

13 Annex C – Dipole Calibration Certificates

A# 00178

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**Client **BACL USA**Certificate No: **D900V2-122_Aug21**

CALIBRATION CERTIFICATE

Object **D900V2 - SN:122**

Calibration procedure(s) **QA CAL-05.v11**
 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: **August 24, 2021**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21

Calibrated by:	Name	Function	Signature
	Leif Klynsner	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: August 24, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.70 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	11.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.74 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.04 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	50.9 Ω - 2.2 $j\Omega$
Return Loss	- 32.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.411 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 24.08.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:122

Communication System: UID 0 - CW; Frequency: 900 MHz

Medium parameters used: $f = 900$ MHz; $\sigma = 0.95$ S/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

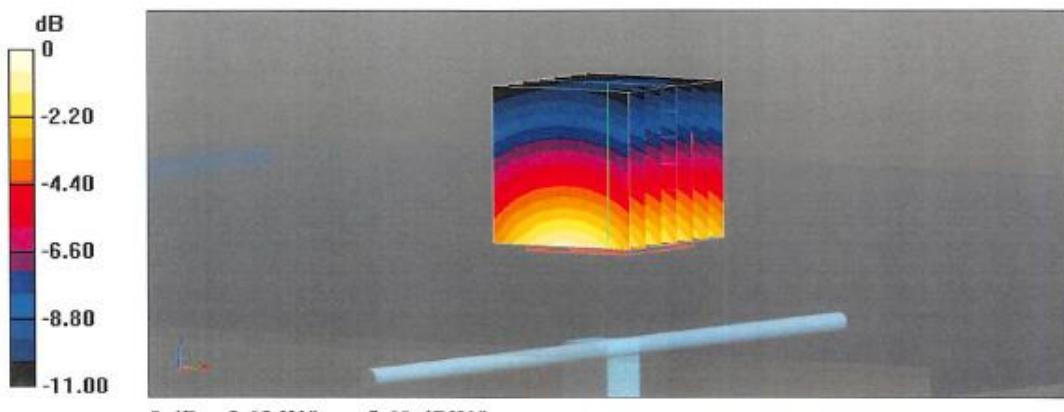
DASY52 Configuration:

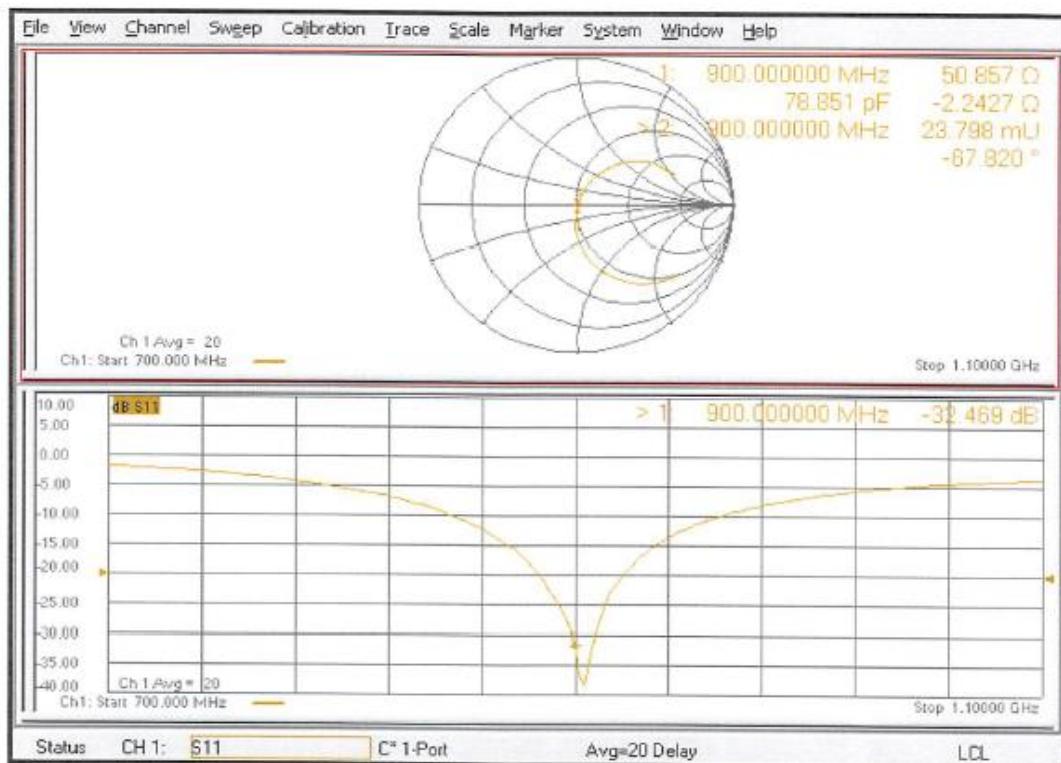
- Probe: EX3DV4 - SN7349; ConvF(9.62, 9.62, 9.62) @ 900 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 65.39 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 4.11 W/kg


