



Engineering and Testing for EMC and Safety Compliance



Accredited under A2LA certificate # 2653.01

## FCC Certification Report

**Airorlite Communications, Inc.**

17-01 Pollitt Drive  
Fair Lawn, NJ 07410  
Contact: John Nashmy  
Phone: 201-398-0960  
E-Mail: jnashmy@hbe-inc.com

**Model: 50289-BAM-8-800-DL  
(851 - 869 MHz)**

**FCC ID: UT650289BAM8800DL**

**January 31, 2008**

| <b>Standards Referenced for this Report</b> |                                                                                     |
|---------------------------------------------|-------------------------------------------------------------------------------------|
| Part 2: 2006                                | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations       |
| Part 90: 2006                               | Private Land Mobile Radio Services                                                  |
| ANSI/TIA-603-C-2004                         | Land Mobile FM or PM Communications Equipment Measurement and Performance Standards |

| <b>Frequency Range<br/>(MHz)</b> | <b>Conducted Power<br/>(W)</b> | <b>Frequency<br/>Tolerance (ppm)</b> | <b>Emission Designator</b> |
|----------------------------------|--------------------------------|--------------------------------------|----------------------------|
| 851 - 869                        | 0.6*                           | Amp                                  | F8E                        |

\* Power listed is conducted per carrier

**Report Prepared by Test Engineer: Daniel Baltzell**

Document Number: 2007315

*This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc. and Airorlite Communications Inc. Test results relate only to the product tested.*

## Table of Contents

---

---

|       |                                                                                                                          |    |
|-------|--------------------------------------------------------------------------------------------------------------------------|----|
| 1     | General Information.....                                                                                                 | 5  |
| 1.1   | Test Facility .....                                                                                                      | 5  |
| 1.2   | Related Submittal(s)/Grant(s).....                                                                                       | 5  |
| 2     | Tested System Details .....                                                                                              | 6  |
| 3     | FCC Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage .....            | 8  |
| 4     | FCC Rules and Regulations Part 90 §90.219 and Part 2 §2.1046(a): Peak Output Power .....                                 | 9  |
| 4.1   | Test Procedure .....                                                                                                     | 9  |
| 4.2   | Test Data.....                                                                                                           | 9  |
| 5     | FCC Rules and Regulations Part 90 §90.210(b) and Part 2 §2.1049(c): Occupied Bandwidth (Emissions Masks) .....           | 10 |
| 5.1   | Test Procedure .....                                                                                                     | 10 |
| 5.2   | Test Data.....                                                                                                           | 10 |
| 6     | Bandwidth Rejection.....                                                                                                 | 14 |
| 6.1   | Test Procedure.....                                                                                                      | 14 |
| 6.2   | Test Data.....                                                                                                           | 14 |
| 7     | FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90 §90.210: Emissions Masks..... | 17 |
| 7.1   | Test Procedure .....                                                                                                     | 17 |
| 7.2   | Test Data.....                                                                                                           | 17 |
| 8     | Intermodulated Spurious Emissions.....                                                                                   | 20 |
| 8.1   | Test Procedure.....                                                                                                      | 20 |
| 8.2   | Test Data.....                                                                                                           | 20 |
| 9     | FCC Rules and Regulations Part 90 §90.210 and Part 2 §2.1053(a): Field Strength of Spurious Radiation .....              | 25 |
| 9.1   | Test Procedure .....                                                                                                     | 25 |
| 9.2   | Test Data.....                                                                                                           | 25 |
| 9.2.1 | CFR 47 Part 90.210 Requirements.....                                                                                     | 25 |
| 10    | FCC Rules and Regulations Part 90 §90.213 and Part 2 §2.1055: Frequency Stability .....                                  | 27 |
| 11    | Conclusion.....                                                                                                          | 27 |

## Table of Tables

---

|                                                                                         |    |
|-----------------------------------------------------------------------------------------|----|
| Table 2-1: Test System Details .....                                                    | 7  |
| Table 2-2: Equipment Under Test (EUT).....                                              | 7  |
| Table 2-3: Ports and Cabling (EUT) .....                                                | 7  |
| Table 2-4: Support Equipment.....                                                       | 7  |
| Table 4-1: RF Power Output: Carrier Output Power .....                                  | 9  |
| Table 4-2: Test Equipment for Testing RF Power Output - Conducted .....                 | 9  |
| Table 5-1: Test Equipment for Testing Occupied Bandwidth .....                          | 13 |
| Table 6-1: Test Equipment for Testing Bandwidth Rejection .....                         | 16 |
| Table 7-1: Test Equipment for Testing Conducted Spurious Emissions .....                | 19 |
| Table 8-1: Test Equipment for Testing Intermodulated Spurious Emissions .....           | 24 |
| Table 9-1: Field Strength of Spurious Radiation - 867.875 MHz Horizontal Polarity ..... | 25 |
| Table 9-2: Field Strength of Spurious Radiation - 867.8750 MHz Vertical Polarity.....   | 26 |
| Table 9-3: Test Equipment for Testing Field Strength of Spurious Radiation .....        | 26 |

## Table of Plots

---

|                                                                                               |    |
|-----------------------------------------------------------------------------------------------|----|
| Plot 5-1: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 866.2125 MHz .....          | 10 |
| Plot 5-2: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 866.2125 MHz .....            | 11 |
| Plot 5-3: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 867.8750 MHz .....          | 11 |
| Plot 5-4: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 867.8750 MHz .....            | 12 |
| Plot 5-5: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 868.9125 MHz .....          | 12 |
| Plot 5-6: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 868.9125 MHz .....            | 13 |
| Plot 6-1: Bandwidth Rejection - 851.2125 MHz.....                                             | 14 |
| Plot 6-2: Bandwidth Rejection – 860.0000 MHz.....                                             | 15 |
| Plot 6-3: Bandwidth Rejection - 868.7875 MHz.....                                             | 15 |
| Plot 7-1: Conducted Spurious Emissions - 851.2125 MHz.....                                    | 17 |
| Plot 7-2: Conducted Spurious Emissions – 860.0000 MHz.....                                    | 18 |
| Plot 7-3: Conducted Spurious Emissions - 868.7875 MHz.....                                    | 18 |
| Plot 8-1: Intermodulated Spurious Emissions - Low Channels In-Band Intermodulation.....       | 20 |
| Plot 8-2: Intermodulated Spurious Emissions - Low Channels Out of Band Intermodulation .....  | 21 |
| Plot 8-3: Intermodulated Spurious Emissions - Low Channels Intermodulation.....               | 21 |
| Plot 8-4: Intermodulated Spurious Emissions - High Channels In-Band Intermodulation .....     | 22 |
| Plot 8-5: Intermodulated Spurious Emissions - High Channels Out of Band Intermodulation ..... | 22 |
| Plot 8-6: Intermodulated Spurious Emissions - High Channels Intermodulation.....              | 23 |

---

## Table of Figures

---

|                                                 |   |
|-------------------------------------------------|---|
| Figure 2-1: Configuration of Tested System..... | 8 |
|-------------------------------------------------|---|

---

## Table of Appendixes

---

|                                                  |    |
|--------------------------------------------------|----|
| Appendix A: RF Exposure Compliance .....         | 28 |
| Appendix B: Agency Authorization Letter.....     | 29 |
| Appendix C: Confidentiality Request Letter.....  | 30 |
| Appendix D: FCC 90.219 Attestation.....          | 31 |
| Appendix E: Label Information .....              | 32 |
| Appendix F: Operational Description .....        | 33 |
| Appendix G: Parts List .....                     | 34 |
| Appendix H: Tune Up/Alignment Procedure.....     | 35 |
| Appendix I: Schematics.....                      | 36 |
| Appendix J: Block Diagram.....                   | 37 |
| Appendix K: Manual .....                         | 38 |
| Appendix L: Test Configuration Photographs ..... | 39 |
| Appendix M: External Photographs.....            | 41 |
| Appendix N: Internal Photographs.....            | 42 |

---

## Table of Photographs

---

|                                                     |    |
|-----------------------------------------------------|----|
| Photograph 1: Radiated Emissions (Front View) ..... | 39 |
| Photograph 2: Radiated Emissions (Rear View).....   | 40 |

Rhein Tech Laboratories, Inc.  
360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
<http://www.rheintech.com>

Client: Airorlite Communications, Inc.  
Model: 50289-BAM-8-800-DL  
Standards: FCC Part 90  
FCC ID: UT650289BAM8800DL  
Report Number: 2007315

## 1 General Information

The following Certification Report is prepared on behalf of **Airorlite Communications, Inc.** in accordance with the Federal Communications Commission Part 90 Rules and Regulations. The Equipment Under Test (EUT) was **Model 50289-BAM-8-800-DL, FCC ID: UT650289BAM8800DL**. The test results reported in this document relate only to the item that was tested.

