High



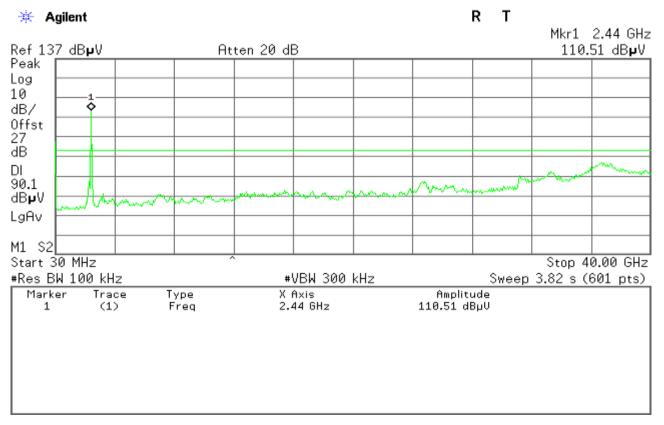
802.11n Wide-40 MHz Channel mode / Chain 1

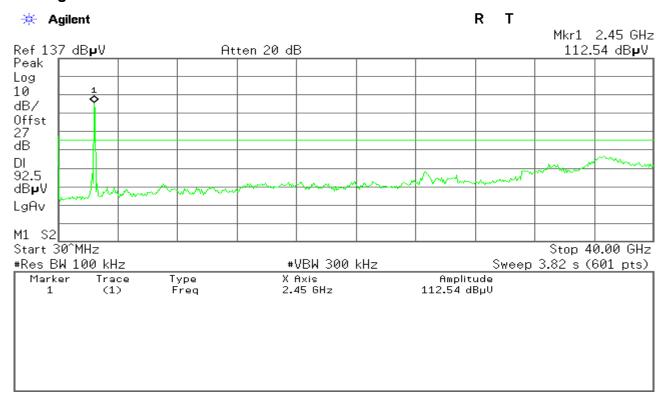
CH Low

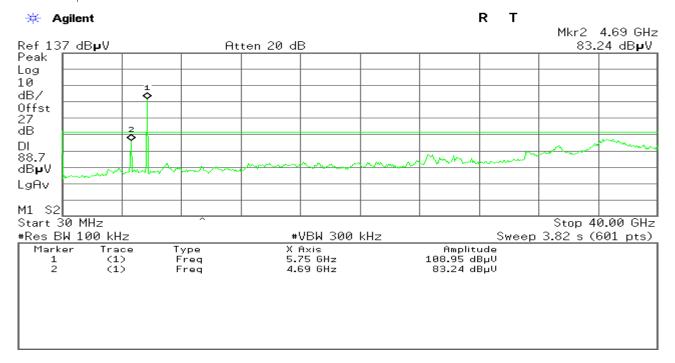

CH Mid

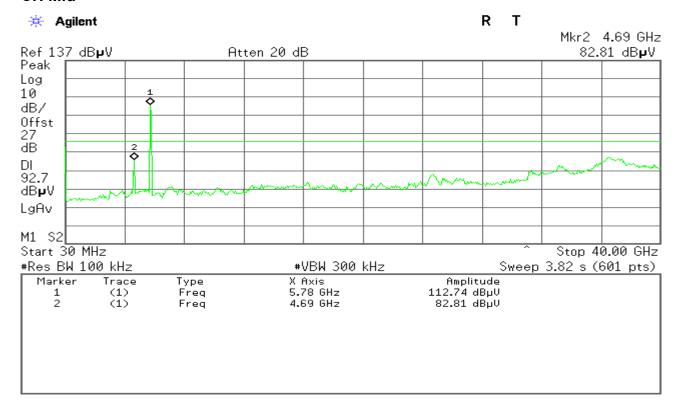

FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012

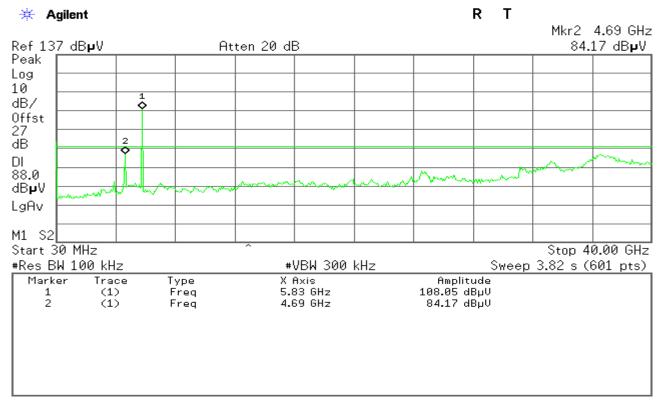


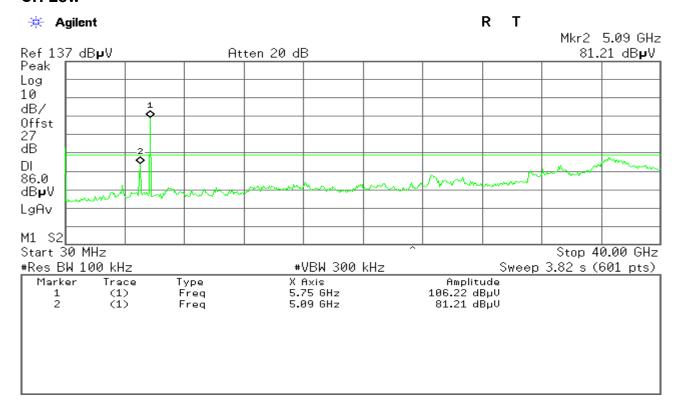

802.11n Wide-40 MHz Channel mode / Chain 0+ Chain 1

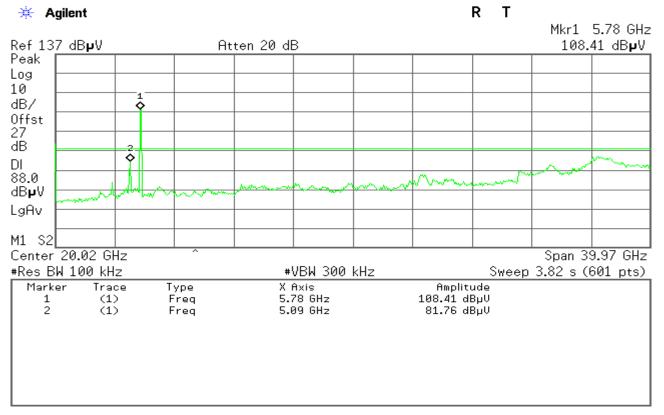

CH High

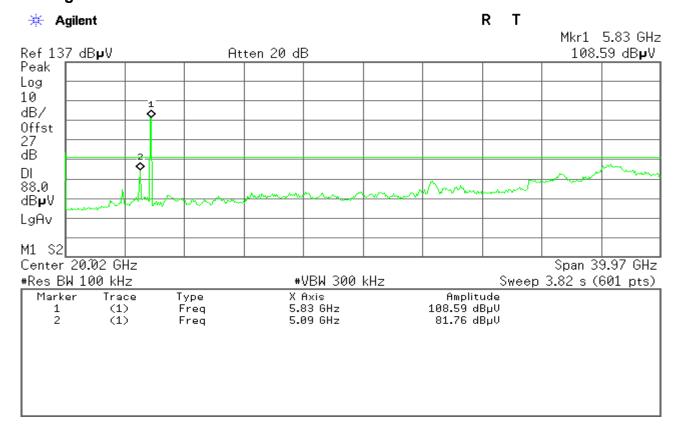

5725-5825

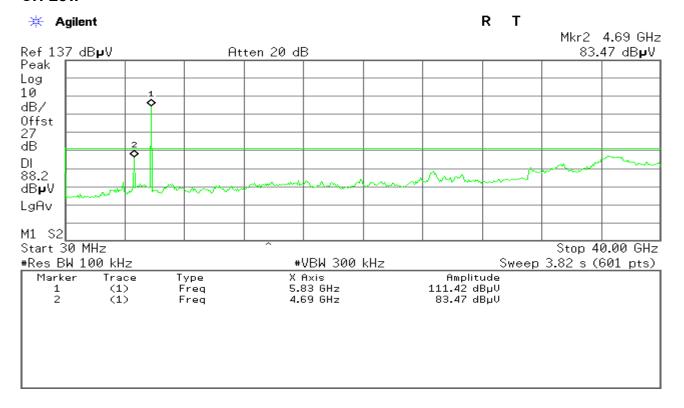
IEEE 802.11a mode


CH Low

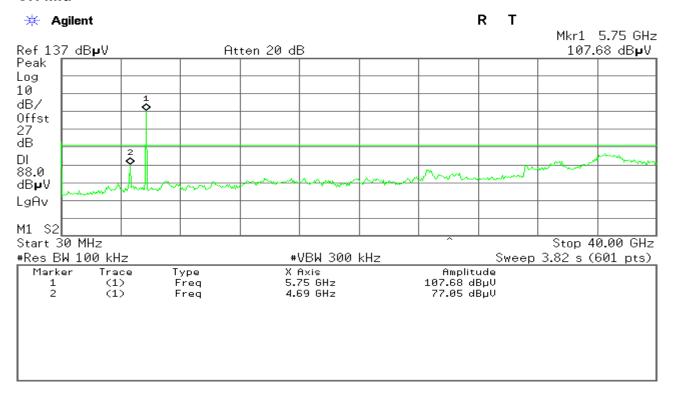

CH Mid



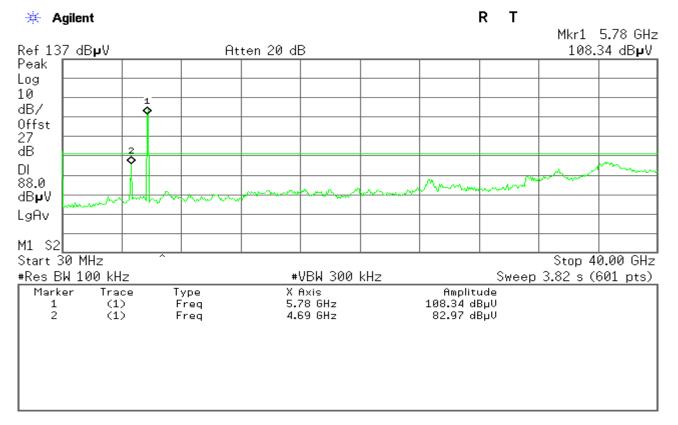

802.11an Standard-20 MHz Channel mode / Chain 0

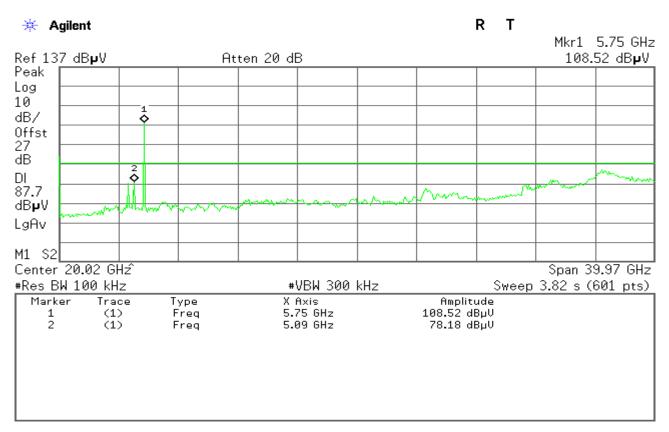


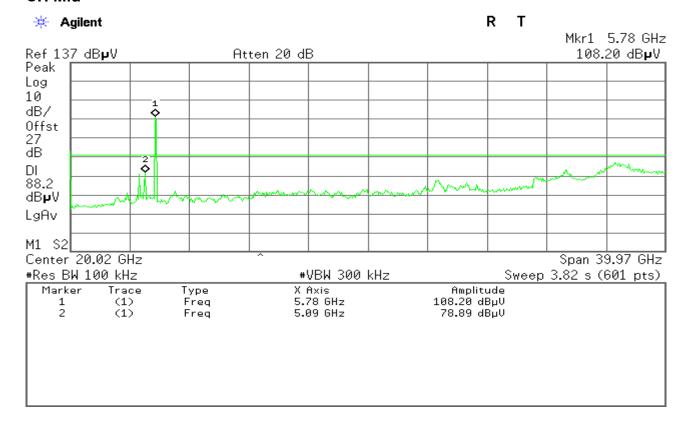
CH High

