



EMC Technologies (NZ) Ltd  
PO Box 68-307  
Newton, Auckland  
47 MacKelvie Street  
Grey Lynn, Auckland  
Phone 09 360 0862  
Fax 09 360 0861

E-Mail Address: aucklab@ihug.co.nz  
Web Site: www.emctech.com.au

## **TEST REPORT**

### **Millar Instruments / Telemetry Research TR181 SmartPad Wireless Charger plus Receiver**

*tested to*

### **47 Code of Federal Regulations**

### **Part 18 – Industrial, Scientific and Medical Equipment**

*for*

### **Millar Instruments Ltd / Telemetry Research Ltd**

This Test Report is issued with the authority of:

---

**Andrew Cutler - General Manager**



All tests reported  
herein have been  
performed in accordance  
with the laboratory's  
scope of accreditation

## **Table of Contents**

|                                           |           |
|-------------------------------------------|-----------|
| <b>1. STATEMENT OF COMPLIANCE</b>         | <b>3</b>  |
| <b>2. RESULTS SUMMARY</b>                 | <b>3</b>  |
| <b>3. INTRODUCTION</b>                    | <b>3</b>  |
| <b>4. CLIENT INFORMATION</b>              | <b>4</b>  |
| <b>5. DESCRIPTION OF TEST SAMPLE</b>      | <b>4</b>  |
| <b>6. STANDARD, SETUPS AND PROCEDURES</b> | <b>5</b>  |
| <b>7. RESULTS</b>                         | <b>5</b>  |
| <b>8. TEST EQUIPMENT USED</b>             | <b>9</b>  |
| <b>9. ACCREDITATIONS</b>                  | <b>9</b>  |
| <b>10. PHOTOGRAPHS</b>                    | <b>10</b> |

## 1. STATEMENT OF COMPLIANCE

The **Millar Instruments / Telemetry Research TR181 SmartPad Wireless Charger plus Receiver** complies with FCC Part 18 when the methods as described in ANSI C63.4 – 2003 are applied.

## 2. RESULTS SUMMARY

| Clause | Parameter                           | Result                                                                  |
|--------|-------------------------------------|-------------------------------------------------------------------------|
| 18.203 | Equipment authorisation requirement | Non consumer ISM equipment.                                             |
| 18.301 | Operating frequencies               | Complies. Device operates on 198.7 kHz                                  |
| 18.303 | Prohibited frequency bands          | Noted.                                                                  |
| 18.305 | Field Strength Limits               | Complies                                                                |
| 18.307 | Conducted limits                    | Not applicable. Device does not fall into any of the categories listed. |
| 18.309 | Frequency range of measurements     | Noted                                                                   |
| 18.311 | Methods of measurement              | Tested in accordance with ANSI C63.4 2003.                              |

## 3. INTRODUCTION

This report describes the tests and measurements performed for the purpose of determining compliance with the specification.

**The client selected the test sample.**

**This report relates only to the sample tested.**

**This report contains no corrections or erasures.**

Measurement uncertainties with statistical confidence intervals of 95% are shown below test results. Both Class A and Class B uncertainties have been accounted for, as well as influence uncertainties where appropriate.

## 4. CLIENT INFORMATION

|                     |                                                 |
|---------------------|-------------------------------------------------|
| <b>Company Name</b> | Millar Instruments Ltd / Telemetry Research Ltd |
| <b>Address</b>      | Level 1, 70 Symonds Street<br>Grafton           |
| <b>City</b>         | Auckland 1010                                   |
| <b>Country</b>      | New Zealand                                     |
| <b>Contact</b>      | Mr David Budgett                                |

## 5. DESCRIPTION OF TEST SAMPLE

|                          |                                         |
|--------------------------|-----------------------------------------|
| <b>Brand Name</b>        | Telemetry Research                      |
| <b>Model</b>             | TR181                                   |
| <b>Product</b>           | SmartPad Wireless Charger plus Receiver |
| <b>Manufacturer</b>      | Telemetry Research Ltd                  |
| <b>Country of Origin</b> | New Zealand                             |
| <b>Serial Number</b>     | 4658                                    |
| <b>FCC ID</b>            | V58HU71                                 |

The device that was tested is a wireless charger that operates on 198.7 kHz to enable Telemeter devices to be charged.

