

RF TEST REPORT

Test item : Mobile Computer
Model No. : PM450
Order No. : DTNC1409-03750
Date of receipt : 2014-09-01
Test duration : 2014-10-01 ~ 2014-10-15
Date of issue : 2014-11-28
Use of report : FCC Original Grant

Applicant : POINTMOBILE CO., LTD.

Gasan-dong B-9F, Kabul Great Valley 32 Digital-ro 9-gil, Geumcheon-gu, Seoul
South Korea, 153-709

Test laboratory : DT&C Co., Ltd.
42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 449-935

Test specification : §22(H), §24(E), RSS-132, RSS-133
Test environment : See appended test report
Test result : Pass Fail

The test results presented in this test report are limited only to the sample supplied by applicant and
the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full,
without the written approval of DT&C Co., Ltd.

Tested by:

Engineer
Hoonpyo Lee

Reviewed by:

Technical Manager
GeunKi Son

Test Report Version

Test Report No.	Date	Description
DRTFCC1411-1520	Nov. 28, 2014	Initial issue
DRTFCC1411-1520(1)	Dec. 08, 2014	Update summary of test result

Table of Contents

1. GENERAL INFORMATION	4
2. INTRODUCTION	5
2.1. EUT DESCRIPTION	5
2.2. MEASURING INSTRUMENT CALIBRATION.....	5
2.3. TEST FACILITY	5
3. DESCRIPTION OF TESTS.....	6
3.1 ERP & EIRP	6
3.2 PEAK TO AVERAGE RATIO.....	8
3.3 OCCUPIED BANDWIDTH.....	10
3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.....	11
3.5 RADIATED SPURIOUS EMISSIONS	12
3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	13
4. LIST OF TEST EQUIPMENT.....	14
5. SUMMARY OF TEST RESULTS	15
6. SAMPLE CALCULATION	16
7. TEST DATA	17
7.1 EFFECTIVE RADIATED POWER.....	17
7.2 EQUIVALENT ISOTROPIC RADIATED POWER	18
7.3 RADIATED SPURIOUS EMISSIONS	19
7.3.1 RADIATED SPURIOUS EMISSIONS (GPRS850)	19
7.3.2 RADIATED SPURIOUS EMISSIONS (WCDMA850).....	20
7.3.3 RADIATED SPURIOUS EMISSIONS (HSUPA850)	21
7.3.4 RADIATED SPURIOUS EMISSIONS (GPRS1900)	22
7.3.5 RADIATED SPURIOUS EMISSIONS (WCDMA1900).....	23
7.3.6 RADIATED SPURIOUS EMISSIONS (HSUPA1900)	24
7.4 OCCUPIED BANDWIDTH.....	25
8. TEST PLOTS	26
8.1 Occupied Bandwidth (99 % Bandwidth)	26

1. GENERAL INFORMATION

Applicant Name: POINTMOBILE CO., LTD.

Address: Gasan-dong B-9F, Kabul Great Valley 32 Digital-ro 9-gil, Geumcheon-gu, Seoul South Korea, 153-709

FCC ID	:	V2X-PM450G
FCC Classification	:	Licensed Portable Transmitter Held to Ear (PCE)
EUT	:	Mobile Computer
Model Name	:	PM450
Add Model Name	:	NA
Supplying power	:	DC 3.7V
Antenna Information	:	Internal Antenna - Type: Built-In type
Tx Frequency	:	GPRS850: 824.2 ~ 848.8 MHz GPRS1900: 1850.2 ~ 1909.8 MHz EDGE850: 824.2 ~ 848.8 MHz EDGE1900: 1850.2 ~ 1909.8 MHz WCDMA850: 826.4 ~ 846.6 MHz WCDMA1900: 1852.4 ~ 1907.6 MHz HSUPA850: 826.4 ~ 846.6 MHz HSUPA1900: 1852.4 ~ 1907.6 MHz
Rx Frequency	:	GPRS850: 869.2 ~ 893.8 MHz GPRS1900: 1930.2 ~ 1989.8 MHz EDGE850: 869.2 ~ 893.8 MHz EDGE1900: 1930.2 ~ 1989.8 MHz WCDMA850: 871.4 ~ 891.6 MHz WCDMA1900: 1932.4 ~ 1987.6 MHz HSUPA850: 871.4 ~ 891.6 MHz HSUPA1900: 1932.4 ~ 1987.6 MHz
Max. RF Output Power	:	GPRS850: 0.354W ERP(25.49dBm) GPRS1900: 0.995W EIRP(29.98dBm) EDGE850: 0.201W ERP(23.03dBm) EDGE1900: 0.254W EIRP(24.04dBm) WCDMA850: 0.069W ERP(18.41dBm) WCDMA1900: 0.165W EIRP(22.18dBm) HSUPA850: 0.063W ERP(18.01dBm) HSUPA1900: 0.167W EIRP(22.24dBm)
Emission Designator(s)	:	GPRS850: 241KGXW GPRS1900: 244KGXW EDGE850: 235KG7W EDGE1900: 241KG7W WCDMA850: 4M15F9W WCDMA1900: 4M15F9W HSUPA850: 4M17F9W HSUPA1900: 4M17F9W