All measurements contained in this application were conducted in accordance with the applicable FCC Rules and Regulations in CFR 47. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

### 1.1 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc., 360 Herndon Parkway, Suite 1400, Herndon, Virginia, 20170. This site has been fully described in a report submitted to and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing.

### 1.2 Related Submittal(s)/Grant(s)

This is an original application report.

## 2 Tested System Details

The test sample was received on January 11, 2008. Listed below are the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this test, as applicable.

The Airorlite Communications, Inc. Model 50289-BAM-8-800 800 MHz Low Time Delay Bi-Directional Amplifier is composed of one directional 8 channel uplink amplifier and a one directional 8 channel downlink amplifier. Together, these two components form a full duplex Bi-Directional Amplifier system.

The multi-channel booster is divided into two independent 8 channel systems (8 high channels and 8 low channels) for full duplex operations. Downlink signals are received at the roof antenna, 8 selected frequencies are processed (filtering and amplification), and rebroadcast on a radiating cable. Conversely, uplink signals induced onto radiating cable are similarly processed and rebroadcast on the roof antenna (reference FCC ID: UT650289BAM8800UL). The uplink channels are the low band channels (806 - 824 MHz), and the 8 downlink channels are the high band (851 - 869 MHz). Note that the system as a whole is a "bi-directional booster"; this application is only for the downlink channels (the uplink channels are certified under FCC ID: UT650289BAM8800UL). We request that the grant notes reflect: "Part of booster system used with FCC ID: UT650289BAM8800UL."

Each system consists of a LNA/8-way splitter, 8 channel modules (down-up converters with synthesized LO) and 8 individual RF power amplifiers; the output of these 8 RF power amplifiers is combined in a single passive 8 channel combining device to produce a single RF power out. Typically these systems are used with an external duplexer which combines the uplink RF output and downlink RF input to a common "Off the Air" antenna.

The RF signal flow of the two systems is identical. RF band pass filters internal to the system modules determine high band or low band operations.

Note that the device does not translate frequencies, and therefore, the RF output will not change with temperature or voltage variation. Additionally, the device is designed to be used with FM input/output signals.

The system operates with an internal limiter set to the maximum output level and programmable attenuators are used to reduce this level to the desired output level for a particular application.

The EUT is a Class B signal booster which although it channelizes the signals, the level of channelization is such the several channels of information may pass through a single channel of the bi-directional amplifier.

The input drive level was set to cause the limiter to operate at full value.

The device cannot operate in saturation. The channel card is band limited by crystal filters which prevent spectral regrowth. The channel cards are limited to a max output of -18 dBm and the power amplifier gain is fixed at a level that does not result in saturation.

Rhein Tech Laboratories, Inc.  
 360 Herndon Parkway  
 Suite 1400  
 Herndon, VA 20170  
<http://www.rheintech.com>

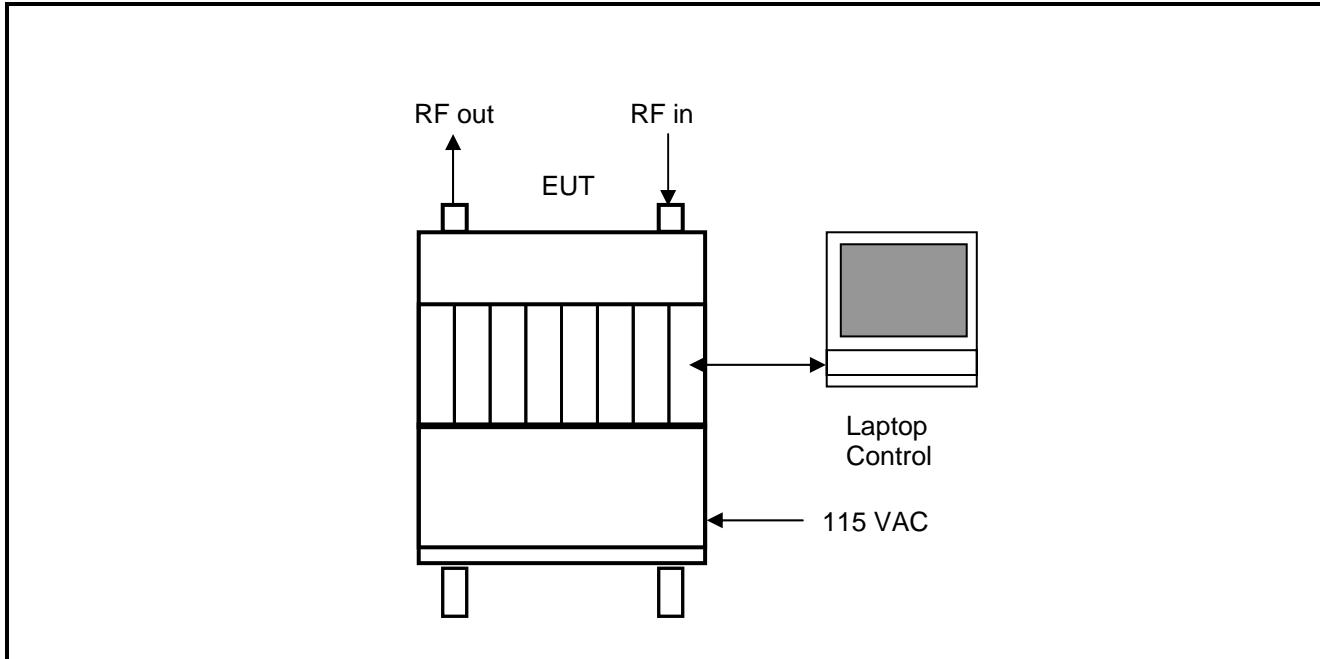
Client: Airorlite Communications, Inc.  
 Model: 50289-BAM-8-800-DL  
 Standards: FCC Part 90  
 FCC ID: UT650289BAM8800DL  
 Report Number: 2007315

**Table 2-1: Test System Details**

|                             |                                                        |
|-----------------------------|--------------------------------------------------------|
| <b>Model Tested</b>         | 50289-BAM-8-800-DL (bi-directional booster (downlink)) |
| <b>Frequency Band</b>       | 851 - 869 MHz                                          |
| <b>Maximum Output Power</b> | 0.6 W conducted per carrier                            |
| <b>Number of Channels</b>   | 8                                                      |
| <b>Channel Bandwidth</b>    | 25 kHz nominal                                         |
| <b>Channel Spacing</b>      | 25 kHz                                                 |
| <b>Primary Power</b>        | 95 - 132 VAC, 45-64 Hz, 15 Amps, Maximum               |
| <b>Duty Cycle</b>           | Continuous                                             |

