# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**Sporton** 

Accreditation No.: SCS 0108

S

Certificate No: DAE3-495\_May19

# **CALIBRATION CERTIFICATE**

Object

DAE3 - SD 000 D03 AD - SN: 495

Calibration procedure(s)

QA CAL-06.v29

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

May 21, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards             | ID#                | Cal Date (Certificate No.) | Scheduled Calibration  |
|-------------------------------|--------------------|----------------------------|------------------------|
| Keithley Multimeter Type 2001 | SN: 0810278        | 03-Sep-18 (No:23488)       | Sep-19                 |
| Secondary Standards           | ID#                | Check Date (in house)      | Scheduled Check        |
| Auto DAE Calibration Unit     | SE UWS 053 AA 1001 | 07-Jan-19 (in house check) | In house check: Jan-20 |
|                               |                    | 07-Jan-19 (in house check) | In house check: Jan-20 |

Calibrated by:

Name

**Function** 

Cianatur

Adrian Gehring

Laboratory Technician

1.0

Approved by:

Sven Kühn

Deputy Manager

Issued: May 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-495\_May19

Page 1 of 5

# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

#### Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

# **Methods Applied and Interpretation of Parameters**

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-495\_May19 Page 2 of 5

# **DC Voltage Measurement**

A/D - Converter Resolution nominal

 $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1}\mu\mbox{V} \;, & \mbox{full range} = & \mbox{-100...+300 mV} \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV} \;, & \mbox{full range} = & \mbox{-1......+3mV} \end{array}$ 

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | X                     | Υ                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 404.389 ± 0.02% (k=2) | 405.375 ± 0.02% (k=2) | 405.757 ± 0.02% (k=2) |
| Low Range           | 3.95402 ± 1.50% (k=2) | 3.99251 ± 1.50% (k=2) | 3.96803 ± 1.50% (k=2) |

# **Connector Angle**

| Connector Angle to be used in DASY system | 78.0 ° ± 1 ° |
|-------------------------------------------|--------------|

Certificate No: DAE3-495\_May19 Page 3 of 5

# Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

| High Range |         | Reading (μV) | Difference (μV) | Error (%) |
|------------|---------|--------------|-----------------|-----------|
| Channel X  | + Input | 199994.45    | -0.30           | -0.00     |
| Channel X  | + Input | 20002.23     | 0.53            | 0.00      |
| Channel X  | - Input | -19997.07    | 4.34            | -0.02     |
| Channel Y  | + Input | 199994.25    | -0.44           | -0.00     |
| Channel Y  | + Input | 20000.75     | -0.81           | -0.00     |
| Channel Y  | - Input | -20000.42    | 1.14            | -0.01     |
| Channel Z  | + Input | 199998.55    | 3.62            | 0.00      |
| Channel Z  | + Input | 20004.75     | 3.21            | 0.02      |
| Channel Z  | - Input | -19996.69    | 4.85            | -0.02     |

| Low Range |         | Reading (μV) | Difference (μV) | Error (%) |
|-----------|---------|--------------|-----------------|-----------|
| Channel X | + Input | 2001.77      | 0.65            | 0.03      |
| Channel X | + Input | 202.01       | 0.47            | 0.23      |
| Channel X | - Input | -198.94      | -0.53           | 0.26      |
| Channel Y | + Input | 2003.23      | 2.22            | 0.11      |
| Channel Y | + Input | 201.91       | 0.48            | 0.24      |
| Channel Y | - Input | -199.28      | -0.82           | 0.41      |
| Channel Z | + Input | 2001.71      | 0.81            | 0.04      |
| Channel Z | + Input | 200.52       | -0.72           | -0.36     |
| Channel Z | - Input | -199.77      | -1.20           | 0.61      |

**2. Common mode sensitivity**DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | 5.40                               | 3.09                              |
|           | - 200                             | -0.78                              | -3.32                             |
| Channel Y | 200                               | 0.39                               | -0.26                             |
|           | - 200                             | -1.36                              | -1.32                             |
| Channel Z | 200                               | 3.02                               | 2.90                              |
|           | - 200                             | -4.97                              | -5.00                             |

# 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | -1.46          | -1.92          |
| Channel Y | 200                | 8.11           | -              | -0.30          |
| Channel Z | 200                | 5.41           | 6.05           | -              |

Page 4 of 5 Certificate No: DAE3-495\_May19

# 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 15811            | 16868           |
| Channel Y | 15762            | 17134           |
| Channel Z | 15909            | 17613           |

#### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input  $10M\Omega$ 

|           | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation<br>(μV) |
|-----------|--------------|------------------|------------------|------------------------|
| Channel X | 0.64         | -0.92            | 3.11             | 0.68                   |
| Channel Y | 0.52         | -1.17            | 2.14             | 0.67                   |
| Channel Z | -0.78        | -2.74            | 0.86             | 0.78                   |

## 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |  |
|----------------|-------------------|--|
| Supply (+ Vcc) | +7.9              |  |
| Supply (- Vcc) | -7.6              |  |

9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

Certificate No: DAE3-495\_May19 Page 5 of 5

# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Accreditation No.: SCS 0108

Certificate No: DAE4-699\_Feb20

# **CALIBRATION CERTIFICATE**

Object

DAE4 - SD 000 D04 BN - SN: 699

Calibration procedure(s)

QA CAL-06.v30

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

February 26, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards             | ID#                | Cal Date (Certificate No.) | Scheduled Calibration  |
|-------------------------------|--------------------|----------------------------|------------------------|
| Keithley Multimeter Type 2001 | SN: 0810278        | 03-Sep-19 (No:25949)       | Sep-20                 |
| Secondary Standards           | ID#                | Check Date (in house)      | Scheduled Check        |
| Auto DAE Calibration Unit     | SE UWS 053 AA 1001 | 09-Jan-20 (in house check) | In house check: Jan-21 |
| Calibrator Box V2.1           | SE UMS 006 AA 1002 | 09-Jan-20 (in house check) | In house check: Jan-21 |

Calibrated by:

Name

Function

Adrian Gehring

Laboratory Technician

Approved by:

Sven Kühn

Deputy Manager

Signature

Issued: February 26, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-699\_Feb20

Page 1 of 5

# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

#### Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

# **Methods Applied and Interpretation of Parameters**

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-699\_Feb20 Page 2 of 5

# **DC Voltage Measurement**

A/D - Converter Resolution nominal

High Range: 1LSB =  $6.1 \mu V$ ,

full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | Х                     | Υ                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 404.677 ± 0.02% (k=2) | 403.312 ± 0.02% (k=2) | 404.484 ± 0.02% (k=2) |
| Low Range           | 3.97859 ± 1.50% (k=2) | 3.96703 ± 1.50% (k=2) | 3.99660 ± 1.50% (k=2) |

# **Connector Angle**

| Connector Angle to be used in DASY system | 171.5 ° ± 1 ° |
|-------------------------------------------|---------------|

# Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

| High Range |         | Reading (μV) | Difference (μV) | Error (%) |
|------------|---------|--------------|-----------------|-----------|
| Channel X  | + Input | 199993.28    | -2.83           | -0.00     |
| Channel X  | + Input | 20000.97     | -1.15           | -0.01     |
| Channel X  | - Input | -19994.49    | 6.46            | -0.03     |
| Channel Y  | + Input | 199995.07    | -0.83           | -0.00     |
| Channel Y  | + Input | 20000.00     | -2.16           | -0.01     |
| Channel Y  | - Input | -19998.12    | 2.91            | -0.01     |
| Channel Z  | + Input | 199994.58    | -1.32           | -0.00     |
| Channel Z  | + Input | 19999.46     | -2.64           | -0.01     |
| Channel Z  | - Input | -19999.88    | 1.22            | -0.01     |

| Low Range |         | Reading (μV) | Difference (μV) | Error (%) |
|-----------|---------|--------------|-----------------|-----------|
| Channel X | + Input | 2002.47      | 0.73            | 0.04      |
| Channel X | + Input | 202.64       | 0.66            | 0.33      |
| Channel X | - Input | -196.86      | 1.01            | -0.51     |
| Channel Y | + Input | 2002.21      | 0.60            | 0.03      |
| Channel Y | + Input | 201.63       | -0.35           | -0.18     |
| Channel Y | - Input | -197.86      | 0.13            | -0.06     |
| Channel Z | + Input | 2001.96      | 0.37            | 0.02      |
| Channel Z | + Input | 201.11       | -0.64           | -0.32     |
| Channel Z | - Input | -198.79      | -0.69           | 0.35      |

