

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Cradlepoint Technology
Applicant Address	805W. Franklin Street, Boise, ID 83702
FCC ID	UXX-IBR600E

Product Name	Industrial Broadband Router
Brand Name	CradlePoint
Model No.	IBR600LE2
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2400 ~ 2483.5MHz
Received Date	Jul. 19, 2011
Final Test Date	Nov. 01, 2013
Submission Type	Class II Change

Statement

Test result included in this report is for the IEEE 802.11n and IEEE 802.11b/g part of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.10-2009, 47 CFR FCC Part 15 Subpart C, KDB 558074 D01 v03r01 and KDB 662911 D01 v02.**

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CERTIFICATE OF COMPLIANCE	1
2. SUMMARY OF THE TEST RESULT	2
3. GENERAL INFORMATION	3
3.1. Product Details.....	3
3.2. Accessories.....	4
3.3. Table for Filed Antenna.....	5
3.4. Table for Carrier Frequencies	6
3.5. Table for Test Modes.....	6
3.6. Table for Testing Locations.....	7
3.7. Table for Class II Change	7
3.8. Table for Supporting Units	7
3.9. Test Configurations	8
4. TEST RESULT	11
4.1. AC Power Line Conducted Emissions Measurement.....	11
4.2. Radiated Emissions Measurement.....	15
5. LIST OF MEASURING EQUIPMENTS	22
6. TEST LOCATION.....	23
7. MEASUREMENT UNCERTAINTY.....	24
APPENDIX A. TEST PHOTOS	A1 ~ A4
APPENDIX B. MAXIMUM PERMISSIBLE EXPOSURE	B1 ~ B4
APPENDIX C. CO-LOCATION REPORT.....	C1 ~ C3

History of This Test Report

Report No.: FR171915-10

Certificate No.: CB10210150

1. CERTIFICATE OF COMPLIANCE

Product Name : Industrial Broadband Router
Brand Name : CradlePoint
Model No. : IBR600LE2
Applicant : Cradlepoint Technology
Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.247

Sportun International as requested by the applicant to evaluate the EMC performance of the product sample received on Jul. 19, 2011 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

A handwritten signature in blue ink, appearing to read 'Sam Chen'.

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C				
Part	Rule Section	Description of Test	Result	Under Limit
4.1	15.207	AC Power Line Conducted Emissions	Complies	8.28 dB
4.2	15.247(d)	Radiated Emissions	Complies	2.75 dB

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n

Items	Description
Product Type	WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	see the below table for IEEE 802.11n
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n
Frequency Range	2400 ~ 2483.5MHz
Channel Number	11 for 20MHz bandwidth ; 7 for 40MHz bandwidth
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

IEEE 802.11b/g

Items	Description
Product Type	802.11b/g: WLAN (1TX, 1RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	DSSS for IEEE 802.11b ; OFDM for IEEE 802.11g
Data Modulation	DSSS (BPSK / QPSK / CCK) ; OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	DSSS (1/ 2/ 5.5/11) ; OFDM (6/9/12/18/24/36/48/54)
Frequency Range	2400 ~ 2483.5MHz
Channel Number	11
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Antenna and Band width

Antenna	Single (TX)		Two (TX)	
Band width Mode	20 MHz	40 MHz	20 MHz	40 MHz
IEEE 802.11b	V	X	X	X
IEEE 802.11g	V	X	X	X
IEEE 802.11n	X	X	V	V

IEEE 11n Spec.

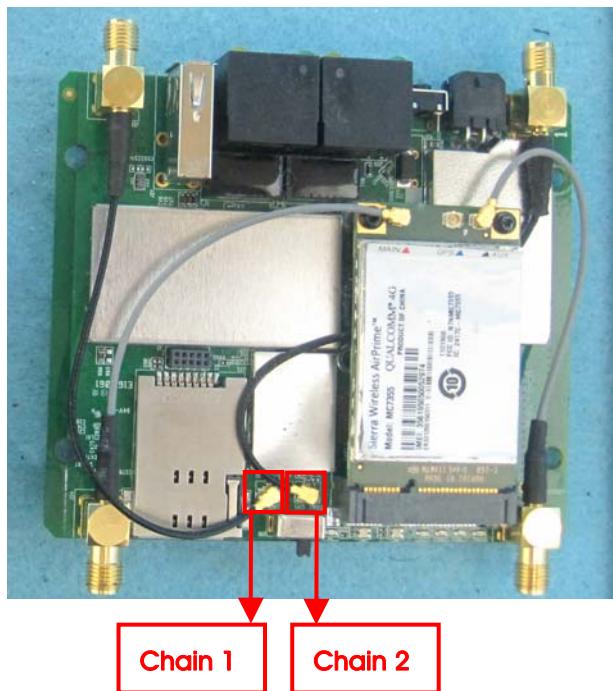
Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	2	MCS 0-15
802.11n (HT40)	2	MCS 0-15
Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.		
Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n		

3.2. Accessories

Power	Brand	Model	Rating
Adapter 1	HON-KWANG	HK-AB-120A150-US	Input: 100-240V~50/60Hz 0.8A Output: 12V, 1.5A
Adapter 2	TenPao	S024WM1200150	Input: 100-240V~50/60Hz, 600mA Max Output: 12V, 1500mA
Adapter 3	Powertron	PA1024-2HU	Input: 100-240V~50-60Hz 0.6A Output: 12V, 1.5A 18W Max
Others			
Plug*1 (only used Adapter 2)			
Cradle			

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Remark
1	Joymax	IWX-1511RSXX-711	Dipole Antenna	Reversed-SMA	5	TX / RX


Note: The EUT has a antenna for WLAN function.

