

RF Exposure

Test Report #:	3115787	Test Area:	20	°C		
Test Method:	FCC CFR47 Part 1.1310	Test Date:	13-Mar-2007	Relative Humidity:	30.2	%
EUT Model #:	F series	EUT Power:	12.5-13.5 VDC vehicle	Air Pressure:	102	kPa
EUT Serial #:	1113 pager and pod					
Manufacturer:	Ray Allen					
EUT Description:	Tactical K9 Deployment Heat Alarm System with pager					
Notes:	Testing for RAK9POD					

The following limit was calculated from table 1 (B) Limits for General Population/Uncontrolled Exposure in FCC part 1.1310:

$$L=f/1500$$

Using the lowest transmit frequency from the EUT of 902MHz

$$L=0.601\text{mW/cm}^2$$

The following calculation was used to determine compliance to the above limit. The calculation is from FCC OET bulletin 65.

The following assumes the gain of the antenna to be ≤ 1 .

$$S=PG/4\pi R^2$$

Where:

S=power density (in appropriate units, e.g. mW/cm^2)

R=distance to the center of radiation of the antenna (appropriate unit, e.g., cm)

In this case 20cm will be used.

P=power input to the antenna

In this case 12.6mW will be used.

G=power gain of the antenna

In this case 1.58 will be used.

$$S=.0039 \text{ mW/cm}^2$$