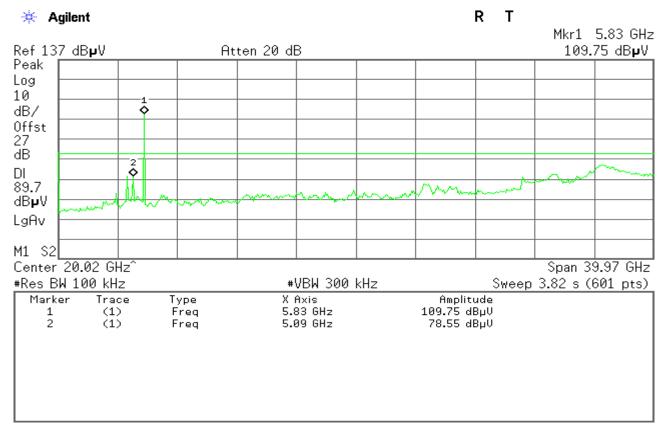


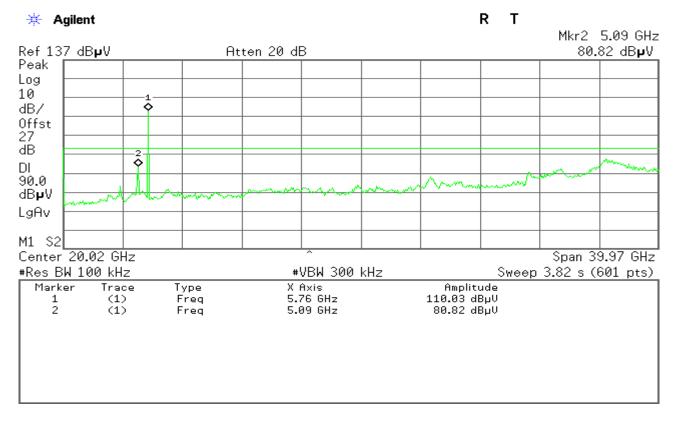
802.11an Standard-20 MHz Channel mode / Chain 1

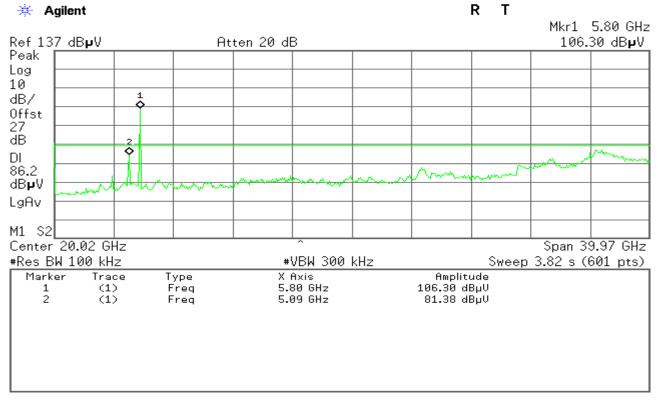

CH Low


CH Mid



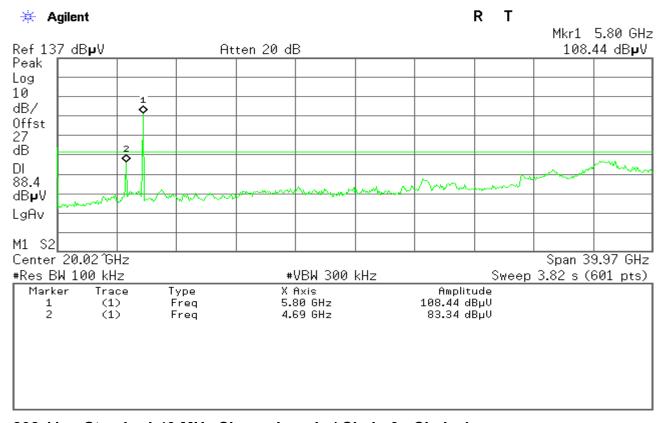

802.11an Standard-20 MHz Channel mode / Chain 0+ Chain 1 **CH Low**


CH Mid




802.11an Standard-40 MHz Channel mode / Chain 0

CH High


802.11an Standard-40 MHz Channel mode / Chain 1


FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012

802.11an Standard-40 MHz Channel mode / Chain 0+ Chain 1

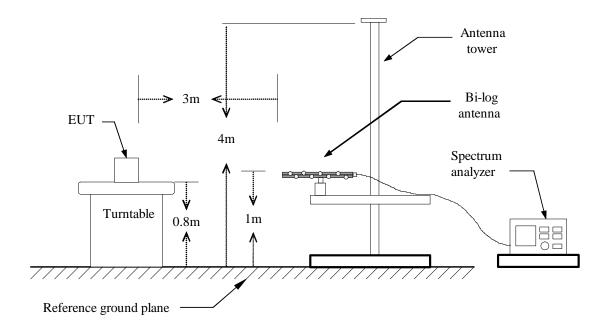
CH High

7.5. RADIATED EMISSIONS

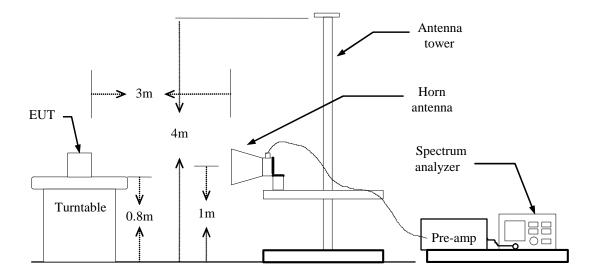
LIMIT

1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3


Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the emission table above, the tighter limit applies at the band edges.


Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Test Configuration

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

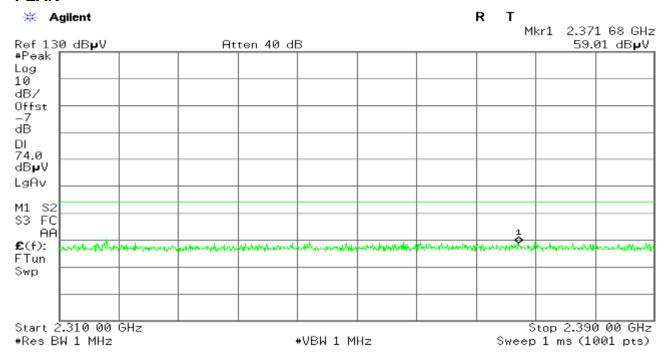
- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

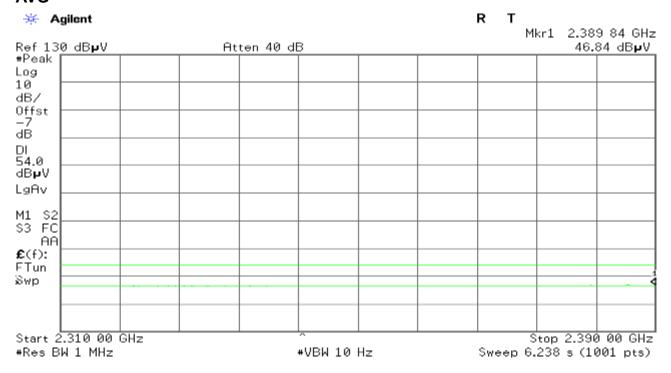
Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

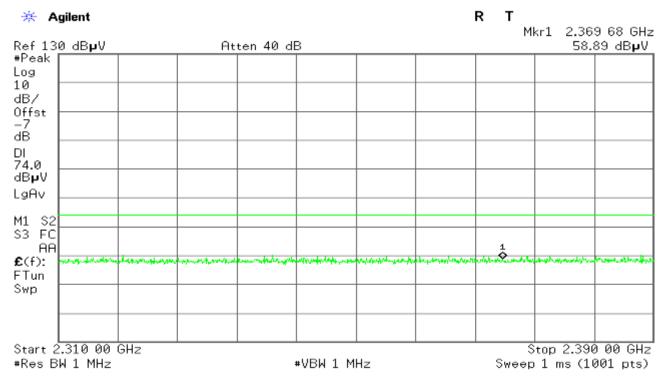
(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

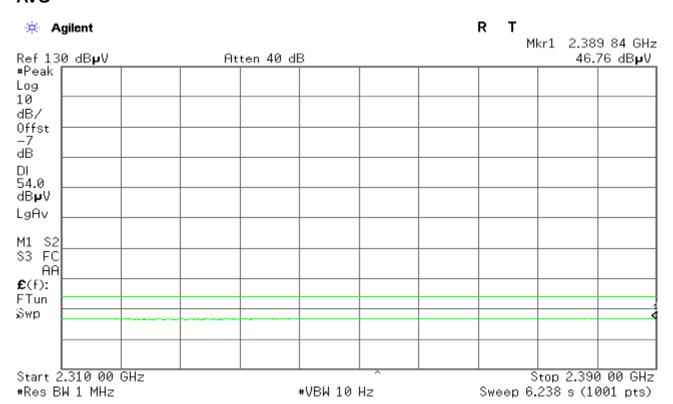

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO


7. Repeat above procedures until the measurements for all frequencies are complete.

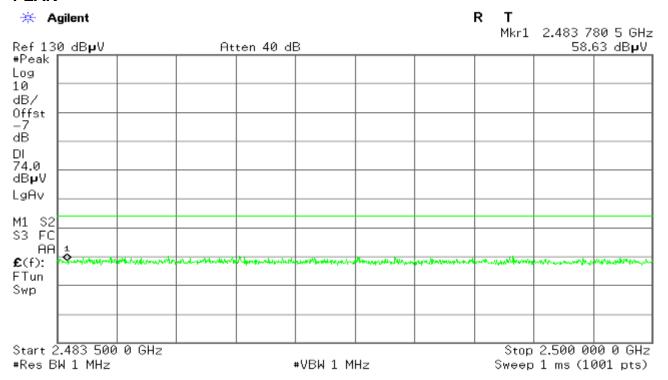
TEST RESULTS

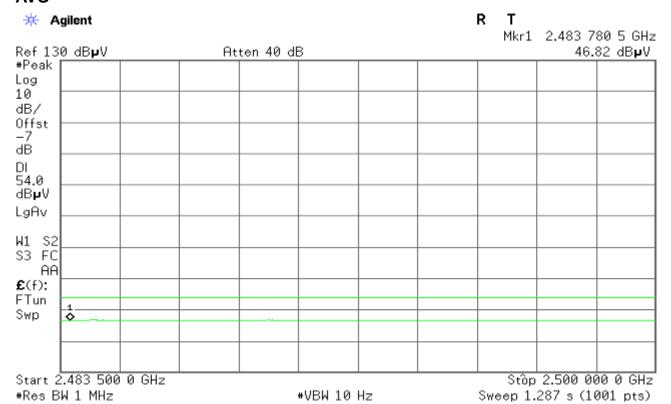
RESTRICTED BANDEDGE (b Mode, Low Channel, Horizontal)


PEAK

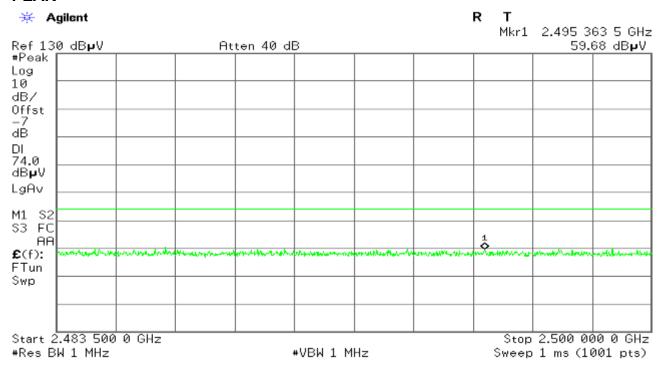


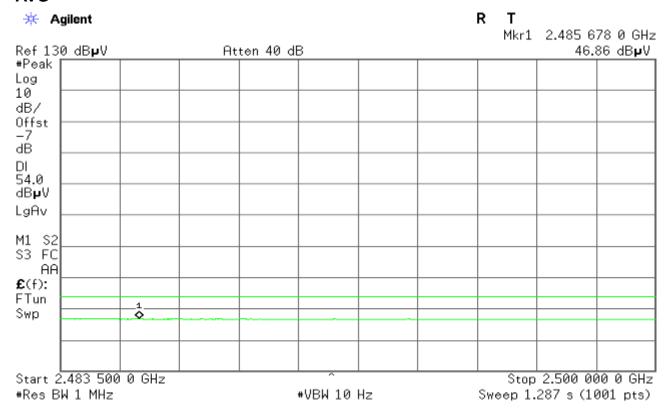
RESTRICTED BANDEDGE (b Mode, Low Channel, Vertical)


PEAK

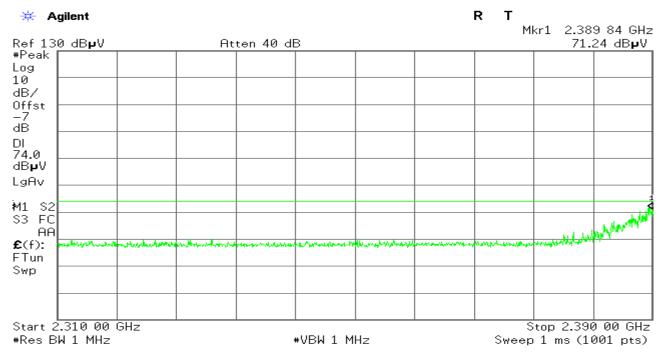


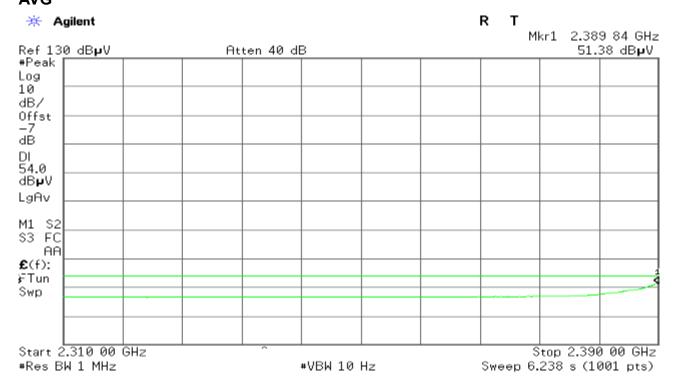
RESTRICTED BANDEDGE (b Mode, High Channel, Horizontal)