The device also includes a 2.4 GHz transceiver that is used to communicate with Telemeter devices which are placed on the charging pad.

The 2.4 GHz device is covered by FCC part 15 and is subject to a separate test report.

Typically the device would be used in a laboratory environment and would be used to charge telemeter devices that are attached to rats and mice.

The device is powered using a 120 Vac to 48 Vdc external power supply

The client has estimated that the output of the 198.7 kHz transmitter is less than 500 watts.

All testing was carried out at maximum charging power which equates to maximum magnetic field strength.

## **6. STANDARD, SETUPS AND PROCEDURES**

### **Standard**

The sample was tested in accordance with FCC Part 18.

### **Methods and Procedures**

The measurement methods and procedures used, as described in ANSI C63.4 – 2003.

All testing was carried out at maximum charging power which equates to maximum magnetic field strength.

## **7. RESULTS**

### **Section 18.203: Equipment Authorisation**

The device that is tested is a commercial device.

It is not a consumer device.

Therefore as a minimum the verification process will apply.

### **Section 18.301: Operating frequencies**

The SmartPad transmits on 198.7 kHz and therefore it falls between the FCC restricted bands of 90-110 kHz and 495 – 505 kHz where the general limits apply.

The low power transmitting device operates in the 2400 – 2483.5 MHz ISM band.

**Result:** Complies

## Section 18.305: Field strength limits

Testing was carried out at the laboratory's open area test site - located at Driving Creek, Orere Point, Auckland, New Zealand.

This site conforms to the requirements of CISPR 16 and ANSI C63.4 - 2003.

Before testing was carried out, a receiver self test and internal calibration was undertaken along with a check of all connecting cables and programmed antenna factors.

The device was placed on the test tabletop, which was a total of 0.8 m above the test site ground plane.

The device was operated whilst charging a telemeter transmitter continuously.

Measurements of the radiated field were made with the antenna located at a 10 metre horizontal distance from the boundary of the devices under test.

Between 100 kHz and 30 MHz testing was carried out using a magnetic loop antenna, the centre of which was placed 1 metre above the ground plane.

The device was rotated using a turntable with various orientations of the loop antenna to give the worst case result.

The 300 metre limit at this frequency has been converted to a 10 metre limit using a factor of 40 dB per decade.

Measurements between 100 - 500 kHz were carried out using a peak and average detector with a bandwidth of 10 kHz.

Above 500 kHz and below 30 MHz a quasi peak detector with 9 kHz bandwidth was used.

The peak limit below 500 kHz is the average limit as per the specification + 20 dB

Between 30 and 1000 MHz testing is carried out by manually scanning in 100 kHz steps while aurally and visually monitoring for emissions.

When an emission is located, it is positively identified and its maximum level is found by rotating the automated turntable, and by varying the antenna height with an automated antenna tower.

The emission is measured in both vertical and horizontal antenna polarisations using a Quasi Peak detector with a bandwidth of 120 kHz.

The emission level is determined in field strength by taking the following into consideration:

$$\text{Level (dB}\mu\text{V/m)} = \text{Receiver Reading (dB}\mu\text{V)} + \text{Antenna Factor (dB/m)} + \text{Coax Loss (dB)}$$

**Result:** Complies

Measurement uncertainty with a confidence interval of 95% is:  
(0.100 – 1000 MHz)  $\pm$  4.1 dB

**Fundamental emission:**

| Frequency<br>kHz | Loop<br>dB $\mu$ V/m | Limit<br>dB $\mu$ V/m | Margin<br>dB | Result | Detector |
|------------------|----------------------|-----------------------|--------------|--------|----------|
| 198.700          | 83.1                 | 102.6                 | 19.5         | Pass   | Peak     |
| 198.700          | 82.4                 | 82.6                  | 0.2          | Pass   | Average  |

Part 18 specifies a limit of 15 uV/m at 300 metres for any type of device operating on any non ISM frequency below 500 watts

$$15 \text{ uV/m} = 23.5 \text{ dBuV/m}$$

Measurements made at 10 metres with the 300 metre limit extrapolated by 40 dB per decade below 30 MHz.

$$\text{Log (300 m)} - \text{Log (10 m)} = 1.477 \text{ decades}$$

$$40 \text{ dB per decade} \times 1.477 \text{ decades} = 59.1 \text{ dB}$$

$$\text{Limit at 10 metres will therefore be } 23.5 + 59.1 = 82.6 \text{ dBuV/m}$$