**Table 2-2: Equipment Under Test (EUT)**

| Part                   | Manufacturer                   | Model              | PN/SN | FCC ID            | RTL Bar Code |
|------------------------|--------------------------------|--------------------|-------|-------------------|--------------|
| Bi-Directional Booster | Airorlite Communications, Inc. | 50289-BAM-8-800-DL | N/A   | UT650289BAM8800DL | 18251        |


**Table 2-3: Ports and Cabling (EUT)**

| Port   | Cable Type | Quantity | Length (feet) | Shield |
|--------|------------|----------|---------------|--------|
| RF In  | N type     | 1        | N/A           | N/A    |
| RF Out | N type     | 1        | N/A           | N/A    |

**Table 2-4: Support Equipment**

| Part                   | Manufacturer                   | Model         | PN/SN | FCC ID | RTL Bar Code |
|------------------------|--------------------------------|---------------|-------|--------|--------------|
| Notebook Computer      | Dell                           | Inspiron 6400 | N/A   | N/A    | 901465       |
| Serial Interface Cable | N/A                            | DB-9          | N/A   | N/A    | N/A          |
| 12VDC Power Supply     | Airorlite Communications, Inc. | 50483PS12     | N/A   | N/A    | 18252        |

**Figure 2-1: Configuration of Tested System**



**3 FCC Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage**

**Nominal DC Voltage:** 12 VDC  
**Current:** 1.1 A

## 4 FCC Rules and Regulations Part 90 §90.219 and Part 2 §2.1046(a): Peak Output Power

### 4.1 Test Procedure

ANSI TIA-603-2004, section 2.2.1.

The EUT was connected to a coaxial attenuator having a  $50\ \Omega$  load impedance. Any cable losses were accounted for.

Though an antenna gain of 8.9 dBd (11 dBi) is used to show compliance with the 90.219 limit, RF exposure requirements dictate that the max antenna gain be -2 dBd (0.6 dBi). The downlink antenna is typically a leaky coax with 60 dB coupling. Per the manufacturer, -22.1 dBd (-20 dBi) is representative of the leaky coax gain.

### 4.2 Test Data

**Table 4-1: RF Power Output: Carrier Output Power**

| Frequency<br>MHz | Power Level<br>Measured<br>(dBm/carrier) | Antenna Gain<br>(dBd) | ERP<br>(W) | Limit §90.219<br>(W) |
|------------------|------------------------------------------|-----------------------|------------|----------------------|
| 866.2125         | 25.04                                    | 8.9                   | 2.5        | 5                    |
| 867.8750         | 27.50                                    | 8.9                   | 4.4        | 5                    |
| 868.9125         | 27.63                                    | 8.9                   | 4.5        | 5                    |

\*Measurement accuracy: +/- 0.3 dB

**Table 4-2: Test Equipment for Testing RF Power Output - Conducted**

| RTL Asset # | Manufacturer            | Model                 | Part Type                          | Serial Number | Calibration<br>Due |
|-------------|-------------------------|-----------------------|------------------------------------|---------------|--------------------|
| 901184      | Agilent<br>Technologies | E4416A                | Power Meter                        | GB41050573    | 10/24/08           |
| 901356      | Agilent<br>Technologies | E9323A                | Power Sensor                       | 31764-264     | 10/24/08           |
| 901138      | Weinschel<br>Corp.      | 48-40-34 DC-<br>18GHz | Attenuator, 100W<br>40dB           | BK5883        | 1/13/09            |
| 901157      | Marconi<br>Instruments  | 2022D                 | Signal Generator<br>(10 kHz-1 GHz) | 119161/056    | 12/12/08           |

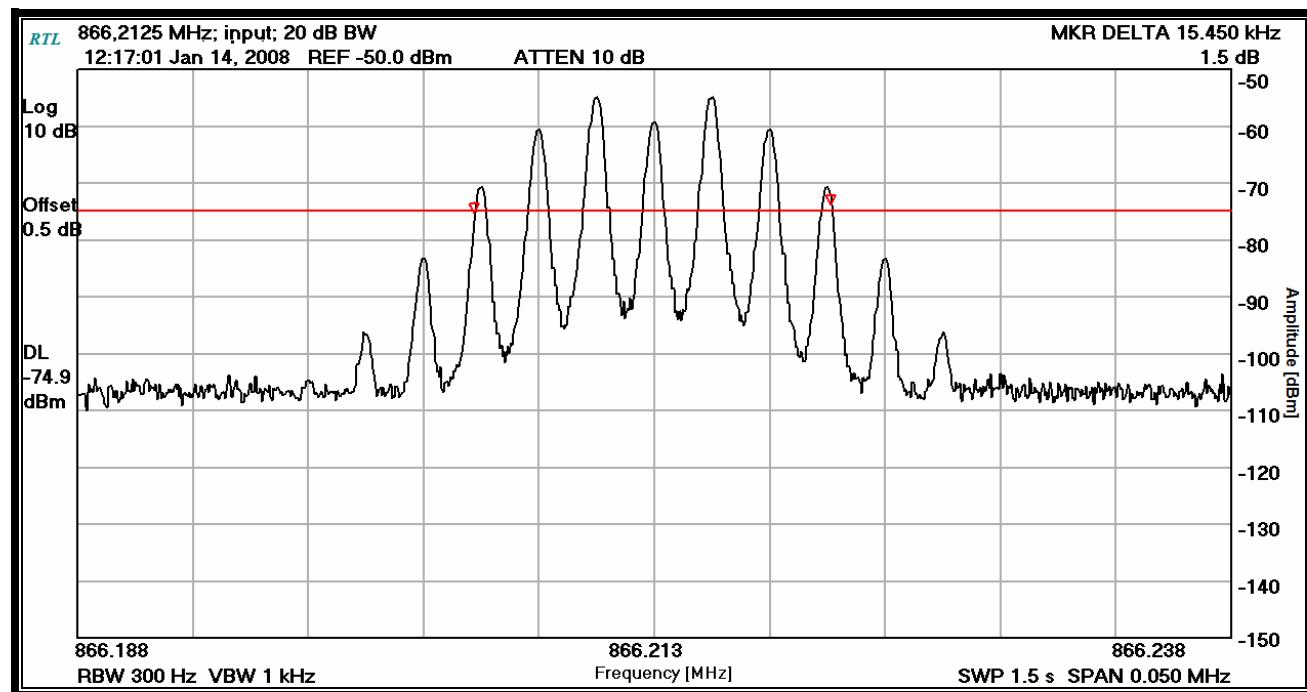
### Test Personnel:

|                 |                                                                                     |                  |
|-----------------|-------------------------------------------------------------------------------------|------------------|
| Daniel Baltzell |  | January 14, 2008 |
| Test Engineer   | Signature                                                                           | Date Of Tests    |