PEAK



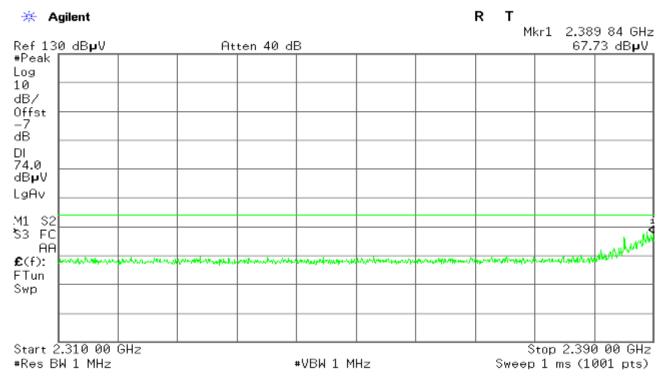
RESTRICTED BANDEDGE (b Mode, High Channel, Vertical)

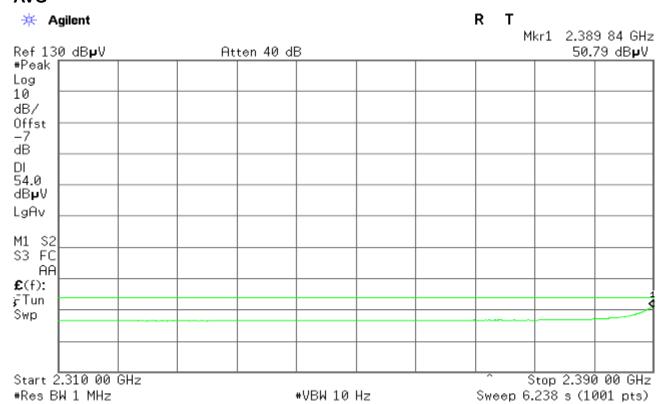

PEAK



RESTRICTED BANDEDGE (g Mode, Low Channel, Horizontal)

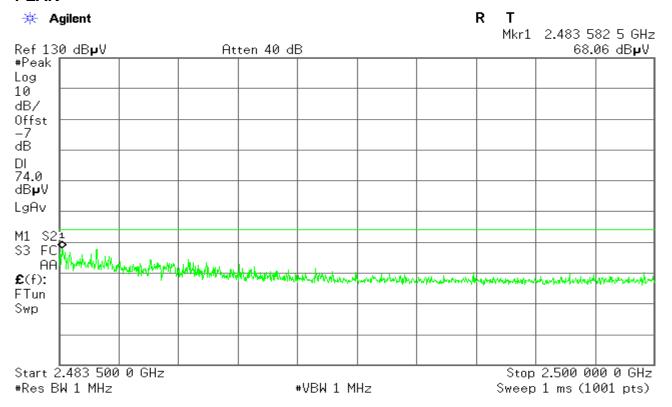
PEAK

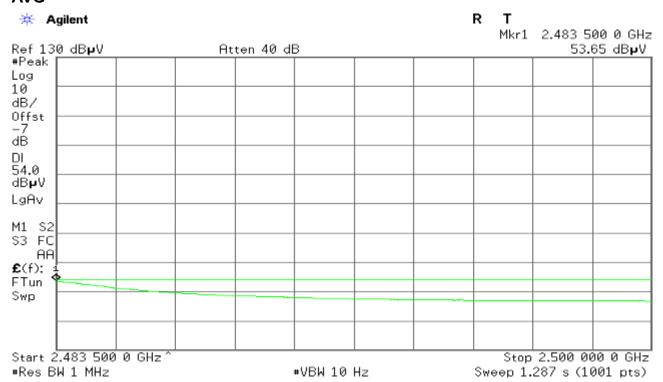



FCC ID: V6U- AP25N01

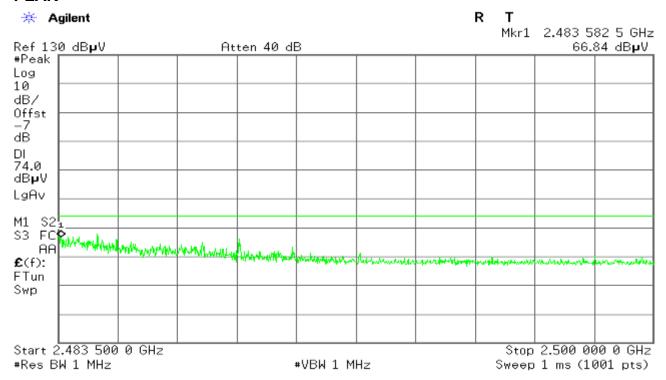
Date of Issue :October 10, 2012

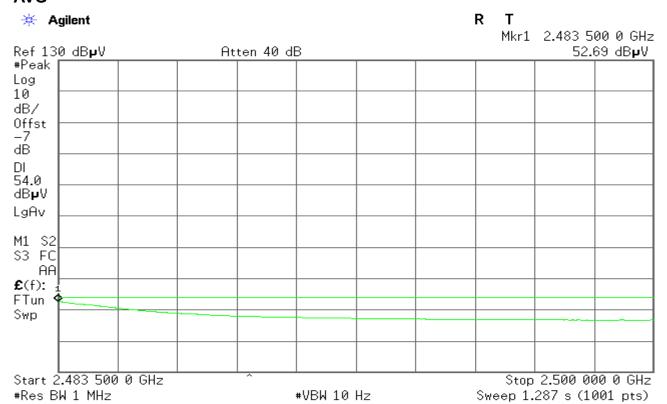
RESTRICTED BANDEDGE (g Mode, Low Channel, Vertical)


PEAK



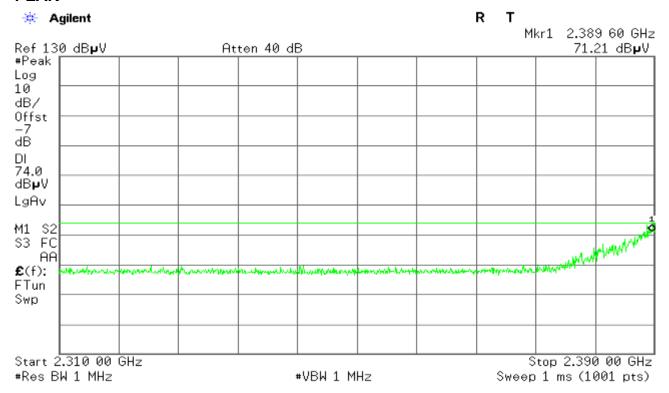
RESTRICTED BANDEDGE (g Mode, High Channel, Horizontal)

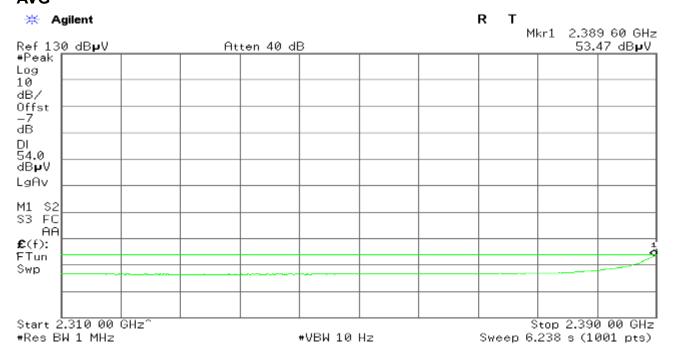

PEAK



RESTRICTED BANDEDGE (g Mode, High Channel, Vertical)

