

FCC Test Report

Report No.: RFBFJZ-WTW-P22110126-3

FCC ID: V65E7200

Test Model: E7200

Received Date: Dec. 07, 2022

Test Date: Feb. 24 ~ Mar. 01, 2023

Issued Date: Apr. 07, 2023

Applicant: Kyocera Corporation % Kyocera International, Inc.

Address: 8611 Balboa Avenue, San Diego, CA 92123

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City
33383, TAIWAN

FCC Registration / 788550 / TW0003

Designation Number:

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Modification Record	5
3 General Information.....	6
3.1 General Description of EUT	6
3.2 Description of Test Modes	7
3.2.1 Test Mode Applicability and Tested Channel Detail.....	8
3.3 Description of Support Units	10
3.3.1 Configuration of System under Test	10
3.4 General Description of Applied Standards	10
4 Test Types and Results	11
4.1 Radiated Emission Measurement	11
4.1.1 Limits of Radiated Emission Measurement.....	11
4.1.2 Test Instruments	12
4.1.3 Test Procedures.....	13
4.1.4 Deviation from Test Standard	14
4.1.5 Test Set Up	14
4.1.6 EUT Operating Conditions.....	14
4.1.7 Test Results	15
4.2 Conducted Emission Measurement	23
4.2.1 Limits of Conducted Emission Measurement.....	23
4.2.2 Test Instruments	23
4.2.3 Test Procedures.....	24
4.2.4 Deviation from Test Standard	24
4.2.5 Test Setup.....	24
4.2.6 EUT Operating Conditions.....	24
4.2.7 Test Results	25
4.3 Frequency Stability	27
4.3.1 Limits of Frequency Stability Measurement	27
4.3.2 Test Setup.....	27
4.3.3 Test Instruments	27
4.3.4 Test Procedure	28
4.3.5 Deviation from Test Standard	28
4.3.6 EUT Operating Conditions.....	28
4.3.7 Test Result.....	29
4.4 20dB Bandwidth	30
4.4.1 Limits of 20dB Bandwidth Measurement.....	30
4.4.2 Test Setup.....	30
4.4.3 Test Instruments	30
4.4.4 Test Procedures.....	30
4.4.5 Deviation from Test Standard	30
4.4.6 EUT Operating Conditions.....	30
4.4.7 Test Results	31
5 Pictures of Test Arrangements	32
Appendix – Information of the Testing Laboratories	33

Release Control Record

Issue No.	Description	Date Issued
RFBFJZ-WTW-P22110126-3	Original release	Apr. 07, 2023

1 Certificate of Conformity

Product: Smartphone

Brand: Kyocera

Test Model: E7200

Sample Status: Identical prototype

Applicant: Kyocera Corporation % Kyocera International, Inc.

Test Date: Feb. 24 ~ Mar. 01, 2023

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.225)

47 CFR FCC Part 15, Subpart C (Section 15.215)

ANSI C63.10-2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by : , **Date:** Apr. 07, 2023
Polly Chien / Specialist

Approved by : , **Date:** Apr. 07, 2023
Jeremy Lin / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.225, 15.215)			
FCC Clause	Test Item	Result	Remarks
15.207	Conducted emission test	Pass	Meet the requirement of limit. Minimum passing margin is -14.11dB at 13.56200MHz.
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	Pass	Meet the requirement of limit. Minimum passing margin is -62.1dB at 13.56MHz.
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	Pass	Meet the requirement of limit.
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	Pass	Meet the requirement of limit.
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	Pass	Meet the requirement of limit. Minimum passing margin is -5.8dB at 30.00MHz.
15.225 (e)	The frequency tolerance	Pass	Meet the requirement of limit.
15.215 (c)	20dB Bandwidth	Pass	Meet the requirement of limit.

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.79 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.44 dB
	30MHz ~ 200MHz	2.93 dB
	200MHz ~1000MHz	2.95 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Smartphone
Brand	Kyocera
Model	E7200
Sample Status	Identical prototype
Power Supply Rating	20Vdc or 15Vdc or 9Vdc or 5Vdc (From adapter) 3.87Vdc (From battery)
Modulation Type	ASK
Operating Frequency	13.56MHz
Data Rate	Type A: 106 kbit/s Type B: 106 kbit/s Type F: 212/424 kbit/s Type V: 26.48 kbit/s
Field Strength	21.9dBuV/m (QP) (30m)
Antenna Type	Loop antenna
Antenna Connector	NA
Accessory Device	Refer to note
Cable Supplied	Refer to note

Note:

1. The EUT uses following accessories.

Battery		
Brand	Model	Specification
Kyocera SCP-76LBPS Power Rating : 3.87Vdc, typ 4270mAh, typ. 16.6Wh		
USB Type A to USB type C cable		
Brand	Model	Specification
KYOCERA SCP-24 SDC Signal Line : 1m shielded Type A to Type C USB		

2. The EUT uses following support unit only.

Adapter (Support unit)		
Brand	Model	Specification
Kyocera	SCP-53ADT	AC Input: 100-240 Vac, 50/60 Hz, 0.6A DC Output: 5Vdc, 3A; 9Vdc, 3A; 15Vdc, 1.8A; 20Vdc, 1.35A

3. There are WWAN, Bluetooth, NFC, ANT+ and WLAN technology used for the EUT.
4. Detail antenna specification please refer to antenna photos/or drawings.
5. Only radiated measurements are used to show compliance with FCC limits for fundamental and spurious emissions.