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | -1.91                              | -2.86                             |
|           | - 200                             | 4.20                               | 3.28                              |
| Channel Y | 200                               | 22.39                              | 22.26                             |
|           | - 200                             | -23.97                             | -23.83                            |
| Channel Z | 200                               | 6.95                               | 7.01                              |
|           | - 200                             | -8.78                              | -8.83                             |

# 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | -1.12          | -2.72          |
| Channel Y | 200                | 7.97           | -              | -1.80          |
| Channel Z | 200                | 4.84           | 6.00           | -              |

Certificate No: DAE4-699\_Feb20

Page 4 of 5

# 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 16078            | 17558           |
| Channel Y | 16398            | 17369           |
| Channel Z | 16276            | 16983           |

# 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input  $10M\Omega$ 

|           | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation<br>(μV) |
|-----------|--------------|------------------|------------------|------------------------|
| Channel X | 0.38         | -0.94            | 2.01             | 0.48                   |
| Channel Y | -0.92        | -2.08            | 0.96             | 0.52                   |
| Channel Z | -0.48        | -1.63            | 0.51             | 0.39                   |

# 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |  |
|----------------|-------------------|--|
| Supply (+ Vcc) | +7.9              |  |
| Supply (- Vcc) | -7.6              |  |

**9. Power Consumption** (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

Certificate No: DAE4-699\_Feb20 Page 5 of 5

# **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Accreditation No.: SCS 0108

C

S

Certificate No: DAE4-778\_May19

# **CALIBRATION CERTIFICATE**

Object

DAE4 - SD 000 D04 BM - SN: 778

Calibration procedure(s)

QA CAL-06.v29

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

May 21, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

|                               | 1                   |                            |                        |
|-------------------------------|---------------------|----------------------------|------------------------|
| Primary Standards             | ID#                 | Cal Date (Certificate No.) | Scheduled Calibration  |
| Keithley Multimeter Type 2001 | SN: 0810278         | 03-Sep-18 (No:23488)       | Sep-19                 |
|                               |                     |                            |                        |
| Secondary Standards           | ID#                 | Check Date (in house)      | Scheduled Check        |
| Auto DAE Calibration Unit     | SE UWS 053 AA 1001  | 07-Jan-19 (in house check) | In house check: Jan-20 |
| Calibrator Box V2.1           | SE UMS 006 AA 1002  | 07-Jan-19 (in house check) | In house check: Jan-20 |
| Calibrator box v2.1           | SE UNIS UUD AA 1002 | 07-Jan-19 (in nouse check) | in house check. Jan-20 |

Name

Function

Signature

Calibrated by:

Adrian Gehring

Laboratory Technician

Approved by:

Sven Kühn

Deputy Manager

Issued: May 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-778\_May19

Page 1 of 5

# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

# Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

## **Methods Applied and Interpretation of Parameters**

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - *Input Offset Current:* Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-778\_May19 Page 2 of 5

# **DC Voltage Measurement**

A/D - Converter Resolution nominal

High Range: 1LSB =

 $6.1\mu V$ ,

full range = -100...+300 mV

Low Range:

1LSB = 61nV ,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | X                     | Υ                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 404.724 ± 0.02% (k=2) | 403.523 ± 0.02% (k=2) | 405.080 ± 0.02% (k=2) |
| Low Range           | 3.98714 ± 1.50% (k=2) | 3.96425 ± 1.50% (k=2) | 4.00091 ± 1.50% (k=2) |

# **Connector Angle**

| Connector Angle to be used in DASY system | 269.5 ° ± 1 ° |
|-------------------------------------------|---------------|

Page 3 of 5 Certificate No: DAE4-778\_May19

# Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

| High Range | -       | Reading (μV) | Difference (μV) | Error (%) |
|------------|---------|--------------|-----------------|-----------|
| Channel X  | + Input | 199997.18    | 3.13            | 0.00      |
| Channel X  | + Input | 20003.93     | 2.54            | 0.01      |
| Channel X  | - Input | -20000.18    | 1.44            | -0.01     |
| Channel Y  | + Input | 199995.82    | 1.88            | 0.00      |
| Channel Y  | + Input | 20003.10     | 1.74            | 0.01      |
| Channel Y  | - Input | -19999.94    | 1.75            | -0.01     |
| Channel Z  | + Input | 199997.86    | 3.59            | 0.00      |
| Channel Z  | + Input | 20000.46     | -0.95           | -0.00     |
| Channel Z  | - Input | -20005.38    | -3.70           | 0.02      |

| Low Range         | Reading (μV) | Difference (μV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 2000.87      | 0.06            | 0.00      |
| Channel X + Input | 201.00       | -0.20           | -0.10     |
| Channel X - Input | -198.59      | 0.11            | -0.05     |
| Channel Y + Input | 2000.10      | -0.63           | -0.03     |
| Channel Y + Input | 202.04       | 0.88            | 0.44      |
| Channel Y - Input | -199.00      | -0.21           | 0.10      |
| Channel Z + Input | 2001.05      | 0.38            | 0.02      |
| Channel Z + Input | 198.96       | -2.14           | -1.07     |
| Channel Z - Input | -199.86      | -0.97           | 0.49      |

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | -4.60                              | -5.60                             |
|           | - 200                             | 5.42                               | 4.64                              |
| Channel Y | 200                               | -0.35                              | -1.21                             |
|           | - 200                             | -0.14                              | 0.05                              |
| Channel Z | 200                               | -12.41                             | -12.20                            |
|           | - 200                             | 9.83                               | 10.24                             |

# 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | -0.41          | -2.24          |
| Channel Y | 200                | 8.92           | -              | 0.13           |
| Channel Z | 200                | 4.06           | 7.55           | -              |

Certificate No: DAE4-778\_May19 Page 4 of 5

# 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 16054            | 16756           |
| Channel Y | 16192            | 17734           |
| Channel Z | 16436            | 15674           |

## 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input  $10M\Omega$ 

|           | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation<br>(μV) |
|-----------|--------------|------------------|------------------|------------------------|
| Channel X | -0.17        | -1.48            | 0.79             | 0.43                   |
| Channel Y | 0.39         | -1.44            | 2.48             | 0.63                   |
| Channel Z | -0.48        | -1.80            | 0.97             | 0.51                   |

## 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |
|----------------|-------------------|
| Supply (+ Vcc) | +7.9              |
| Supply (- Vcc) | -7.6              |

9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

Certificate No: DAE4-778\_May19 Page 5 of 5

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn



Auden



Certificate No: Z19-60447

# **CALIBRATION CERTIFICATE**

Object DAE4 - SN: 916

Calibration Procedure(s) FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date: December 17, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards      | ID#     | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|------------------------|---------|------------------------------------------|-----------------------|
| Process Calibrator 753 | 1971018 | 24-Jun-19 (CTTL, No.J19X05126)           | Jun-20                |
|                        |         |                                          |                       |

Name

**Function** 

Signature

Calibrated by:

Zhao Jing

SAR Test Engineer

4/2

Reviewed by:

Lin Hao

SAR Test Engineer

村子

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: December 18, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

# Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z19-60447 Page 2 of 3



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

# **DC Voltage Measurement**

A/D - Converter Resolution nominal

High Range: 1LSB =  $6.1\mu V$ , 61nV,

full range =

-100...+300 mV

Low Range: 1LSB =

full range =

-1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | Х                     | Y                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 403.911 ± 0.15% (k=2) | 403.704 ± 0.15% (k=2) | 403.830 ± 0.15% (k=2) |
| Low Range           | 3.97485 ± 0.7% (k=2)  | 3.98954 ± 0.7% (k=2)  | 3.98174 ± 0.7% (k=2)  |

# **Connector Angle**

| Connector Angle to be used in DASY system | 239.5° ± 1 ° |
|-------------------------------------------|--------------|
|                                           |              |

Certificate No: Z19-60447

# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3169\_May19

Client

**Sporton** 

# **CALIBRATION CERTIFICATE**

Object

ES3DV3 - SN:3169

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes

Calibration date:

May 24, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 03-Apr-19 (No. 217-02892/02893)   | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103244       | 03-Apr-19 (No. 217-02892)         | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103245       | 03-Apr-19 (No. 217-02893)         | Apr-20                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 04-Apr-19 (No. 217-02894)         | Apr-20                 |
| DAE4                       | SN: 660          | 19-Dec-18 (No. DAE4-660_Dec18)    | Dec-19                 |
| Reference Probe ES3DV2     | SN: 3013         | 31-Dec-18 (No. ES3-3013_Dec18)    | Dec-19                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 |

Name Function Signature

Michael Weber Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: May 25, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization  $\varphi$   $\varphi$  rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e.,  $\vartheta = 0$  is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3169\_May19 Page 2 of 9

ES3DV3 – SN:3169 May 24, 2019

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3169

#### **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.14     | 1.15     | 1.15     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 100.1    | 98.8     | 95.3     |           |

**Calibration Results for Modulation Response** 

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Max<br>dev. | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|-------------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0        | 1.0 | 0.00    | 193.8    | ±3.5 %      | ± 4.7 %                   |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 198.3    |             |                           |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 192.9    |             |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

B Numerical linearization parameter: uncertainty not required.

<sup>&</sup>lt;sup>A</sup> The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 5).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value

ES3DV3- SN:3169 May 24, 2019

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3169

## **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -26.4      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

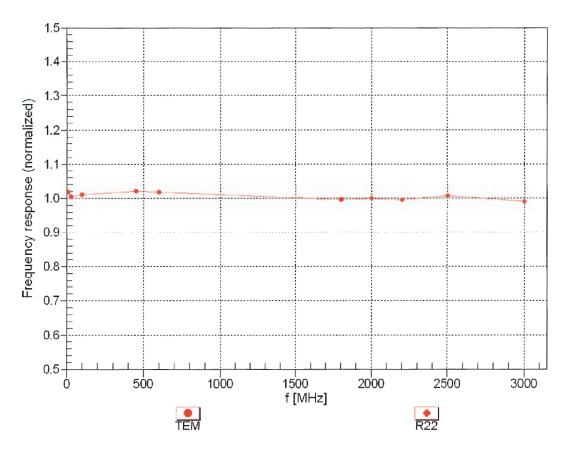
ES3DV3- SN:3169 May 24, 2019

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3169

# Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 750                  | 41.9                                  | 0.89                               | 6.68    | 6.68    | 6.68    | 0.52               | 1.50                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                               | 6.42    | 6.42    | 6.42    | 0.80               | 1.15                       | ± 12.0 %     |
| 900                  | 41.5                                  | 0.97                               | 6.26    | 6.26    | 6.26    | 0.65               | 1.27                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                               | 5.34    | 5.34    | 5.34    | 0.45               | 1.51                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                               | 5.14    | 5.14    | 5.14    | 0.63               | 1.29                       | ± 12.0 %     |
| 2000                 | 40.0                                  | 1.40                               | 5.09    | 5.09    | 5.09    | 0.52               | 1.41                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                               | 4.80    | 4.80    | 4.80    | 0.66               | 1.32                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                               | 4.54    | 4.54    | 4.54    | 0.77               | 1.26                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                               | 4.38    | 4.38    | 4.38    | 0.79               | 1.21                       | ± 12.0 %     |

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


Certificate No: ES3-3169\_May19 Page 5 of 9

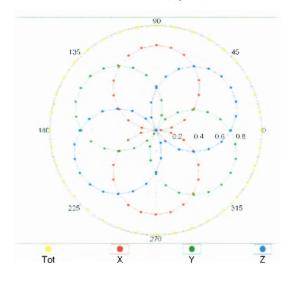
F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

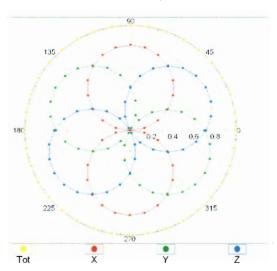
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

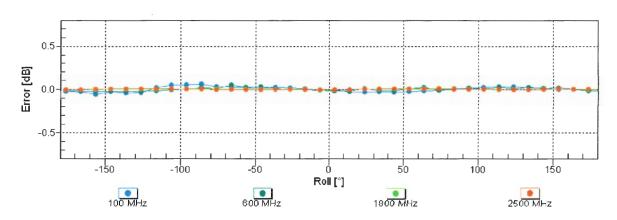
<sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



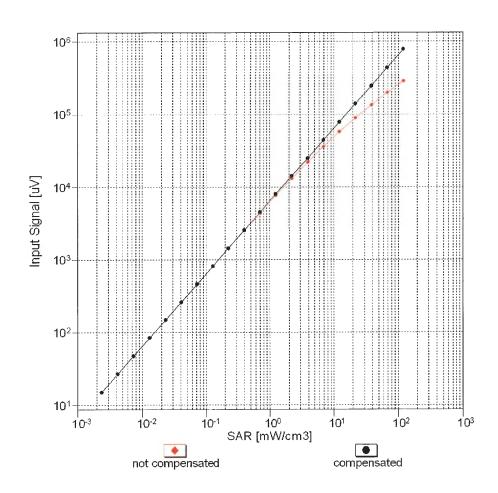

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

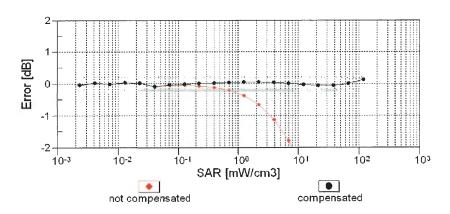

ES3DV3- SN:3169 May 24, 2019


# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

f=600 MHz,TEM

f=1800 MHz,R22

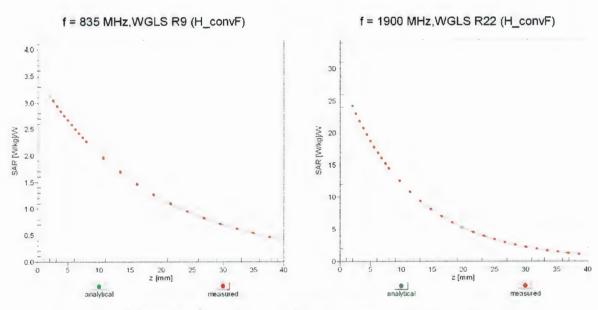


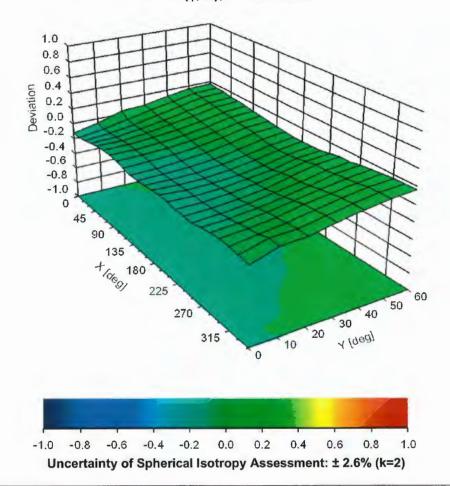



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)







Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ES3DV3- SN:3169 May 24, 2019