PEAK

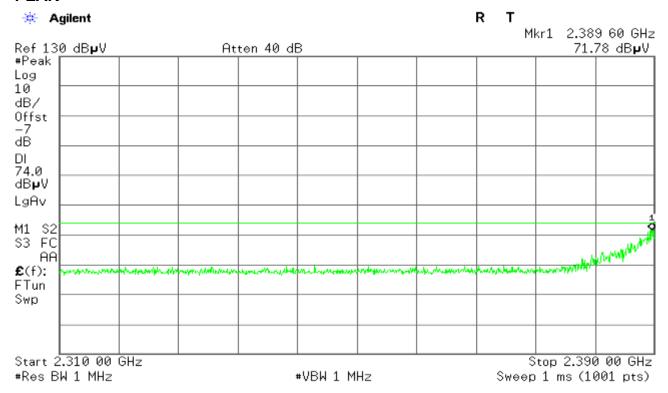


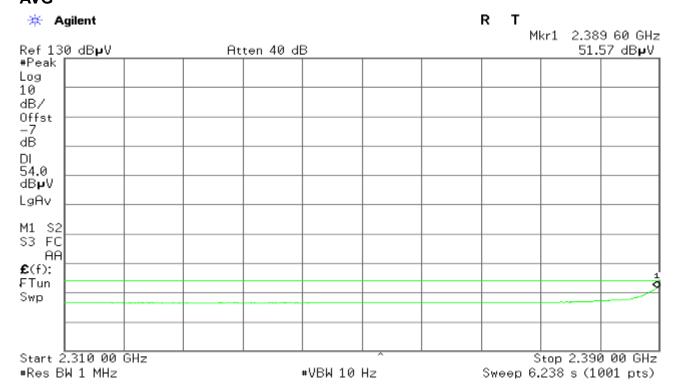

FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012

RESTRICTED BANDEDGE (802.11n Standard-20 MHz Channel mode, Low Channel, Horizontal)

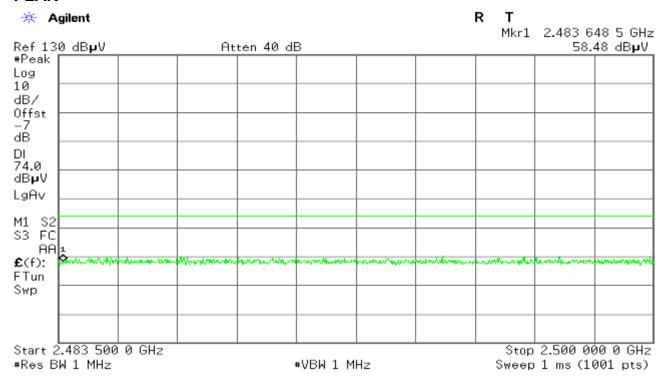
PEAK

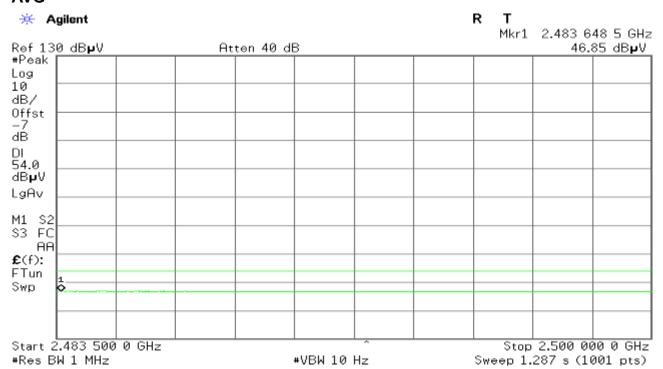



FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012

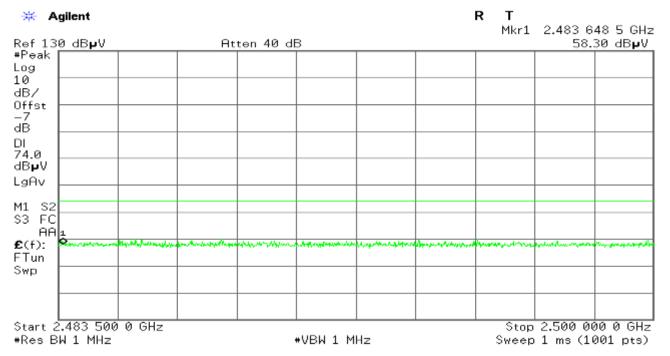
RESTRICTED BANDEDGE (802.11n Standard-20 MHz Channel mode, Low Channel, Vertical)

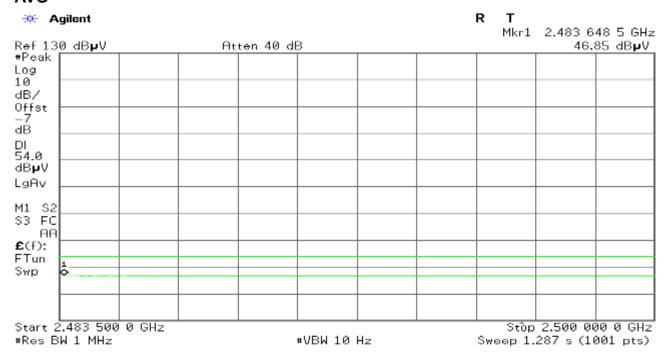

PEAK



RESTRICTED BANDEDGE (802.11n Standard-20 MHz Channel mode, High Channel, Horizontal)

PEAK

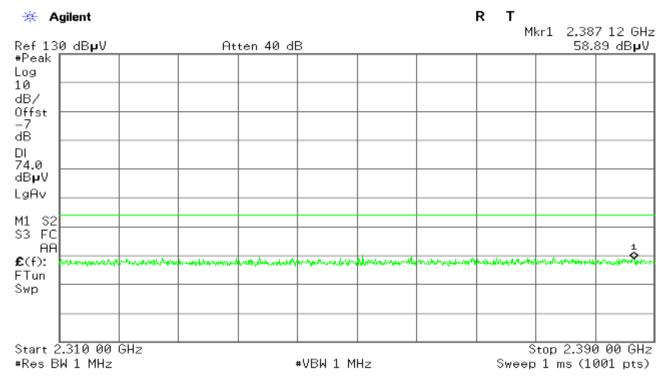


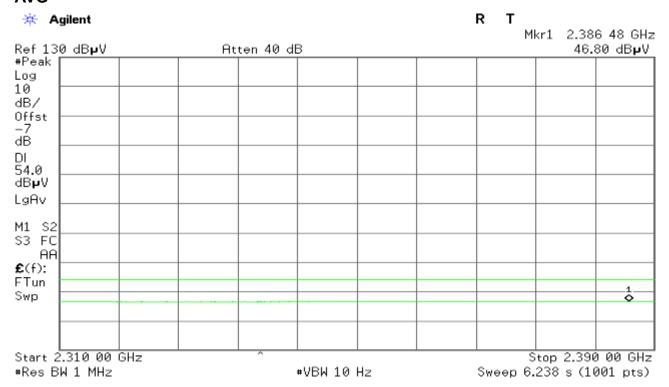

FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012

RESTRICTED BANDEDGE (802.11n Standard-20 MHz Channel mode, High Channel, Vertical)

PEAK

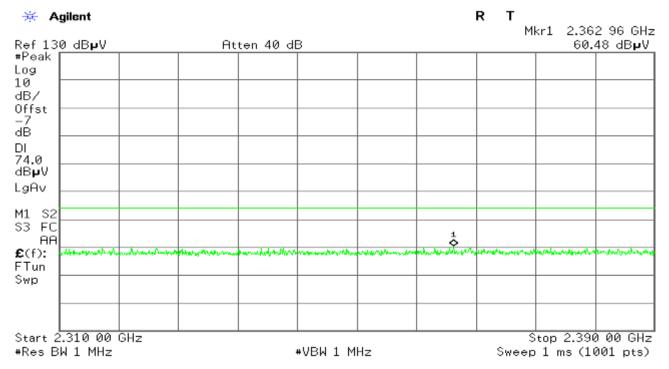


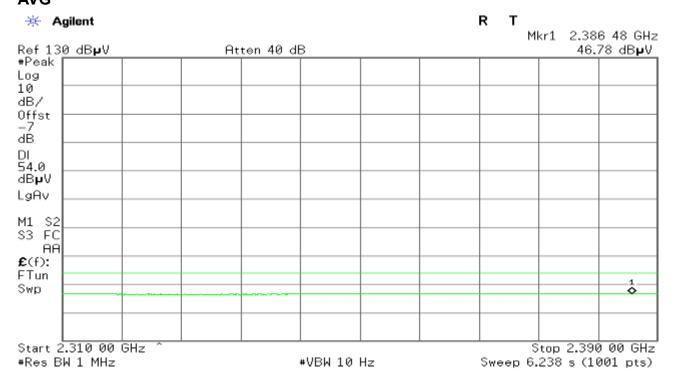

FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012

RESTRICTED BANDEDGE (802.11n Wide -40 MHz Channel mode, Low Channel, Horizontal)

