

SUPPLEMENTARY FCC TEST REPORT (15.247)

REPORT NO.: RF120903C21D

MODEL NO.: MC40N0

FCC ID: UZ7MC40N0

RECEIVED: Jun. 08, 2013

TESTED: Jun. 08, 2013

ISSUED: Jun. 11, 2013

APPLICANT: Motorola Solutions, Inc.

ADDRESS: One Motorola Plaza, Holtsville, NY 11742-1300
USA

ISSUED BY: Bureau Veritas Consumer Products Services
(H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist.,
New Taipei City, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei
Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report should not be used by the client to claim
product certification, approval, or endorsement by
TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

TABLE OF CONTENTS

REPORT ISSUE HISTORY RECORD	4
RELEASE CONTROL RECORD	5
1. CERTIFICATION	6
2. SUMMARY OF TEST RESULTS	7
2.1 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	10
3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	11
3.3 DESCRIPTION OF SUPPORT UNITS	12
3.3.1 CONFIGURATION OF SYSTEM UNDER TEST	12
3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS	13
4. TEST TYPES AND RESULTS	14
4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT	14
4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	14
4.1.2 TEST INSTRUMENTS	15
4.1.3 TEST PROCEDURES	16
4.1.4 DEVIATION FROM TEST STANDARD	16
4.1.5 TEST SETUP	17
4.1.6 EUT OPERATING CONDITIONS	17
4.1.7 TEST RESULTS	18
4.2 6dB BANDWIDTH MEASUREMENT	19
4.2.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT	19
4.2.2 TEST SETUP	19
4.2.3 TEST INSTRUMENTS	19
4.2.4 TEST PROCEDURE	19
4.2.5 DEVIATION FROM TEST STANDARD	19
4.2.6 EUT OPERATING CONDITIONS	19
4.2.7 TEST RESULTS	20
4.3 CONDUCTED OUTPUT POWER	21
4.3.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT	21
4.3.2 TEST SETUP	21
4.3.3 TEST INSTRUMENTS	21
4.3.4 TEST PROCEDURES	21
4.3.5 DEVIATION FROM TEST STANDARD	22
4.3.6 EUT OPERATING CONDITIONS	22
4.3.7 TEST RESULTS	22
4.4 POWER SPECTRAL DENSITY MEASUREMENT	23
4.4.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	23

A D T

4.4.2 TEST SETUP	23
4.4.3 TEST INSTRUMENTS	23
4.4.4 TEST PROCEDURE	23
4.4.5 DEVIATION FROM TEST STANDARD	23
4.4.6 EUT OPERATING CONDITION	23
4.4.7 TEST RESULTS	24
4.5 CONDUCTED OUT OF BAND EMISSION MEASUREMENT	25
4.5.1 LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT	25
4.5.2 TEST SETUP	25
4.5.3 TEST INSTRUMENTS	25
4.5.4 TEST PROCEDURE	25
4.5.5 DEVIATION FROM TEST STANDARD	26
4.5.6 EUT OPERATING CONDITION	26
4.5.7 TEST RESULTS	26
5. INFORMATION ON THE TESTING LABORATORIES	27
6. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	28

A D T

REPORT ISSUE HISTORY RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
1	Original release.	Sep. 17, 2012
2	Updated power setting and relevant test items without MSR Aux Ant for 802.11g ch 1, frequency 2412MHz.	Jun. 11, 2013

A D T

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF120903C21D	Original release	Jun. 11, 2013

1. CERTIFICATION

PRODUCT: Mobile Computer

MODEL NO.: MC40N0

BRAND: Motorola

APPLICANT: Motorola Solutions, Inc.


TESTED: Jun. 08, 2013

TEST SAMPLE: ENGINEERING SAMPLE

STANDARDS: FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10-2009

This report is issued as a supplementary report of RF120903C21. This report shall be used combined together with its original report.