# **Conversion Factor Assessment**



Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz



# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

Sporton

Certificate No: ES3-3184\_Sep19

# **CALIBRATION CERTIFICATE**

Object

ES3DV3 - SN:3184

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v7
Calibration procedure for dosimetric E-field probes

Calibration date:

September 25, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 03-Apr-19 (No. 217-02892/02893)   | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103244       | 03-Apr-19 (No. 217-02892)         | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103245       | 03-Apr-19 (No. 217-02893)         | Apr-20                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 04-Apr-19 (No. 217-02894)         | Apr-20                 |
| DAE4                       | SN: 660          | 19-Dec-18 (No. DAE4-660_Dec18)    | Dec-19                 |
| Reference Probe ES3DV2     | SN: 3013         | 31-Dec-18 (No. ES3-3013_Dec18)    | Dec-19                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 |

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: September 26, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,v,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3184\_Sep19 Page 2 of 9

ES3DV3 - SN:3184 September 25, 2019

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3184

#### **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.21     | 1.33     | 1.21     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 102.5    | 104.3    | 100.0    |           |

Calibration Results for Modulation Response

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Max<br>dev. | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|-------------|---------------------------|
| 0   | CW                        | Х | 0.0     | 0.0        | 1.0 | 0.00    | 211.1    | ±3.3 %      | ± 4.7 %                   |
|     |                           | Υ | 0.0     | 0.0        | 1.0 |         | 219.6    |             |                           |
|     |                           | Υ | 0.0     | 0.0        | 1.0 |         | 207.0    |             |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

B Numerical linearization parameter: uncertainty not required.

C Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3- SN:3184 September 25, 2019

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3184

## **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 107.9      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

Certificate No: ES3-3184\_Sep19 Page 4 of 9

ES3DV3- SN:3184 September 25, 2019

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3184

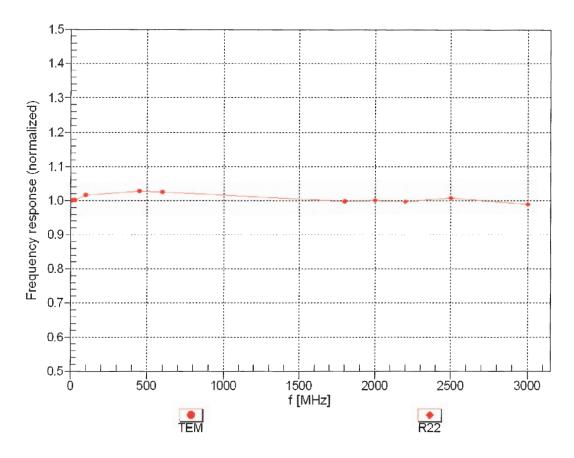
#### Calibration Parameter Determined in Head Tissue Simulating Media

|                      |                                       |                      |         |         | •       |                    |                            |              |
|----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
| 750                  | 41.9                                  | 0.89                 | 6.61    | 6.61    | 6.61    | 0.80               | 1.15                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                 | 6.41    | 6.41    | 6.41    | 0.71               | 1.21                       | ± 12.0 %     |
| 900                  | 41.5                                  | 0.97                 | 6.30    | 6.30    | 6.30    | 0.73               | 1.21                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                 | 5.45    | 5.45    | 5.45    | 0.53               | 1.34                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                 | 5.23    | 5.23    | 5.23    | 0.51               | 1.42                       | ± 12.0 %     |
| 2000                 | 40.0                                  | 1.40                 | 5.16    | 5.16    | 5.16    | 0.71               | 1.16                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                 | 4.96    | 4.96    | 4.96    | 0.61               | 1.35                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                 | 4.69    | 4.69    | 4.69    | 0.76               | 1.26                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                 | 4.49    | 4.49    | 4.49    | 0.75               | 1.28                       | ± 12.0 %     |

<sup>&</sup>lt;sup>C</sup> Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to

Certificate No: ES3-3184\_Sep19 Page 5 of 9


F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConyE uncertainty for indicated target tissue parameters.

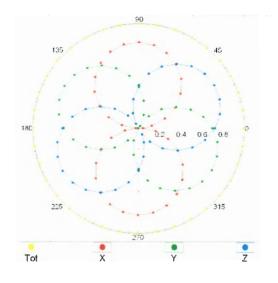
the ConvF uncertainty for indicated target tissue parameters.

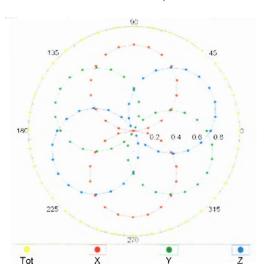
Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

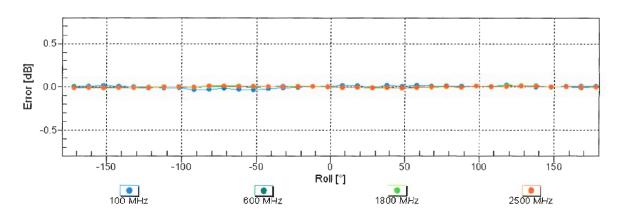
ES3DV3-SN:3184

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

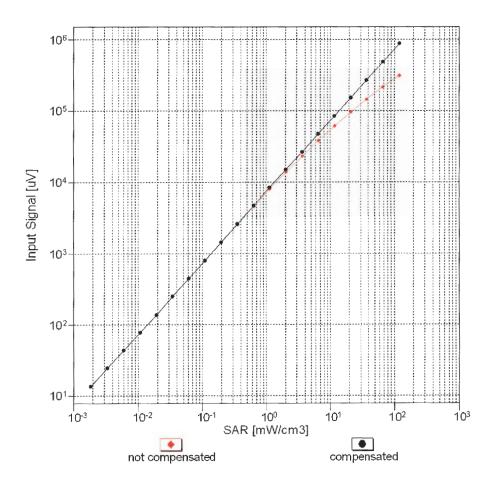

ES3DV3-SN:3184

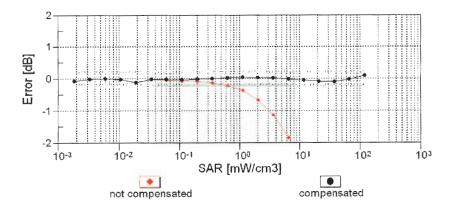

# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

f=600 MHz,TEM

f=1800 MHz,R22

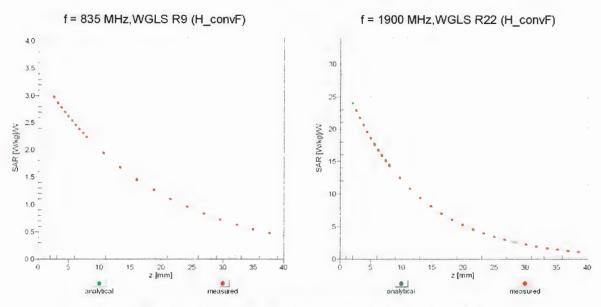




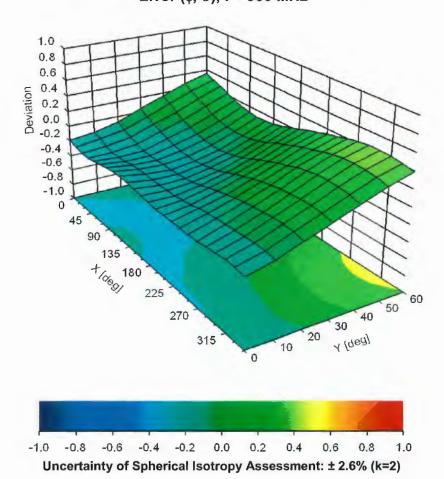




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ES3DV3- SN:3184 September 25, 2019


# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)

# **Conversion Factor Assessment**



Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz



### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: ES3-3270\_Sep19

C

# **CALIBRATION CERTIFICATE**

Object

ES3DV3 - SN:3270

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes

Calibration date:

