849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: tei@timcoengr.com

FCC PART 15 SUBPART 15.245 TEST REPORT

APPLICANT	WIRE AUTOMATIC DEVICE CO., LTD.				
	1-9-27, JOKOJI, AMAGASAKI-SHI, HYOGO-KEN				
	660-0811				
	JAPAN				
TEL					
FCC ID:	UXEMWS-SR-2				
PRODUCT DESCRIPTION	MICROWAVE SWITCH				
DATE SAMPLE RECEIVED	January 25, 2006				
DATE TESTED	February 1, 2007				
TESTED BY	Richard Block				
APPROVED BY	Mario de Aranzeta				
TIMCO REPORT NO.	W\WADECO_UXE\200UT7\200UT7TestReport.doc				
TEST RESULTS	□ FAIL				

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: tei@timcoengr.com

TABLE OF CONTENTS

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

TEST REPORT CONTAINING:

PAGE	1	TEST EQUIPMENT LIST & TEST PROCEDURE
PAGE	2	TEST PROCEDURE CONTD.
PAGE	3-4	RADIATION INTERFERENCE TEST DATA
PAGE	5	TEST SETUP PHOTO
PAGE	6	OCCUPIED BANDWIDTH
PAGE	7	OCCUPIED BANDWIDTH PLOTS

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: tei@timcoengr.com

EMC Equipment List

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date
3/10-Meter	TEI	N/A	N/A	Listed 3/27/04	3/26/07
OATS					
3-Meter	TEI	N/A	N/A	Listed 5/11/04	5/11/07
Anechoic					
Chamber					
Antenna:	Eaton	94455-1	1057	CAL 12/12/05	12/12/07
Biconnical					
Antenna:	Eaton	94455-1	1096	CAL 10/11/06	10/11/08
Biconnical					
Antenna:	Electro-Metrics	BIA-25	1171	CAL 4/29/05	4/29/07
Biconnical					
Analyzer Gray	Agilent	85650A	2811A01279	CAL 4/13/05	4/13/07
Tower Quasi-					
Peak Adapter					
Analyzer Gray	Agilent	85685A	2926A00983	CAL 9/5/05	9/5/07
Tower RF					
Preselector					
Analyzer Gray	Agilent	8566B	2928A04729	CAL 4/13/05	4/13/07
Tower			2848A18049		
Spectrum					
Analyzer					
LISN	Electro-Metrics	ANS-25/2	2604	CAL 10/5/06	10/5/08
LISN	Electro-Metrics	EM-7820	2682	CAL 4/28/05	4/28/07
Antenna: Log-	Eaton	96005	1243	CAL 12/14/05	12/14/07
Periodic					
Mixer	Agilent	11970A,K,Q	various	12/12/06	12/12/08
DR Horn	ETS	3117	ETS-1	12/30/06	12/30/08
Mixer	Oleson	M12HWA	E30425-1	12/12/06	12/12/08
	Microwave	M08HWA			
Antennas	Oleson	40-60 GHz	various	N/A	N/A
Std Gain	Microwave	60-90 GHz			
		90-110 GHz			
Spectrum	R& S	ESIB-40	100274	11/25/05	11/25/07
Receiver					

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: tei@timcoengr.com

TEST PROCEDURE

RADIATION INTERFERENCE: The test procedure used was ANSI C63.4-2003 using a Agilent spectrum analyzer with a preselector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz up to 1.0 GHz and 1.0 MHz with a video BW of 1.0 MHz above 1.0 GHz. The ambient temperature of the DUT was 78° F with a humidity of 40° .

FORMULA OF CONVERSION FACTORS: The field strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB/m. The gain of the preselector was accounted for in the spectrum analyzer meter reading.

Example:

Freq (MHz) METER READING + ACF = FS 33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI C63.4-2003 10.1.7 MEASUREMENT PROCEDURES: The DUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The DUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from $1\ m$ to $4\ m$. The antenna was placed in both the horizontal and vertical planes.

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: tei@timcoengr.com

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NUMBER: 15.245, 15.209

REQUIREMENTS:

Field Strength of Fundamental

Field Strength of Harmonics

24075- 24175 MHz 127.96 dBuV/m @3 meters 87.96 dBuV/m @3 meters

EMISSIONS RADIATED OUTSIDE OF THE SPECIFIED FREQUENCY BANDS, EXCEPT FOR HARMONICS, SHALL BE ATTENUATED BY AT LEAST 50 dB BELOW THE LEVEL OF THE FUNDAMENTAL OR TO THE GENERAL RADIATED EMISSION LIMITS IN 15.209, WHICHEVER IS THE LESSER ATTENUATION.