PEAK

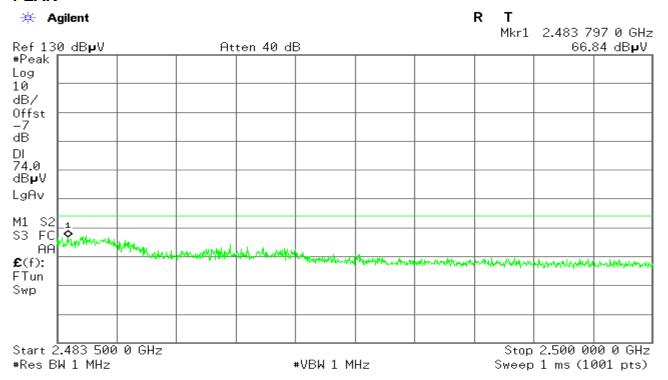



FCC ID: V6U- AP25N01

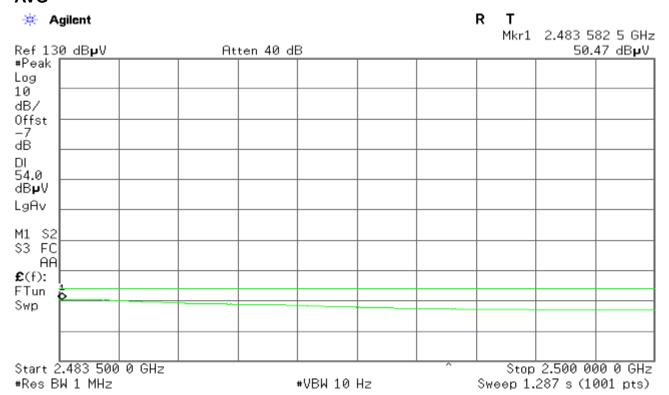
Date of Issue :October 10, 2012

RESTRICTED BANDEDGE (802.11n Wide -40 MHz Channel mode, Low Channel, Vertical)

PEAK


Report No: KS120716A02-RPB

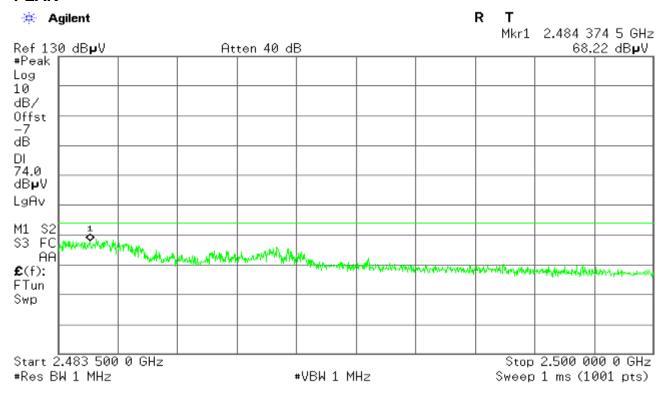
FCC ID: V6U- AP25N01


Date of Issue :October 10, 2012

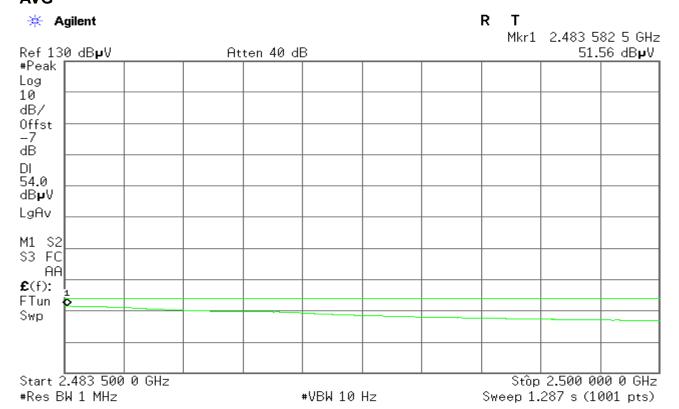
RESTRICTED BANDEDGE (802.11n Wide -40 MHz Channel mode, High Channel, Horizontal)

PEAK

AVG


Report No: KS120716A02-RPB

FCC ID: V6U- AP25N01


Date of Issue :October 10, 2012

RESTRICTED BANDEDGE (802.11n Wide -40 MHz Channel mode, High Channel, Vertical)

PEAK

AVG

FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012

Below 1GHz

Operation Mode: Normal Link **Test Date:** October 09,2012

22°C Tested by: Temperature: Sean Yu **Humidity:** 48% RH Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
73.6500	V	66.90	-26.10	40.80	40.00	0.80	peak
74.0550	٧	55.70	-26.08	29.62	40.00	-10.38	QP
175.5000	V	59.57	-21.57	38.00	43.50	-5.50	peak
801.1500	V	50.89	-9.16	41.73	46.00	-4.27	peak
820.5500	V	50.37	-8.74	41.63	46.00	-4.37	peak
866.6250	V	50.68	-7.63	43.05	46.00	-2.95	peak
90.6250	Н	62.25	-25.34	36.91	43.50	-6.59	peak
185.2000	Н	62.65	-21.43	41.22	43.50	-2.28	peak
185.2000	Н	55.63	-21.43	34.20	43.50	-9.30	QP
801.1500	Н	53.88	-9.16	44.72	46.00	-1.28	peak
818.1250	Н	51.72	-8.80	42.92	46.00	-3.08	peak
866.6250	Н	53.01	-7.63	45.38	46.00	-0.62	peak

Remark:

- Measuring frequencies from 30 MHz to the 1GHz (No emission found between lowest internal 1. used/generated frequency to 30 MH).
- Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with 3. "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- Margin (dB) = Result (dBuV/m) Limit (dBuV/m).4.

Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low Test Date: October 09,2012

Tested by: Sean Yu Temperature: 22°C

Humidity: 48 % RH Polarity: Ver. / Hor.

Frequenc y	Ant. Pol.	Reading	Reading	Correctio n Factor	Result	Result	Limit	Limit	Margin	Margin
(MHz)	(H/V)	(Peak) (dBuV)	(Average) (dBuV)	(dB/m)	(Peak) (dBuV/m)	(Average) (dBuV/m)		(Average) (dBuV/m)	7	AVG(dB)
4865.26	V	36.59	28.16	12.41	49	40.57	74	54	-25	-13.43
7307.16	V	38.35	27.26	15.48	53.83	42.74	74	54	-20.17	-11.26
4866.29	Н	34.26	28.26	12.41	46.67	40.67	74	54	-27.33	-13.33
7321.26	Н	38.16	27.25	15.48	53.64	42.73	74	54	-20.36	-11.27
N/A										
14/73										

Operation Mode: TX / IEEE 802.11b / CH Mid Test Date: October 09,2012

Temperature: 22°C Tested by: Sean Yu **Humidity:** 48 % RH **Polarity:** Ver. / Hor.

(H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	n Factor (dB/m)	Result (Peak) (dBuV/m)			· ·		Margin AVG(dB)
V	36.16	28.26	12.11	48.27	40.37	74	54	-25.73	-13.63
V	38.26	27.22	13.62	51.88	40.84	74	54	-22.12	-13.16
Н	34.28	28.16	12.11	46.39	40.27	74	54	-27.61	-13.73
Н	38.29	27.26	13.62	51.91	40.88	74	54	-22.09	-13.12
	VVV	(dBuV) V 36.16 V 38.26 H 34.28	(dBuV) (dBuV) V 36.16 28.26 V 38.26 27.22 H 34.28 28.16	(dBuV) (dBuV) V 36.16 28.26 12.11 V 38.26 27.22 13.62	(dBuV) (dBuV) (dBuV/m) V 36.16 28.26 12.11 48.27 V 38.26 27.22 13.62 51.88 H 34.28 28.16 12.11 46.39	(dBuV) (dBuV) (dBuV/m) (dBuV/m) (dBuV/m) V 36.16 28.26 12.11 48.27 40.37 V 38.26 27.22 13.62 51.88 40.84 H 34.28 28.16 12.11 46.39 40.27	(dBuV) (dBuV) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) V 36.16 28.26 12.11 48.27 40.37 74 V 38.26 27.22 13.62 51.88 40.84 74 H 34.28 28.16 12.11 46.39 40.27 74	(dBuV) (dBuV) (dBuV/m) (dBuV/m) <th< td=""><td>(dBuV) (dBuV) (dBuV/m) <th< td=""></th<></td></th<>	(dBuV) (dBuV) (dBuV/m) (dBuV/m) <th< td=""></th<>

Operation Mode: TX / IEEE 802.11b / CH High Test Date: October 09,2012

22°C Temperature: Tested by: Sean Yu

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Frequenc y	Ant. Pol.	Reading	Reading	Correctio n Factor	Result	Result	Limit	Limit	Margin	Margin
(MHz)	(H/V)	(Peak) (dBuV)	(Average) (dBuV)		(Peak) (dBuV/m)	(Average) (dBuV/m)	(Peak) (dBuV/m)	(Average) (dBuV/m)	Peak(dB)	AVG(dB)
4921.29	V	36.29	28.66	12.93	49.22	41.59	74	54	-24.78	-12.41
7378.26	V	38.26	27.59	15.82	54.08	43.41	74	54	-19.92	-10.59
4923.26	Н	34.36	28.69	12.93	47.29	41.62	74	54	-26.71	-12.38
7380.16	Н	38.23	27.34	15.82	54.05	43.16	74	54	-19.95	-10.84
N/A										