**Spurious Emissions: Below 30 MHz**

| Frequency<br>kHz | Loop<br>dB $\mu$ V/m | Limit<br>dB $\mu$ V/m | Margin<br>dB | Result | Detector   |
|------------------|----------------------|-----------------------|--------------|--------|------------|
| 397.400          | 56.2                 | 102.6                 | 46.4         | Pass   | Peak       |
| 397.400          | 47.5                 | 82.6                  | 36.2         | Pass   | Average    |
|                  |                      |                       |              |        |            |
| 596.100          | < 50.0               | 82.6                  | > 32.6       | Pass   | Quasi Peak |
| 794.800          | < 50.0               | 82.6                  | > 32.6       | Pass   | Quasi Peak |
| 993.500          | < 50.0               | 82.6                  | > 32.6       | Pass   | Quasi Peak |
| 1192.200         | < 50.0               | 82.6                  | > 32.6       | Pass   | Quasi Peak |
| 1390.900         | < 50.0               | 82.6                  | > 32.6       | Pass   | Quasi Peak |
| 1589.600         | < 50.0               | 82.6                  | > 32.6       | Pass   | Quasi Peak |
| 1788.300         | < 50.0               | 82.6                  | > 32.6       | Pass   | Quasi Peak |
| 1987.000         | < 50.0               | 82.6                  | > 32.6       | Pass   | Quasi Peak |
| 25158.500        | 27.2                 | 82.6                  | 55.4         | Pass   | Quasi Peak |
| 24375.000        | 27.1                 | 82.6                  | 55.5         | Pass   | Quasi Peak |
| 23193.300        | 24.5                 | 82.6                  | 58.1         | Pass   | Quasi Peak |
| 25555.900        | 26.5                 | 82.6                  | 56.1         | Pass   | Quasi Peak |
| 29899.790        | 31.2                 | 82.6                  | 51.4         | Pass   | Quasi Peak |

## Spurious Emissions: 30 - 1000 MHz

| Frequency<br>MHz | Vertical<br>dB $\mu$ V/m | Horizontal<br>dB $\mu$ V/m | Limit<br>dB $\mu$ V/m | Margin<br>dB | Result | Antenna    |
|------------------|--------------------------|----------------------------|-----------------------|--------------|--------|------------|
| 30.232           | 33.3                     |                            | 53.0                  | 19.7         | Pass   | Vertical   |
| 41.632           | 48.0                     |                            | 53.0                  | 5.0          | Pass   | Vertical   |
| 44.762           | 52.9                     |                            | 53.0                  | 0.1          | Uncert | Vertical   |
| 45.110           | 53.0                     | 40.5                       | 53.0                  | 0.0          | Uncert | Vertical   |
| 45.459           | 49.1                     |                            | 53.0                  | 3.9          | Uncert | Vertical   |
| 47.140           | 49.6                     |                            | 53.0                  | 3.4          | Uncert | Vertical   |
| 47.300           | 47.2                     |                            | 53.0                  | 5.8          | Pass   | Vertical   |
| 47.551           | 47.3                     |                            | 53.0                  | 5.7          | Pass   | Vertical   |
| 54.176           | 43.1                     |                            | 53.0                  | 9.9          | Pass   | Vertical   |
| 65.450           | 36.5                     |                            | 53.0                  | 16.5         | Pass   | Vertical   |
| 80.100           | 35.8                     |                            | 53.0                  | 17.2         | Pass   | Vertical   |
| 163.406          | 34.9                     |                            | 53.0                  | 18.1         | Pass   | Vertical   |
| 235.740          | 33.2                     |                            | 53.0                  | 19.8         | Pass   | Vertical   |
| 236.128          |                          | 37.6                       | 53.0                  | 15.4         | Pass   | Horizontal |

Part 18 specifies a limit of 15 uV/m at 300 metres for any type of device operating on any non ISM frequency below 500 watts

$$15 \text{ uV/m} = 23.5 \text{ dBuV/m}$$

Measurements made at 10 metres with the 300 metre limit extrapolated by 20 dB per decade above 30 MHz.