SAR(1 g) = 2.7 W/kg; SAR(10 g) = 1.74 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm

Ratio of SAR at M2 to SAR at M1 = 65.6%

Maximum value of SAR (measured) = 3.63 W/kg

Impedance Measurement Plot for Head TSL

14 Annex D – Liquid and System Validation

Liquid Validation

900MHz

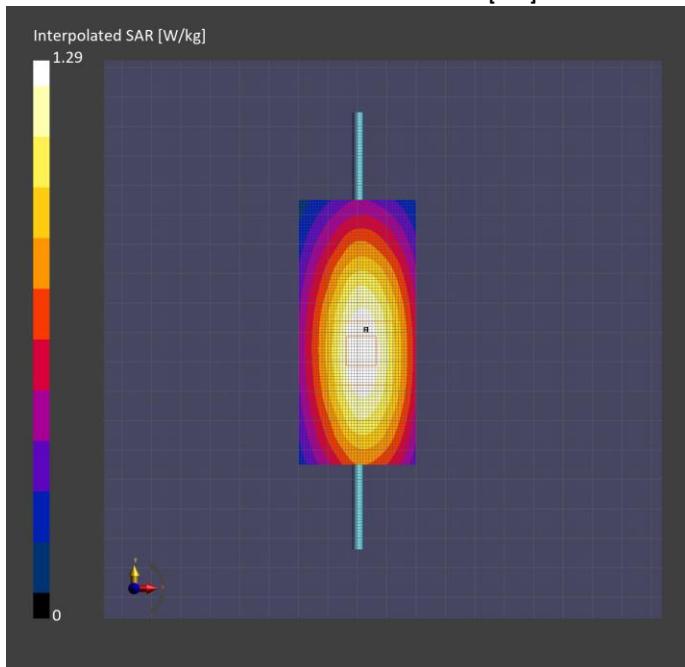
; Name : DAK 3.5 Head 23.45 deg.C 2024-Jul-11 13:01:43						
; Date : 2024-Jul-11 13:01:43						
; Temperature(C) : 23.45						
; Probe : DAK 3.5						
; Network Analyzer : Keysight ENA						
; MHz	RefIR	RefII	EpsR	EpsI	Sigma	TanD
800	0.7788	-0.3198	41.0945	18.9935	0.8453	0.4622
900	0.7585	-0.3526	40.8806	17.6588	0.8837	0.432
900	0.7585	-0.3526	40.8795	17.6574	0.8837	0.4319
900	0.7584	-0.3526	40.8785	17.6559	0.8838	0.4319
900	0.7584	-0.3527	40.8776	17.6544	0.8838	0.4319
900	0.7584	-0.3527	40.8767	17.653	0.8839	0.4319
900	0.7584	-0.3527	40.8758	17.6514	0.8839	0.4318
900	0.7583	-0.3528	40.875	17.6499	0.8839	0.4318
900	0.7583	-0.3528	40.8742	17.6483	0.884	0.4318
900	0.7583	-0.3529	40.8734	17.6468	0.884	0.4317
902	0.7581	-0.3531	40.8675	17.6378	0.8846	0.4316
902	0.758	-0.3532	40.8667	17.6366	0.8846	0.4316
902	0.758	-0.3532	40.8659	17.635	0.8847	0.4315
902	0.758	-0.3532	40.8649	17.6333	0.8847	0.4315
902	0.758	-0.3533	40.8639	17.6317	0.8847	0.4315
902	0.7579	-0.3533	40.8629	17.6301	0.8848	0.4314
902	0.7579	-0.3533	40.8617	17.6285	0.8848	0.4314
902	0.7579	-0.3534	40.8606	17.6269	0.8849	0.4314
902	0.7579	-0.3534	40.8595	17.6254	0.8849	0.4314
903	0.7579	-0.3535	40.8582	17.6238	0.885	0.4313
903	0.7579	-0.3535	40.8572	17.6222	0.885	0.4313
903	0.7578	-0.3535	40.8562	17.6208	0.8851	0.4313
903	0.7578	-0.3536	40.8553	17.6195	0.8851	0.4313
903	0.7577	-0.3536	40.8546	17.6182	0.8852	0.4312
903	0.7577	-0.3536	40.8538	17.617	0.8852	0.4312
903	0.7577	-0.3536	40.8532	17.6159	0.8853	0.4312
914	0.7556	-0.3564	40.7805	17.5127	0.89	0.4294
914	0.7556	-0.3565	40.7796	17.5114	0.89	0.4294
914	0.7556	-0.3565	40.7787	17.5101	0.8901	0.4294
914	0.7556	-0.3565	40.7778	17.5087	0.8901	0.4294