PREPARED BY : , **DATE :** Jun. 11, 2013
Polly Chien / Specialist

APPROVED BY : , **DATE :** Jun. 11, 2013
Ken Liu / Senior Manager

NOTE: Test items for band edge measurement, 6dB bandwidth, conducted power, power spectral density and radiated emissions above 1GHz tests were performed for the addendum. For other testing data, please refer to the original report.

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)			
STANDARD SECTION	TEST TYPE	RESULT	REMARK
15.207	AC Power Conducted Emission	NA	Refer to Note
15.247(d) 15.209	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -1.2dB at 2390.00MHz.
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.
15.247(b)	Conducted power	PASS	Meet the requirement of limit.
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	No antenna connector is used.

NOTE: Test items for band edge measurement, 6dB bandwidth, conducted power, power spectral density and radiated emissions above 1GHz tests were performed for the addendum. For other testing data, please refer to the original report.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Radiated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

A D T

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Mobile Computer
MODEL NO.	MC40N0
POWER SUPPLY	5Vdc (adapter or host equipment) 3.7Vdc (Li-ion battery)
MODULATION TYPE	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM
MODULATION TECHNOLOGY	DSSS, OFDM
TRANSFER RATE	802.11b: 11.0/ 5.5/ 2.0/ 1.0Mbps 802.11g: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps 802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps 802.11n: up to 72.2Mbps
OPERATING FREQUENCY	2.4GHz: 2412 ~ 2472MHz 5.0GHz: 5745 ~ 5825MHz
NUMBER OF CHANNEL	2.4GHz: 13 for 802.11b, 802.11g, 802.11n (20MHz) 5.0GHz: 5 for 802.11a, 802.11n (20MHz)
OUTPUT POWER	245.47mW for 2412 ~ 2472MHz 164.44mW for 5745 ~ 5825MHz
ANTENNA TYPE	Refer to Note as below
ANTENNA CONNECTOR	NA
DATA CABLE	Refer to Note as below
I/O PORTS	Refer to user's manual
ACCESSORY DEVICES	Battery
SW	Android 2.3.4 Build number 9927301-G-0500-0003-00-E2-072312
HW	EV2 (PCBA: 12H00-SD)

NOTE:

1. This report is issued as a supplementary report of BV ADT report no.: RF120903C21. This report shall be combined together with its original report.
2. This report is prepared for FCC class II permissive change. The differences are changing power setting and relevant test items without MSR Aux Ant for 802.11g ch 1, frequency 2412MHz. Therefore, test items for band edge measurement, 6dB bandwidth, conducted power and power spectral density and radiated emissions above 1GHz tests had been re-tested in this report.
3. The device is available with or without MSR.

A D T

4. Antenna gain is listed as table below.

Configuration	Antenna type	Main antenna gain (dBi)		AUX antenna gain (dBi)	
		2.4GHz	5GHz	2.4GHz	5GHz
With MSR	PIFA	1.63	4.08	-0.15	5.44
Without MSR		1.72	4.01	-0.15	5.44

5. The EUT provides one completed transmitter and two receivers.

MODULATION MODE	TX FUNCTION
802.11b	1TX
802.11g	1TX
802.11n (20MHz)	1TX

6. The following accessories are optional. (Earphone 2 is new.)

Item	Brand	Model	Specification
Adapter	Motorola	IU08-2050120-WP	I/P: 100-240Vac, 50/60Hz, 0.2A O/P: 5Vdc, 1.2A
Earphone	Motorola	NA	1.3m
Micro USB Cable	Motorola	25-MCXUSB-01R	1.5m

7. The EUT uses following battery.

Brand	Motorola
Rating	3.7Vdc

8. The above EUT information is declared by the manufacturer and for more detailed feature description, please refer to the manufacturer's specifications or User's Manual.