September 25, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 03-Apr-19 (No. 217-02892/02893)   | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103244       | 03-Apr-19 (No. 217-02892)         | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103245       | 03-Apr-19 (No. 217-02893)         | Apr-20                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 04-Apr-19 (No. 217-02894)         | Apr-20                 |
| DAE4                       | SN: 660          | 19-Dec-18 (No. DAE4-660_Dec18)    | Dec-19                 |
| Reference Probe ES3DV2     | SN: 3013         | 31-Dec-18 (No. ES3-3013_Dec18)    | Dec-19                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 |

Name Function Signature
Calibrated by: Michael Weber Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: September 28, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3270\_Sep19

Page 1 of 9

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization  $\phi$   $\phi$  rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e.,  $\vartheta = 0$  is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
   b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3270\_Sep19 Page 2 of 9

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3270

#### **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.07     | 1.15     | 1.18     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 103.3    | 107.1    | 102.6    |           |

Calibration Results for Modulation Response

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Max<br>dev. | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|-------------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0        | 1.0 | 0.00    | 219.9    | ±3.0 %      | ± 4.7 %                   |
|     |                           | Υ | 0.0     | 0.0        | 1.0 |         | 211.9    |             |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 202.2    |             |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 $<sup>^{\</sup>rm A}$  The uncertainties of Norm X,Y,Z do not affect the E $^{\rm 2}$ -field uncertainty inside TSL (see Page 5).  $^{\rm B}$  Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3- SN:3270 September 25, 2019

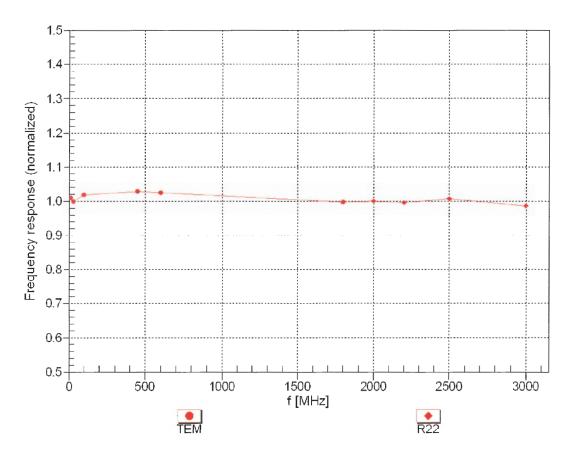
# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3270

### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -19.4      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3270

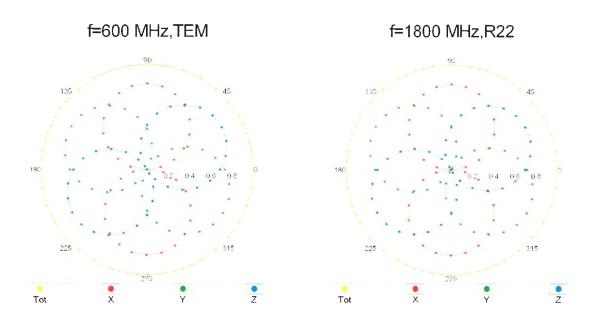
#### Calibration Parameter Determined in Head Tissue Simulating Media

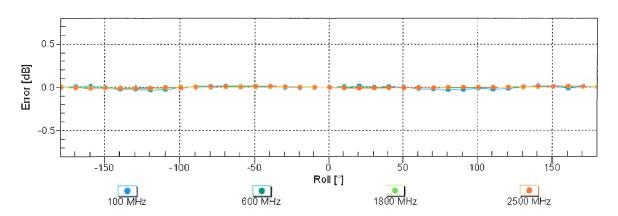

|                      | Relative                  | Conductivity       |         |         |         |                    | Depth <sup>G</sup> | Unc      |
|----------------------|---------------------------|--------------------|---------|---------|---------|--------------------|--------------------|----------|
| f (MHz) <sup>C</sup> | Permittivity <sup>F</sup> | (S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | (mm)               | (k=2)    |
| 750                  | 41.9                      | 0.89               | 6.55    | 6.55    | 6.55    | 0.80               | 1.12               | ± 12.0 % |
| 835                  | 41.5                      | 0.90               | 6.43    | 6.43    | 6.43    | 0.80               | 1.14               | ± 12.0 % |
| 900                  | 41.5                      | 0.97               | 6.20    | 6.20    | 6.20    | 0.61               | 1.33               | ± 12.0 % |
| 1750                 | 40.1                      | 1.37               | 5.41    | 5.41    | 5.41    | 0.76               | 1.11               | ± 12.0 % |
| 1900                 | 40.0                      | 1.40               | 5.20    | 5.20    | 5.20    | 0.60               | 1.35               | ± 12.0 % |
| 2000                 | 40.0                      | 1.40               | 5.15    | 5.15    | 5.15    | 0.80               | 1.19               | ± 12.0 % |
| 2100                 | 39.8                      | 1.49               | 5.13    | 5.13    | 5.13    | 0.68               | 1.30               | ± 12.0 % |
| 2450                 | 39.2                      | 1.80               | 4.57    | 4.57    | 4.57    | 0.74               | 1.23               | ± 12.0 % |
| 2600                 | 39.0                      | 1.96               | 4.51    | 4.51    | 4.51    | 0.80               | 1.26               | ± 12.0 % |

 $<sup>^{\</sup>rm C}$  Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

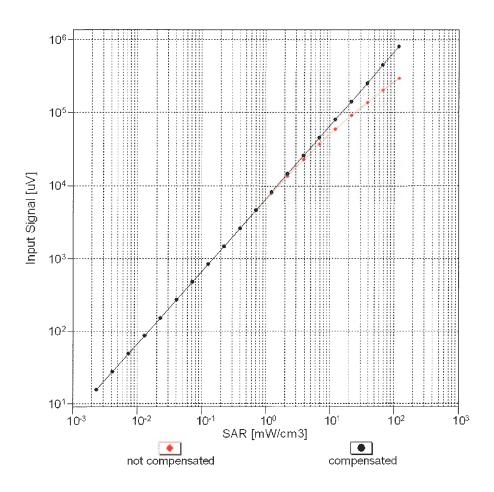
<sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

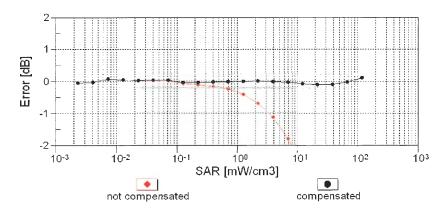

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

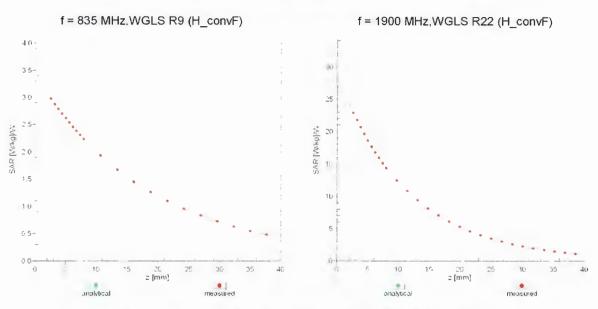
ES3DV3-SN:3270


# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

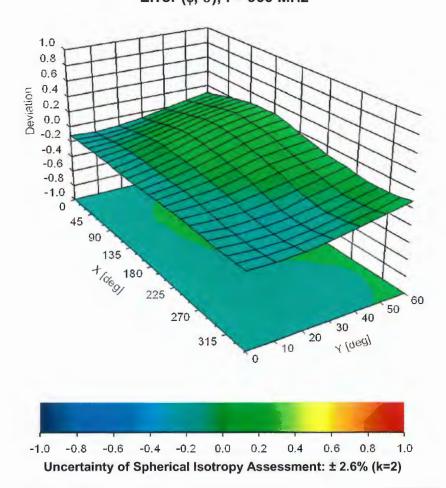





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)