914	0.7555	-0.3566	40.7768	17.5074	0.8902	0.4293
914	0.7555	-0.3566	40.7757	17.5059	0.8902	0.4293
914	0.7555	-0.3566	40.7746	17.5045	0.8903	0.4293
914	0.7555	-0.3567	40.7735	17.5029	0.8903	0.4293
914	0.7554	-0.3567	40.7724	17.5015	0.8904	0.4292
915	0.7554	-0.3567	40.7713	17.5	0.8904	0.4292
915	0.7554	-0.3568	40.7701	17.4986	0.8905	0.4292
915	0.7554	-0.3568	40.769	17.4971	0.8905	0.4292
915	0.7554	-0.3568	40.768	17.4957	0.8906	0.4292
915	0.7553	-0.3569	40.7669	17.4942	0.8906	0.4291
915	0.7553	-0.3569	40.7659	17.4928	0.8907	0.4291
915	0.7553	-0.3569	40.7648	17.4913	0.8907	0.4291
927	0.753	-0.3601	40.6914	17.377	0.8958	0.427
927	0.7529	-0.3601	40.6907	17.3758	0.8958	0.427
927	0.7529	-0.3601	40.69	17.3745	0.8959	0.427
927	0.7529	-0.3602	40.6891	17.3733	0.8959	0.427
927	0.7529	-0.3602	40.6884	17.3719	0.896	0.427
927	0.7528	-0.3602	40.6878	17.3708	0.8961	0.4269
927	0.7528	-0.3603	40.6871	17.3696	0.8961	0.4269
928	0.7528	-0.3603	40.6865	17.3683	0.8962	0.4269
928	0.7528	-0.3603	40.6857	17.3672	0.8962	0.4269
928	0.7527	-0.3604	40.6852	17.3659	0.8963	0.4268
928	0.7527	-0.3604	40.6845	17.3647	0.8963	0.4268
928	0.7527	-0.3604	40.6838	17.3634	0.8964	0.4268
928	0.7527	-0.3605	40.6832	17.3622	0.8965	0.4268
928	0.7526	-0.3605	40.6825	17.3611	0.8965	0.4267
928	0.7526	-0.3606	40.6819	17.3599	0.8966	0.4267
928	0.7526	-0.3606	40.6813	17.3586	0.8966	0.4267
1000	0.7365	-0.3835	40.6407	16.6555	0.9266	0.4098