A D T

3.2 DESCRIPTION OF TEST MODES

13 channels are provided for 802.11g:

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412MHz	8	2447MHz
2	2417MHz	9	2452MHz
3	2422MHz	10	2457MHz
4	2427MHz	11	2462MHz
5	2432MHz	12	2467MHz
6	2437MHz	13	2472MHz
7	2442MHz		

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE MODE	APPLICABLE TO		DESCRIPTION	
	RE \geq 1G	APCM	MSR /ANT.	Power Source
-	✓	✓	without MSR Aux Ant.	Power from adapter

Where

RE \geq 1G: Radiated Emission above 1GHz

APCM: Antenna Port Conducted Measuremen

NOTE: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Z-plane.

RADIATED EMISSION TEST (ABOVE 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11g	1 to 13	1	OFDM	BPSK	6.0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11g	1 to 13	1	OFDM	BPSK	6.0

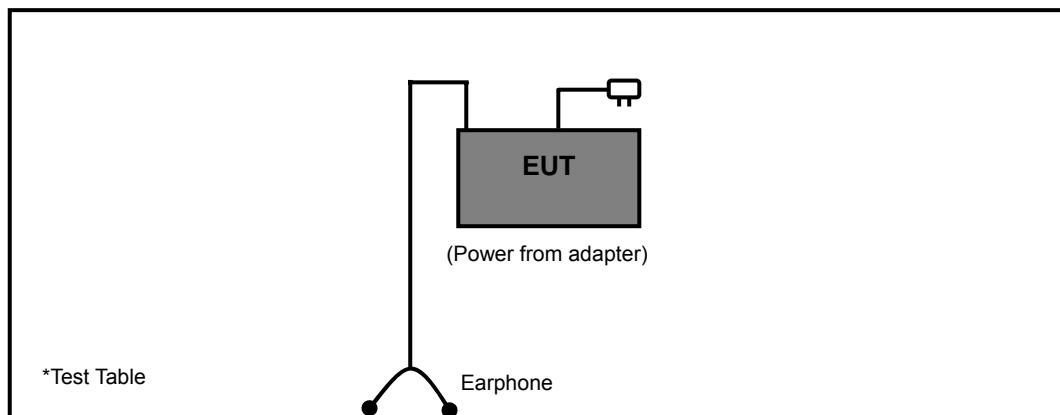
TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE \geq 1G	25deg. C, 60%RH	120Vac, 60Hz	Cedric Wu
APCM	25deg. C, 65%RH	120Vac, 60Hz	Cedric Wu

A D T

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK	DELL	E5420	33MLMQ1	FCC DoC Approved
2	EARPHONE	Motorola	21-UNIV-HDSET1-01R	NA	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA
2	1.2m cable without core

NOTE:

1. All power cords of the above support units are non shielded (1.8m).
2. Item 2 was proved by client.

3.3.1 CONFIGURATION OF SYSTEM UNDER TEST

A D T

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

558074D01 DTS Meas Guidance v03r01

ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCS30	100289	Nov. 16, 2012	Nov. 15, 2013
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Jan. 28, 2013	Jan. 27, 2014
BILOG Antenna SCHWARZBECK	VULB9168	9168-156	Mar. 22, 2013	Mar. 21, 2014
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-209	Sep. 03, 2012	Sep. 02, 2013
HORN Antenna SCHWARZBECK	BBHA 9170	148	Jul. 11, 2012	Jul. 10, 2013
Loop Antenna	HFH2-Z2	100070	Jan. 31, 2012	Jan. 30, 2014
Preamplifier Agilent	8449B	3008A01911	Oct. 25, 2012	Oct. 24, 2013
Preamplifier Agilent	8447D	2944A10638	Oct. 25, 2012	Oct. 24, 2013
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	295013/4 283403/4	Aug. 28, 2012	Aug. 27, 2013
RF signal cable Worxen	8D-FB	Cable-HYCH9-01	Aug. 11, 2012	Aug. 10, 2013
Software BV ADT	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower & Turn Table Controller EMCO	2090	NA	NA	NA
26GHz ~ 40GHz Amplifier	EM26400	815221	Oct. 25, 2012	Oct. 24, 2013
High Speed Peak Power Meter	ML2495A	0824012	Aug. 22, 2012	Aug. 21, 2013
Power Sensor	MA2411B	0738171	Jul. 30, 2012	Jul. 29, 2013