3.2 Description of Test Modes

1 channel is provided to this EUT

Channel	Freq. (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Mode	Applicable to				Description
	RE	PLC	FS	EB	
-	√	√	√	√	-

Where RE: Radiated Emission
 PLC: Power Line Conducted Emission
 FS: Frequency Stability
 EB: 20dB Bandwidth measurement

Note:

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane.
2. The EUT had been pre-tested on Type A, Type B, Type F, Type V. The worst case was found when data rate was Type F and chosen for final test.

Radiated Emission below 30MHz Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type
-	1	1	ASK

Radiated Emission above 30MHz Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type
-	1	1	ASK

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type
-	1	1	ASK

Frequency Stability:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type
-	1	1	ASK

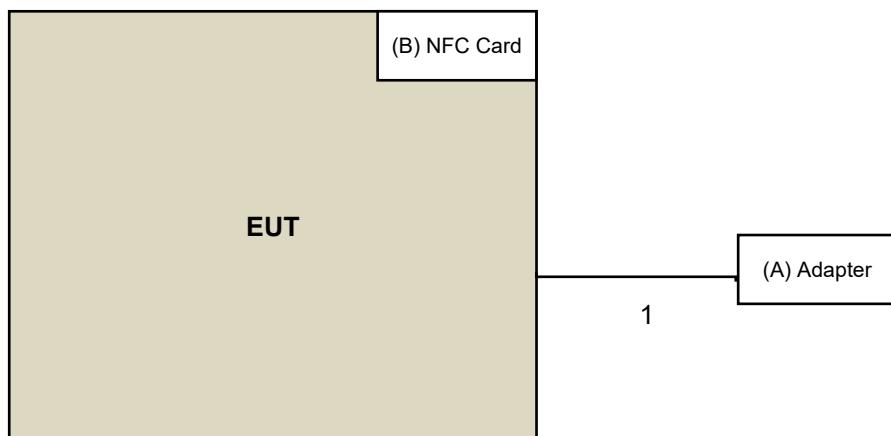
20dB Bandwidth:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type
-	1	1	ASK

Test Condition:

Applicable to	Environmental Conditions	Input Power	Tested by
RE	21 deg. C, 68% RH	120Vac, 60Hz (System)	Thomas Cheng
PLC	21 deg. C, 66.4% RH	120Vac, 60Hz (System)	Thomas Cheng
FS	21 deg. C, 61% RH	5Vdc	Thomas Cheng
BW	23 deg. C, 66% RH	120Vac, 60Hz (System)	Thomas Cheng


3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Adapter	Kyocera	SCP-53ADT	N/A	N/A	Supplied by applicant
B.	NFC Card	NA	NA	NA	NA	Provided by Lab

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	Type A to Type C USB	1	1	Y	0	Accessory of EUT

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225)

FCC Part 15, Subpart C (15.215)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver KEYSIGHT	N9038A	MY55420137	Apr. 27, 2022	Apr. 26, 2023
Signal Analyzer Agilent	N9010A	MY52220207	Jan. 03, 2023	Jan. 02, 2024
Loop Antenna TESEQ	HLA 6121	45745	Jul. 27, 2022	Jul. 26, 2023
Pre-amplifier EMCI	EMC001340	980201	Sep. 23, 2022	Sep. 22, 2023
RF Coaxial Cable EMCI	5D-NM-BM	140903+140902	Jan. 07, 2023	Jan. 06, 2024
Preamplifier EMCI	EMC 330H	980112	Oct. 01, 2022	Sep. 30, 2023
BILOG Antenna SCHWARZBECK	VULB 9168	9168-472	Oct. 21, 2022	Oct. 20, 2023
RF Coaxial Cable WOKEN	8D-FB	Cable-Ch10-01	Oct. 01, 2022	Sep. 30, 2023
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-969	Nov. 13, 2022	Nov. 12, 2023
Preamplifier EMCI	EMC 012645	980115	Oct. 01, 2022	Sep. 30, 2023
RF Coaxial Cable EMCI	EMC104-SM-SM-8000	171005	Oct. 01, 2022	Sep. 30, 2023
RF Coaxial Cable HUBER+SUHNNER	SUCOFLEX 104	EMC104-SM-SM-1000(140807)	Oct. 01, 2022	Sep. 30, 2023
RF FILTER MICRO-TRONICS	BRM50716	060	Jan. 11, 2023	Jan. 10, 2024
RF FILTER MICRO-TRONICS	BRM17690	004	Jan. 11, 2023	Jan. 10, 2024
Pre-Amplifier EMCI	EMC 184045	980116	Oct. 01, 2022	Sep. 30, 2023
Broadband Horn Antenna SCHWARZBECK	BBHA 9170	148	Nov. 13, 2022	Nov. 12, 2023
RF Coaxial Cable EMCI	EMC102-KM-KM-600	150928	Jul. 09, 2022	Jul. 08, 2023
RF Coaxial Cable EMCI	EMC102-KM-KM-3000	150929	Jul. 09, 2022	Jul. 08, 2023
Software BV ADT	ADT_Radiated_V7.6.15.9.5	NA	NA	NA
Antenna Tower Max-Full	MFA-440H	AT93021705	NA	NA
Turn Table Max-Full	MFT-201SS	NA	NA	NA
Antenna Tower & Turn Table Controller Max-Full	MF-7802	NA	NA	NA
Boresight antenna tower fixture BV	BAF-02	7	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 2. The test was performed in HY - 966 chamber 5.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz-90 kHz, 110 kHz-490 kHz) set to average detect function and peak detect function.