Measurement Report for Dipole, 900.000MHz**Exposure Conditions**

Phantom Section, TSL	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	900.000	9.05	0.884	40.8

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
ELI V8.0 (20deg probe tilt) - 2191	HBBL-600-10000 SLAAHU16BC221222-1, 2024-Jul-11	EX3DV4 - SN7783, 2024-04-12	DAE4 Sn1724, 2024-03-28

Scan Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	40.0 x 90.0	30.0 x 30.0 x 30.0
Grid Steps [mm]	10.0 x 15.0	6.0 x 6.0 x 1.5
Sensor Surface [mm]	3.0	1.4
Graded Grid	N/A	Yes
Grading Ratio	N/A	1.5
MAIA	N/A	N/A
Surface Detection	All points	All points
Scan Method	Measured	Measured

Measurement Results

	Area Scan	Zoom Scan
Date	2024-07-11, 12:33	2024-07-11, 12:41
psSAR1g [W/kg]	1.11	1.11
psSAR10g [W/kg]	0.728	0.719
Power Drift [dB]	0.02	-0.01
Power Scaling	Disabled	Disabled
Scaling Factor [dB]		
TSL Correction		
M2/M1 [%]		
Dist 3dB Peak [mm]		

15 Annex E – SAR Plots

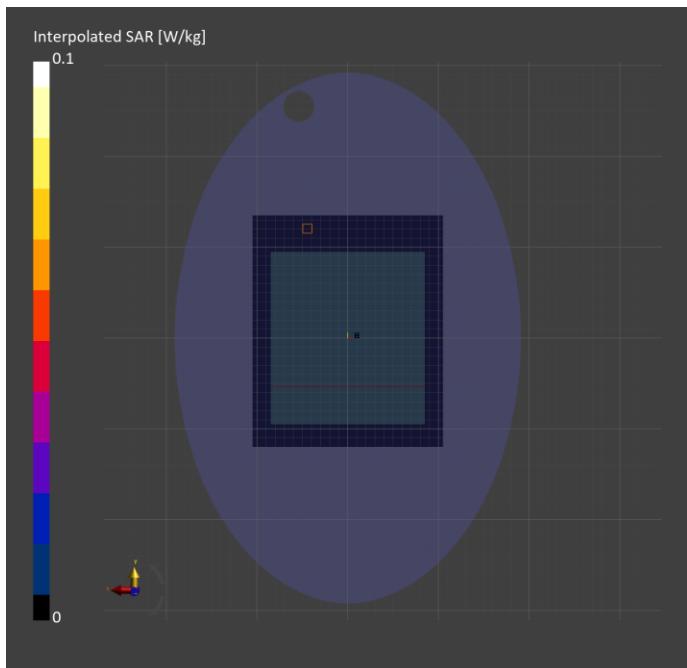
Test Laboratory: Bay Area Compliance Lab Corp. (BACL)
Measurement Report for Device, Front, 900MHz Band, ASK, Frequency 914.750MHz
Device under Test Properties

Model, Manufacturer	Dimensions [mm]	DUT Type
ZQ630, Zebra Technologies Corporation	190.0 x 170.0 x 80.0	Mobile Printer

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Frequency [MHz]	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	BACK, 0.00	900MHz	914.750	9.05	0.891	40.8

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
ELI V8.0 (20deg probe tilt) - 2191	HBBL-600-10000 SLAAHU16BC221222-1, 2024-Jul-11	EX3DV4 - SN7783, 2024-04-12	DAE4 Sn1724, 2024-03-28

Scan Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	210.0 x 240.0	x x
Grid Steps [mm]	15.0 x 15.0	x x
Sensor Surface [mm]	3.0	
Graded Grid	N/A	
Grading Ratio	N/A	
MAIA	Y	
Surface Detection	All points	
Scan Method	Measured	