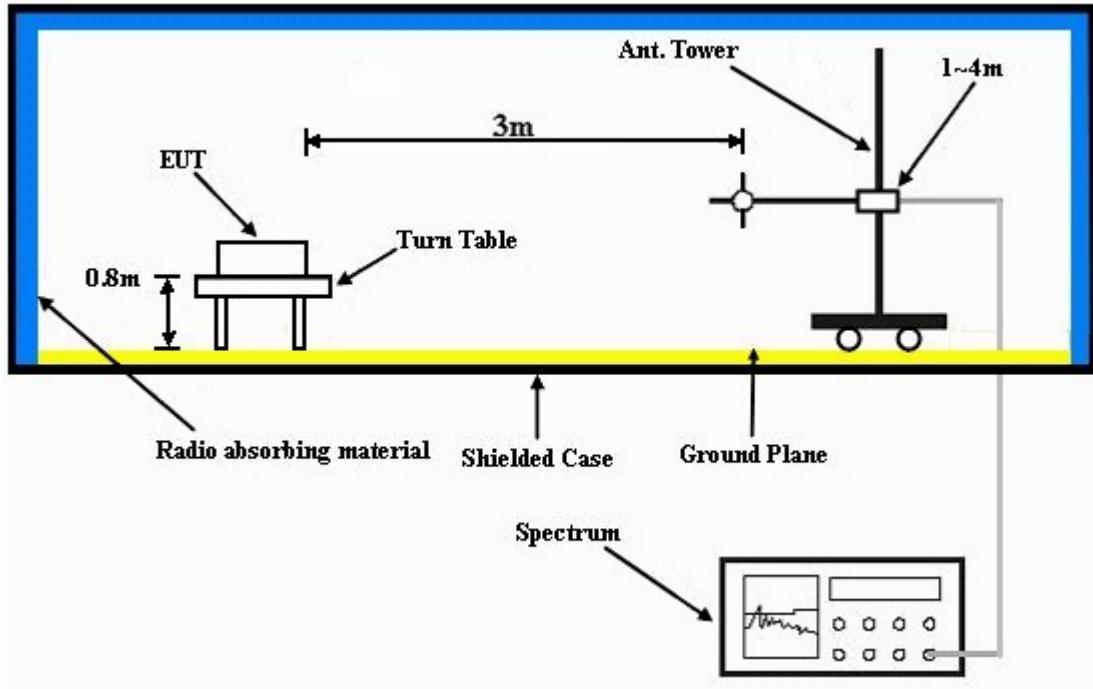
NOTE:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The calibration interval of the loop antenna is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
3. The test was performed in HwaYa Chamber 9.
4. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
5. The FCC Site Registration No. is 215374.
6. The IC Site Registration No. is IC 7450F-9.

A D T

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.


NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 100kHz and video bandwidth is 300kHz for Peak detection at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 1kHz for Average detection (AV) at frequency above 1GHz.
4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- Placed the EUT with earphone on testing table.
- Set the EUT under transmission condition continuously at specific channel frequency.

A D T

4.1.7 TEST RESULTS

ABOVE 1GHz WORST-CASE DATA: 802.11g

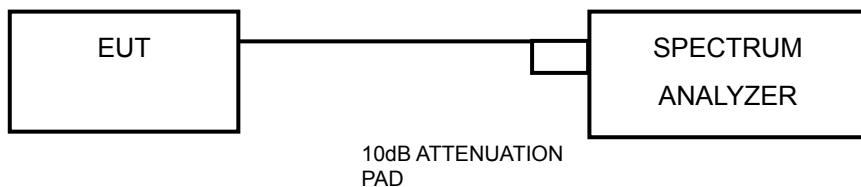
Without MSR & Aux Ant.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL		Channel 1		FREQUENCY RANGE 1 ~ 25GHz
INPUT POWER		120Vac, 60 Hz		DETECTOR FUNCTION Peak (PK) Average (AV)
ENVIRONMENTAL CONDITIONS		25deg. C, 65%RH		TESTED BY Cedric Wu