2. INTRODUCTION

2.1. EUT DESCRIPTION

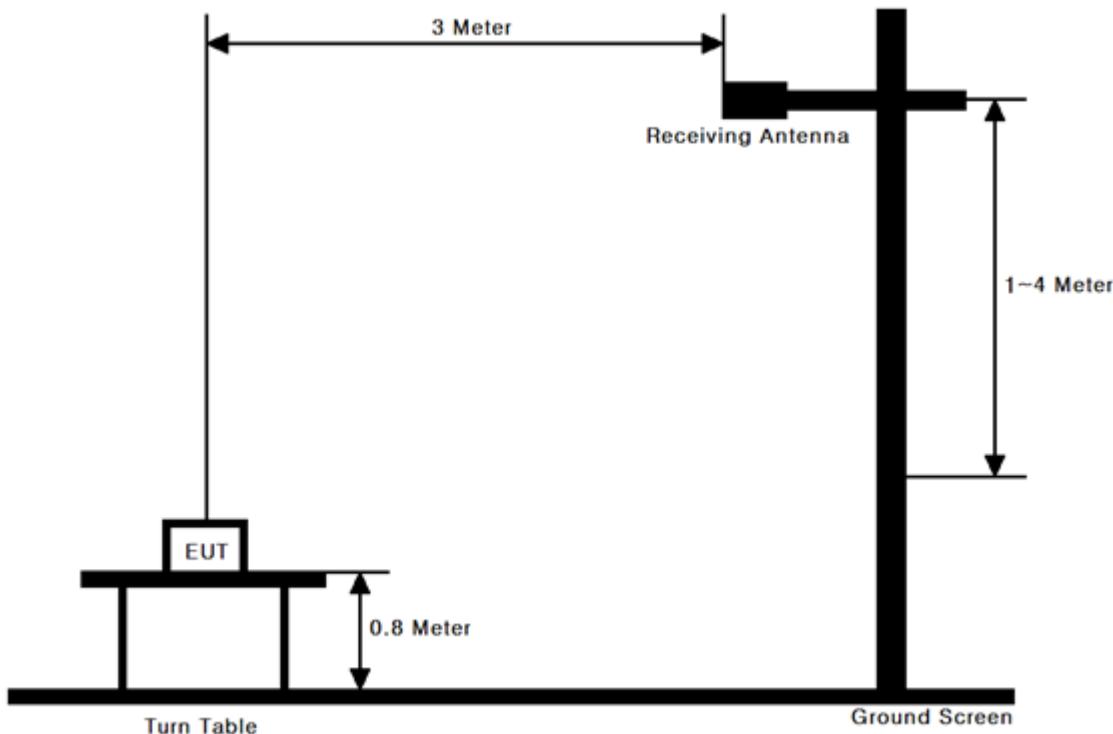
The Equipment Under Test (EUT) supports a GPRS/EDGE /WCDMA/HSUPA and Bluetooth, 2.4GHz/5GHz WLAN.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The 3&10m test site and conducted measurement facility used to collect the radiated data are located at the 683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, 449-080, Korea.


The site is constructed in conformance with the requirements.

- 3&10m test site registration Number: 678747(FCC) & 5740A-2(IC)

3. DESCRIPTION OF TESTS

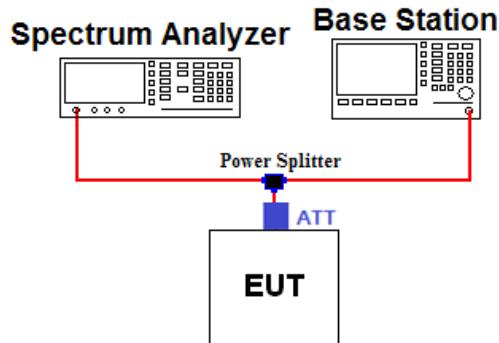
3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

These measurements were performed at 3&10m test site. The equipment under test is placed on a non-conductive table 0.8-meters above the ground plane and 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading.

For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.


Test Procedure

- **ANSI/TIA-603-C-2004 - Section 2.2.17**
- **KDB 971168 D01 v02r02 - Section 5.2.1**

1. Set span to at least 1.5 times the OBW.
2. Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
3. Set VBW \geq 3 x RBW.
4. Set number of points in sweep $\geq 2 \times$ span / RBW.
5. Sweep time = auto-couple.
6. Detector = RMS (power averaging).
7. If the EUT can be configured to transmit continuously (i.e., burst duty cycle $\geq 98\%$), then set the trigger to free run.
8. If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle $< 98\%$), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep.
Ensure that the sweep time is less than or equal to the transmission burst duration.
9. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

3.2 PEAK TO AVERAGE RATIO

Test set-up

Test Procedure

A peak to average ratio measurement is performed using the following procedure.