Operation Mode: TX / IEEE 802.11g / CH Low Test Date: October 09,2012

Temperature: 24°C Tested by: Sean Yu 48 % RH Polarity: Ver. / Hor. **Humidity:**

Frequenc y (MHz)	Ant. Pol.	Reading (Peak)	Reading (Average)	Correctio n Factor (dB/m)	Result (Peak)	Result (Average)	Limit (Peak)	Limit (Average)	Margin Peak(dB)	Margin AVG(dB)
,	,	(dBuV)	(dBuV)	•		(dBuV/m)	(dBuV/m)	(dBuV/m)		•
4819.23	V	36.49	28.21	12.41	48.9	40.62	74	54	-25.1	-13.38
7233.46	V	38.12	25.36	15.48	53.6	40.84	74	54	-20.4	-13.16
4820.36	Н	34.78	28.23	12.41	47.19	40.64	74	54	-26.81	-13.36
7238.23	Н	38.29	27.74	15.48	53.77	43.22	74	54	-20.23	-10.78
N1/A										
N/A										

Operation Mode: TX / IEEE 802.11g / CH Mid Test Date: October 09,2012

Temperature: 24°C Tested by: Sean Yu

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Frequenc y (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin Peak(dB)	Margin AVG(dB)
4876.35	V	36.75	28.62	12.68	49.43	41.3	74	54	-24.57	-12.7
7320.26	V	38.35	27.26	15.76	54.11	43.02	74	54	-19.89	-10.98
4875.29	Н	34.49	28.55	12.68	47.17	41.23	74	54	-26.83	-12.77
7318.52	Н	38.16	27.26	15.74	53.9	43	74	54	-20.1	-11
N/A										

Operation Mode: TX / IEEE 802.11g / CH High Test Date: October 09,2012

Temperature: 24°C Tested by: Sean Yu Polarity: Ver. / Hor. **Humidity:** 48 % RH

Frequenc y	Ant. Pol.	Reading	Reading	Correctio n Factor	Result	Result	Limit	Limit	Margin	Margin
(MHz)	(H/V)	(Peak) (dBuV)	(Average) (dBuV)	(dB/m)	(Peak) (dBuV/m)	(Average) (dBuV/m)	(Peak) (dBuV/m)	(Average) (dBuV/m)		AVG(dB)
4935.49	V	36.65	28.26	12.94	49.59	41.2	74	54	-24.41	-12.8
7391.25	V	38.16	27.11	15.82	53.98	42.93	74	54	-20.02	-11.07
4925.19	Н	34.24	28.26	12.93	47.17	41.19	74	54	-26.83	-12.81
7389.25	Н	38.26	27.29	15.82	54.08	43.11	74	54	-19.92	-10.89
N/A										

TX / 802.11n Standard-20 MHz Channel mode **Operation Mode:**

(Chain 0 + Chain 1) / CH Low

Test Date: October 09,2012

24°C Temperature:

Tested by: Sean Yu

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Frequenc y (MHz)	Ant. Pol.	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)		Limit (Average) (dBuV/m)	Margin Peak(dB)	Margin AVG(dB)
4832.55	V	36.26	28.26	12.21	48.47	40.47	74	54	-25.53	-13.53
7230.62	V	38.16	27.16	15.22	53.38	42.38	74	54	-20.62	-11.62
4824.42	Н	34.62	28.24	12.21	46.83	40.45	74	54	-27.17	-13.55
7212.16	Н	38.16	27.26	15.22	53.38	42.48	74	54	-20.62	-11.52
N/A										

TX / 802.11n Standard-20 MHz Channel mode **Operation Mode:**

(Chain 0 + Chain 1) / CH Mid

Test Date: October 09,2012

Temperature: 24°C Tested by: Sean Yu

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Frequenc y	Ant. Pol.	Reading	Reading	Correction n Factor	Result	Result	Limit	Limit	Margin	Margin
(MHz)	(H/V)	(Peak) (dBuV)	(Average) (dBuV)		(Peak)	(Average) (dBuV/m)	(Peak)	(Average)	Peak(dB)	AVG(dB)
4876.22	V	36.19	28.26	12.68	48.87	40.94	74	54	-25.13	-13.06
7321.44	V	38.29	27.34	15.76	54.05	43.1	74	54	-19.95	-10.9
4875.26	Н	34.49	28.19	11.02	45.51	39.21	74	54	-28.49	-14.79
7316.29	Н	38.29	27.27	15.72	54.01	42.99	74	54	-19.99	-11.01
N/A										

TX / 802.11n Standard-20 MHz Channel mode **Operation Mode:**

(Chain 0 + Chain 1) / CH High

Test Date: October 09,2012

24°C Temperature:

Tested by: Sean Yu

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Frequenc y (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	7	Limit (Average) (dBuV/m)	Margin Peak(dB)	Margin AVG(dB)
4930.59	V	36.26	28.29	12.01	48.27	40.3	74	54	-25.73	-13.7
7387.49	V	38.16	27.46	15.26	53.42	42.72	74	54	-20.58	-11.28
4924.29	Н	34.29	28.29	12.26	46.55	40.55	74	54	-27.45	-13.45
7384.46	Н	38.16	27.16	15.26	53.42	42.42	74	54	-20.58	-11.58
N/A										

TX / 802.11n Wide-40 MHz Channel mode **Operation Mode:**

(Chain 0 + Chain 1) / CH Low

Test Date: October 09,2012

Temperature: 24°C Tested by: Sean Yu

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Frequen cy (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Peak(dB)	Margin AVG(dB)
4844.26	V	35.54	28.35	12.41	47.95	40.76	74	54	-26.05	-13.24
7382.45	V	39.69	27.59	15.48	55.17	43.07	74	54	-18.83	-10.93
4850.26	Н	34.79	28.25	12.41	47.2	40.66	74	54	-26.8	-13.34
7382.46	Н	38.35	27.46	15.48	53.83	42.94	74	54	-20.17	-11.06
N/A										

TX / 802.11n Wide-40 MHz Channel mode **Operation Mode:**

(Chain 0 + Chain 1) / CH Mid

Tested by: Sean Yu

Test Date: October 09,2012

Temperature: 24°C

Humidity	':	48 % RF	I				Polarit	y: Ver. /	Hor.	
Frequenc y (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)		Limit (Average) (dBuV/m)	Margin Peak(dB)	Margin AVG(dB)
4874.47	V	33.46	28.68	12.68	46.14	41.36	74	54	-27.86	-12.64
7313.35	V	36.69	27.24	15.71	52.4	42.95	74	54	-21.6	-11.05
4874.12	Н	32.25	28.34	12.68	44.93	41.02	74	54	-29.07	-12.98
7314.65	Н	36.45	27.69	15.71	52.16	43.4	74	54	-21.84	-10.6
N/A										

TX / 802.11n Wide-40 MHz Channel mode **Operation Mode:**

(Chain 0 + Chain 1) / CH High

Test Date: October 09,2012

Temperature: 24°C Tested by: Sean Yu

Humidity: 48 % RH Polarity: Ver. / Hor.

Frequenc y	Ant. Pol.	Reading	Reading	Correctio n Factor	Result	Result	Limit	Limit	Margin	Margin
(MHz)	(H/V)	(Peak) (dBuV)	(Average) (dBuV)	(dB/m)	(Peak) (dBuV/m)	(Average) (dBuV/m)		(Average) (dBuV/m)		AVG(dB)
4915.35	V	33.12	28.58	12.54	45.66	41.12	74	54	-28.34	-12.88
7360.42	V	36.45	27.15	15.21	51.66	42.36	74	54	-22.34	-11.64
			<u> </u>							
4915.25	Н	32.24	28.25	12.24	44.48	40.49	74	54	-29.52	-13.51
7359.65	Н	36.16	27.74	15.36	51.52	43.1	74	54	-22.48	-10.9
N/A										

Operation Mode: TX / IEEE 802.11a / CH low Test Date: October 09,2012

Temperature: 24°C Tested by: Sean Yu **Humidity:** 48 % RH **Polarity:** Ver. / Hor.

Frequenc y (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak)	Result (Average) (dBuV/m)	•	Limit (Average) (dBuV/m)		Margin AVG(dB)
4915.78	V	33.58	28.69	12.93	46.51	41.62	74	54	-27.49	-12.38
7360.58	V	36.46	27.46	15.83	52.29	43.29	74	54	-21.71	-10.71
4915.69	Н	32.96	28.35	12.93	45.89	41.28	74	54	-28.11	-12.72
7359.49	Н	36.56	27.25	15.82	52.38	43.07	74	54	-21.62	-10.93
N/A										

Operation Mode: TX / IEEE 802.11a / CH Mid Test Date: October 09,2012

Temperature: 24°C Tested by: Sean Yu **Humidity:** 48 % RH **Polarity:** Ver. / Hor.