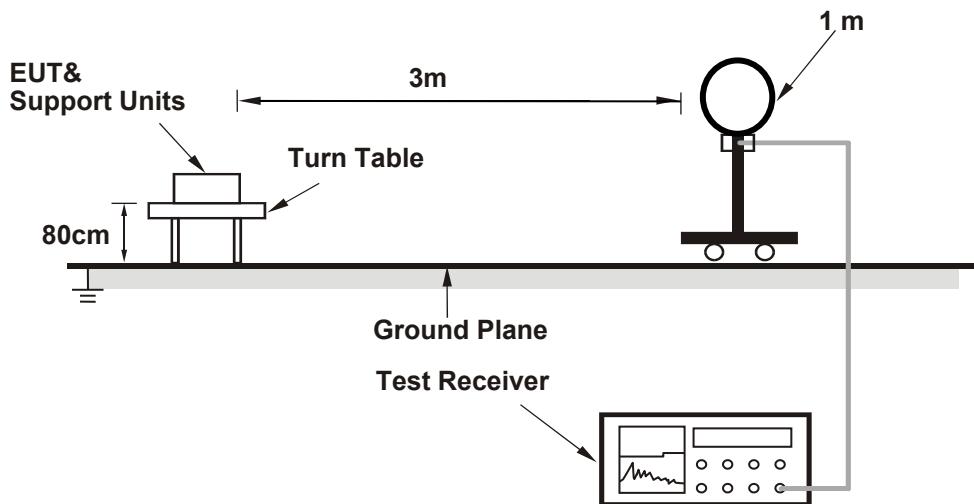
Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz or 300 Hz at frequency band (9 kHz~150 kHz) and 9 kHz or 10 kHz at frequency below 30MHz (except 9 kHz~150 kHz).

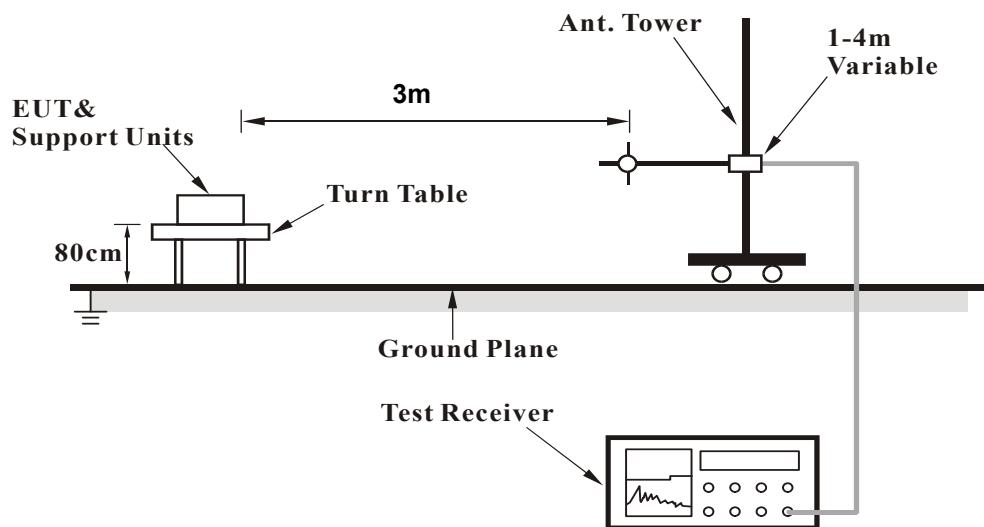
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Note:


1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Set Up

For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

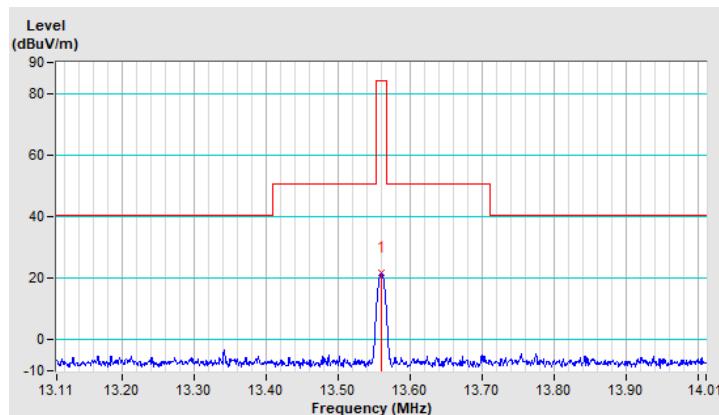
- The EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Type F

EUT Test Condition		Measurement Detail		
Channel		Frequency Range		13.553 ~ 13.567MHz
Input Power		Detector Function		Quasi-Peak
Environmental Conditions		Tested By		Thomas Cheng

Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	*13.56	21.9 QP	84.0	-62.1	1.00	356	40.1	-18.2


Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. “*”: Fundamental frequency
6. Above limits have been translated by the formula