CCDF Procedure

- **KDB 971168 D01 v02r02 - Section 5.7.1**
 1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth
 2. Set the number of counts to a value that stabilizes the measured CCDF curve
 3. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to 1 ms
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
 4. Record the maximum PAPR level associated with a probability of 0.1%

□ Alternate Procedure**- KDB 971168 D01 v02r02 - Section 5.7.2**

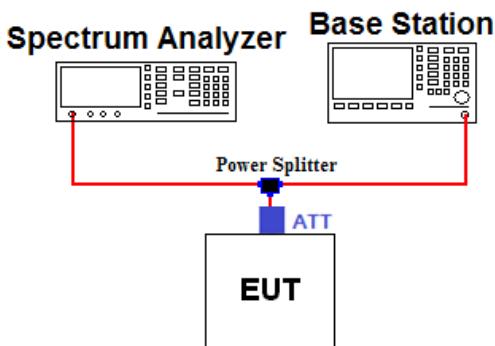
Use one of the measurement procedures of the peak power and record as P_{Pk} .

Use one of the measurement procedures of the average power and record as P_{Avg} .

Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

$$\text{PAPR (dB)} = P_{Pk} (\text{dBm}) - P_{Avg} (\text{dBm}).$$

- Peak Power Measurement


1. Set the RBW \geq OBW
2. Set VBW $\geq 3 \times$ RBW
3. Set span $\geq 2 \times$ RBW
4. Sweep time = auto couple
5. Detector = peak
6. Ensure that the number of measurement points \geq span/RBW.
7. Trace mode = max hold
8. Allow trace to fully stabilize.
9. Use the peak marker function to determine the peak amplitude level.

- Average Power Measurement

1. Set span to at least 1.5 times the OBW.
2. Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
3. Set VBW $\geq 3 \times$ RBW.
4. Set number of points in sweep $\geq 2 \times$ span / RBW.
5. Sweep time = auto-couple.
6. Detector = RMS (power averaging).
7. If the EUT can be configured to transmit continuously (i.e., burst duty cycle $\geq 98\%$), then set the trigger to free run.
8. If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle $< 98\%$), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep.
Ensure that the sweep time is less than or equal to the transmission burst duration.
9. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

3.3 OCCUPIED BANDWIDTH.

Test set-up

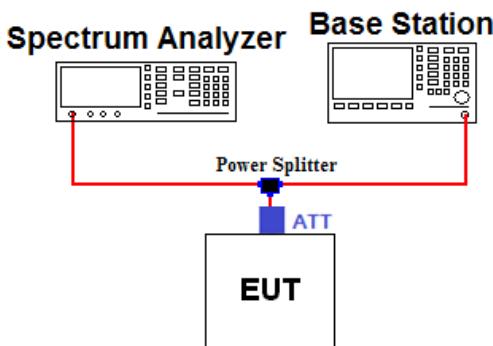
Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
824.2	9.40	1850.2	9.77
826.4	9.43	1880.0	9.79
836.6	9.45	1909.8	9.81
846.6	9.49	-	-
848.8	9.55	-	-
-	-	-	-

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

Offset value = Cable A + Splitter +ATT+ Cable B

Test Procedure


- **KDB 971168 D01 v02r02 - Section 4.2**

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW = 1 ~ 5% of the expected OBW
3. VBW \geq 3 X RBW
4. Detector = Peak
5. Trace mode = Max hold
6. Sweep = Auto couple
7. The trace was allowed to stabilize
8. If necessary, step 2 ~ 7 were repeated after changing the RBW such that it would be within 1 ~ 5% of the 99% occupied bandwidth observed in step 7.