For IEEE 802.11b/g mode (1TX/1RX):

Only Chain 1 can be used as transmitting/receiving functions.

For IEEE 802.11n mode (2TX/2RX):

Both Chain 1 and Chain 2 can be used as transmitting/receiving functions.

3.4. Table for Carrier Frequencies

There are two bandwidth systems.

For 20MHz bandwidth systems, use Channel 1~Channel 11.

For 40MHz bandwidth systems, use Channel 3~Channel 9.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
2400~2483.5MHz	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
	3	2422 MHz	9	2452 MHz
	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	Normal Link	-	-	-
Radiated Emissions	Normal Link	-	-	-

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1: EUT- IBR600LE2 (LTE 4G band 25 + WiFi) + Adapter 1 - normal link

Mode 1: EUT- IBR600LE2 (LTE 4G band 25 + WiFi) + Adapter 2 - normal link

Mode 1: EUT- IBR600LE2 (LTE 4G band 25 + WiFi) + Adapter 3 - normal link

Mode 1 generated the worst test result, so it was recorded in this report.

For Radiated Emission test:

Mode 1. Stand of EUT - IBR600LE2 (LTE 4G band 25 + WiFi) + Adapter 1 - normal link

Mode 2. Laying of EUT - IBR600LE2 (LTE 4G band 25 + WiFi) + Adapter 1 - normal link

Mode 1 has been evaluated to be the worst case among Mode 1~2, thus measurement for Mode 3 ~ 4 will follow this same test mode.

Mode 3. Stand of EUT - IBR600LE2 (LTE 4G band 25 + WiFi) + Adapter 2 - normal link

Mode 4. Stand of EUT - IBR600LE2 (LTE 4G band 25 + WiFi) + Adapter 3 - normal link

Mode 4 is the worst case, so it was selected to record in this test report.

For Co-location Test:

Mode 1: EUT- IBR600LE2 (LTE 4G band 25 + WiFi) - normal link

For MPE and Co-location Test:

The EUT could be applied with WLAN and WWAN function; therefore Maximum Permissible Exposure (Please refer to Appendix B) and Co-location (please refer to Appendix C) tests are added for simultaneously transmit between WLAN and WWAN function.

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).Please refer section 6 for Test Site Address.

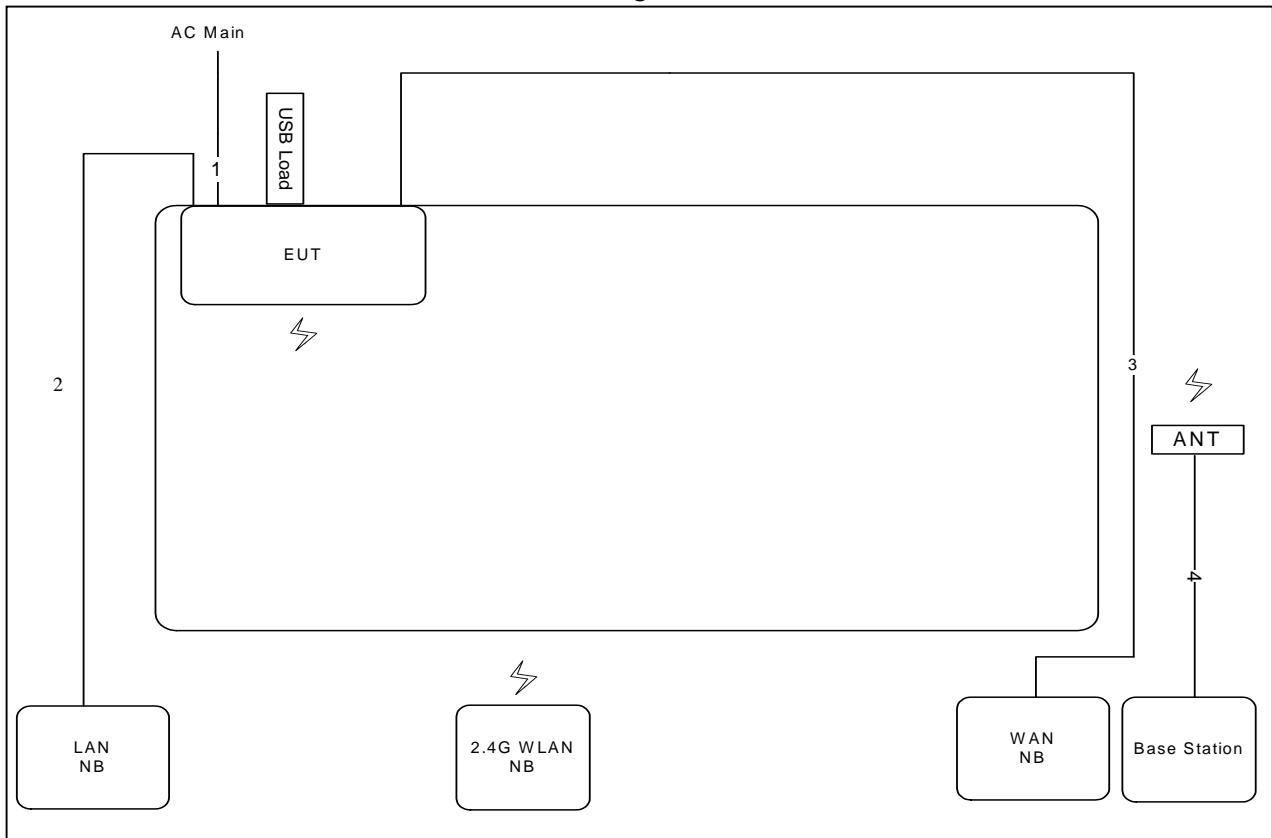
3.7. Table for Class II Change

This product is an extension of original report under Sporton project number: 171915-07

