

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the
 certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
 body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The Return Loss ensures low reflected power. No uncertainty required
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1101_Aug23

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DAOV VI	D 4 01/0	
DASY Version	DASY6	V16.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.5 ± 6 %	5.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	29.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	294 W/kg ± 24.7 % (k=2)

SAR averaged over 8 cm ³ (8 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.70 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.5 W/kg ± 24.4 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.5 W/kg ± 24.4 % (k=2)

Certificate No: D6.5GHzV2-1101_Aug23

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.6 Ω + 0.7 jΩ	
Return Loss	- 29.0 dB	

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	294 W/m²
APD measured	normalized to 1W	2940 W/m ² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	134 W/m²
APD measured	normalized to 1W	1340 W/m ² ± 28.9 % (k=2)

^{*}The reported APD values have been derived using the psSAR1g and psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	Manufactured by	SPEAG
--	-----------------	-------

Certificate No: D6.5GHzV2-1101_Aug23

DASY6 Validation Report for Head TSL

Measurement Report for D6.5GHz-1101, UID 0 -, Channel 6500 (6500.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type	
D6.5GHz	10.0 x 10.0 x 10.0	SN: 1101		

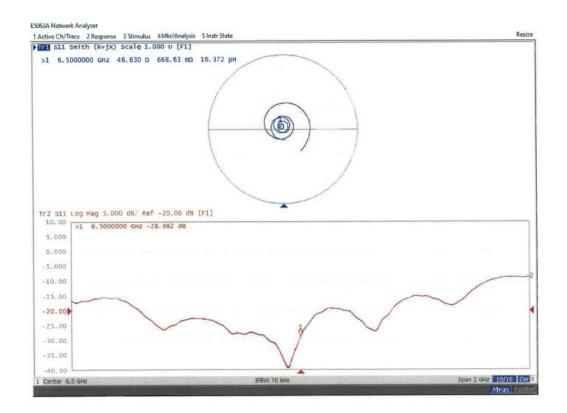
Exposure Conditions

Phantom	Position, Test	Band	Group,	Frequency	Conversion	TSL Cond.	TSL
Section, TSL	Distance [mm]	band	UID .	[MHz]	Factor	[S/m]	Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.50	5.88	33.5

Hardware Setup

Phantom	TSL	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center - 1182	HBBL600-10000V6	EX3DV4 - SN7405, 2023-06-12	DAE4 Sn908, 2023-07-03

Scan Setup		Measurement Results	
	Zoom Scan		Zoom Scan
Grid Extents [mm]	22.0 x 22.0 x 22.0	Date	2023-08-10, 15:32
Grid Steps [mm]	2.9 x 2.9 x 1.2	psSAR1g [W/Kg]	29.6
Sensor Surface [mm]	1.4	psSAR8g [W/Kg]	6.70
Graded Grid	Yes	psSAR10g [W/Kg]	5.49
Grading Ratio	1.4	Power Drift [dB]	0.02
MAIA	N/A	Power Scaling	Disabled
Surface Detection	VMS + 6p	Scaling Factor [dB]	
Scan Method	Measured	TSL Correction	No correction
		M2/M1 [%]	55.8
		Dist 3dB Peak [mm]	4.7



Certificate No: D6.5GHzV2-1101_Aug23

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D6.5GHzV2-1101_Aug23

Client

No. 24T04Z101463-028

10GHz

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No. 5G-Veri10-1071_Aug23

SAICT Shenzhen **CALIBRATION CERTIFICATE** 5G Verification Source 10 GHz - SN: 1071 Object QA CAL-45.v4 Calibration procedure(s) Calibration procedure for sources in air above 6 GHz August 11, 2023 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Primary Standards ID# Scheduled Calibration Reference Probe EUmmWV3 SN: 9374 22-May-23 (No. EUmm-9374_May23) May-24 DAE4ip 05-Jul-23 (No. DAE4ip-1602_Jul23) SN: 1602 Jul-24 Secondary Standards Check Date (in house) Scheduled Check RF generator R&S SMF100A SN: 100184 19-May-22 (in house check Nov-22) In house check: Nov-23 Power sensor R&S NRP18S-10 SN: 101258 31-May-22 (in house check Nov-22) In house check: Nov-23 SN: MY54504221 Network Analyzer Keysight E5063A 31-Oct-19 (in house check Oct-22) In house check: Oct-25 Function Name Signature Laboratory Technician Calibrated by: Joanna Lleshaj Niels Kuster Quality Manager Approved by: Issued: August 15, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: 5G-Veri10-1071_Aug23