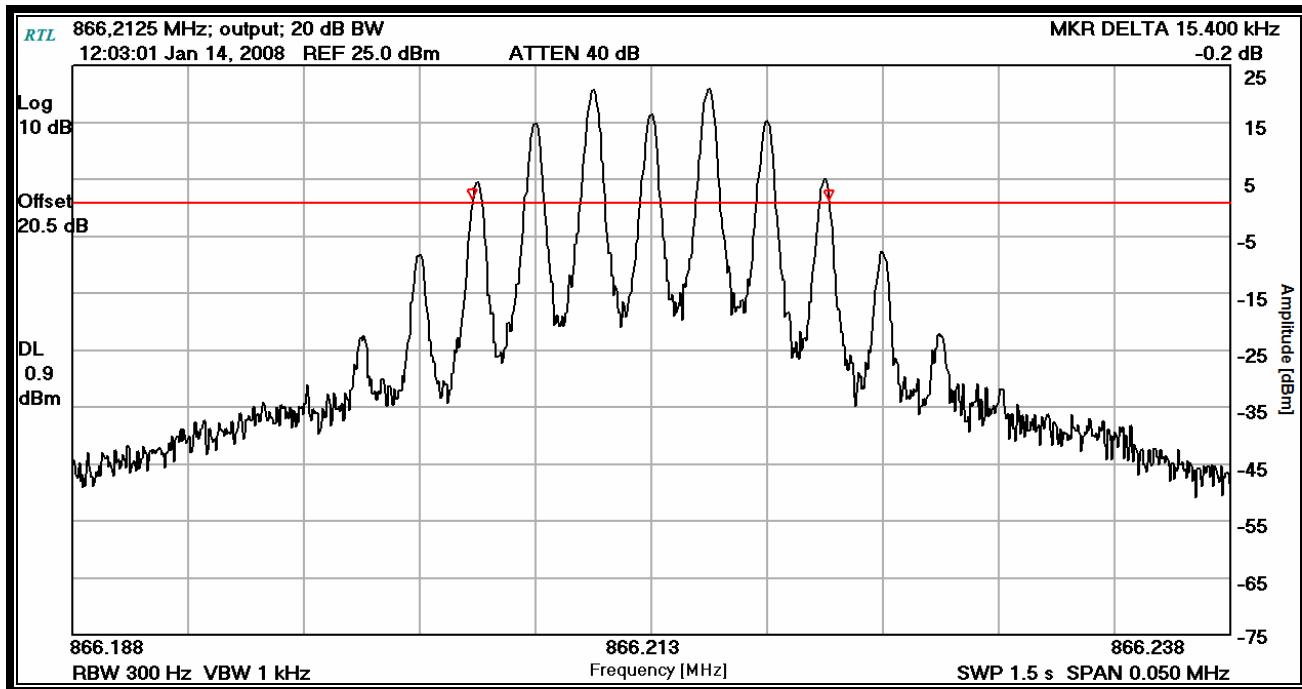
## 5 FCC Rules and Regulations Part 90 §90.210(b) and Part 2 §2.1049(c): Occupied Bandwidth (Emissions Masks)

### 5.1 Test Procedure

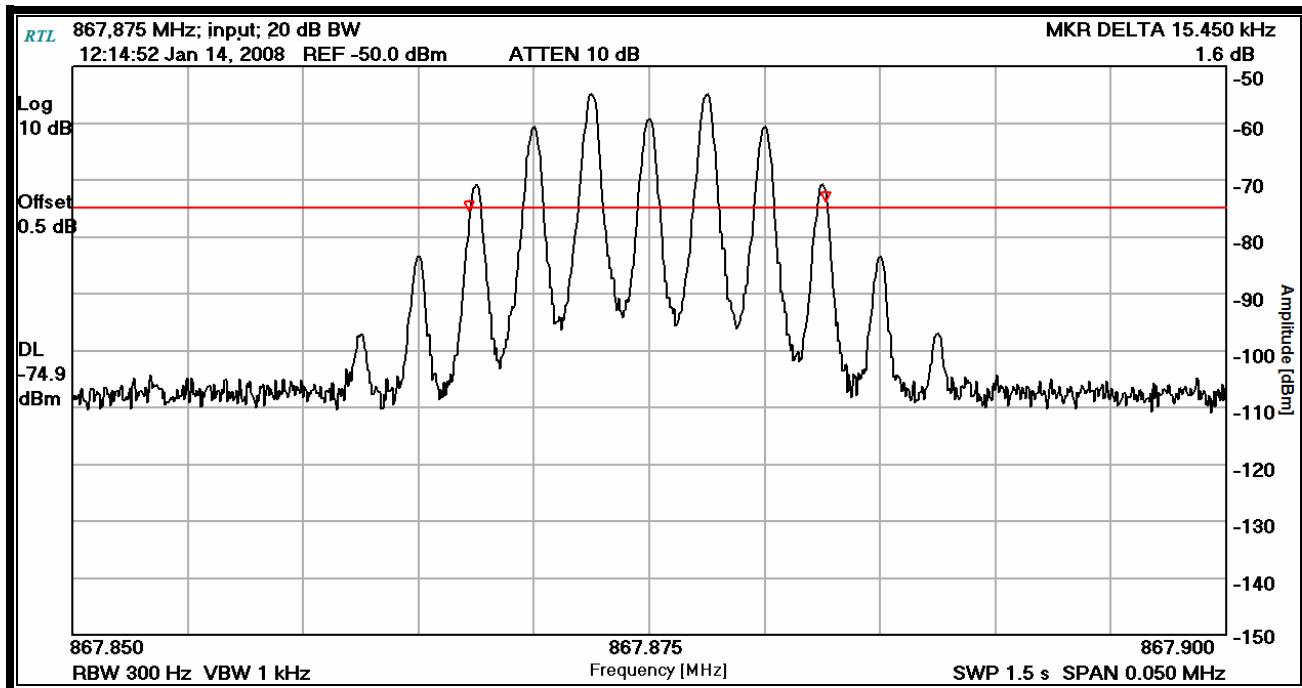
ANSI TIA-603-C-2004, Section 2.2.11.


The transmitter is terminated with a  $50 \Omega$  load and interfaced with a spectrum analyzer. Cable losses were accounted for in measurement.

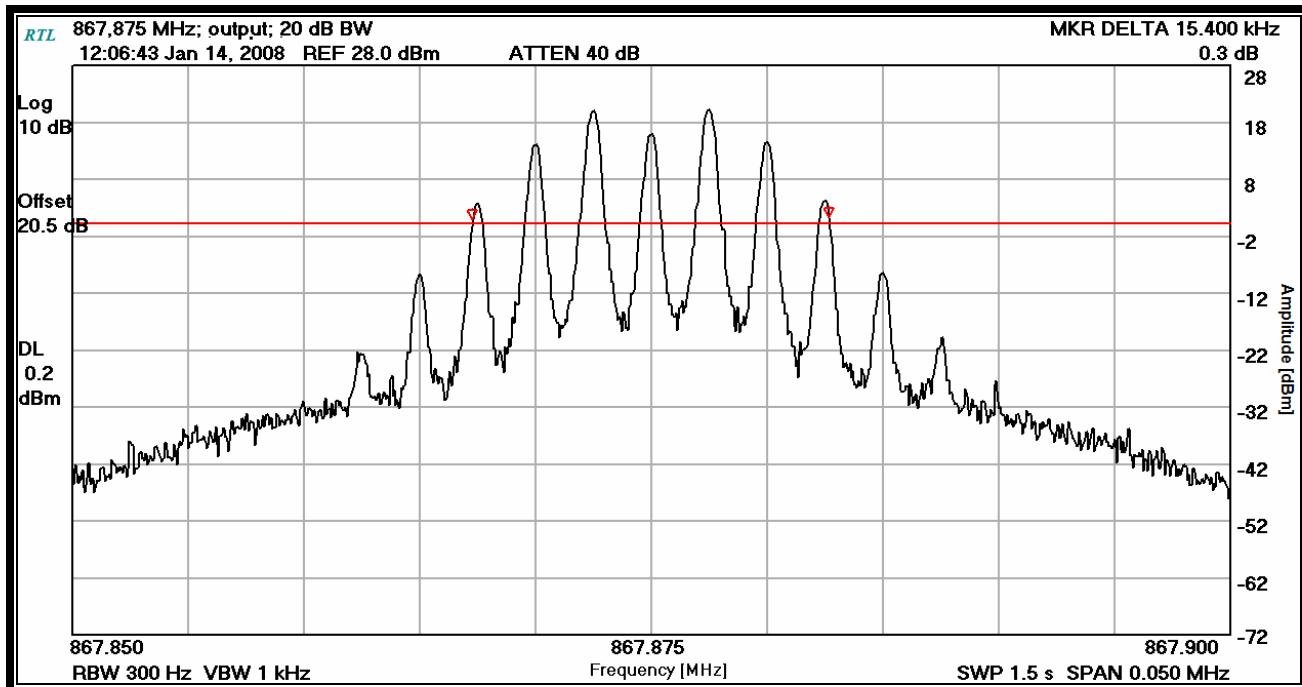
Full modulation was applied with 5 kHz deviation and a 2500 Hz tone. Signal input level was set to -75 dBm.