Modifications	Performance Checking
1. Adding a new model number IBR600LE2 for new certified WWAN module (FCC ID: N7NMC7355).	1. AC Power Line Conducted Emissions Measurement 2. Radiated Emissions Measurement (Below 1G) 3. MPE / Co-location

3.8. Table for Supporting Units

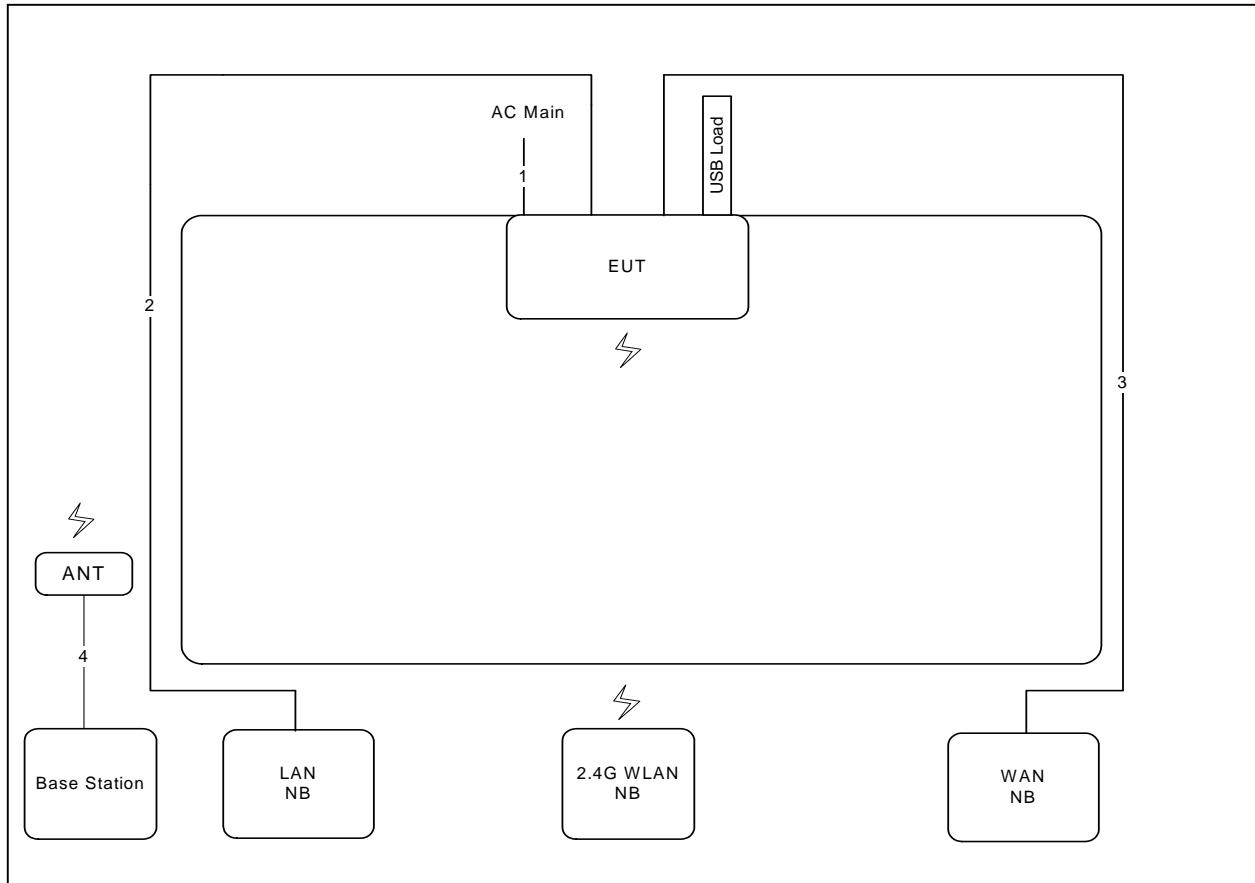
For Test Site No: CO01-CB


Support Unit	Brand	Model	FCC ID
NB*3	DELL	E6430	QDS-BRCM1049LE
Flash Disk	Silicon	I-Series	DoC
3G base station	R&S	CMU200	N/A