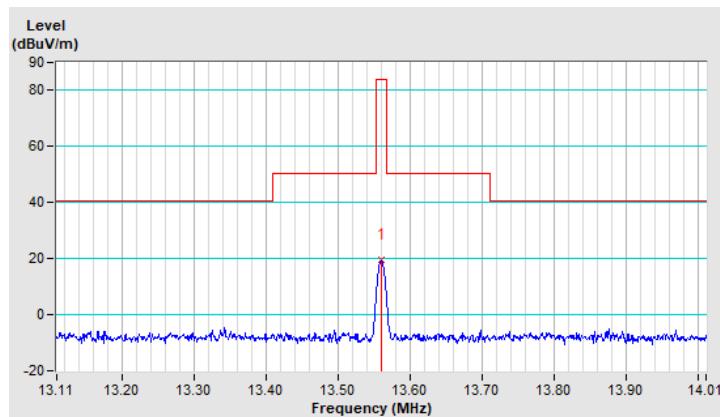
The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

Example:

$$\begin{aligned}
 13.56\text{MHz} &= 15848\text{uV/m} & 30\text{m} \\
 &= 84\text{dBuV/m} & 30\text{m}
 \end{aligned}$$

EUT Test Condition		Measurement Detail		
Channel		Frequency Range		13.553 ~ 13.567MHz
Input Power		Detector Function		Quasi-Peak
Environmental Conditions		Tested By		Thomas Cheng

Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	*13.56	19.4 QP	84.0	-64.6	1.00	264	37.6	-18.2


Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. “ * ” : Fundamental frequency
6. Above limits have been translated by the formula

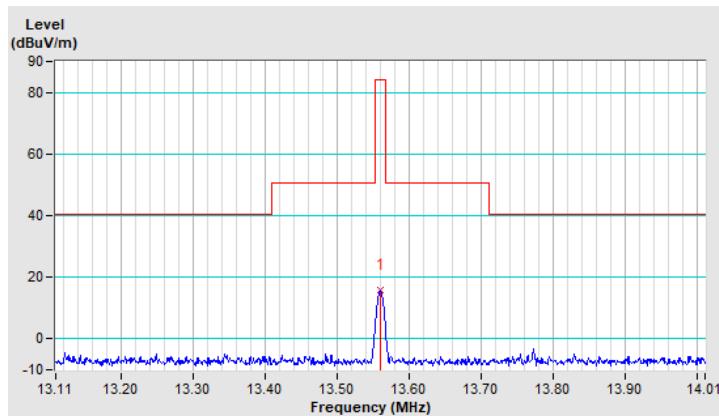
The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

Example:

$$\begin{aligned}
 13.56\text{MHz} &= 15848\text{uV/m} & 30\text{m} \\
 &= 84\text{dBuV/m} & 30\text{m}
 \end{aligned}$$

EUT Test Condition		Measurement Detail		
Channel		Channel 1		Frequency Range
Input Power		120Vac, 60Hz		Detector Function
Environmental Conditions		21 deg. C, 68% RH		Tested By
				Thomas Cheng

Antenna Polarity & Test Distance: Loop Antenna Ground Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	*13.56	15.9 QP	84.0	-68.1	1.00	2	34.1	-18.2


Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. “ * ” : Fundamental frequency
6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

Example:

$$\begin{aligned}
 13.56\text{MHz} &= 15848\text{uV/m} & 30\text{m} \\
 &= 84\text{dBuV/m} & 30\text{m}
 \end{aligned}$$

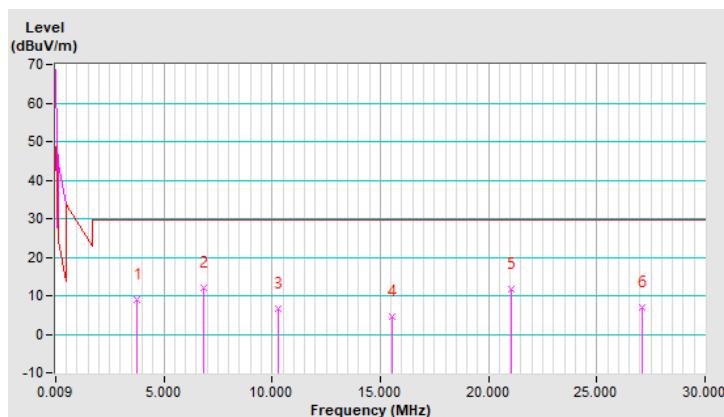


EUT Test Condition		Measurement Detail		
Channel		Frequency Range		Below 30MHz
Input Power		Detector Function		Quasi-Peak
Environmental Conditions		Tested By		Thomas Cheng

Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	2.95	9.0 QP	29.5	-20.5	1.00	207	28.8	-19.8
2	6.34	10.9 QP	29.5	-18.6	1.00	164	30.5	-19.6
3	10.39	5.6 QP	29.5	-23.9	1.00	183	23.8	-18.2
4	15.63	4.7 QP	29.5	-24.8	1.00	116	22.8	-18.1
5	22.02	3.7 QP	29.5	-25.8	1.00	320	21.8	-18.1
6	27.12	4.6 QP	29.5	-24.9	1.00	254	22.7	-18.1

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB) + Distance Factor
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