$$\text{Log (300 m)} - \text{Log (10 m)} = 1.477 \text{ decades}$$

$$20 \text{ dB per decade} \times 1.477 \text{ decades} = 29.5 \text{ dB}$$

$$\text{Limit at 10 metres will therefore be } 23.5 + 29.5 = 53.0 \text{ dBuV/m}$$

### Section 18.307: Conducted limits

Not applicable as this equipment is not

- a) Ultrasonic equipment
- b) Induction cooking equipment
- c) RF lighting

## 8. TEST EQUIPMENT USED

| Instrument        | Manufacturer | Model      | Serial No | Asset Ref | Cal Due     | Interval |
|-------------------|--------------|------------|-----------|-----------|-------------|----------|
| Aerial Controller | EMCO         | 1090       | 9112-1062 | RFS 3710  | Not applic  | -        |
| Aerial Mast       | EMCO         | 1070-1     | 9203-1661 | RFS 3708  | Not applic  | -        |
| Turntable         | EMCO         | 1080-1-2.1 | 9109-1578 | RFS 3709  | Not applic  | -        |
| Receiver          | R & S        | ESIB 40    | 100171    | R-27-1    | 21 Oct 2013 | 1 year   |
| VHF Balun         | Schwarzbeck  | VHA 9103   | -         | RFS 3603  | 7 Feb 2014  | 1 year   |
| Biconical Antenna | Schwarzbeck  | BBA 9106   | -         | RFS 3612  | 7 Feb 2014  | 1 year   |
| Log Periodic      | Schwarzbeck  | VUSLP 9111 | 9111-228  | 3785      | 7 Feb 2014  | 1 year   |
| Loop Antenna      | EMCO         | 6502       | 9003-2485 | 3798      | 12 Dec 2013 | 1 year   |

## 9. ACCREDITATIONS

Testing was carried out in accordance with EMC Technologies NZ Ltd registration with the Federal Communications Commission as a listed facility, Registration Number: 90838, which was updated in February, 2011.

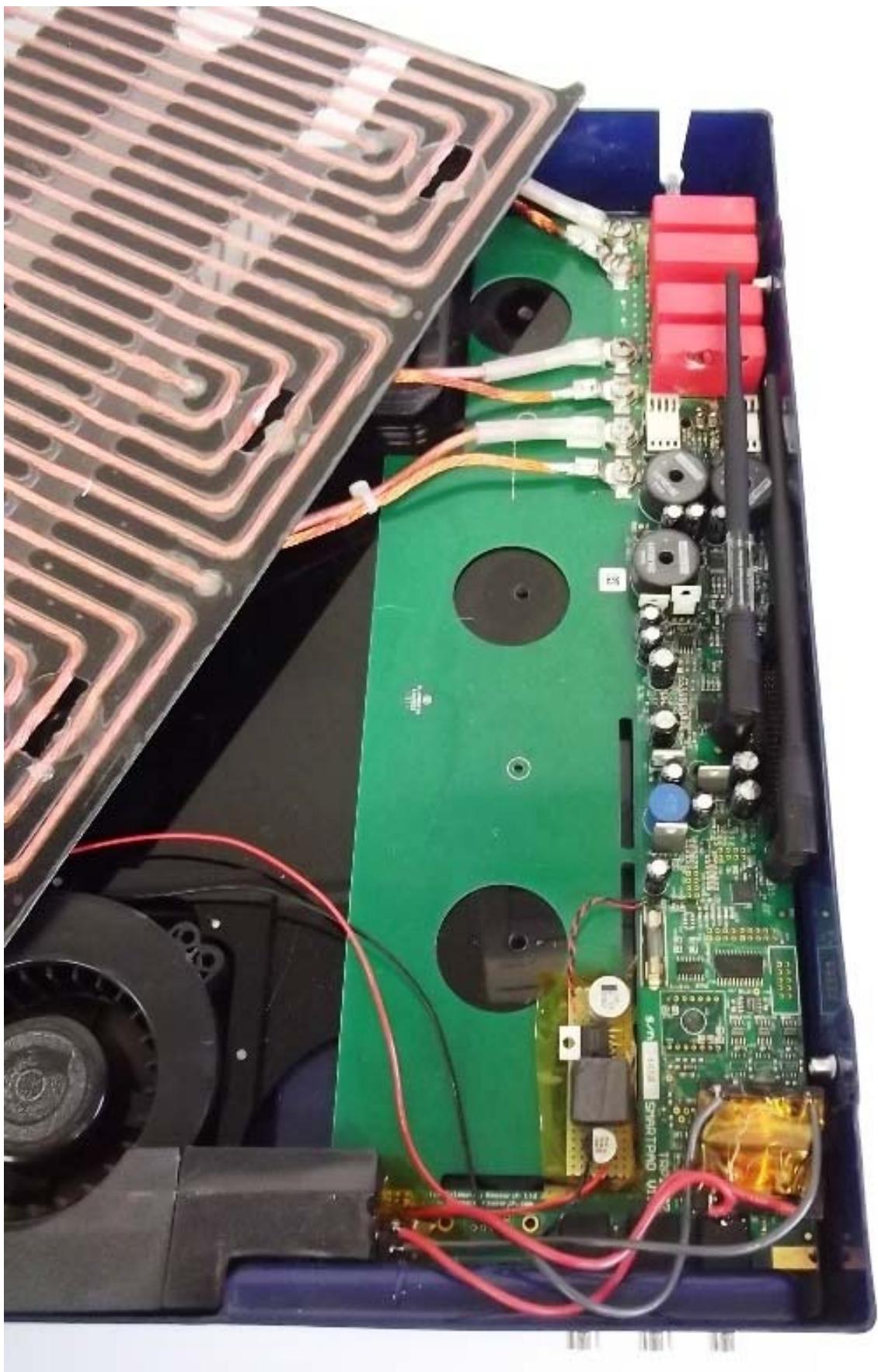
In addition testing was carried out in accordance with the terms of EMC Technologies (NZ) Ltd's International Accreditation New Zealand (IANZ) Accreditation to NZS/IEC/ISO 17025:2005.