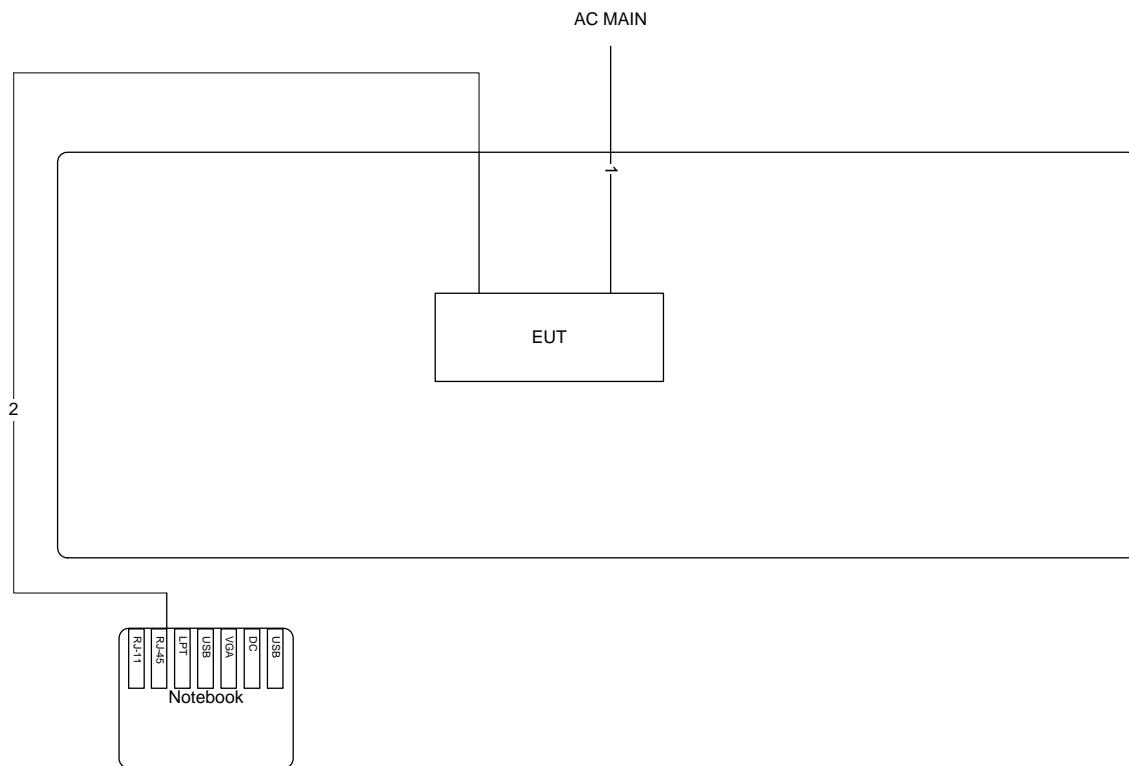
For Test Site No: 03CH01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E6220	D2A62L1989V5
NB	DELL	D520	E2KWM3945ABG
NB	DELL	D420	E2KWM3945ABG
Flash Disk	Silicon	D33B01	DoC
3G base station	R&S	CMU200	N/A

3.9. Test Configurations


3.9.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shielded	Length(m)
1	Power cable	No	2m
2	RJ-45 cable	No	10m
3	RJ-45 cable	No	10m
4	RF cable	Yes	1.5m


3.9.2. Radiation Emissions Test Configuration

Test Configuration: 30MHz~1GHz

Item	Connection	Shielded	Length(m)
1	Power cable	No	2m
2	RJ-45 cable	No	10m
3	RJ-45 cable	No	10m
4	RF cable	No	10m

Test Configuration: above 1GHz

Item	Connection	Shielded	Length(m)
1	Power cable	No	2m
2	RJ-45 cable	No	10m

4. TEST RESULT

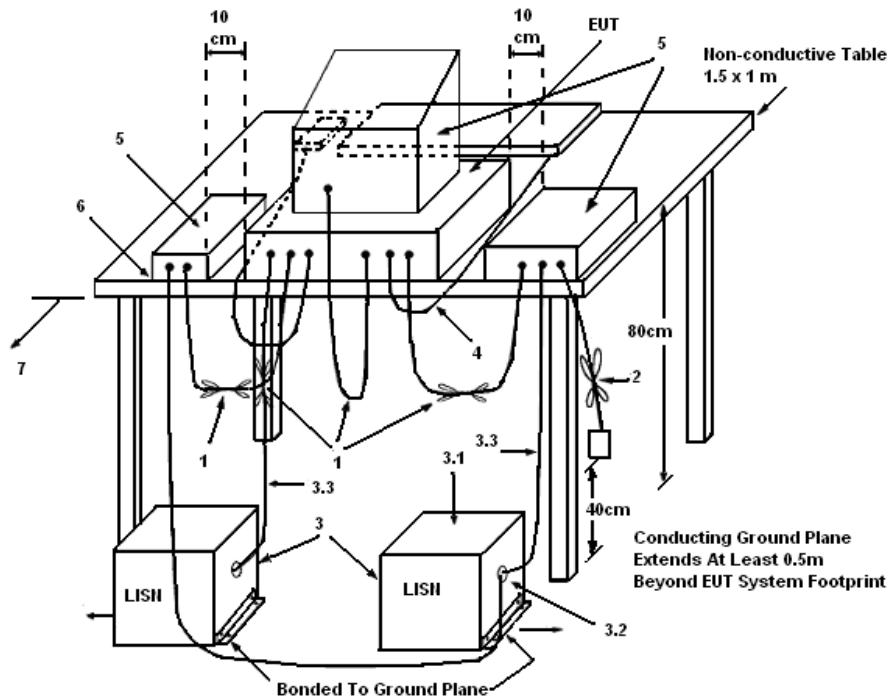
4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