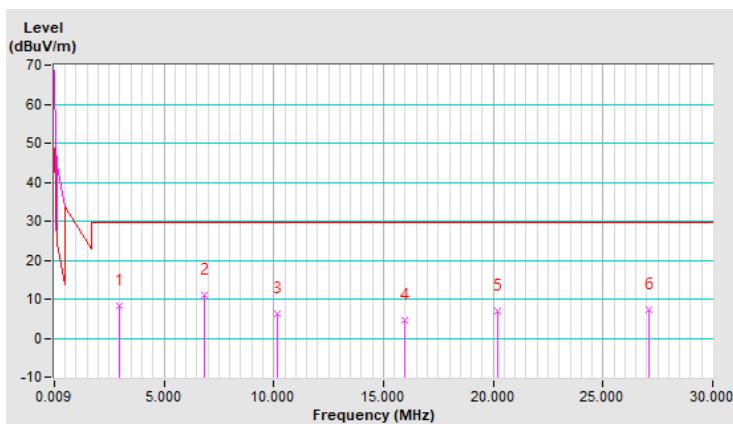


EUT Test Condition		Measurement Detail		
Channel		Channel 1		Frequency Range
Input Power		120Vac, 60Hz		Detector Function
Environmental Conditions		21 deg. C, 68% RH		Tested By
				Thomas Cheng

Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	3.79	9.1 QP	29.5	-20.4	1.00	23	29.0	-19.9
2	6.85	12.1 QP	29.5	-17.4	1.00	130	31.5	-19.4
3	10.27	6.6 QP	29.5	-22.9	1.00	28	24.8	-18.2
4	15.54	4.7 QP	29.5	-24.8	1.00	53	22.8	-18.1
5	21.06	11.7 QP	29.5	-17.8	1.00	223	29.8	-18.1
6	27.12	6.9 QP	29.5	-22.6	1.00	206	25.0	-18.1

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
– Pre-Amplifier Factor(dB) + Distance Factor
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

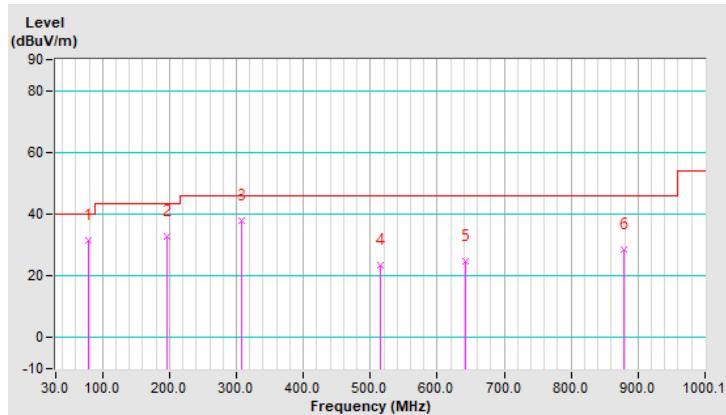


EUT Test Condition		Measurement Detail		
Channel		Channel 1		Frequency Range
Input Power		120Vac, 60Hz		Detector Function
Environmental Conditions		21 deg. C, 68% RH		Tested By
				Thomas Cheng

Antenna Polarity & Test Distance: Loop Antenna Ground Paralle At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	2.98	8.3 QP	29.5	-21.2	1.00	15	28.1	-19.8
2	6.85	11.1 QP	29.5	-18.4	1.00	78	30.5	-19.4
3	10.18	6.2 QP	29.5	-23.3	1.00	328	24.4	-18.2
4	15.96	4.5 QP	29.5	-25.0	1.00	302	22.6	-18.1
5	20.22	7.0 QP	29.5	-22.5	1.00	238	25.1	-18.1
6	27.12	7.2 QP	29.5	-22.3	1.00	233	25.3	-18.1

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
– Pre-Amplifier Factor(dB) + Distance Factor
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

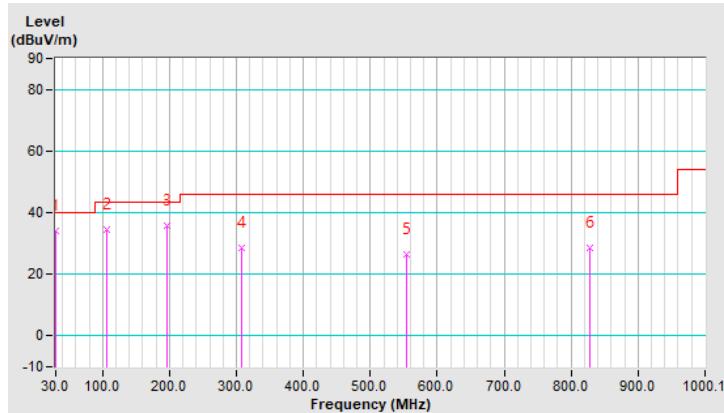


EUT Test Condition		Measurement Detail		
Channel		Channel 1		Frequency Range
Input Power		120Vac, 60Hz		Detector Function
Environmental Conditions		21 deg. C, 68% RH		Tested By
				Thomas Cheng