3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

Offset value = Cable A + Splitter +ATT+ Cable B

Test Procedure

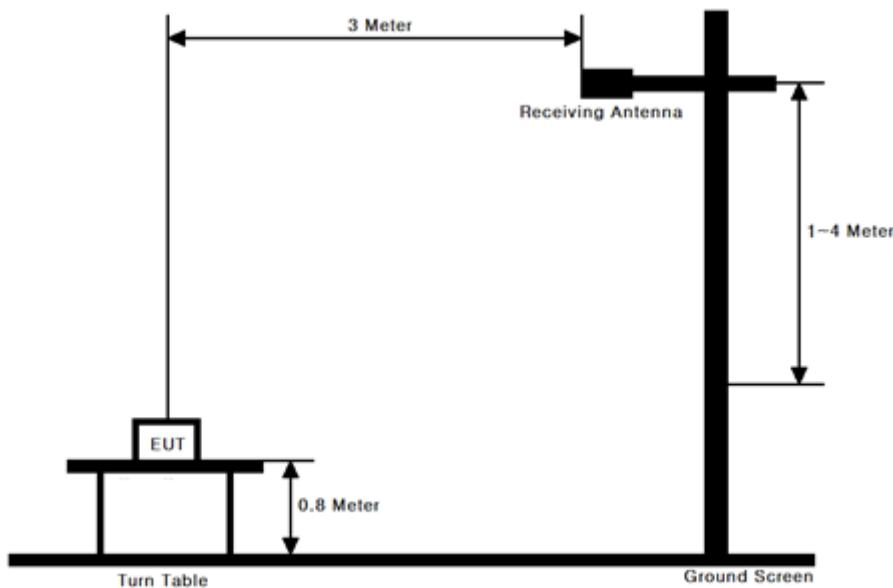
- KDB 971168 D01 v02r02 - Section 6.0

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.

The EUT was setup to maximum output power at its lowest channel. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

1. RBW = 1MHz & VBW \geq 3MHz
2. Detector = RMS
3. Trace mode = Max hold
4. Sweep time = Auto
5. The trace was allowed to stabilize

The highest, lowest and a middle channel were tested for out of band measurements.


The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P[\text{Watts}])$, where P is the transmitter power in Watts.

Note 1: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter was employed to measure the out of band Emissions.

Note 2: Compliance with the applicable limits is based on the use of measurement instrumentation employing a RBW of 100 KHz or greater for Part 22 and 1 MHz or greater for Part24.

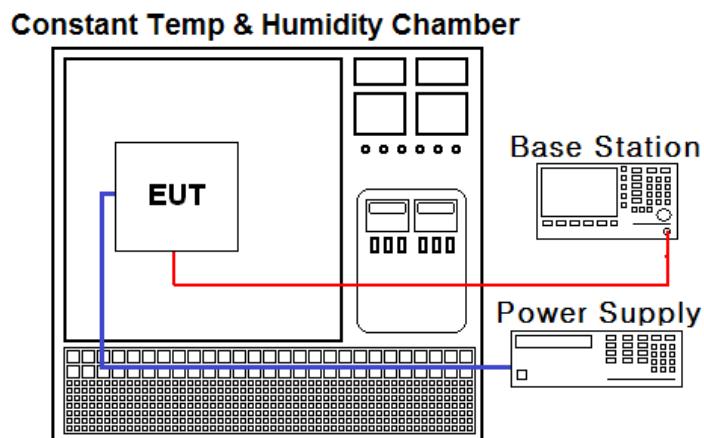
3.5 RADIATED SPURIOUS EMISSIONS

Test Set-up

Test Procedure

- ANSI/TIA-603-C-2004 - Section 2.2.12
- KDB 971168 D01 v02r02 - Section 5.8

This measurement was performed at 3-meter test range. The equipment under test is placed on a non-conductive table 0.8-meters above the ground plane and 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.


For radiated power measurements below 1GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated power measurements above 1GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

This measurement was performed with the EUT oriented in 3 orthogonal axis.

3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

- ANSI/TIA-603-C-2004

The frequency stability of the transmitter is measured by:

- Temperature:** The temperature is varied from -30 °C to +50 °C using an environmental chamber.
- Primary Supply Voltage:** The primary supply voltage is varied from battery end point to 115 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification – For part 24, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\% (\pm 2.5 \text{ ppm})$ of the center frequency.

Time Period and Procedure:

1. The carrier frequency of the transmitter is measured at room temperature. (25°C to provide a reference).
2. The equipment is turned on in a “standby” condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

NOTE: The EUT is tested down to the battery endpoint.