TEST DATA:

Emission Frequency GHz 24.153 48.306	Meter Reading dBuV 111.85 49.4	Ant. Polarity V/H H H	Correction Factor dB/m 8.35 40.39	Field Strength dBuV/m 120.2 89.79	Margin dB 17.76 8.17
72.459	42.9	H	47.8	90.7	7.26
Emission Frequency	Meter Reading	Ant. Polarity	Correction Factor	Field Strength	Margin
GHz	dBuV	V/H	dB/m	dBuV/m	dB
24.111	117.17	\mathbf{H}	8.35	125.52	12.44
48.222	37.5	\mathbf{H}	40.39	77.89	20.07
72.333	47.3	H	47.8	95.1	2.86
	Frequency	Frequency GHz dBuV 24.153 111.85 48.306 49.4 72.459 42.9 Emission Meter Frequency Reading GHz dBuV 24.111 117.17 48.222 37.5	Frequency Reading dBuV Polarity GHz dBuV V/H 24.153 111.85 H 48.306 49.4 H 72.459 42.9 H Emission Meter Ant. Frequency Reading Polarity GHz dBuV V/H 24.111 117.17 H 48.222 37.5 H	Frequency Reading dBuV Polarity V/H Factor dB/m 24.153 111.85 H 8.35 48.306 49.4 H 40.39 72.459 42.9 H 47.8 Emission Meter Ant. Correction Frequency Reading Polarity Factor GHz dBuV V/H dB/m 24.111 117.17 H 8.35 48.222 37.5 H 40.39	Frequency Reading Polarity Factor Strength GHz dBuV V/H dB/m dBuV/m 24.153 111.85 H 8.35 120.2 48.306 49.4 H 40.39 89.79 72.459 42.9 H 47.8 90.7 Emission Meter Ant. Correction Field Frequency Reading Polarity Factor Strength GHz dBuV V/H dB/m dBuV/m 24.111 117.17 H 8.35 125.52 48.222 37.5 H 40.39 77.89

The fundamental was measured at $\,$ a 3 meters distance and the harmonics measured at 1 meter distance.

The table above shows a 3 meter to 1 meter correction factor of 10 dB for the harmonics.

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: tei@timcoengr.com

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

NAME OF TEST: RADIATION INTERFERENCE

TEST PROCEDURE: The ANSI C63.4-2003 procedure was followed using a Agilent Model 8572A spectrum receiver, and an appropriate antenna. The resolution bandwidth of spectrum receiver was 1 MHz with an equal video bandwidth and an appropriate sweep speed. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported. The spectrum was searched to at least the fifth (5) harmonic of the fundamental or 100 GHz whichever is the lower.

PERFORMED BY: RICHARD BLOCK DATE: 2/2/2007

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: tei@timcoengr.com

TEST SETUP PHOTO

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: tei@timcoengr.com

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

NAME OF TEST: Occupied Bandwidth

RULES PART NO.: 15.245

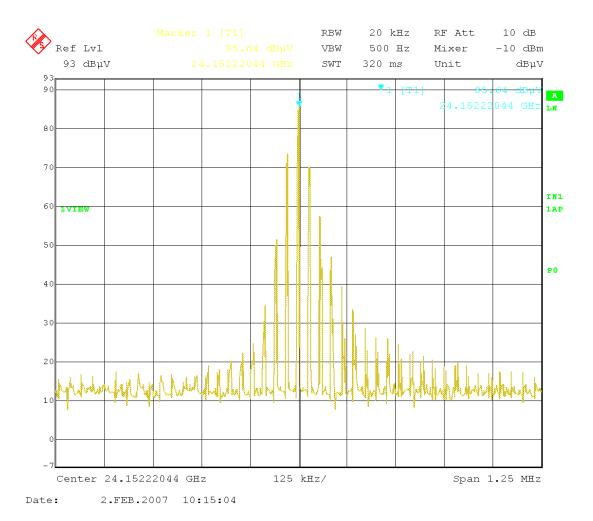
REQUIREMENTS: The field strength of any emissions appearing outside the band

edges and up to 10 kHz above and below the band edges shall be attenuated at least $50~\mathrm{dB}$ below the level of the carrier or to

the general limits of 15.245.

THE PLOTS ON THE NEXT PAGE REPRESENTS THE EMISSIONS TAKEN FOR THIS DEVICE.

METHOD OF MEASUREMENT: A small sample of the transmitter output was fed into the spectrum analyzer and the attached plot was printed. The vertical scale is set to 10 dB per division.


PERFORMED BY: Richard Block DATE: February 1, 2007

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: tei@timcoengr.com

APPLICANT: WIRE AUTOMATIC DEVICE CO., LTD.

FCC ID: UXEMWS-SR-2