Antenna Polarity & Test Distance: Horizontal At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	78.50	31.6 QP	40.0	-8.4	1.50 H	190	48.0	-16.4
2	196.86	32.8 QP	43.5	-10.7	1.00 H	112	48.4	-15.6
3	307.45	37.9 QP	46.0	-8.1	1.50 H	188	49.5	-11.6
4	515.05	23.3 QP	46.0	-22.7	2.00 H	304	29.8	-6.5
5	642.13	24.8 QP	46.0	-21.2	1.00 H	355	29.2	-4.4
6	878.84	28.5 QP	46.0	-17.5	1.00 H	34	29.7	-1.2

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value



EUT Test Condition		Measurement Detail		
Channel		Channel 1		Frequency Range
Input Power		120Vac, 60Hz		Detector Function
Environmental Conditions		21 deg. C, 68% RH		Tested By
				Thomas Cheng

Antenna Polarity & Test Distance: Vertical At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	30.00	34.2 QP	40.0	-5.8	1.00 V	290	46.9	-12.7
2	105.67	34.7 QP	43.5	-8.8	1.50 V	220	50.5	-15.8
3	196.86	35.8 QP	43.5	-7.7	1.00 V	337	51.4	-15.6
4	307.45	28.4 QP	46.0	-17.6	1.50 V	222	40.0	-11.6
5	553.85	26.3 QP	46.0	-19.7	2.50 V	92	32.6	-6.3
6	827.42	28.7 QP	46.0	-17.3	1.00 V	68	30.3	-1.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 05, 2022	Dec. 04, 2023
RF signal cable Woken	5D-FB	Cable-cond1-01	Jan. 07, 2023	Jan. 06, 2024
LISN ROHDE & SCHWARZ (EUT)	ENV216	101826	Mar. 14, 2022	Mar. 13, 2023
V-LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Sep. 12, 2022	Sep. 11, 2023
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

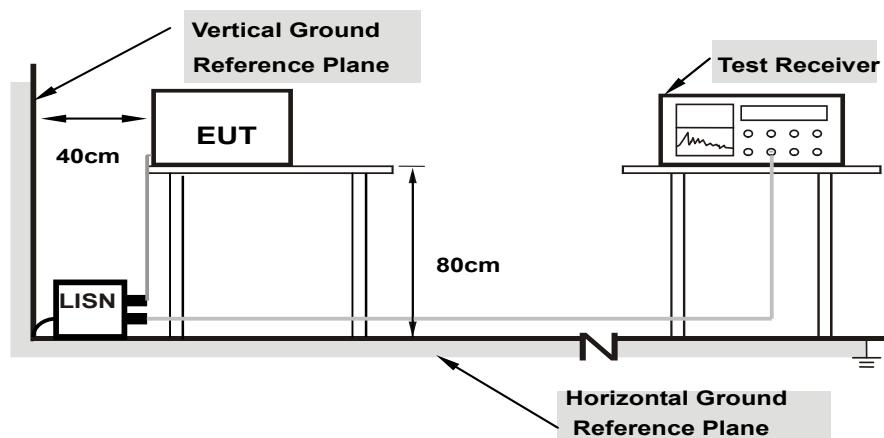
Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1 (Conduction 1).

3. The VCCI Site Registration No. is C-12040.

4. Tested date: Mar. 01, 2023

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30mHz was searched. Emission levels under (Limit - 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30mHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

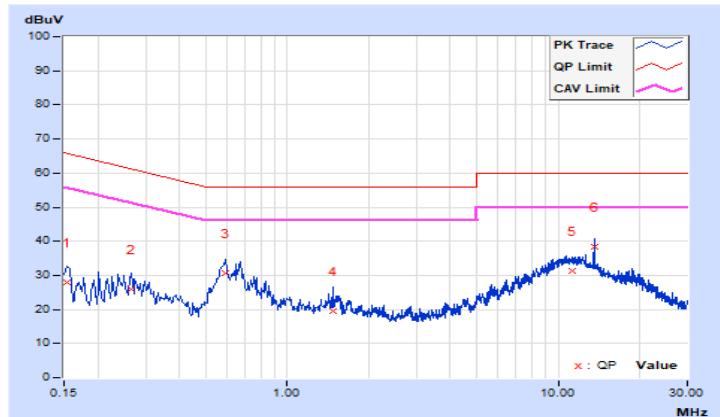
Note: 1. Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

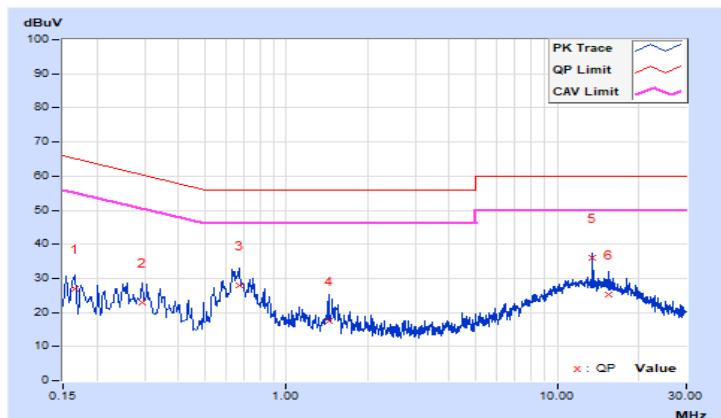

Type F

Phase		Line (L)		Detector Function		Quasi-Peak (QP) / Average (AV)	
-------	--	----------	--	-------------------	--	--------------------------------	--

No	Freq. [MHz]	Corr. Factor (dB)	Reading Value		Emission Level		Limit		Margin	
			[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15400	9.64	18.37	12.16	28.01	21.80	65.78	55.78	-37.77	-33.98
2	0.26600	9.67	16.20	12.68	25.87	22.35	61.24	51.24	-35.37	-28.89
3	0.59000	9.70	21.05	15.61	30.75	25.31	56.00	46.00	-25.25	-20.69
4	1.47800	9.72	9.86	3.71	19.58	13.43	56.00	46.00	-36.42	-32.57
5	11.23400	9.84	21.53	13.80	31.37	23.64	60.00	50.00	-28.63	-26.36
6	13.56200	9.85	28.61	26.04	38.46	35.89	60.00	50.00	-21.54	-14.11

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.