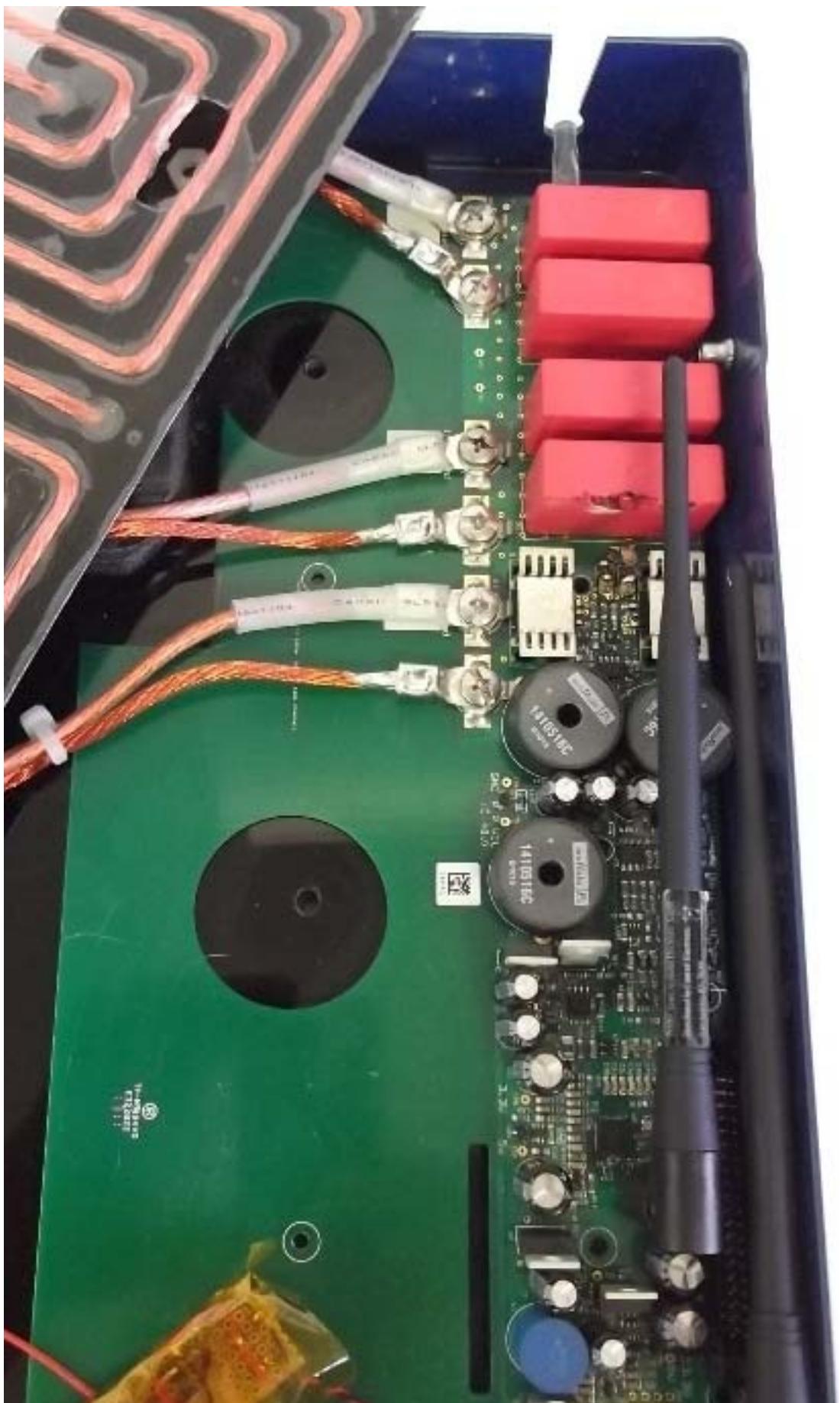
All measurement equipment has been calibrated in accordance with the terms of EMC Technologies (NZ) Ltd's International Accreditation New Zealand (IANZ) Accreditation to NZS/IEC/ISO 17025: 2005.