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn
 antenna minus ohmic and mismatch loss. The forward power is measured prior and after
 the measurement with a power sensor. During the measurements, the horn is directly
 connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz. The verification sources are switched on for
 at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize
 reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a
 vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the
 horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 5G-Veri10-1071_Aug23

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Ollouiui Avolu	פיייפ					
Distance Horn	Prad1	Max E-field	Uncertainty	Avg Power Density		Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
Measured Plane				(W/m²)		
				1 cm ²	4 cm ²	
10 mm	93.3	152	1.27 dB	59.9	55.6	1.28 dB

Distance Horn Aperture to	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+		Uncertainty (k = 2)
Measured Plane	,,	(,,,,,	,	(W/m²)		` '
				1 cm ²	4 cm ²	
10 mm	93.3	152	1.27 dB	59.7, 59.9, 60.1	55.4, 55.6, 55.9	1.28 dB

Square Averaging

Square Averag	Jiiig					
Distance Horn	Prad1	Max E-field	Uncertainty	Avg Power Density		Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
Measured Plane				(W/m²)		
				1 cm ²	4 cm ²	
10 mm	93.3	152	1.27 dB	59.9	55.5	1.28 dB

Distance Horn	Prad1	Max E-field	Uncertainty	Power Density		Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	psPDn+, psPDtot+, psPDmod+		(k = 2)
Measured Plane				(W/m²)		
				1 cm ²	4 cm ²	
10 mm	93.3	152	1.27 dB	59.7, 59.9, 60.0	55.2, 55.5, 55.8	1.28 dB

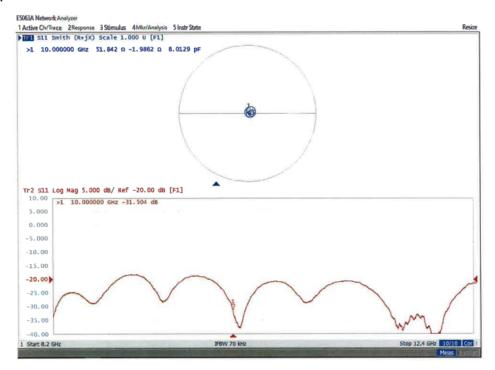
Max Power Density

max i ontoi boi					
Distance Horn	Prad1	Max E-field	Uncertainty	Max Power Density	Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	Sn, Stot, Stot	(k = 2)
Measured Plane				(W/m²)	
10 mm	93.3	152	1.27 dB	61.3, 61.4, 61.5	1.28 dB

Certificate No: 5G-Veri10-1071_Aug23

Page 3 of 8

 $^{^{\}rm I}$ Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB



Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	51.8 Ω - 2.0 jΩ
Return Loss	- 31.5 dB

Impedance Measurement Plot

Certificate No: 5G-Veri10-1071_Aug23

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1071	

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz,	DAE4ip Sn1602,
		2023-05-22	2023-07-05

Scan Setup

	5G Scan		5G Scan
ensor Surface [mm]	10.0	Date	2023-08-11, 13:11
MAIA	MAIA not used	Avg. Area (cm²)	1.00
		Avg. Type	Circular Averaging
		psPDn+ [W/m²]	59.7
		psPDtot+ [W/m²]	59.9
		psPDmod+ [W/m²]	60.1
		Max(Sn) [W/m ²]	61.3
		Max(Stot) [W/m ²]	61.4
		Max(Stot) [W/m ²]	61.5
		E _{max} [V/m]	152
		Power Drift [dB]	-0.00

Measurement Results

Certificate No: 5G-Veri10-1071_Aug23

Page 5 of 8

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer Dimensions [mm] IMEI DUT Type 5G Verification Source 10 GHz 100.0 x 100.0 x 172.0 SN: 1071