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	69.8 PK	74.0	-4.2	1.88 H	134	34.10	35.70
2	2390.00	52.8 AV	54.0	-1.2	1.88 H	134	17.10	35.70
3	*2412.00	106.9 PK			1.88 H	132	71.10	35.80
4	*2412.00	95.9 AV			1.88 H	132	60.10	35.80
5	4824.00	48.9 PK	74.0	-25.1	1.23 H	230	5.80	43.10
6	4824.00	36.4 AV	54.0	-17.6	1.23 H	230	-6.70	43.10

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	66.3 PK	74.0	-7.7	1.00 V	98	30.60	35.70
2	2390.00	51.4 AV	54.0	-2.6	1.00 V	98	15.70	35.70
3	*2412.00	103.6 PK			1.00 V	105	67.80	35.80
4	*2412.00	91.9 AV			1.00 V	105	56.10	35.80
5	4824.00	48.8 PK	74.0	-25.2	1.32 V	47	5.70	43.10
6	4824.00	35.7 AV	54.0	-18.3	1.32 V	47	-7.40	43.10

REMARKS:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. “*”: Fundamental frequency.

4.2 6dB BANDWIDTH MEASUREMENT

4.2.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.2.2 TEST SETUP

4.2.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.2.4 TEST PROCEDURE

- a. Set resolution bandwidth (RBW) = 100kHz.
- b. Set the video bandwidth (VBW) $\geq 3 \times$ RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.2.5 DEVIATION FROM TEST STANDARD

No deviation.

4.2.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

A D T

4.2.7 TEST RESULTS

Without MSR & Aux Ant.

802.11g

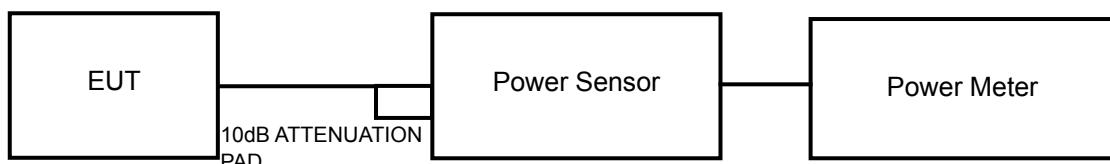
CHANNEL	FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
1	2412	16.06	0.5	PASS

4.3 CONDUCTED OUTPUT POWER

4.3.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

Per KDB 662911 D01 Multiple Transmitter Output v01r02 Method of conducted output power measurement on IEEE 802.11 devices,


Array Gain = 0 dB (i.e., no array gain) for NANT \leq 4;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any NANT;

Array Gain = $5 \log(NANT/NSS)$ dB or 3 dB, whichever is less for 20-MHz channel widths with NANT \geq 5.

For power measurements on all other devices: Array Gain = $10 \log(NANT/NSS)$ dB.

4.3.2 TEST SETUP

4.3.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.3.4 TEST PROCEDURES

A peak / average power sensor were used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the peak power level.

A D T

4.3.5 DEVIATION FROM TEST STANDARD

No deviation.

4.3.6 EUT OPERATING CONDITIONS

Same as Item 4.2.6.

4.3.7 TEST RESULTS

Without MSR & Aux Ant.

FOR PEAK POWER

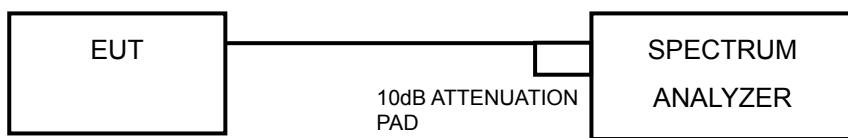
802.11g

Channel	Frequency (MHz)	Power Setting	Chain	Data Rate							
				6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
CH 1	2412 MHz	21000	AUX	23.30	23.28	23.26	23.24	23.21	23.20	23.29	23.20

FOR AVERAGE POWER

802.11g

Channel	Frequency (MHz)	Power Setting	Chain	Data Rate	
				6Mbps	
CH 1	2412 MHz	21000	AUX	18.10	



4.4 POWER SPECTRAL DENSITY MEASUREMENT

4.4.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm.