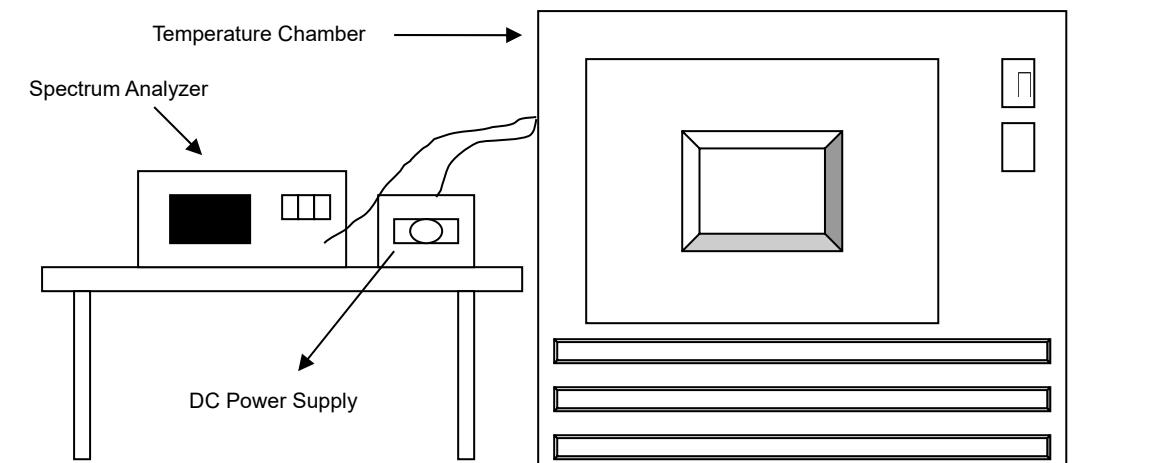


Phase	Neutral (N)		Detector Function		Quasi-Peak (QP) / Average (AV)	
-------	-------------	--	-------------------	--	--------------------------------	--

No	Freq. [MHz]	Corr. Factor (dB)	Reading Value		Emission Level		Limit		Margin	
			[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16600	9.65	17.43	6.92	27.08	16.57	65.16	55.16	-38.08	-38.59
2	0.29400	9.67	13.36	6.21	23.03	15.88	60.41	50.41	-37.38	-34.53
3	0.66987	9.70	18.27	13.29	27.97	22.99	56.00	46.00	-28.03	-23.01
4	1.43400	9.72	7.70	2.08	17.42	11.80	56.00	46.00	-38.58	-34.20
5	13.55800	9.87	26.17	24.99	36.04	34.86	60.00	50.00	-23.96	-15.14
6	15.57800	9.88	15.52	8.39	25.40	18.27	60.00	50.00	-34.60	-31.73

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.



4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Jun. 01, 2022	May 31, 2023
Standard Temperature And Humidity Chamber TERCHY	MHU-225AU	920842	Jun. 21, 2022	Jun. 20, 2023
Three-phase coupling / decoupling network TESEQ	CDN 3063	4006	Mar. 08, 2022	Mar. 07, 2023
DC Power Supply Topward	6306A	727263	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 2. Tested date: Feb. 24, 2023

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- b. Turn the EUT on and couple its output to a spectrum analyzer.
- c. Turn the EUT off and set the chamber to the highest temperature specified.
- d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- e. Repeat step (d) with the temperature chamber set to the next desired temperature until measurements down to the lowest specified temperature have been completed.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.3.5 Deviation from Test Standard

No deviation.

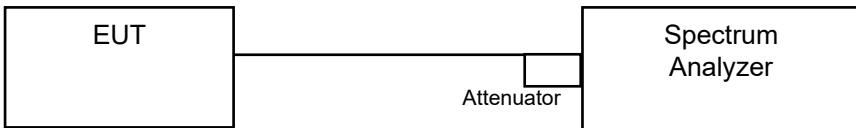
4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Result

Type F

Frequency Stability Versus Temp.									
TEMP. (°C)	Power Supply (Vdc)	0 Minute		2 Minute		5 Minute		10 Minute	
		Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
50	3.87	13.55999	-0.00007	13.55999	-0.00007	13.56	0.00000	13.55999	-0.00007
40	3.87	13.56001	0.00007	13.56002	0.00015	13.56002	0.00015	13.56003	0.00022
30	3.87	13.56002	0.00015	13.56003	0.00022	13.56001	0.00007	13.56002	0.00015
20	3.87	13.56006	0.00044	13.56005	0.00037	13.56004	0.00029	13.56005	0.00037
10	3.87	13.56005	0.00037	13.56006	0.00044	13.56006	0.00044	13.56005	0.00037
0	3.87	13.56003	0.00022	13.56004	0.00029	13.56004	0.00029	13.56004	0.00029
-10	3.87	13.56007	0.00052	13.56006	0.00044	13.56006	0.00044	13.56008	0.00059
-20	3.87	13.55995	-0.00037	13.55993	-0.00052	13.55994	-0.00044	13.55995	-0.00037