## **Conversion Factor Assessment**



# Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz



# **alibration Laboratory of** Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: EX3-3728\_Feb20

## **CALIBRATION CERTIFICATE**

Object

EX3DV4 - SN:3728

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

February 4, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 03-Apr-19 (No. 217-02892/02893)   | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103244       | 03-Apr-19 (No. 217-02892)         | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103245       | 03-Apr-19 (No. 217-02893)         | Apr-20                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 04-Apr-19 (No. 217-02894)         | Apr-20                 |
| DAE4                       | SN: 660          | 27-Dec-19 (No. DAE4-660_Dec19)    | Dec-20                 |
| Reference Probe ES3DV2     | SN: 3013         | 31-Dec-19 (No. ES3-3013_Dec19)    | Dec-20                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 |

Name Function Signature

Leif Klysner Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: February 6, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3728\_Feb20

Calibrated by:

Page 1 of 24

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

NORMx,y,z ConvF sensitivity in free space sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF

crest factor (1/duty\_cycle) of the RF signal

A, B, C, D

modulation dependent linearization parameters

Polarization o

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

#### **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Methods Applied and Interpretation of Parameters:**

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3728\_Feb20 Page 2 of 24

EX3DV4-SN:3728

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3728

**Basic Calibration Parameters** 

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.34     | 0.34     | 0.37     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 102.3    | 102.5    | 108.2    |           |

Calibration Results for Modulation Response

| UID    | Communication System Name   |   | A<br>dB | B<br>dBõV | С      | D<br>dB | VR<br>mV | Max<br>dev. | Max<br>Unc <sup>E</sup><br>(k=2) |
|--------|-----------------------------|---|---------|-----------|--------|---------|----------|-------------|----------------------------------|
| 0      | CW                          | Х | 0.00    | 0.00      | 1.00   | 0.00    | 106.1    | ± 2.2 %     | ± 4.7 %                          |
|        |                             | Y | 0.00    | 0.00      | 1.00   | [       | 111.0    |             |                                  |
|        |                             | Z | 0.00    | 0.00      | 1.00   | 1       | 114.1    |             |                                  |
| 10352- | Pulse Waveform (200Hz, 10%) | X | 12.83   | 83.85     | 18.23  | 10.00   | 60.0     | ± 3.0 %     | ± 9.6 %                          |
| AAA    |                             | Υ | 4.61    | 71.38     | 13.95  | ]       | 60.0     |             |                                  |
|        |                             | Z | 20.00   | 89.46     | 20.23  | 1       | 60.0     |             |                                  |
| 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00   | 89.45     | 18.62  | 6.99    | 80.0     | ± 2.2 %     | ± 9.6 %                          |
| AAA    |                             | Y | 4.36    | 72.98     | 13.26  | 1       | 80.0     |             |                                  |
|        |                             | Z | 20.00   | 92.63     | 20.46  | ]       | 80.0     |             |                                  |
| 10354- | Pulse Waveform (200Hz, 40%) | Х | 20.00   | 91.45     | 18.04  | 3.98    | 95.0     | ± 1.7 %     | ± 9.6 %                          |
| AAA    |                             | Y | 3.56    | 72.76     | 11.48  | ]       | 95.0     |             |                                  |
|        |                             | Z | 20.00   | 120.85    | 32.48  | 1       | 95.0     |             |                                  |
| 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00   | 94.68     | 18.21  | 2.22    | 120.0    | ± 2.0 %     | ± 9.6 %                          |
| AAA    | · ·                         | Y | 0.40    | 60.49     | 5.33   | Ì       | 120.0    |             | İ                                |
|        |                             | Z | 1.09    | 160.00    | 73.40  | [       | 120.0    |             |                                  |
| 10387- | QPSK Waveform, 1 MHz        | X | 0.58    | 61.02     | 8.10   | 0.00    | 150.0    | ± 4.5 %     | ± 9.6 %                          |
| AAA    |                             | Y | 0.45    | 60.00     | 5.78   |         | 150.0    |             |                                  |
|        |                             | Z | 0.01    | 60.00     | 100.00 | ]       | 150.0    |             |                                  |
| 10388- | QPSK Waveform, 10 MHz       | X | 2.26    | 69.10     | 16.38  | 0.00    | 150.0    | ± 1.5 %     | ± 9.6 %                          |
| AAA    |                             | Y | 2.06    | 68.24     | 15.75  |         | 150.0    |             |                                  |
| _      | <u> </u>                    | Z | 20.00   | 114.37    | 33.79  |         | 150.0    |             |                                  |
| 10396- | 64-QAM Waveform, 100 kHz    | X | 3.28    | 72.74     | 19.72  | 3.01    | 150.0    | ± 1.2 %     | ± 9.6 %                          |
| AAA    |                             | Υ | 2.92    | 70.26     | 18.49  |         | 150.0    |             |                                  |
|        |                             | Z | 10.14   | 98.49     | 30.13  |         | 150.0    |             | i                                |
| 10399- | 64-QAM Waveform, 40 MHz     | X | 3.51    | 67.57     | 16.06  | 0.00    | 150.0    | ± 2.4 %     | ± 9.6 %                          |
| AAA    |                             | Y | 3.38    | 67.20     | 15.80  |         | 150.0    |             |                                  |
|        |                             | Z | 4.95    | 76.33     | 20.84  |         | 150.0    |             |                                  |
| 10414- | WLAN CCDF, 64-QAM, 40MHz    | X | 4.79    | 65.90     | 15.70  | 0.00    | 150.0    | ± 4.5 %     | ± 9.6 %                          |
| AAA    |                             | Y | 4.66    | 65.74     | 15.60  |         | 150.0    |             |                                  |
|        |                             | Z | 5.01    | 69.42     | 17.92  |         | 150.0    |             |                                  |

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5, 6 and 11).

Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- \$N:3728

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3728

### **Sensor Model Parameters**

| <u> </u> | C1   | C2     | α               | T1     | T2                 | T3   | T4   | T5   | T6   |
|----------|------|--------|-----------------|--------|--------------------|------|------|------|------|
|          | fF   | fF     | V <sup>-1</sup> | ms.V⁻² | ms.V <sup>-1</sup> | ms   | V-2  | V-1  | 1    |
| Х        | 39.4 | 290.35 | 34.78           | 10.09  | 0.61               | 5.02 | 1.55 | 0.24 | 1.01 |
| Υ        | 35.2 | 264.82 | 36.03           | 9.88   | 0.93               | 5.03 | 0.40 | 0.49 | 1.01 |
| Z        | 20.8 | 143.02 | 31.54           | 8.72   | 0.68               | 5.03 | 2.00 | 0.01 | 1.00 |

### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 10.9       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Certificate No: EX3-3728\_Feb20 Page 4 of 24

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3728

## Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z      | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|--------------|--------------------|----------------------------|--------------|
| 750                  | 41.9                                  | 0.89                               | 9.67    | 9.67    | 9.67         | 0.55               | 0.80                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                               | 9.51    | 9.51    | 9.51         | 0.35               | 1.00                       | ± 12.0 %     |
| 900                  | 41.5                                  | 0.97                               | 9.31    | 9.31    | 9.31         | 0.27               | 1.17                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                               | 8.06    | 8.06    | 8.06         | 0.32               | 0.86                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                               | 7.82    | 7.82    | 7.82         | 0.31               | 0.86                       | ± 12.0 %     |
| 2000                 | 40.0                                  | 1.40                               | 7.70    | 7.70    | 7.70         | 0.29               | 0.87                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                               | 7.56_   | 7.56    | 7.56         | 0.28               | 0,88                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                               | 7.33    | 7.33    | 7.33         | 0.25               | 0.93                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                               | 7.08    | 7.08    | 7.08         | 0.35               | 0.86_                      | ± 12.0 %     |
| 5250_                | 35.9                                  | 4.71                               | 5.14    | 5.14    | 5. <u>14</u> | 0.40               | 1.80                       | ± 14.0 %     |
| 5600                 | 35.5                                  | 5.07                               | 4.57    | 4.57    | 4.57         | 0.40               | 1.80                       | ± 14.0 %     |
| 5750                 | 35.4                                  | 5.22                               | 4.78    | 4.78    | 4.78         | 0.40               | 1.80                       | ± 14.0 %     |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