4. LIST OF TEST EQUIPMENT

Type	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
MXA Signal Analyzer	Agilent	N9020A	14/03/28	15/03/28	MY50510026
Dynamic Measurement DC Source	Agilent	66332A	14/02/07	15/02/07	GB37470190
Vector Signal Generator	Rohde Schwarz	SMBV100A	14/01/07	15/01/07	255571
Signal Generator	Rohde Schwarz	SMF100A	14/07/01	15/07/01	102341
Multimeter	HP	34401A	14/02/27	15/02/27	3146A13475
PreAmplifier	Agilent	8449B	14/02/27	15/02/27	3008A00370
Amplifier	HP	8447E	14/01/08	15/01/08	2945A02865
Dipole Antenna	Schwarzbeck	VHA9103	13/10/24	15/10/24	2116
Dipole Antenna	Schwarzbeck	VHA9103	14/04/01	16/04/01	2117
Dipole Antenna	Schwarzbeck	UHA9105	13/10/24	15/10/24	2261
Dipole Antenna	Schwarzbeck	UHA9105	14/04/01	16/04/01	2262
Bilog Antenna	SCHAFFNER	CBL6112B	12/11/06	14/11/06	2737
HORN ANT	ETS	3115	14/02/26	16/02/26	6419
HORN ANT	ETS	3115	13/02/28	15/02/28	00021097
HORN ANT	A.H.Systems	SAS-574	13/03/20	15/03/20	154
HORN ANT	A.H.Systems	SAS-574	13/05/27	15/05/27	155
High-pass filter	Wainwright	WHKX1.0	14/09/11	15/09/11	9
High-Pass Filter	Wainwright	WHNX2.1	14/09/11	15/09/11	1
8960 Series 10 Wireless Comms Test Set	Agilent	E5515C	14/02/28	15/02/28	GB43461134
Universal Radio Communication Tester	Rohde Schwarz	CMU200	14/02/28	15/02/28	106760
Amplifier	EMPOWER	BBS3Q7ELU	14/09/12	15/09/12	1020
Thermo hygrometer	BODYCOM	BJ5478	14/05/13	15/05/13	120612-2

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	RSS-132 (5.4) RSS-133 (4.1)	Conducted Output Power	C Note 2
22.913(a) 24.232(c)	RSS-132 (5.4) [SRSP-503(5.1.3)] RSS-133 (6.4) [SRSP-510(5.1.2)]	Effective Radiated Power Equivalent Isotropic Radiated Power	C
22.917(a) 24.238(a) 2.1049	RSS-Gen (6.6)	Occupied Bandwidth	C Note 3
22.917(a) 24.238(a) 2.1051	RSS-132 (5.5) RSS-133 (6.5)	Band Edge Spurious and Harmonic Emissions at Antenna Terminal	NA Note 4
24.232(d)	RSS-132 (5.4) RSS-133 (6.4)	Peak to Average Ratio	NA Note 4
22.917(a) 24.238(a) 2.1053	RSS-132 (5.5) RSS-133 (6.5)	Radiated Spurious and Harmonic Emissions	C
22.355 24.235 2.1055	RSS-132 (5.3) RSS-133 (6.3)	Frequency Stability	NA Note 4

Note 1: **C**=Comply **NC**=Not Comply **NT**=Not Tested **NA**=Not Applicable

Note 2: Refer to RF Exposure Report (Test Report_SAR)

Note 3: These test items were performed "GPRS 850/1900" because GPRS data was exempted from granted module test report. (FCCID: QIPPHS8-P)

For the remaining data, please refer to the test report of the granted module.

The module test report number:

- MDE_CINTE_1108_FCCd, MDE_CINTE_1108_FCCe (By 7Layers AG)

Note 4: These test items were not performed because this device uses the granted module.

(FCCID: QIPPHS8-P)

Please refer to the test report of the granted module.

The module test report number:

- MDE_CINTE_1108_FCCd, MDE_CINTE_1108_FCCe (By 7Layers AG)

The sample was tested according to the following specification:

ANSI/TIA/EIA-603-C-2004 and KDB 971168 D01 v02r02

6. SAMPLE CALCULATION

A. Emission Designator

GPRS850 Emission Designator

Emission Designator = **241KGXW**

GPRS1900 Emission Designator

Emission Designator = **244KGXW**

EDGE850 Emission Designator

Emission Designator = **235KG7W**

EDGE1900 Emission Designator

Emission Designator = **241KG7W**

WCDMA850 Emission Designator

Emission Designator = **4M15F9W**

WCDMA1900 Emission Designator

Emission Designator = **4M15F9W**

HSUPA850 Emission Designator

Emission Designator = **4M17F9W**

HSUPA1900 Emission Designator

Emission Designator = **4M17F9W**

Note: Emission designators of the granted module were used.

7. TEST DATA

7.1 EFFECTIVE RADIATED POWER

- GPRS850 data

CH. (FREQ.) MHz	EUT Position (Axis)	Test mode GPRS 1TX & EDGE 1TX						
		Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	ERP (dBm)	ERP (W)	Rated Voltage	Note.
128 (824.2)	X	H	23.08	1.19	24.27	0.267	DC 3.7V	GPRS
190 (836.6)	X	H	24.30	1.19	25.49	0.354	DC 3.7V	GPRS
251 (848.8)	X	H	23.57	1.19	24.76	0.299	DC 3.7V	GPRS
251 (848.8)	X	H	21.84	1.19	23.03	0.201	DC 3.7V	EDGE

- WCDMA850 data

CH.	EUT Position (Axis)	Test mode 12.2 kbps RMC						
		Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	ERP (dBm)	ERP (W)	Rated Voltage	Note.
4132 (826.4)	Z	H	17.22	1.19	18.41	0.069	DC 3.7V	-
4183 (836.6)	Z	H	16.38	1.19	17.57	0.057	DC 3.7V	-
4233 (846.6)	Z	V	15.53	1.19	16.72	0.047	DC 3.7V	-