4.4.2 TEST SETUP

4.4.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.4.4 TEST PROCEDURE

- a. Set the RBW = 3 kHz, VBW =10 kHz, Detector = peak.
- b. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- c. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

4.4.5 DEVIATION FROM TEST STANDARD

No deviation.

4.4.6 EUT OPERATING CONDITION

Same as Item 4.2.6

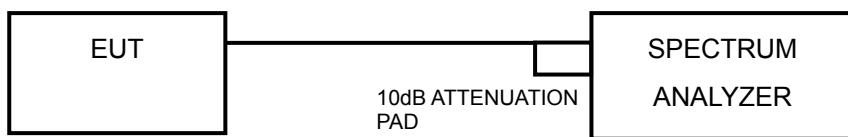
A D T

4.4.7 TEST RESULTS

Without MSR & Aux Ant.

802.11g

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS /FAIL
1	2412	-8.35	8	PASS



4.5 CONDUCTED OUT OF BAND EMISSION MEASUREMENT

4.5.1 LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.5.4 TEST PROCEDURE

MEASUREMENT PROCEDURE REF

1. Set the RBW = 100 kHz.
2. Set the VBW \geq 300 kHz.
3. Detector = peak.
4. Sweep time = auto couple.
5. Trace mode = max hold.
6. Allow trace to fully stabilize.
7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

A D T

MEASUREMENT PROCEDURE OOB

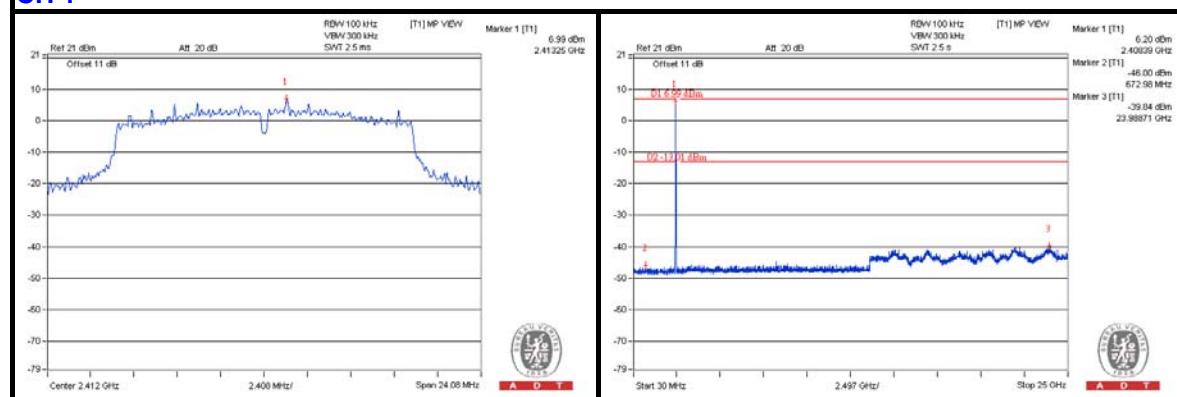
1. Set RBW = 100 kHz.
2. Set VBW \geq 300 kHz.
3. Set span to encompass the spectrum to be examined.
4. Detector = peak.
5. Trace Mode = max hold.
6. Sweep = auto couple.

4.5.5 DEVIATION FROM TEST STANDARD

No deviation.

4.5.6 EUT OPERATING CONDITION

Same as Item 4.3.6


4.5.7 TEST RESULTS

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

Without MSR & Aux Ant.

802.11g

CH 1

5. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF Lab

Tel: 886-3-5935343
Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

A D T

6. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.

---END---