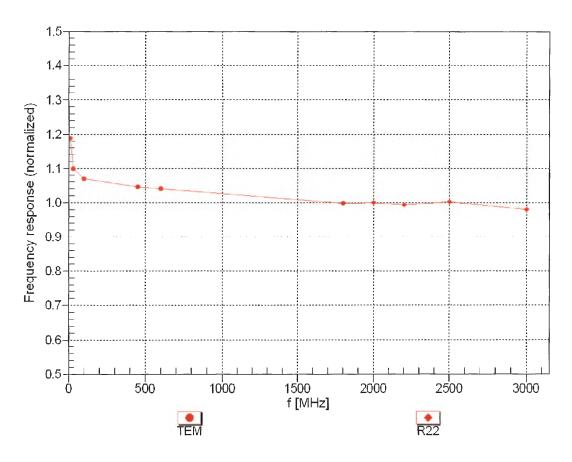
measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3728

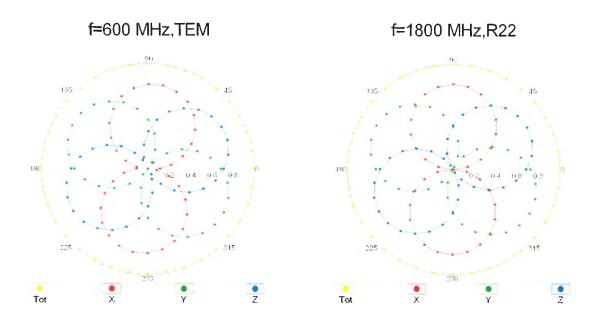
## Calibration Parameter Determined in Body Tissue Simulating Media

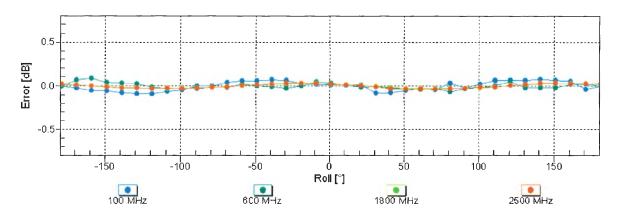
| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 750                  | 55.5                                  | 0.96                 | 9.50    | 9.50    | 9.50    | 0.38               | 0.80                       | ± 12.0 %     |
| 835                  | 55.2                                  | 0.97                 | 9.26    | 9.26    | 9.26    | 0.35               | 0.83                       | ± 12.0 %     |
| 900                  | 55.0                                  | 1.05                 | 9.12    | 9.12    | 9.12    | 0.30               | 0.90                       | ± 12.0 %     |
| 1750                 | 53.4                                  | 1.49                 | 7.72    | 7.72    | 7.72    | 0.31               | 0.86                       | ± 12.0 %     |
| 1900                 | 53.3                                  | 1.52                 | 7.56    | 7.56    | 7.56    | 0.36               | 0.86                       | ± 12.0 %     |
| 2450                 | 52.7                                  | 1.95                 | 7.29    | 7.29    | 7.29    | 0.31               | 0.95                       | ± 12.0 %     |
| 2600                 | 52.5                                  | 2.16                 | 7.09    | 7.09    | 7.09    | 0.30               | 0.95                       | ± 12.0 %     |
| 5250                 | 48.9                                  | 5.36                 | 4.42    | 4.42    | 4.42    | 0.50               | 1.90                       | ± 14.0 %     |
| 5600                 | 48.5                                  | 5.77                 | 3.89    | 3.89    | 3.89    | 0.50               | 1.90                       | ± 14.0 %     |
| 5750                 | 48,3                                  | 5.94                 | 3.95    | 3.95    | 3.95    | 0.50               | 1.90                       | ± 14.0 %     |


<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

f At frequencies up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

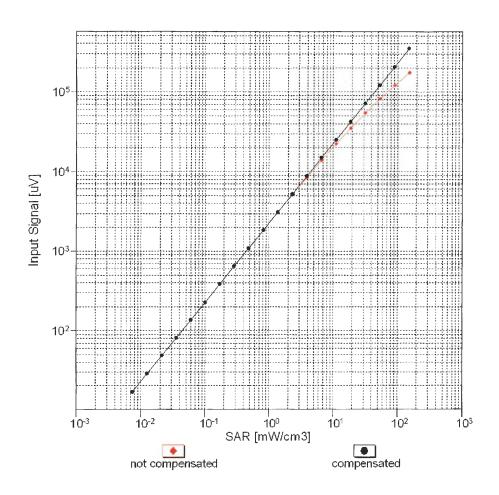
measured SAR values. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

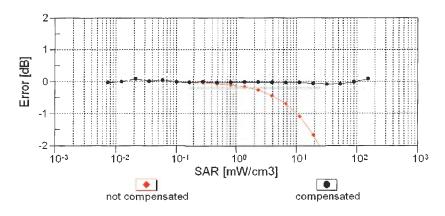

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



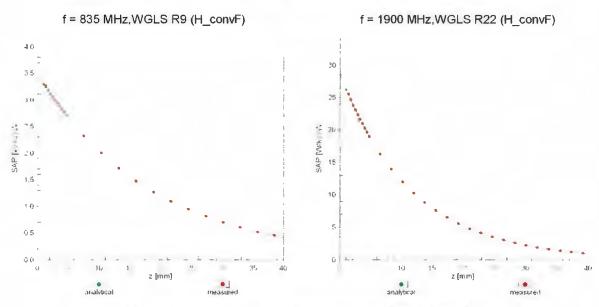
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

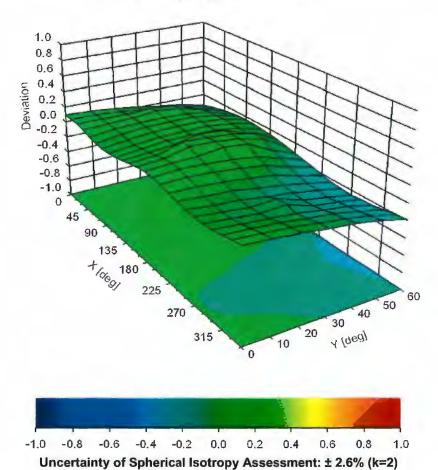





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)

# **Conversion Factor Assessment**



# **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz



EX3DV4- SN:3728 February 4, 2020

### **Appendix: Calibration Parameters above 6GHz**

### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | <b>A</b> lpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|----------------------------|----------------------------|--------------|
| 6500                 | 34.5                                  | 6.07                               | 4.85    | 4.85    | 4.85    | 0.20                       | 2.50                       | ± 18.6 %     |
| 7000                 | 33.9                                  | 6.65                               | 4.95    | 4.95    | 4.95    | 0.18                       | 2.50                       | ± 18.6 %     |

<sup>&</sup>lt;sup>C</sup> Calibration procedure for frequencies above 6 GHz is pending accreditation. Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

FAt frequencies 6-10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured

Certificate No: EX3-3728\_Feb20 Page 11 of 24

F At frequencies 6-10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: EX3-3925\_Sep19

## **CALIBRATION CERTIFICATE**

Object

EX3DV4 - SN:3925

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5,

**QA CAL-25.v7** 

Calibration procedure for dosimetric E-field probes

Calibration date:

September 20, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 03-Apr-19 (No. 217-02892/02893)   | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103244       | 03-Apr-19 (No. 217-02892)         | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103245       | 03-Apr-19 (No. 217-02893)         | Apr-20                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 04-Apr-19 (No. 217-02894)         | Apr-20                 |
| DAE4                       | SN: 660          | 19-Dec-18 (No. DAE4-660_Dec18)    | Dec-19                 |
| Reference Probe ES3DV2     | SN: 3013         | 31-Dec-18 (No. ES3-3013_Dec18)    | Dec-19                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 |

Calibrated by:

Michael Weber

Name

Function

Signatur

Approved by:

Katja Pokovic

Technical Manager

Laboratory Technician

Issued: September 24, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3925\_Sep19

Page 1 of 9

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization  $\varphi$   $\varphi$  rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Methods Applied and Interpretation of Parameters:**

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3925\_Sep19 Page 2 of 9

EX3DV4 – SN:3925 September 20, 2019

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

#### **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 0.57     | 0.51     | 0.48     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 98.9     | 101.9    | 100.9    |           |

Calibration Results for Modulation Response

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Max<br>dev. | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|-------------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0        | 1.0 | 0.00    | 155.2    | ±3.8 %      | ± 4.7 %                   |
|     |                           | Υ | 0.0     | 0.0        | 1.0 |         | 141.3    |             |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 159.5    |             |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

B Numerical linearization parameter: uncertainty not required.