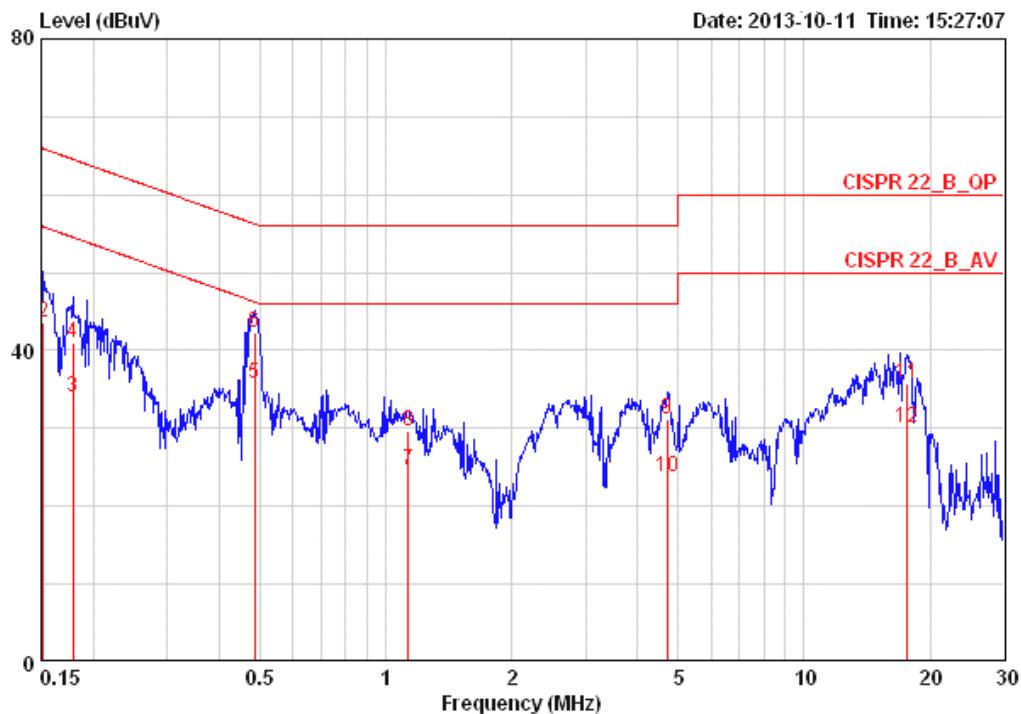
1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
4. The frequency range from 150 kHz to 30 MHz was searched.
5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

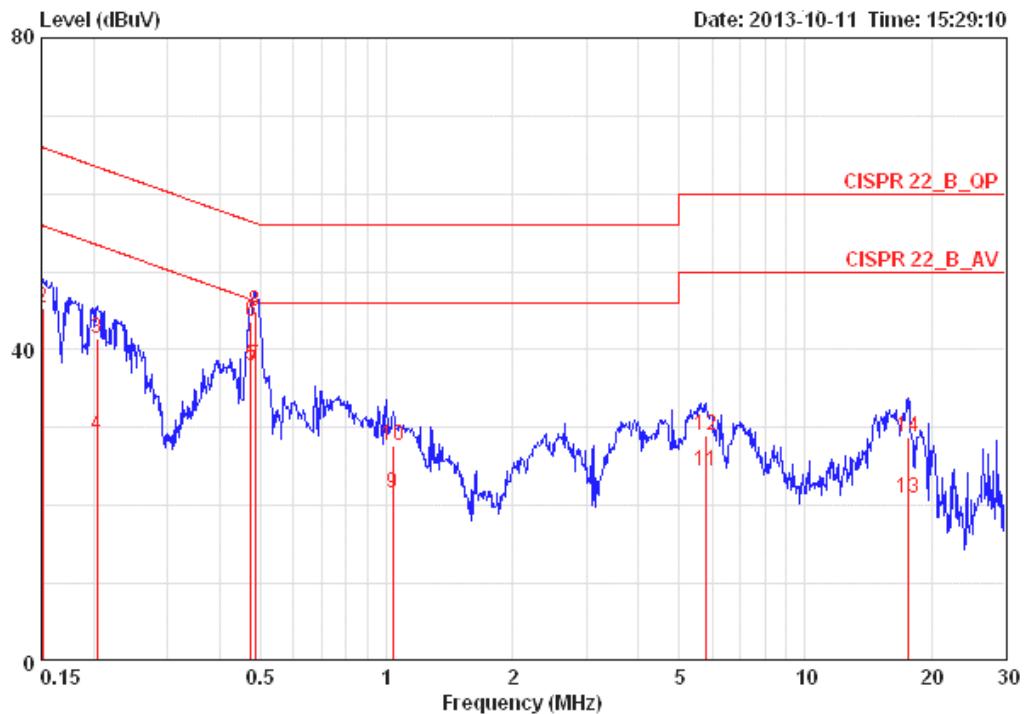
- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
 - (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
 - (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
 - (3.1) All other equipment powered from additional LISN(s).
 - (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
 - (3.3) LISN at least 80 cm from nearest part of EUT chassis.
 - (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
 - (5) Non-EUT components of EUT system being tested.
 - (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
 - (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation


There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.


4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	25°C	Humidity	55%
Test Engineer	Parody Lin	Phase	Line
Configuration	Normal Link	Test Mode	Mode 1

Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable		Remark	
						MHz	dBuV	dB	
1	0.15160	34.75	-21.16	55.91	34.42	0.15	0.18	LINE	AVERAGE
2	0.15160	43.68	-22.23	65.91	43.35	0.15	0.18	LINE	QP
3	0.17866	33.94	-20.61	54.55	33.60	0.15	0.19	LINE	AVERAGE
4	0.17866	40.98	-23.57	64.55	40.64	0.15	0.19	LINE	QP
5	0.48632	35.71	-10.52	46.23	35.36	0.15	0.20	LINE	AVERAGE
6	0.48632	42.38	-13.85	56.23	42.03	0.15	0.20	LINE	QP
7	1.129	24.57	-21.43	46.00	24.20	0.16	0.21	LINE	AVERAGE
8	1.129	29.66	-26.34	56.00	29.29	0.16	0.21	LINE	QP
9	4.696	31.25	-24.75	56.00	30.65	0.29	0.31	LINE	QP
10	4.696	23.80	-22.20	46.00	23.20	0.29	0.31	LINE	AVERAGE
11	17.568	35.79	-24.21	60.00	34.79	0.54	0.46	LINE	QP
12	17.568	29.98	-20.02	50.00	28.98	0.54	0.46	LINE	AVERAGE