Exposure Conditions

Position, Test Distance Band Frequency [MHz], Channel Number Group, Conversion Factor **Phantom Section** [mm]

10.0 mm 10000.0, 10000

Hardware Setup

Probe, Calibration Date EUmmWV3 - SN9374_F1-55GHz, Medium DAE, Calibration Date Phantom mmWave Phantom - 1002 DAE4ip Sn1602, Air 2023-05-22 2023-07-05

Scan Setup **Measurement Results**

5G Scan 5G Scan Date Avg. Area [cm²] Sensor Surface [mm] 10.0 2023-08-11, 13:11 MAIA not used Circular Averaging 55.4 Avg. Type psPDn+ [W/m²] psPDtot+ [W/m²] psPDmod+ [W/m²] 55.6 55.9 Max(Sn) [W/m²] Max(Stot) [W/m²] 61.3 61.4 Max(|Stot|)[W/m²] 61.5 E_{max} [V/m] Power Drift [dB] 152

Certificate No: 5G-Veri10-1071_Aug23

-0.00

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0

IME SN: 1071 **DUT Type**

Exposure Conditions

Phantom Section

Position, Test Distance Band [mm]

Group,

Frequency [MHz], Channel Number

Conversion Factor

5G -

10.0 mm

Validation band CW

10000.0,

Hardware Setup

Phantom mmWave Phantom - 1002 Medium Air

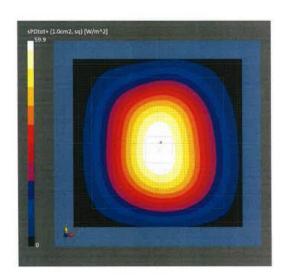
Probe, Calibration Date EUmmWV3 - SN9374_F1-55GHz, 2023-05-22

DAE, Calibration Date DAE4ip Sn1602, 2023-07-05

1.0

Measurement Results

Scan Setup


Sensor Surface [mm] MAIA

5G Scan MAIA not used

Avg. Area [cm²] Avg. Type psPDn+ [W/m²] psPDtot+ [W/m²] psPDmod+ [W/m²] Max(Sn) [W/m²] Max(Stot) [W/m²] Max(|Stot|) [W/m²] E_{max} [V/m] Power Drift (dB)

5G Scan 2023-08-11, 13:11 1.00 Square Averaging 59.7 59.9 60.0 61.3 61.5 152

-0.00

Certificate No: 5G-Veri10-1071_Aug23

Page 7 of 8

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer Dimensions [mm] IMEL **DUT Type**

5G Verification Source 10 GHz 100.0 x 100.0 x 172.0 SN: 1071

Exposure Conditions

Frequency [MHz], Channel Number Position, Test Distance Band Group, **Conversion Factor** Phantom Section [mm]

5G -10.0 mm Validation band CW 10000.0, 10000

Hardware Setup

Probe, Calibration Date DAE, Calibration Date Medium Phantom mmWave Phantom - 1002 EUmmWV3 - SN9374_F1-55GHz, DAE4ip Sn1602, Air 2023-05-22 2023-07-05

Scan Setup

5G Scan Sensor Surface [mm] 10.0 MAIA MAIA not used

Measurement Results

	5G Scan
Date	2023-08-11, 13:11
Avg. Area [cm²]	4.00
Avg. Type	Square Averaging
psPDn+ [W/m²]	55.2
psPDtot+ [W/m ²]	55.5
psPDmod+ [W/m ²]	55.8
Max(Sn) [W/m²]	61.3
Max(Stot) [W/m ²]	61.4
Max(Stot) [W/m ²]	61.5
E _{max} [V/m]	152
Power Drift [dB]	-0.00

Certificate No: 5G-Veri10-1071_Aug23

Page 8 of 8

ANNEX J: Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of Extended Calibration SAR Dipole D6.5GHzV2 - SN:1101

Head							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)	
2023/8/10	-29.0	1	46.6	1	0.70	1	
2024/8/10	-28.4	2.1	48.5	1.9	0.86	0.16	

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended cabration.