Certificate No: EX3-3925\_Sep19 Page 3 of 9

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 5).

<sup>&</sup>lt;sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3925 September 20, 2019

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -23.6      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Certificate No: EX3-3925\_Sep19 Page 4 of 9

EX3DV4- SN:3925 September 20, 2019

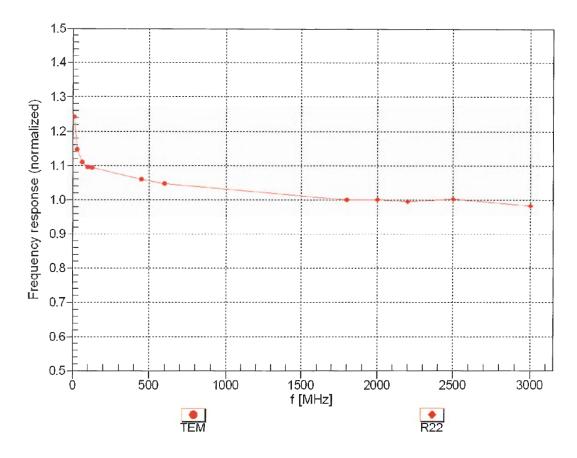
## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 6                    | 55.5                                  | 0.75                               | 19.80   | 19.80   | 19.80   | 0.00               | 1.00                       | ± 13.3 %     |
| 750                  | 41.9                                  | 0.89                               | 10.33   | 10.33   | 10.33   | 0.47               | 0.83                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                               | 10.12   | 10.12   | 10.12   | 0.42               | 0.85                       | ± 12.0 %     |
| 900                  | 41.5                                  | 0.97                               | 9.84    | 9.84    | 9.84    | 0.39               | 0.95                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                               | 8.70    | 8.70    | 8.70    | 0.26               | 0.86                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                               | 8.35    | 8.35    | 8.35    | 0.38               | 0.85                       | ± 12.0 %     |
| 2000                 | 40.0                                  | 1.40                               | 8.32    | 8.32    | 8.32    | 0.31               | 0.85                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                               | 7.87    | 7.87    | 7.87    | 0.27               | 0.90                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                               | 7.60    | 7.60    | 7.60    | 0.39               | 0.90                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                               | 7.50    | 7.50    | 7.50    | 0.31               | 0.90                       | ± 12.0 %     |
| 3500                 | 37.9                                  | 2.91                               | 7.19    | 7.19    | 7.19    | 0.35               | 1.30                       | ± 14.0 %     |
| 3700                 | 37.7                                  | 3.12                               | 6.91    | 6.91    | 6.91    | 0.35               | 1.30                       | ± 14.0 %     |
| 5250                 | 35.9                                  | 4.71                               | 5.49    | 5.49    | 5.49    | 0.40               | 1.80                       | ± 14.0 %     |
| 5600                 | 35.5                                  | 5.07                               | 4.89    | 4.89    | 4.89    | 0.40               | 1.80                       | ± 14.0 %     |
| 5750                 | 35.4                                  | 5.22                               | 5.22    | 5.22    | 5.22    | 0.40               | 1.80                       | ± 14.0 %     |

<sup>&</sup>lt;sup>C</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4.9 MHz, and ConvF assessed at 13 MHz is 9.19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: EX3-3925\_Sep19 Page 5 of 9

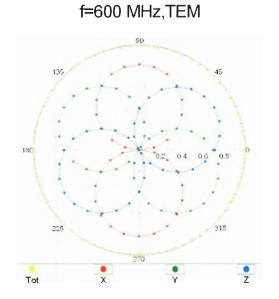

<sup>6</sup> MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

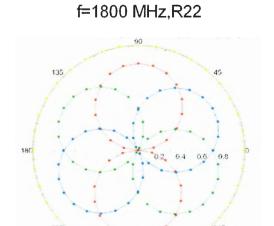
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

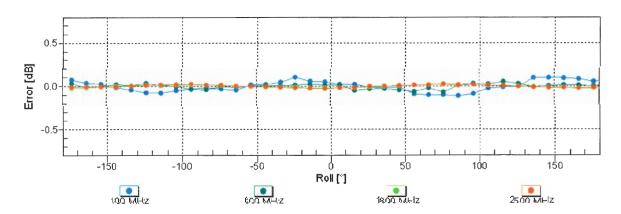
the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



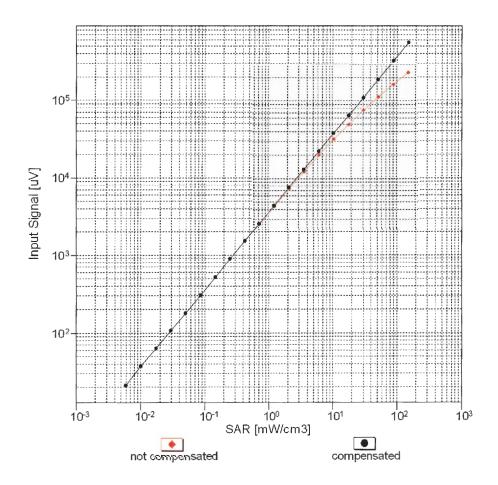


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

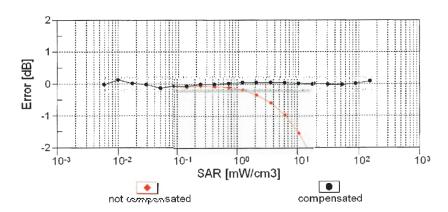

EX3DV4-SN:3925 September 20, 2019

# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$



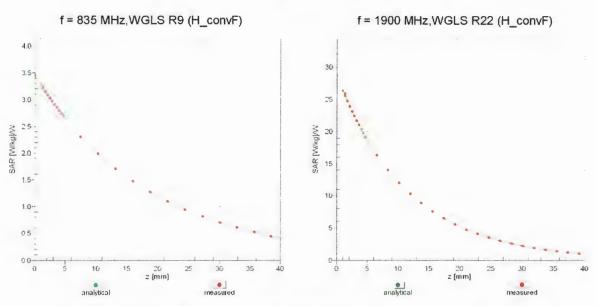




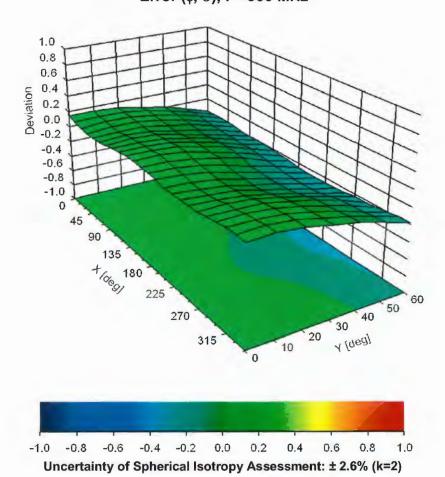




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

EX3DV4-SN:3925 September 20, 2019


# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)

# **Conversion Factor Assessment**



# Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