Measurement Results

	Area Scan	Zoom Scan
Date	2024-07-11, 21:03	
psSAR1g [W/kg]	0	
psSAR10g [W/kg]	0	
Power Drift [dB]	-0.61	
Power Scaling	Disabled	
Scaling Factor [dB]		
TSL Correction M2/M1 [%]	Positive only	
Dist 3dB Peak [mm]		

Measurement Report for Device, BACK, Custom Band, UID 0 -, Channel 914800 (914.800MHz)

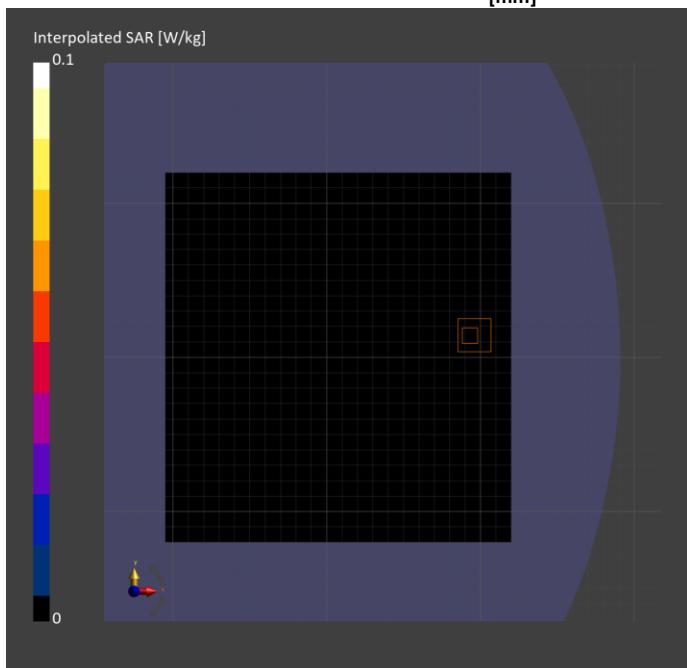
Device under Test Properties

Model, Manufacturer	Dimensions [mm]	DUT Type
ZQ630, Zebra Technologies Corporation	190.0 x 170.0 x 80.0	Mobile Printer

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	FRONT, 0.00	900MHz	914.750	9.05	0.891	40.8

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
ELI V8.0 (20deg probe tilt) - 2191	HBBL-600-10000 SLAAHU16BC221222-1, 2024-Jul-11	EX3DV4 - SN7783, 2024-04-12	DAE4 Sn1724, 2024-03-28

Scan Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	210.0 x 240.0	x x
Grid Steps [mm]	15.0 x 15.0	x x
Sensor Surface [mm]	3.0	
Graded Grid	N/A	
Grading Ratio	N/A	
MAIA	Y	
Surface Detection	All points	
Scan Method	Measured	

Measurement Results

	Area Scan	Zoom Scan
Date	2024-07-11, 1:03	
psSAR1g [W/kg]	0	
psSAR10g [W/kg]	0	
Power Drift [dB]	-0.30	
Power Scaling	Disabled	
Scaling Factor [dB]		
TSL Correction	Positive only	
M2/M1 [%]		
Dist 3dB Peak [mm]		

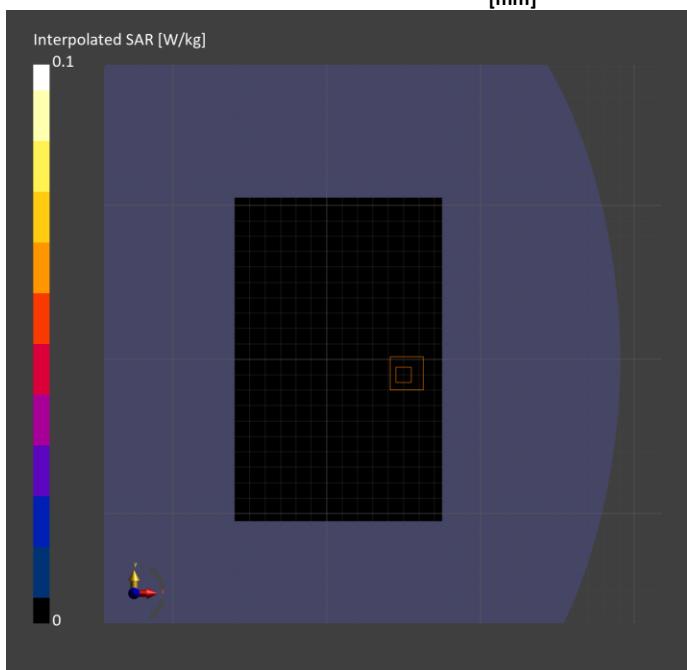
Measurement Report for Device, EDGE TOP, Custom Band, UID 0 -, Channel 914800 (914.800MHz)**Device under Test Properties**