Frequency Stability Versus Voltage									
TEMP. (°C)	Power Supply (Vdc)	0 Minute		2 Minute		5 Minute		10 Minute	
		Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
20	4.4505	13.56006	0.00044	13.56005	0.00037	13.56004	0.00029	13.56005	0.00037
	3.87	13.56006	0.00044	13.56005	0.00037	13.56004	0.00029	13.56005	0.00037
	3.2895	13.56006	0.00044	13.56005	0.00037	13.56004	0.00029	13.56005	0.00037

4.4 20dB Bandwidth

4.4.1 Limits of 20dB Bandwidth Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

4.4.3 Test Instruments

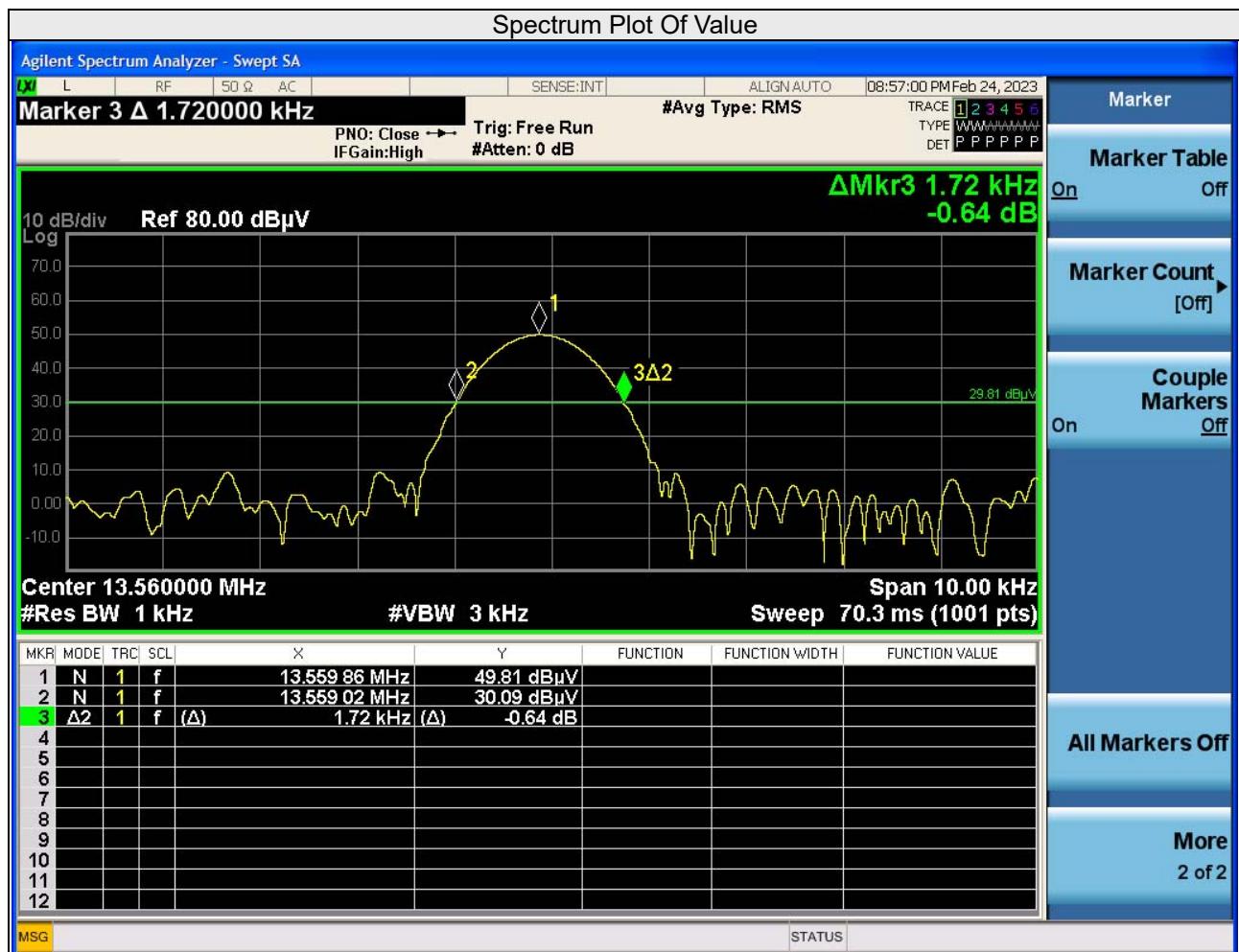
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 958Hz RBW and 3MHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.5 Deviation from Test Standard

No deviation.


4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

Type F

20dBc point (Low)	20dBc point (High)	Operating frequency band (MHz)	Pass / Fail
13.55902	13.56074	13.553~13.567	Pass

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232

Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: <http://ee.bureauveritas.com.tw>

The address and road map of all our labs can be found in our web site also.

--- END ---