Temperature	25°C	Humidity	55%
Test Engineer	Parody Lin	Phase	Neutral
Configuration	Normal Link	Test Mode	Mode 1

Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss		Remark	
						dB	dBuV		
MHz	dBuV	dB	dBuV	dBuV	dB	dB	dBuV		
1	0.15080	36.72	-19.24	55.96	36.47	0.07	0.18	NEUTRAL	AVERAGE
2	0.15080	45.34	-20.62	65.96	45.09	0.07	0.18	NEUTRAL	QP
3	0.20396	41.31	-22.14	63.45	41.04	0.07	0.20	NEUTRAL	QP
4	0.20396	28.96	-24.49	53.45	28.69	0.07	0.20	NEUTRAL	AVERAGE
5	0.47360	37.91	-8.54	46.45	37.64	0.07	0.20	NEUTRAL	AVERAGE
6	0.47360	43.50	-12.95	56.45	43.23	0.07	0.20	NEUTRAL	QP
7	0.48632	37.95	-8.28	46.23	37.68	0.07	0.20	NEUTRAL	AVERAGE
8	0.48632	44.80	-11.43	56.23	44.53	0.07	0.20	NEUTRAL	QP
9	1.037	21.50	-24.50	46.00	21.22	0.08	0.20	NEUTRAL	AVERAGE
10	1.037	27.66	-28.34	56.00	27.38	0.08	0.20	NEUTRAL	QP
11	5.774	24.36	-25.64	50.00	23.86	0.17	0.33	NEUTRAL	AVERAGE
12	5.774	29.05	-30.95	60.00	28.55	0.17	0.33	NEUTRAL	QP
13	17.661	20.87	-29.13	50.00	20.00	0.41	0.47	NEUTRAL	AVERAGE
14	17.661	28.81	-31.19	60.00	27.94	0.41	0.47	NEUTRAL	QP

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. Radiated Emissions Measurement

4.2.1. Limit

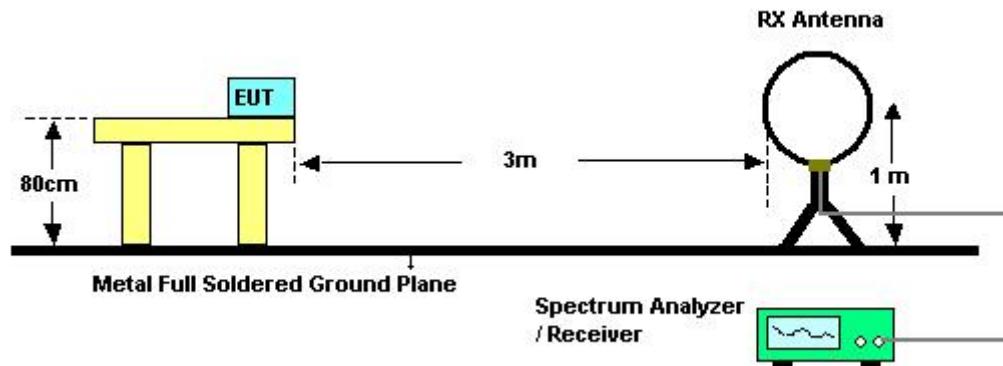
30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

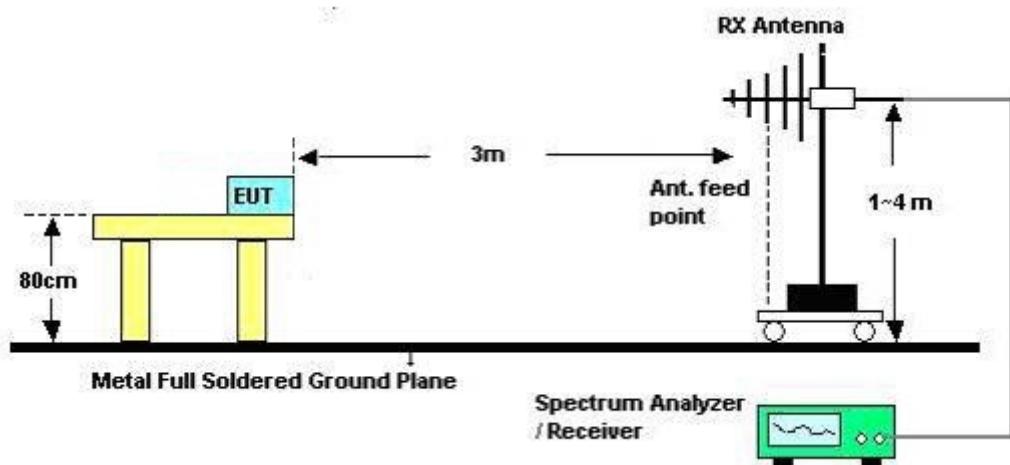
4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