### 5.2 Test Data

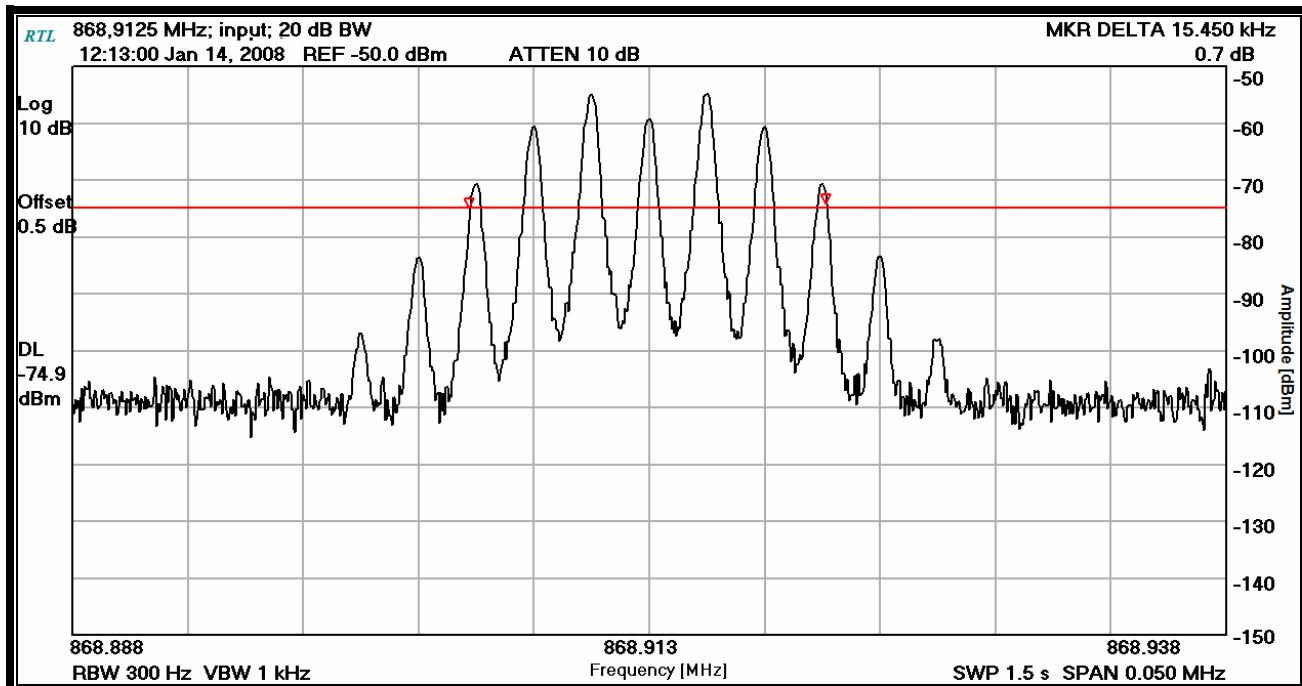
Bandwidth Limit: 1 MHz


**Plot 5-1: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 866.2125 MHz**

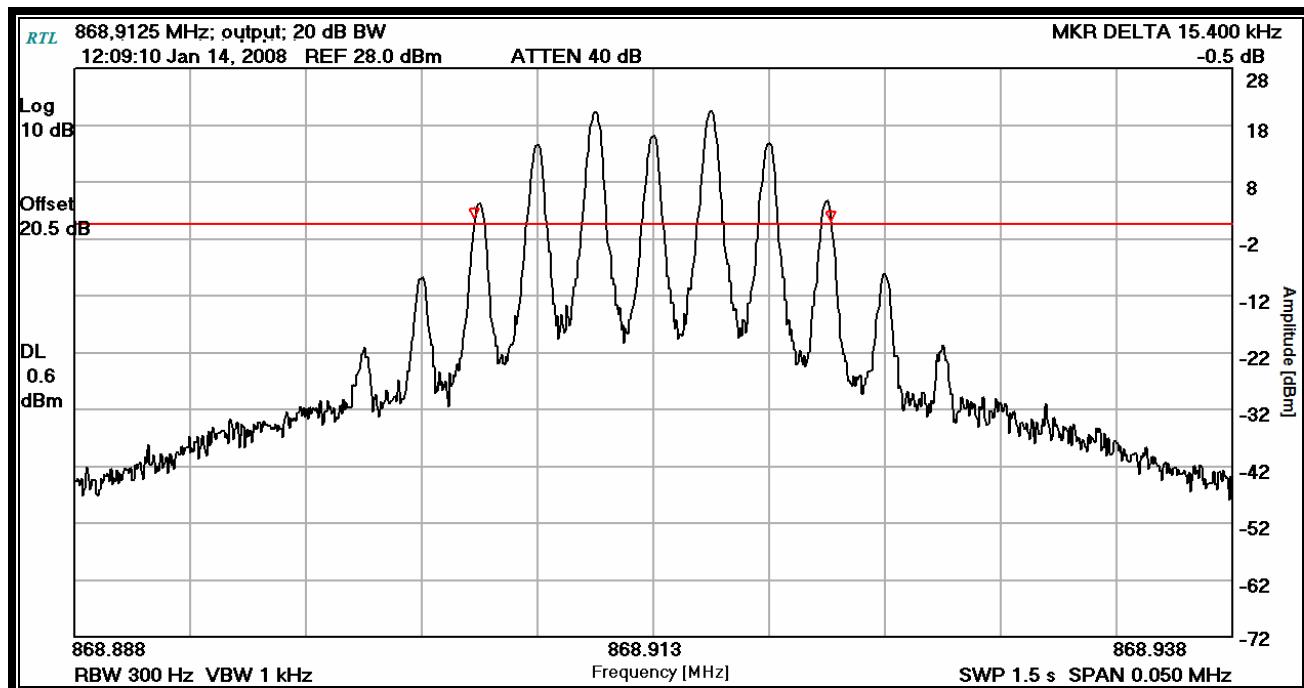



**Plot 5-2: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 866.2125 MHz**




**Plot 5-3: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 867.8750 MHz**




**Plot 5-4: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 867.8750 MHz**



**Plot 5-5: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 868.9125 MHz**



**Plot 5-6: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 868.9125 MHz**



**Table 5-1: Test Equipment for Testing Occupied Bandwidth**

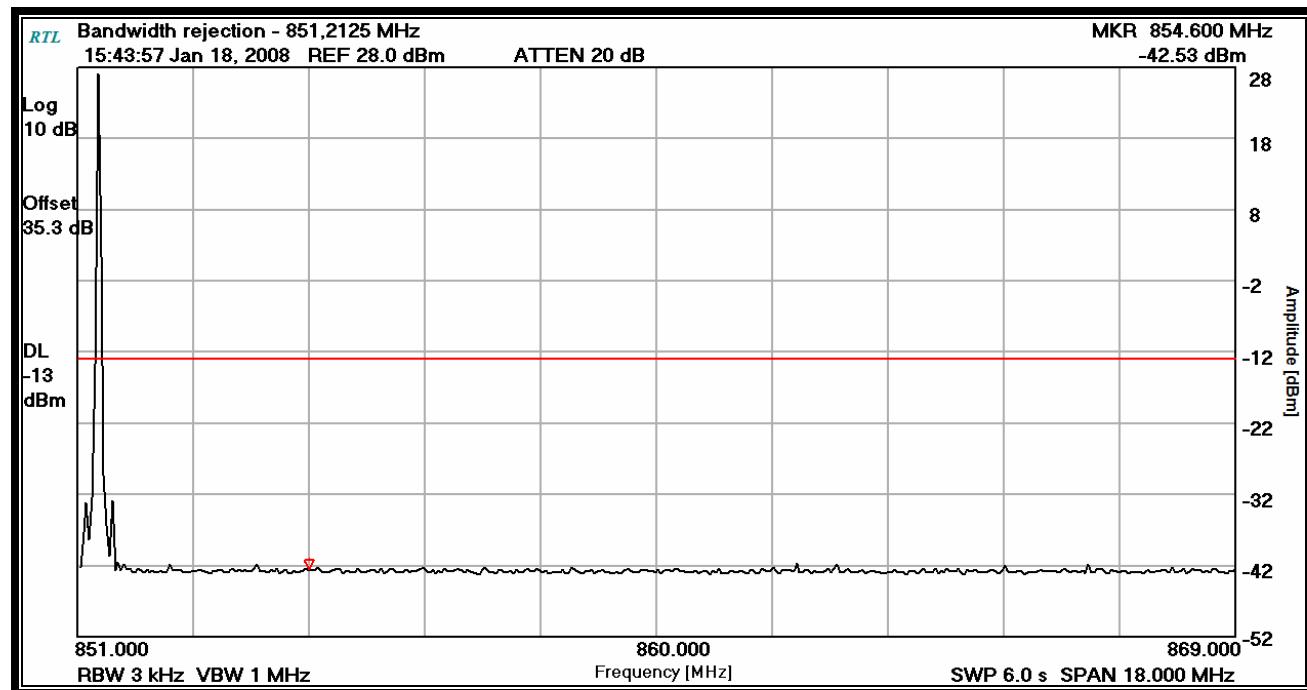
| RTL Asset # | Manufacturer    | Model      | Part Type                                   | Serial Number | Calibration Due |
|-------------|-----------------|------------|---------------------------------------------|---------------|-----------------|
