

Appendix B. Maximum Permissible Exposure

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.3 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz ; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E \text{ (V/m)} = \frac{\sqrt{30 \times P \times G}}{d}$$

$$\text{Power Density: } Pd \text{ (W/m}^2\text{)} = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.3m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

For 5GHz UNII Band:

Antenna Type : PIFA Antenna

Max Conducted Power for IEEE 802.11n MCS0 20MHz: 20.80 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
8.69	7.3961	20.7982	120.1776	0.078631	1	Complies

Note: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + \dots + 10^{GN/20})^2 / N]$ dBi = 8.69 dBi

Max Conducted Power for IEEE 802.11n MCS8 20MHz: 22.21 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
5.87	3.8637	22.2052	166.1577	0.056792	1	Complies

For 5GHz ISM Band:

Antenna Type : PIFA Antenna

Max Conducted Power for IEEE 802.11n MCS0 40MHz: 20.39 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
8.69	7.3961	20.3906	109.4102	0.071586	1	Complies

Note: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + \dots + 10^{GN/20})^2 / N]$ dBi = 8.69 dBi

Max Conducted Power for IEEE 802.11n MCS8 20MHz: 20.26 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
5.87	3.8637	20.2561	106.0733	0.036256	1	Complies

For 2.4GHz Band:

Antenna Type : PIFA Antenna

Max Conducted Power for IEEE 802.11n MCS0 20MHz: 22.52 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
8.25	6.6834	22.5207	178.6781	0.105643	1	Complies

Note: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + \dots + 10^{GN/20})^2 / N]$ dBi = 8.25 dBi

Max Conducted Power for IEEE 802.11n MCS8 20MHz: 22.42 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
5.80	3.8019	22.4207	174.6109	0.058727	1	Complies

Max Conducted Power for IEEE 802.11g: 23.31 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
8.25	6.6834	23.3075	214.1653	0.126624	1	Complies

Note: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + \dots + 10^{GN/20})^2 / N]$ dBi = 8.25 dBi

Test Mode : Module (2.4G)
Max Conducted Power: 29.82 dBm

Directional Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
6.01	3.9905	29.82	959.4006	0.338663	1	Complies

Test Mode : Module (5G)
Max Conducted Power : 23.67dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
7.27	5.3348	23.67	232.8091	0.109842	1	Complies

The Module will be installed in AP of MOTOROLA (Model NAME: AP-8132)

USB Dongle (2.4G) + Module (2.4G)

Therefore, the worst-case situation is $0.126624 / 1 + 0.338663 / 1 = 0.465287$, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

USB Dongle (2.4G) + Module (5G)

Therefore, the worst-case situation is $0.126624 / 1 + 0.109842 / 1 = 0.236466$, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

USB Dongle (5G) + Module (2.4G)

Therefore, the worst-case situation is $0.056792 / 1 + 0.338663 / 1 = 0.395455$, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

USB Dongle (5G) + Module (5G)

Therefore, the worst-case situation is $0.056792 / 1 + 0.109842 / 1 = 0.166634$, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.