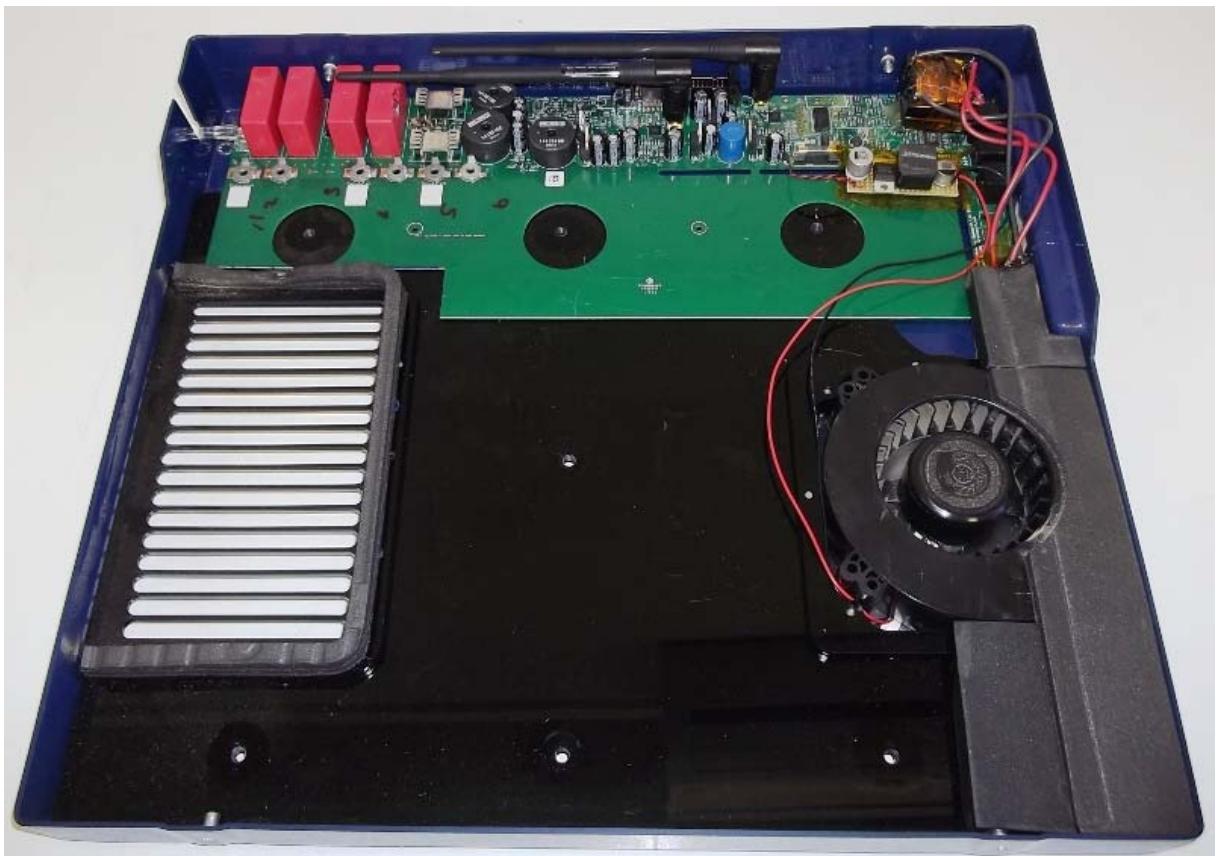
International Accreditation New Zealand has Mutual Recognition Arrangements for testing and calibration with a number of accreditation bodies in various economies. This includes NATA (Australia), UKAS (UK), SANAS (South Africa), NVLAP (USA), A2LA (USA), SWEDAC (Sweden). Further details can be supplied on request.