| 901215      | Hewlett Packard | 8596EM     | EMC Analyzer (9 kHz-12.8 GHz)               | 3826A00144    | 10/17/08        |
| 901057      | Hewlett Packard | 3336B      | Synthesizer/Level Generator (100 Hz-20 MHz) | 2514A02585    | 12/13/08        |
| 901118      | Hewlett Packard | HP8901B    | Modulation Analyzer 150 kHz-1300 MHz        | 2406A00178    | 8/20/08         |
| 901396      | MCE Weinschel   | 48-40-34   | Attenuator, 40 dB, DC-18 GHz, 100 W         | 93453         | 12/02/08        |
| 900099      | Marconi         | 52022-910E | Signal Generator, 10 kHz-1 GHz              | 119044-189    | 3/28/08         |

**Test Personnel:**

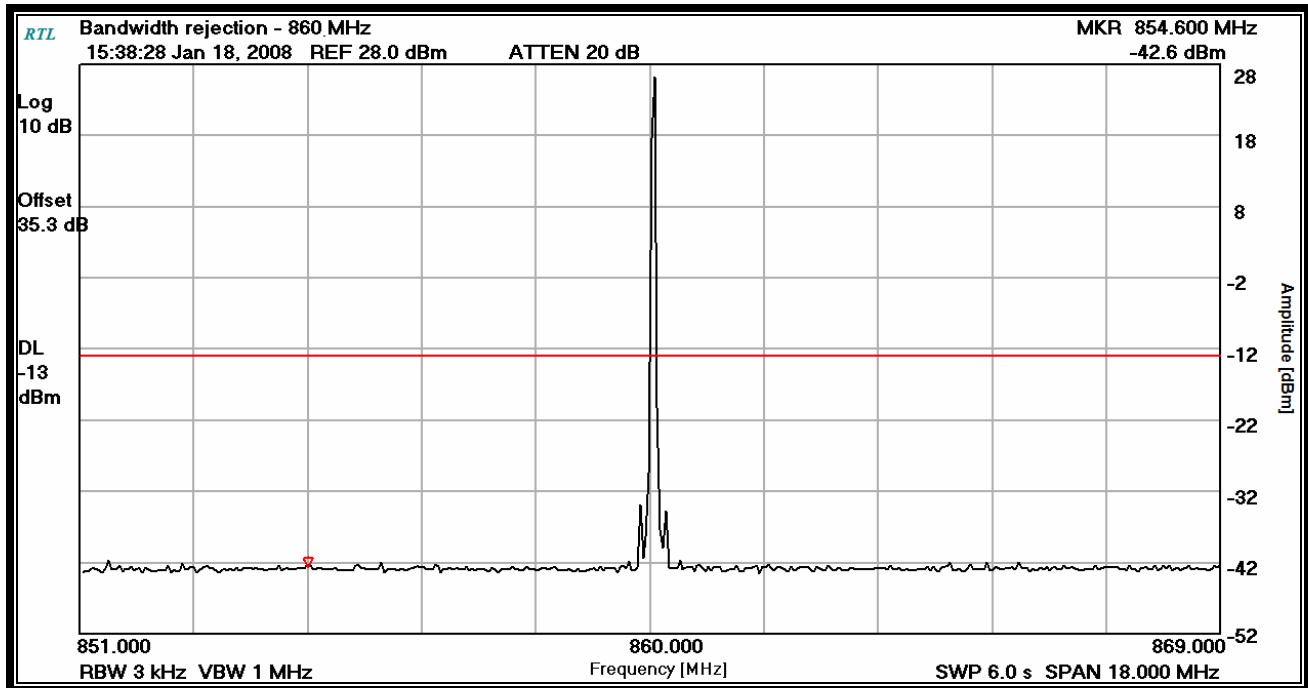
|                          |           |                  |
|--------------------------|-----------|------------------|
| Daniel Baltzell          |           | January 14, 2008 |
| Test Technician/Engineer | Signature | Date of Tests    |