Model, Manufacturer	Dimensions [mm]	DUT Type
ZQ630, Zebra Technologies Corporation	190.0 x 170.0 x 80.0	Mobile Printer

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	EDGE TOP, 0.00	Custom Band	900MHz	9.05	0.891	40.8

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
ELI V8.0 (20deg probe tilt) - 2191	HBBL-600-10000 SLAAHU16BC221222-1, 2024-Jul-11	EX3DV4 - SN7783, 2024-04-12	DAE4 Sn1724, 2024-03-28

Scan Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	120.0 x 210.0	x x
Grid Steps [mm]	15.0 x 15.0	x x
Sensor Surface [mm]	3.0	
Graded Grid	N/A	
Grading Ratio	N/A	
MAIA	Y	
Surface Detection	All points	
Scan Method	Measured	

Measurement Results

	Area Scan	Zoom Scan
Date	2024-07-11, 1:43	
psSAR1g [W/kg]	0.002	
psSAR10g [W/kg]	0	
Power Drift [dB]	1.53	
Power Scaling	Disabled	
Scaling Factor [dB]		
TSL Correction	Positive only	
M2/M1 [%]		
Dist 3dB Peak [mm]		

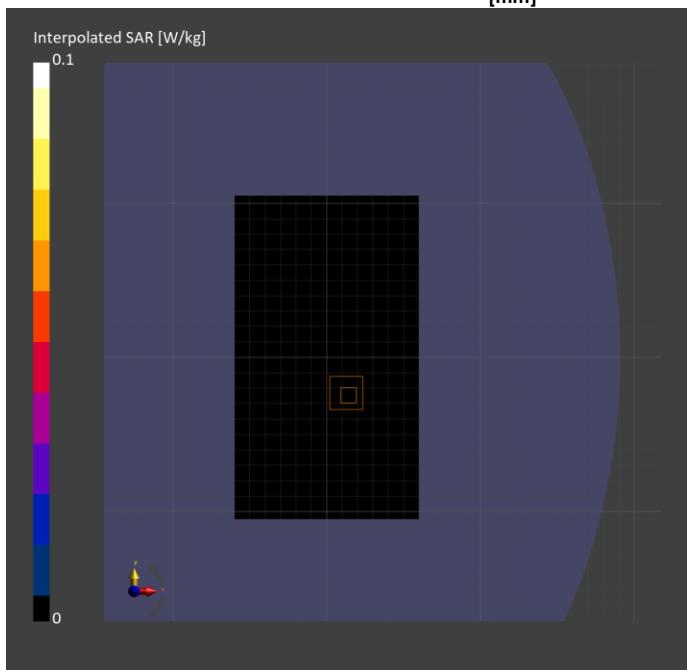
Measurement Report for Device, EDGE BOTTOM, Custom Band, UID 0 -, Channel 914800 (914.800MHz)**Device under Test Properties**

Model, Manufacturer	Dimensions [mm]	DUT Type
ZQ630, Zebra Technologies Corporation	190.0 x 170.0 x 80.0	Mobile Printer

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	EDGE BOTTOM, 0.00	900MHz	914.750	9.05	0.891	40.8

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
ELI V8.0 (20deg probe tilt) - 2191	HBBL-600-10000 SLAAHU16BC221222-1, 2024-Jul-11	EX3DV4 - SN7783, 2024-04-12	DAE4 Sn1724, 2024-03-28