- HSUPA850 data

CH.	EUT Position (Axis)	Test mode subtest 1						
		Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	ERP (dBm)	ERP (W)	Rated Voltage	Note.
4132 (826.4)	Y	V	16.82	1.19	18.01	0.063	DC 3.7V	-
4183 (836.6)	Y	V	16.44	1.19	17.63	0.058	DC 3.7V	-
4233 (846.6)	Y	V	15.41	1.19	16.60	0.046	DC 3.7V	-

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.2 EQUIVALENT ISOTROPIC RADIATED POWER

- GPRS1900 data

CH. (FREQ.) MHz	EUT Position (Axis)	Test mode GPRS 1TX & EDGE 1TX						Note.
		Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Rated Voltage	
512 (1850.2)	X	H	20.93	8.89	29.82	0.959	DC 3.7V	GPRS
661 (1880.0)	X	V	21.06	8.92	29.98	0.995	DC 3.7V	GPRS
810 (1909.8)	X	H	18.98	8.96	27.94	0.622	DC 3.7V	GPRS
512 (1850.2)	X	H	15.15	8.89	24.04	0.254	DC 3.7V	EDGE

- WCDMA1900 data

CH. (FREQ.) MHz	EUT Position (Axis)	Test mode 12.2 kbps RMC						Note.
		Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Rated Voltage	
9262 (1850.2)	X	V	13.29	8.89	22.18	0.165	DC 3.7V	-
9400 (1880.0)	X	H	9.69	8.92	18.61	0.073	DC 3.7V	-
9538 (1909.8)	X	V	9.09	8.95	18.04	0.064	DC 3.7V	-

- HSUPA1900 data

CH. (FREQ.) MHz	EUT Position (Axis)	Test mode subtest 1						Note.
		Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Rated Voltage	
9262 (1850.2)	X	V	13.35	8.89	22.24	0.167	DC 3.7V	-
9400 (1880.0)	X	H	9.85	8.92	18.77	0.075	DC 3.7V	-
9538 (1909.8)	X	V	8.72	8.95	17.67	0.058	DC 3.7V	-

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.3 RADIATED SPURIOUS EMISSIONS

7.3.1 RADIATED SPURIOUS EMISSIONS (GPRS850)

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
128 (0.267W)	1648.30	Z	V	-48.73	6.50	-42.23	66.50	37.27
	2472.52	Z	H	-53.35	7.53	-45.82	70.09	
	3296.79	Z	V	-56.30	7.79	-48.51	72.78	
190 (0.354W)	1673.01	Z	V	-44.99	6.53	-38.46	63.95	38.49
	2509.72	Z	H	-48.58	7.57	-41.01	66.50	
	3346.09	Z	H	-54.42	7.80	-46.62	72.11	
251 (0.299W)	1697.47	Z	V	-43.29	6.56	-36.73	61.49	37.76
	2546.66	Z	H	-48.83	7.59	-41.24	66.00	
	3395.02	Z	H	-53.82	7.81	-46.01	70.77	

- Limit Calculation= $43 + 10 \log_{10}(\text{ERP [W]})$ [dBc]

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.3.2 RADIATED SPURIOUS EMISSIONS (WCDMA850)

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
4132 (0.069W)	1650.40	Z	H	-57.79	6.50	-51.29	69.70	31.41
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
4183 (0.057W)	1675.04	Z	H	-56.21	6.53	-49.68	67.25	30.57
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
4233 (0.047W)	1695.42	Z	H	-56.99	6.56	-50.43	67.15	29.72
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	

- Limit Calculation= $43 + 10 \log_{10}(\text{ERP [W]})$ [dBc]

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.3.3 RADIATED SPURIOUS EMISSIONS (HSUPA850)

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
4132 (0.063W)	1650.25	Z	V	-55.07	6.50	-48.57	66.58	31.01
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
4183 (0.058W)	1675.29	Z	V	-52.79	6.53	-46.26	63.89	30.63
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
4233 (0.046W)	1695.74	Z	V	-54.23	6.56	-47.67	64.34	29.67
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	

- Limit Calculation= $43 + 10 \log_{10}(\text{ERP [W]})$ [dBc]

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.3.4 RADIATED SPURIOUS EMISSIONS (GPRS1900)

Channel (EIRP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
512 (0.959W)	3700.25	Z	H	-40.98	9.78	-31.20	61.02	42.82
	5550.04	Z	V	-57.22	11.04	-46.18	76.00	
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
661 (0.995W)	3760.01	Z	H	-38.66	9.72	-28.94	58.92	42.98
	5640.13	Z	V	-58.07	11.14	-46.93	76.91	
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
810 (0.622W)	3819.64	Z	H	-37.81	9.66	-28.15	56.09	40.94
	5729.51	Z	V	-57.30	11.23	-46.07	74.01	
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	