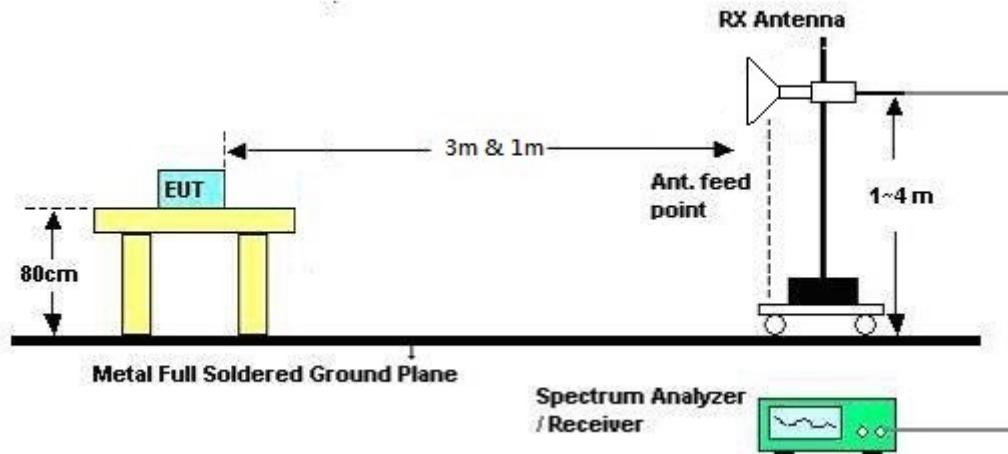
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

4.2.3. Test Procedures


1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.2.4. Test Setup Layout


For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

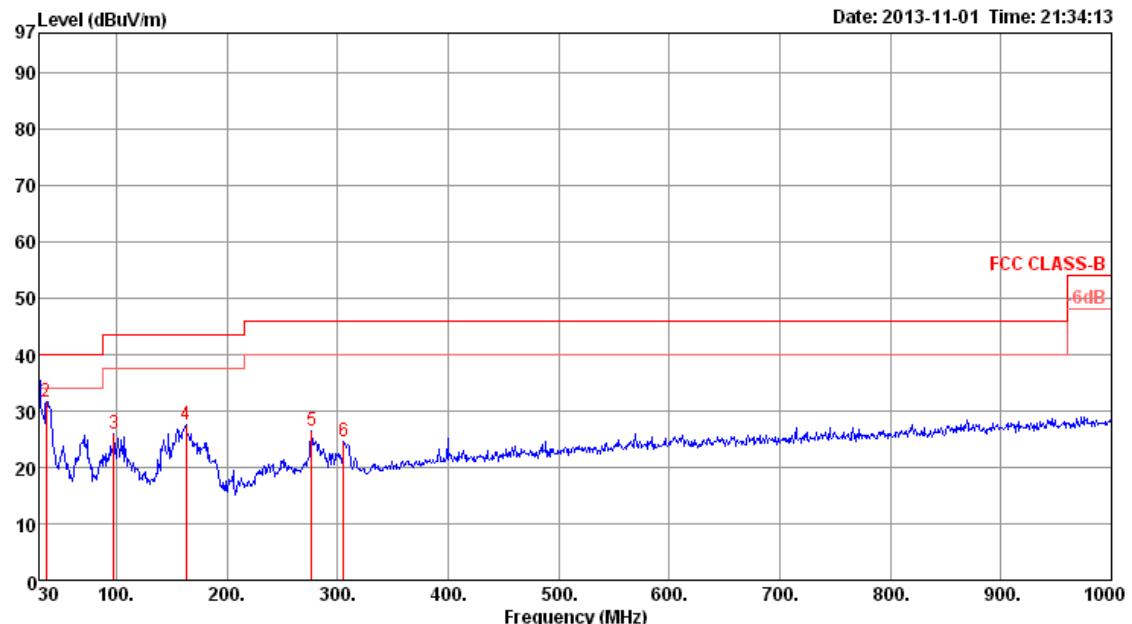
4.2.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24°C	Humidity	57%
Test Engineer	YC Chen	Configurations	Normal Link
Test Date	Nov. 01, 2013		

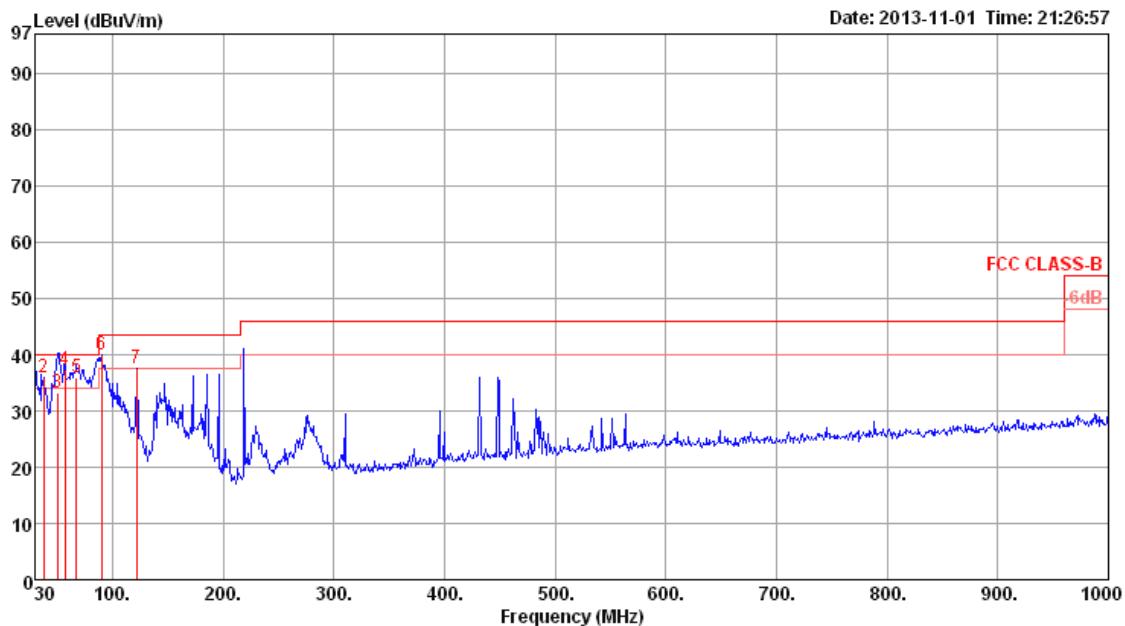
Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