Scan Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	120.0 x 210.0	x x
Grid Steps [mm]	15.0 x 15.0	x x
Sensor Surface [mm]	3.0	
Graded Grid	N/A	
Grading Ratio	N/A	
MAIA	Y	
Surface Detection	All points	
Scan Method	Measured	

Measurement Results

	Area Scan	Zoom Scan
Date	2024-07-11, 2:23	
psSAR1g [W/kg]	0	
psSAR10g [W/kg]	0	
Power Drift [dB]	0.76	
Power Scaling	Disabled	
Scaling Factor [dB]		
TSL Correction	Positive only	
M2/M1 [%]		
Dist 3dB Peak [mm]		

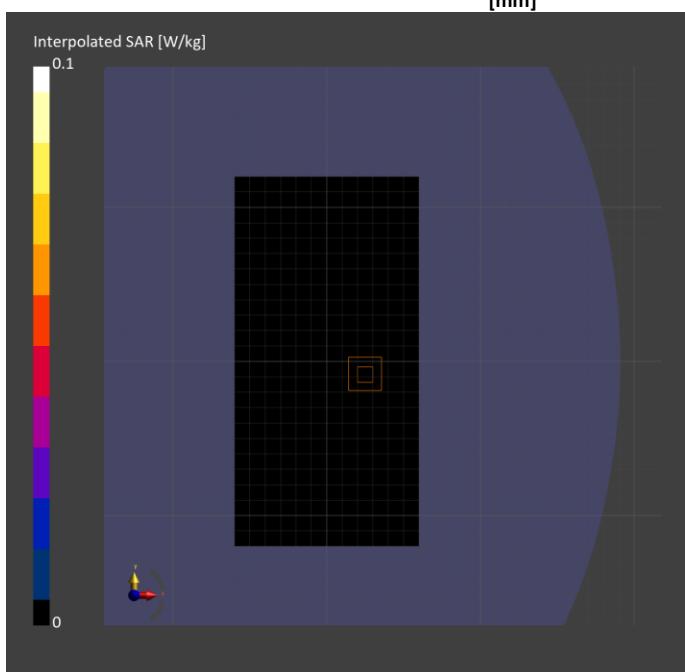
Measurement Report for Device, EDGE LEFT, Custom Band, UID 0 -, Channel 914800 (914.800MHz)**Device under Test Properties**

Model, Manufacturer	Dimensions [mm]	DUT Type
ZQ630, Zebra Technologies Corporation	190.0 x 170.0 x 80.0	Mobile Printer

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	EDGE LEFT, 0.00	900MHz	914.750	9.05	0.891	40.8

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
ELI V8.0 (20deg probe tilt) - 2191	HBBL-600-10000 SLAAHU16BC221222-1, 2024-Jul-11	EX3DV4 - SN7783, 2024-04-12	DAE4 Sn1724, 2024-03-28

Scan Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	120.0 x 240.0	x x
Grid Steps [mm]	15.0 x 15.0	x x
Sensor Surface [mm]	3.0	
Graded Grid	N/A	
Grading Ratio	N/A	
MAIA	Y	
Surface Detection	All points	
Scan Method	Measured	

Measurement Results

	Area Scan	Zoom Scan
Date	2024-07-11, 4:01	
psSAR1g [W/kg]	0.001	
psSAR10g [W/kg]	0	
Power Drift [dB]	-0.25	
Power Scaling	Disabled	
Scaling Factor [dB]		
TSL Correction	Positive only	
M2/M1 [%]		
Dist 3dB Peak [mm]		