- Limit Calculation = $43 + 10 \log_{10}(\text{EIRP [W]})$ [dBc]

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.3.5 RADIATED SPURIOUS EMISSIONS (WCDMA1900)

Channel (EIRP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
9262 (0.165W)	3702.64	Z	H	-43.06	9.78	-33.28	55.46	35.18
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
9400 (0.088W)	3762.26	Z	V	-48.51	9.72	-38.79	58.25	32.46
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
9538 (0.064W)	3817.70	Z	V	-50.02	9.66	-40.36	58.40	31.04
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	

- Limit Calculation = $43 + 10 \log_{10}(\text{EIRP [W]})$ [dBc]

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.3.6 RADIATED SPURIOUS EMISSIONS (HSUPA1900)

Channel (EIRP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
9262 (0.167W)	3703.08	Z	H	-43.50	9.78	-33.72	55.96	35.24
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
9400 (0.096W)	3762.65	Z	V	-48.21	9.72	-38.49	58.32	32.83
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
9538 (0.058W)	3817.95	Z	V	-49.94	9.66	-40.28	57.95	30.67
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	

- Limit Calculation = $43 + 10 \log_{10}(\text{EIRP [W]})$ [dBc]

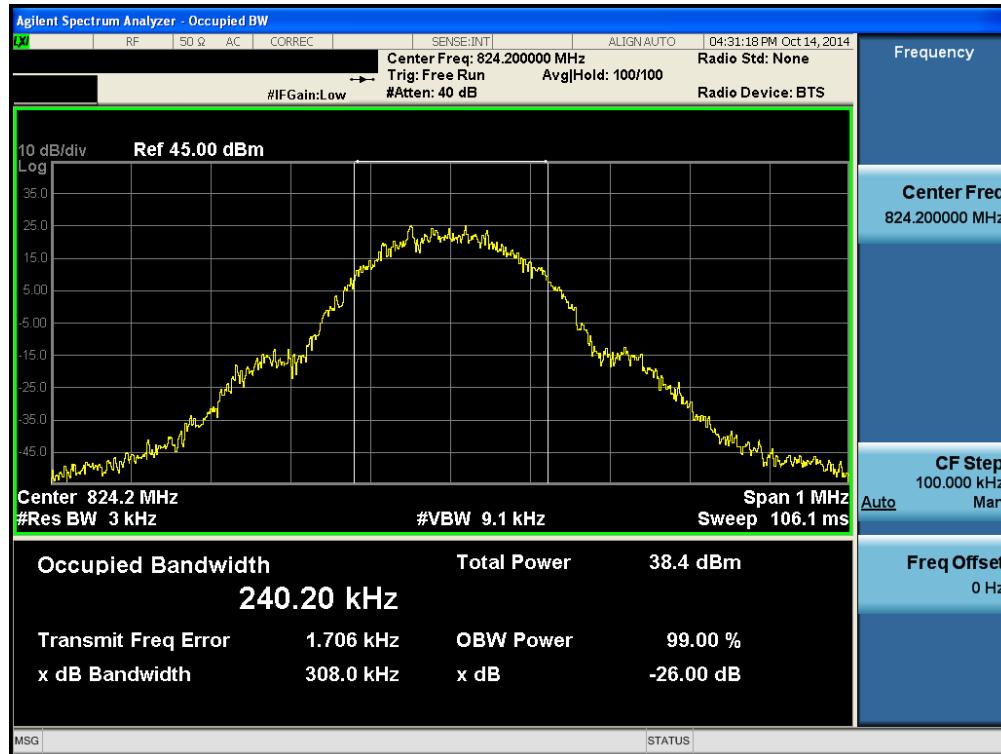
- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