4.2.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24°C	Humidity	57%
Test Engineer	YC Chen	Configurations	Normal Link
Test Mode	Mode 4		

Horizontal

Freq	Cable Antenna Preamp							A/Pos	T/Pos	Pol/Phase
	Limit	Over	Read	Cable	Antenna	Preamp	Remark			
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
1	30.00	28.82	40.00	-11.18	37.25	0.61	18.76	27.80	QP	100 249 HORIZONTAL
2	36.79	31.73	40.00	-8.27	43.96	0.68	14.89	27.80	Peak	100 0 HORIZONTAL
3	97.90	25.96	43.50	-17.54	41.80	1.18	10.59	27.61	Peak	100 0 HORIZONTAL
4	162.89	27.46	43.50	-16.04	41.08	1.42	12.25	27.29	Peak	100 0 HORIZONTAL
5	276.38	26.43	46.00	-19.57	38.39	1.91	13.08	26.95	Peak	100 0 HORIZONTAL
6	305.48	24.48	46.00	-21.52	35.86	2.04	13.52	26.94	Peak	100 0 HORIZONTAL

Vertical

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	Remark	A/Pos	T/Pos	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor		cm	deg	
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB				
1	30.00	30.60	40.00	-9.40	39.03	0.61	18.76	27.80 QP	100	158	VERTICAL
2	37.76	35.98	40.00	-4.02	48.80	0.68	14.30	27.80 Peak	400	0	VERTICAL
3	50.37	33.32	40.00	-6.68	51.72	0.87	8.53	27.80 QP	100	329	VERTICAL
4	57.16	37.25	40.00	-2.75	56.85	0.87	7.30	27.77 QP	100	107	VERTICAL
5	67.83	36.02	40.00	-3.98	56.11	0.97	6.67	27.73 QP	100	120	VERTICAL
6	90.14	40.05	43.50	-3.45	57.67	1.04	8.98	27.64 Peak	400	0	VERTICAL
7	122.15	37.62	43.50	-5.88	51.40	1.31	12.40	27.49 Peak	400	0	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Oct. 23, 2013	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 26, 2012	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Jul. 17, 2013	Conduction (CO01-CB)
Impulsbegrenzer Pulse Limiter	Rohde&Schwarz	ESH3-Z2	100430	9kHz~30MHz	Feb. 21, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 04, 2012	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	-	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Apr. 16, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Jul. 31, 2013	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9kHz~40GHz	Nov. 16, 2012	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75GHz	Apr. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)

Note: Calibration Interval of instruments listed above is one year.

*Calibration Interval of instruments listed above is two year.

N.C.R. means Non-Calibration required.

6. TEST LOCATION

SHIJR	ADD : 6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255
HWA YA	ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL : 886-3-327-3456 FAX : 886-3-318-0055
LINKOU	ADD : No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C TEL : 886-2-2601-1640 FAX : 886-2-2601-1695
DUNGHU	ADD : No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. TEL : 886-2-2631-4739 FAX : 886-2-2631-9740
JUNGHE	ADD : 7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. TEL : 886-2-8227-2020 FAX : 886-2-8227-2626
NEIHU	ADD : 4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C. TEL : 886-2-2794-8886 FAX : 886-2-2794-9777
JHUBEI	ADD : No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C. TEL : 886-3-656-9065 FAX : 886-3-656-9085

7. MEASUREMENT UNCERTAINTY

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Receiver reading	0.026	dB	normal(k=2)	0.013
Cable loss	0.002	dB	normal(k=2)	0.001
AMN/LISN specification	1.200	dB	normal(k=2)	0.600
Mismatch				
Receiver VSWR 1=	-0.080	dB	U-shaped	0.060
AMN/LISN VSWR 2=				
Combined standard uncertainty $U_c(y)$				1.2
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				2.4

Uncertainty of Radiated Emission Measurement (30MHz ~ 1,000MHz)

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Receiver reading	± 0.173	dB	K=1	0.086
Cable loss	± 0.174	dB	K=2	0.087
Antenna gain	± 0.169	dB	K=2	0.084
Site imperfection	± 0.433	dB	Triangular	0.214
Pre-amplifier gain	± 0.366	dB	K=2	0.183
Transmitter antenna	± 1.200	dB	Rectangular	0.600
Signal generator	± 0.461	dB	Rectangular	0.231
Mismatch	± 0.080	dB	U-shape	0.040
Spectrum analyzer	± 0.500	dB	Rectangular	0.250
Combined standard uncertainty $U_c(y)$				1.778
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				3.555

Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Receiver reading	±0.191	dB	K=1	0.095
Cable loss	±0.169	dB	K=2	0.084
Antenna gain	±0.191	dB	K=2	0.096
Site imperfection	±0.582	dB	Triangular	0.291
Pre-amplifier gain	±0.304	dB	K=2	0.152
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty $U_c(y)$				1.839
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				3.678

Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Receiver reading	±0.186	dB	K=1	0.093
Cable loss	±0.167	dB	K=2	0.083
Antenna gain	±0.190	dB	K=2	0.095
Site imperfection	±0.488	dB	Triangular	0.244
Pre-amplifier gain	±0.269	dB	K=2	0.134
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty $U_c(y)$				1.771
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				3.541