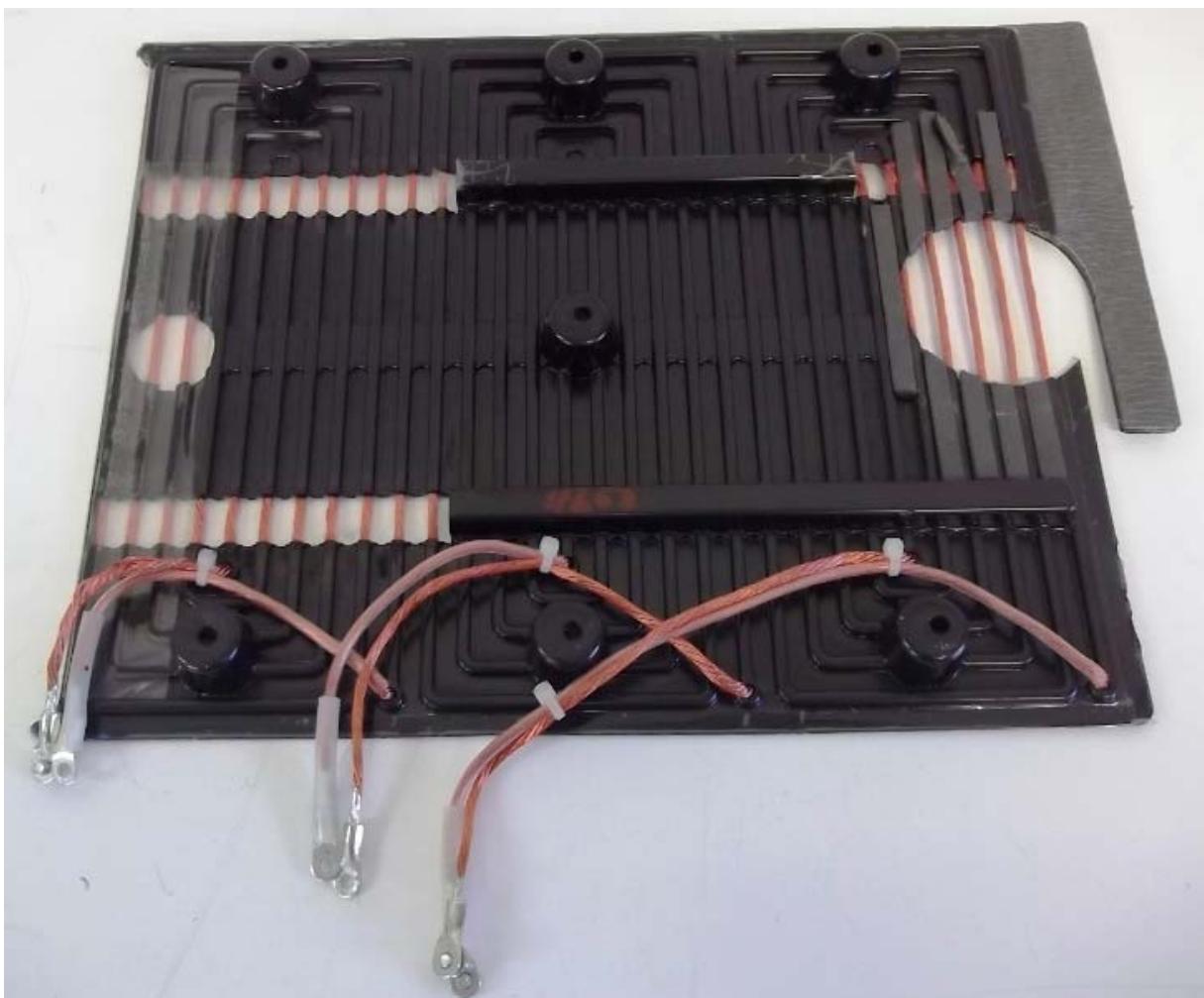
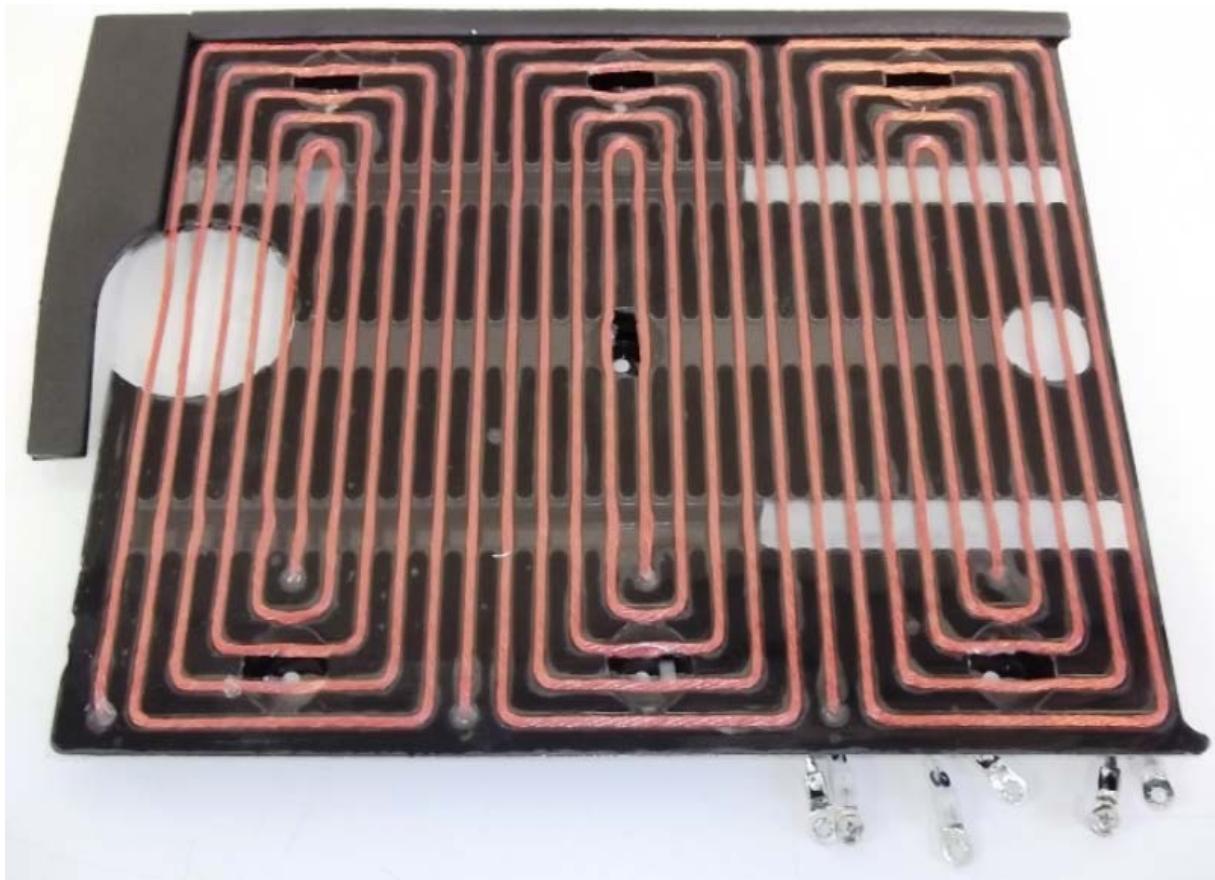
## 10. PHOTOGRAPHS

External photos






## Internal Photos











Radiated emissions test set up photos