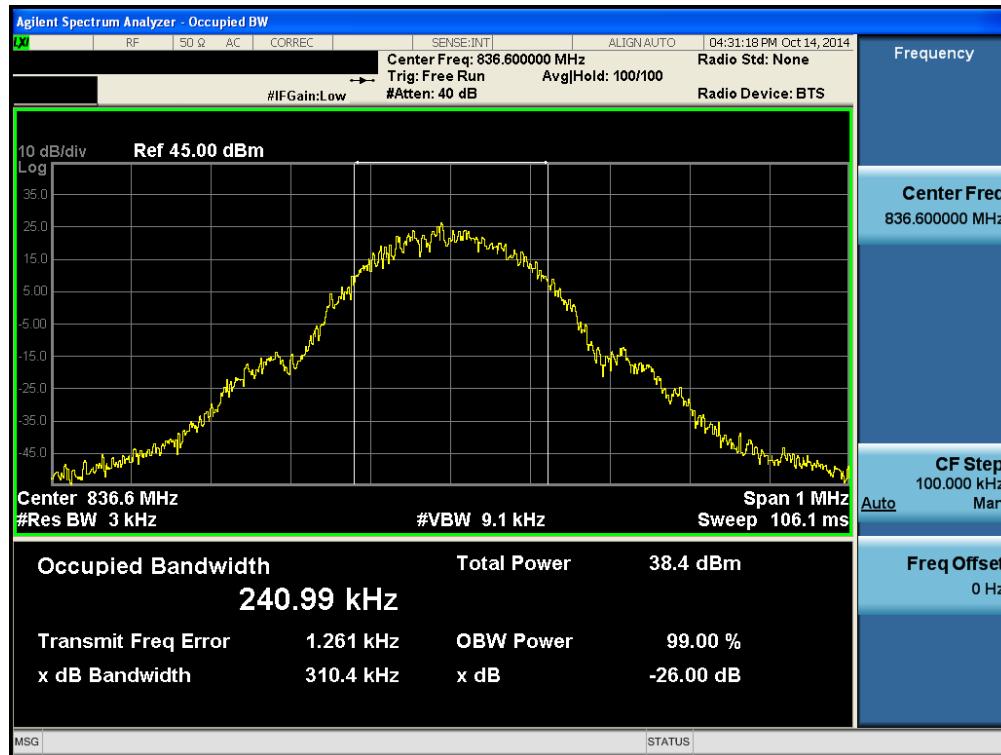
This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.4 OCCUPIED BANDWIDTH


Band	Channel	Frequency	Test Result (kHz)
GPRS850	128	824.2	240.20
	190	836.6	240.99
	251	848.8	240.71
GPRS1900	512	1850.2	244.06
	661	1880.0	243.38
	810	1909.8	241.97

- Plots of the EUT's Occupied Bandwidth are shown in Clause 8.1

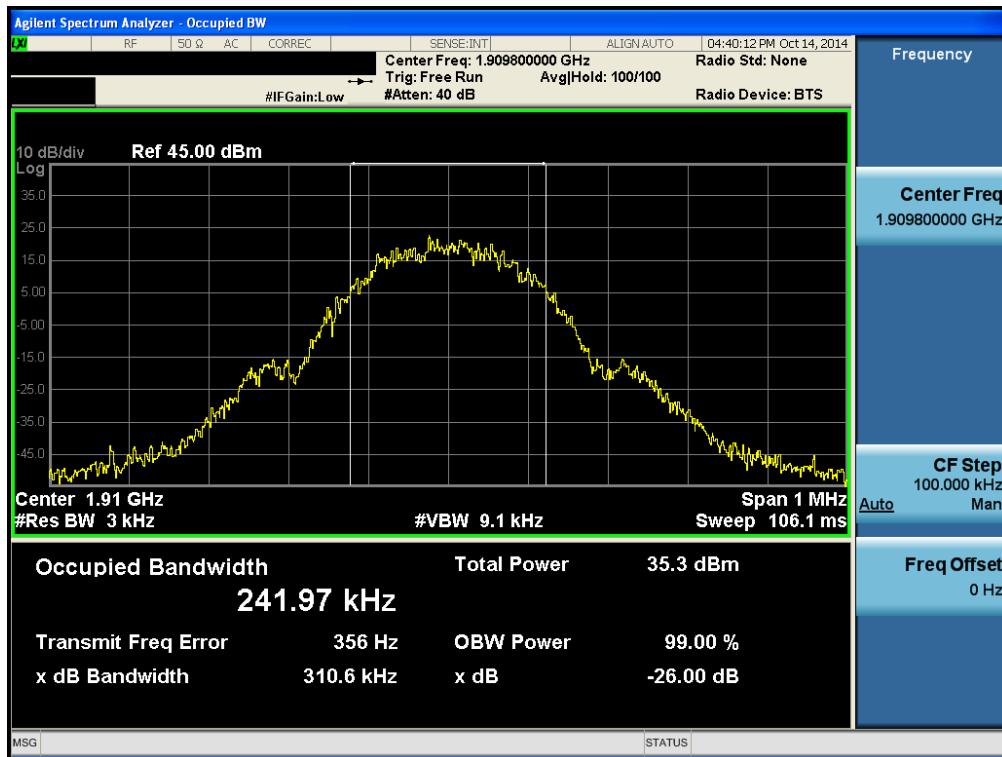

8. TEST PLOTS

8.1 Occupied Bandwidth (99 % Bandwidth)

GPRS850 & Channel: 128

GPRS850 & Channel: 190


GPRS850 & Channel: 251


GPRS 1900 & Channel: 512

GPRS 1900 & Channel: 661

GPRS 1900 & Channel: 810