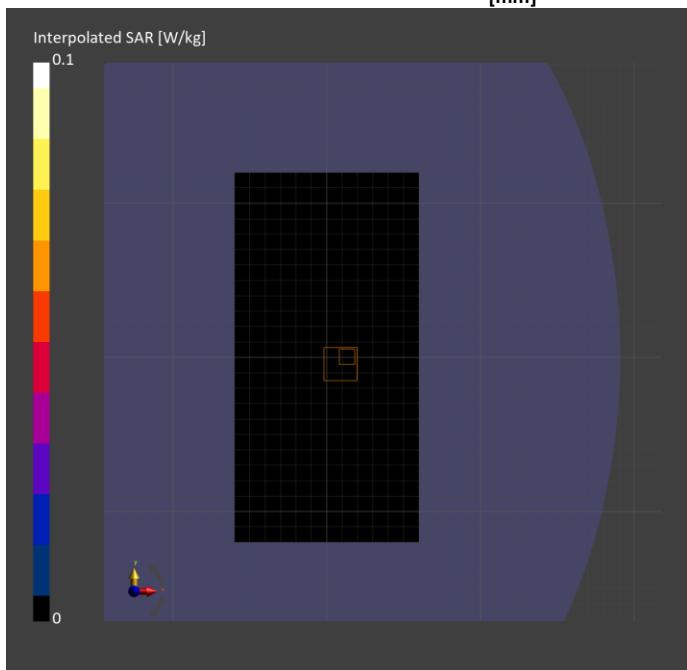
Measurement Report for Device, EDGE RIGHT, Custom Band, UID 0 -, Channel 914800 (914.800MHz)**Device under Test Properties**

Model, Manufacturer	Dimensions [mm]	DUT Type
ZQ630, Zebra Technologies Corporation	190.0 x 170.0 x 80.0	Mobile Printer

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	EDGE RIGHT, 0.00	900MHz	914.750	9.05	0.891	40.8

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
ELI V8.0 (20deg probe tilt) - 2191	HBBL-600-10000 SLAAHU16BC221222-1, 2024-Jul-11	EX3DV4 - SN7783, 2024-04-12	DAE4 Sn1724, 2024-03-28

Scan Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	120.0 x 240.0	x x
Grid Steps [mm]	15.0 x 15.0	x x
Sensor Surface [mm]	3.0	
Graded Grid	N/A	
Grading Ratio	N/A	
MAIA	Y	
Surface Detection	All points	
Scan Method	Measured	

Measurement Results

	Area Scan	Zoom Scan
Date	2024-07-11, 4:55	
psSAR1g [W/kg]	0	
psSAR10g [W/kg]	0	
Power Drift [dB]	0.57	
Power Scaling	Disabled	
Scaling Factor [dB]		
TSL Correction	Positive only	
M2/M1 [%]		
Dist 3dB Peak [mm]		

16 Annex F - RF Output Power Measurement

900MHz

RFID

Channel	Frequency (MHz)	Measured Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Rated Power (dBm)	Rated EIRP (dBm)
Low	902.75	26.01	-30	-3.99	27.30	-2.70
Middle	914.75	26.32	-30	-3.68	27.30	-2.70
High	927.5	25.90	-30	-4.10	27.30	-2.70

17 Annex G – EUT Test Setup Photographs

Please refer to individual Annex.

18 Annex H – EUT External Photographs

Please refer to individual Annex.

19 Annex I – EUT Internal Photographs

Please refer to individual Annex.

20 Annex J - Informative References

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph Kastle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz - 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120-24.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172-175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10.

21 Annex K (Normative) - A2LA Electrical Testing Certificate

Accredited Laboratory

A2LA has accredited

BAY AREA COMPLIANCE LABORATORIES CORP.
Sunnyvale, CA

for technical competence in the field of
Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017
General requirements for the competence of testing and calibration laboratories. This laboratory also meets A2LA R222
- Specific Requirements EPA ENERGY STAR Accreditation Program. This accreditation demonstrates technical
competence for a defined scope and the operation of a laboratory quality management system
(refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 13th day of September 2024.

A blue ink signature of the name 'Mr. Trace McInturff'.

Mr. Trace McInturff, Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 3297.02
Valid to September 30, 2026

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Please follow the web link below for a full ISO 17025 scope

<https://www.a2la.org/scopepdf/3297-02.pdf>

--- END OF REPORT ---