## 6 Bandwidth Rejection

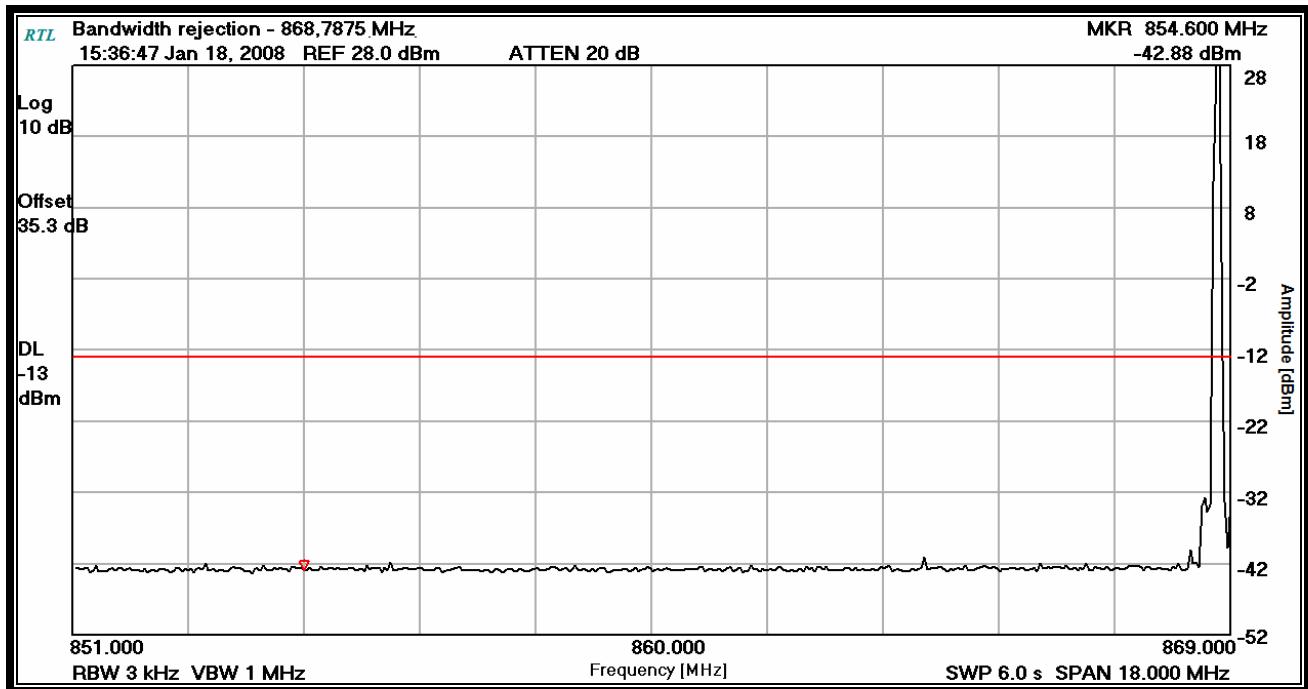
### 6.1 Test Procedure


ANSI TIA-603-C-2004, Section 2.2.11.

Bandwidth rejection was performed by sweeping below and through the channel band with the spectrum analyzer on max hold. The transmitter is terminated with a  $50 \Omega$  load and interfaced with a spectrum analyzer. Cable losses were accounted for in measurement.


Full modulation was applied with 5 kHz deviation and a 2500 Hz tone.

### 6.2 Test Data


Plot 6-1: Bandwidth Rejection - 851.2125 MHz



**Plot 6-2: Bandwidth Rejection – 860.0000 MHz**



**Plot 6-3: Bandwidth Rejection - 868.7875 MHz**



Rhein Tech Laboratories, Inc.  
 360 Herndon Parkway  
 Suite 1400  
 Herndon, VA 20170  
<http://www.rheintech.com>

Client: Airorlite Communications, Inc.  
 Model: 50289-BAM-8-800-DL  
 Standards: FCC Part 90  
 FCC ID: UT650289BAM8800DL  
 Report Number: 2007315

**Table 6-1: Test Equipment for Testing Bandwidth Rejection**

| RTL Asset # | Manufacturer        | Model             | Part Type                                   | Serial Number | Calibration Due |
|-------------|---------------------|-------------------|---------------------------------------------|---------------|-----------------|
| 901215      | Hewlett Packard     | 8596EM            | EMC Analyzer (9 kHz-12.8 GHz)               | 3826A00144    | 10/17/08        |
| 901057      | Hewlett Packard     | 3336B             | Synthesizer/Level Generator (100 Hz-20 MHz) | 2514A02585    | 12/13/08        |
| 901118      | Hewlett Packard     | HP8901B           | Modulation Analyzer (150 kHz-1300 MHz)      | 2406A00178    | 8/20/08         |
| 900099      | Marconi             | 52022-910E        | Signal Generator, (10 kHz-1 GHz)            | 119044-189    | 3/28/08         |
| 901139      | Weinschel Corp.     | 48-20-34 DC-18GHz | Attenuator, 100W 20dB                       | BK5859        | 1/13/09         |
| 901424      | Insulated Wire Inc. | KPS-1503-360-KPS  | RF cable 36"                                | NA            | 10/5/08         |

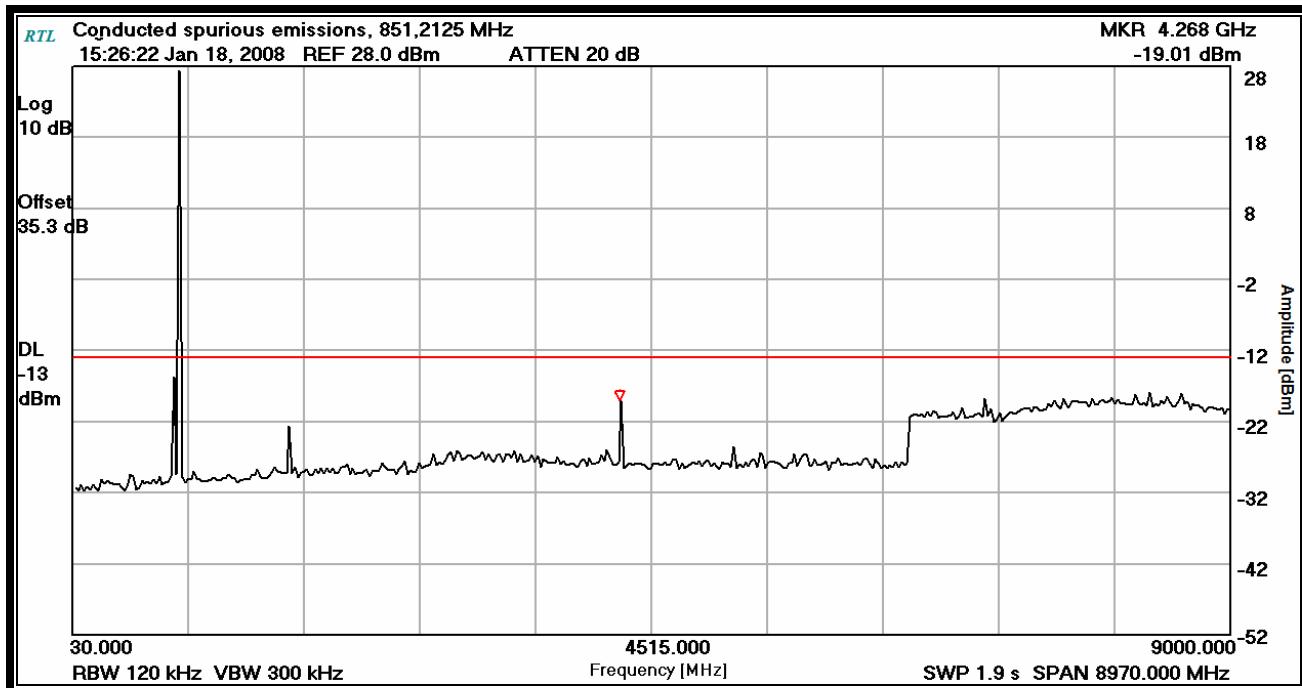
**Test Personnel:**

|                 |                                                                                     |                  |
|-----------------|-------------------------------------------------------------------------------------|------------------|
| Daniel Baltzell |  | January 18, 2008 |
| Test Engineer   | Signature                                                                           | Date Of Tests    |