Frequenc y (MHz)	Ant. Pol.	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak)	Result (Average)		Limit (Average) (dBuV/m)		Margin AVG(dB)
11570.87	V	33.74	28.42	2.4	36.14	30.82	74	54	-37.86	-23.18
11570.65	Н	32.75	28.24	2.4	35.15	30.64	74	54	-38.85	-23.36
N/A										

Operation Mode: TX / IEEE 802.11a / CH High Test Date: October 09,2012

Temperature: 24°C Tested by: Sean Yu **Humidity:** 48 % RH **Polarity:** Ver. / Hor.

Frequenc y (MHz)	Ant. Pol.	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak)	Result (Average) (dBuV/m)		Limit (Average) (dBuV/m)		Margin AVG(dB)
11611.54	V	32.36	28.42	3.56	35.92	31.98	74	54	-38.08	-22.02
11615.68	Н	33.52	28.24	3.56	37.08	31.8	74	54	-36.92	-22.2
N/A										

TX / 802.11an Standard-20 MHz Channel mode Test Date: October 09,2012 **Operation Mode:**

(Chain 0 + Chain 1) / CH Low

Temperature: 24°C Tested by: Sean Yu **Humidity:** 48 % RH **Polarity:** Ver. / Hor.

Frequenc y (MHz)	Ant. Pol.	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)		Limit (Average) (dBuV/m)	Margin Peak(dB)	Margin AVG(dB)
4915.33	V	33.74	28.42	12.93	46.67	41.35	74	54	-27.33	-12.65
7360.67	V	36.77	27.24	15.83	52.6	43.07	74	54	-21.4	-10.93
4915.67	Н	32.75	28.24	12.93	45.68	41.17	74	54	-28.32	-12.83
7359.33	Н	36.26	27.46	15.82	52.08	43.28	74	54	-21.92	-10.72
N/A										

TX / 802.11an Standard-20 MHz Channel mode Test Date: October 09,2012 **Operation Mode:**

(Chain 0 + Chain 1) / CH Mid

24°C Temperature: Tested by: Sean Yu

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Frequenc y (MHz)	Ant. Pol.	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak)	Result (Average) (dBuV/m)	-	Limit (Average) (dBuV/m)		Margin AVG(dB)
11495.33	V	33.74	28.42	3.26	37	31.68	74	54	-37	-22.32
11495.02	Н	32.75	28.24	3.26	36.01	31.5	74	54	-37.99	-22.5
11493.02	11	32.73	20.24	3.20	30.01	31.3	74	34	-37.99	-22.5
N/A										
IN/A										

TX / 802.11an Standard-20 MHz Channel mode Test Date: October 09,2012 **Operation Mode:**

(Chain 0 + Chain 1) / CH High

24°C Temperature: Tested by: Sean Yu

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Frequenc y (MHz)	Ant. Pol.	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)		Limit (Average) (dBuV/m)		Margin AVG(dB)
11572.67	V	33.74	28.42	3.62	37.36	32.04	74	54	-36.64	-21.96
11572.67	Н	32.75	28.24	3.62	36.37	31.86	74	54	-37.63	-22.14
N/A										

TX / 802.11an Wide-40 MHz Channel mode **Operation Mode:**

(Chain 0 + Chain 1) / CH Low

Test Date: October 09,2012

24°C Temperature:

Tested by: Sean Yu

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Frequenc y (MHz)	Ant. Pol.	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)		Limit (Average) (dBuV/m)	Margin Peak(dB)	Margin AVG(dB)
11611.36	V	33.74	28.42	3.69	37.43	32.11	74	54	-36.57	-21.89
11611.33	Н	32.75	28.24	3.69	36.44	31.93	74	54	-37.56	-22.07
N/A										

Operation Mode: TX / 802.11an Wide-40 MHz Channel mode

(Chain 0 + Chain 1) / CH High

Test Date: October 09,2012

Temperature: 24°C Tested by: Sean Yu

Humidity: 48 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correctio n Factor (dB/m)	Result (Peak)	Result (Average) (dBuV/m)		Limit (Average) (dBuV/m)		Margin AVG(dB)
11590.00	V	33.74	28.42	3.56	37.3	31.98	74	54	-36.7	-22.02
						_				
11591.00	Н	32.75	28.24	3.56	36.31	31.8	74	54	-37.69	-22.2
N/A										

Remark:

- Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
 - Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
 - Average test would be performed if the peak result were greater than the average limit or 3. as required by the applicant.
 - Data of measurement within this frequency range shown " --- " in the table above means 4. the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
 - Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m). 6.

Report No: KS120716A02-RPB

FCC ID: V6U- AP25N01

Date of Issue :October 10, 2012

7.6. POWERLINE CONDUCTED EMISSIONS

LIMIT

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Lim (dB _i	
(141112)	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

^{*} Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

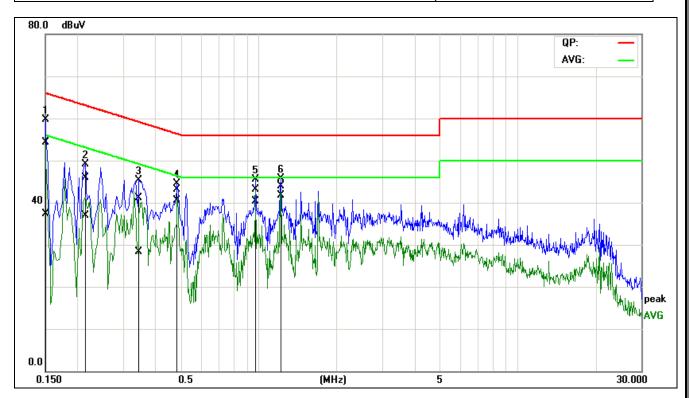
- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data

Mode 1

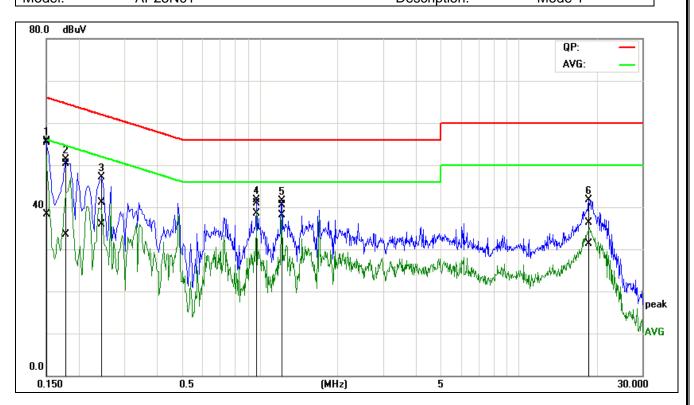

Job No.: KS120716A02 Company: AIR802 Standard: FCC Class B Test item: Conduction test

Line: L1

Model: AP25N01

Date: 2012-10-08 Time: 15:32:29 Temp.(C)/Hum.(%): 22(C)/48% Test By: Jarry.xu Test Voltage: AC 120V/60Hz

Description:


No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1513	44.05	27.09	10.25	54.30	37.34	65.93	55.93	-11.63	-18.59	Pass
2	0.2147	35.82	26.76	10.18	46.00	36.94	63.02	53.02	-17.02	-16.08	Pass
3	0.3439	30.87	18.04	10.29	41.16	28.33	59.11	49.11	-17.95	-20.78	Pass
4	0.4866	32.73	30.26	10.29	43.02	40.55	56.23	46.23	-13.21	-5.68	Pass
5	0.9713	32.77	29.99	10.25	43.02	40.24	56.00	46.00	-12.98	-5.76	Pass
6*	1.2165	33.72	31.45	10.24	43.96	41.69	56.00	46.00	-12.04	-4.31	Pass

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

Job No.: KS120716A02 Date: 2012-10-08 Company: AIR802 Time: 15:36:59 Standard: FCC Class B Temp.(C)/Hum.(%): 22(C)/48% Test item: Conduction test Test By: Jarry.xu Line: Test Voltage: AC 120V/60Hz L2

Model: AP25N01 Description: Mode 1

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1507	44.83	27.88	10.49	55.32	38.37	65.96	55.96	-10.64	-17.59	Pass
2	0.1760	39.93	23.20	10.39	50.32	33.59	64.67	54.67	-14.35	-21.08	Pass
3	0.2459	30.69	25.55	10.39	41.08	35.94	61.89	51.89	-20.81	-15.95	Pass
4*	0.9747	30.07	27.65	10.87	40.94	38.52	56.00	46.00	-15.06	-7.48	Pass
5	1.2174	29.52	27.20	10.89	40.41	38.09	56.00	46.00	-15.59	-7.91	Pass
6	18.6918	25.70	20.74	10.56	36.26	31.30	60.00	50.00	-23.74	-18.70	Pass

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).