## 7 FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90 §90.210: Emissions Masks

### 7.1 Test Procedure

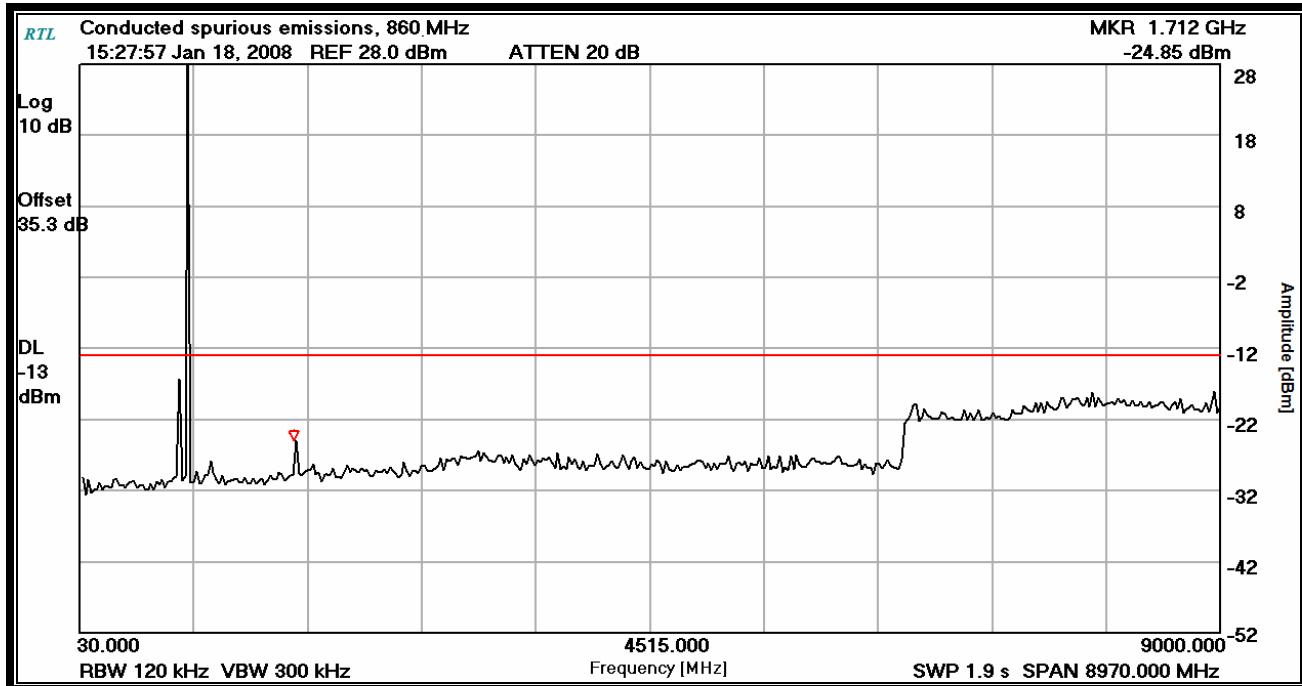
ANSI TIA-603-C-2004, Section 2.2.13.


The transmitter is terminated with a  $50 \Omega$  load and interfaced with a spectrum analyzer. Cable losses were accounted for in measurement.

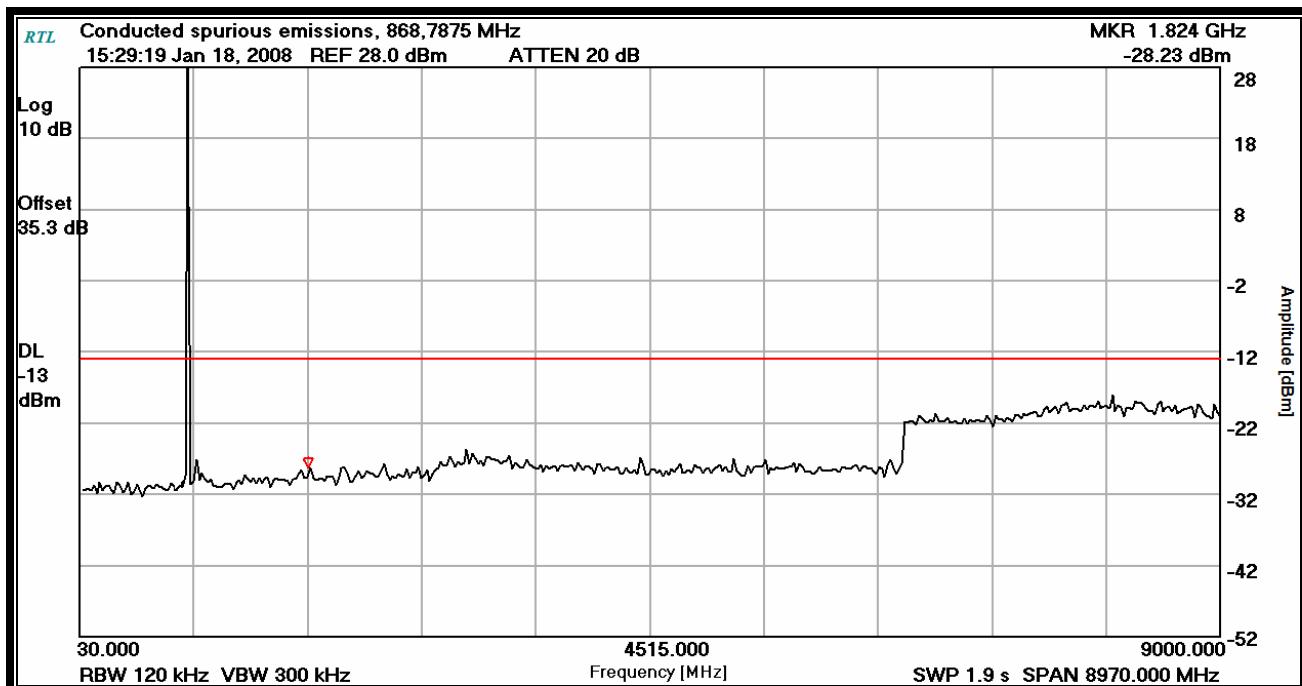
### 7.2 Test Data

Frequency range of measurement per Part 2.1057: 9 kHz to  $10 \times F_c$ .

The worst case (unwanted emissions) channels are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.


**Plot 7-1: Conducted Spurious Emissions - 851.2125 MHz**




Rhein Tech Laboratories, Inc.  
360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
<http://www.rheintech.com>

Client: Airolite Communications, Inc.  
Model: 50289-BAM-8-800-DL  
Standards: FCC Part 90  
FCC ID: UT650289BAM8800DL  
Report Number: 2007315

**Plot 7-2: Conducted Spurious Emissions – 860.0000 MHz**



**Plot 7-3: Conducted Spurious Emissions - 868.7875 MHz**



Rhein Tech Laboratories, Inc.  
 360 Herndon Parkway  
 Suite 1400  
 Herndon, VA 20170  
<http://www.rheintech.com>

Client: Airorlite Communications, Inc.  
 Model: 50289-BAM-8-800-DL  
 Standards: FCC Part 90  
 FCC ID: UT650289BAM8800DL  
 Report Number: 2007315

**Table 7-1: Test Equipment for Testing Conducted Spurious Emissions**

| RTL Asset # | Manufacturer         | Model             | Part Type                                   | Serial Number | Calibration Due |
|-------------|----------------------|-------------------|---------------------------------------------|---------------|-----------------|
| 901215      | Hewlett Packard      | 8596EM            | EMC Analyzer (9 kHz-12.8 GHz)               | 3826A00144    | 10/17/08        |
| 901057      | Hewlett Packard      | 3336B             | Synthesizer/Level Generator (100 Hz-20 MHz) | 2514A02585    | 12/13/08        |
| 901118      | Hewlett Packard      | HP8901B           | Modulation Analyzer (150 kHz-1300 MHz)      | 2406A00178    | 8/20/08         |
| 901139      | Weinschel Corp.      | 48-20-34 DC-18GHz | Attenuator, 100W 20dB                       | BK5859        | 1/13/09         |
| 901424      | Insulated Wire Inc.  | KPS-1503-360-KPS  | RF cable 36"                                | NA            | 10/5/08         |
| 901425      | Insulated Wire, Inc. | KPS-1503-2400-KPS | RF cable, 20'                               | NA            | 10/5/08         |
| 900099      | Marconi              | 52022-910E        | Signal Generator, (10 kHz-1 GHz)            | 119044-189    | 3/28/08         |

**Test Personnel:**

|                 |                                                                                     |                  |
|-----------------|-------------------------------------------------------------------------------------|------------------|
| Daniel Baltzell |  | January 18, 2007 |
| Test Engineer   | Signature                                                                           | Date Of Tests    |

## 8 Intermodulated Spurious Emissions

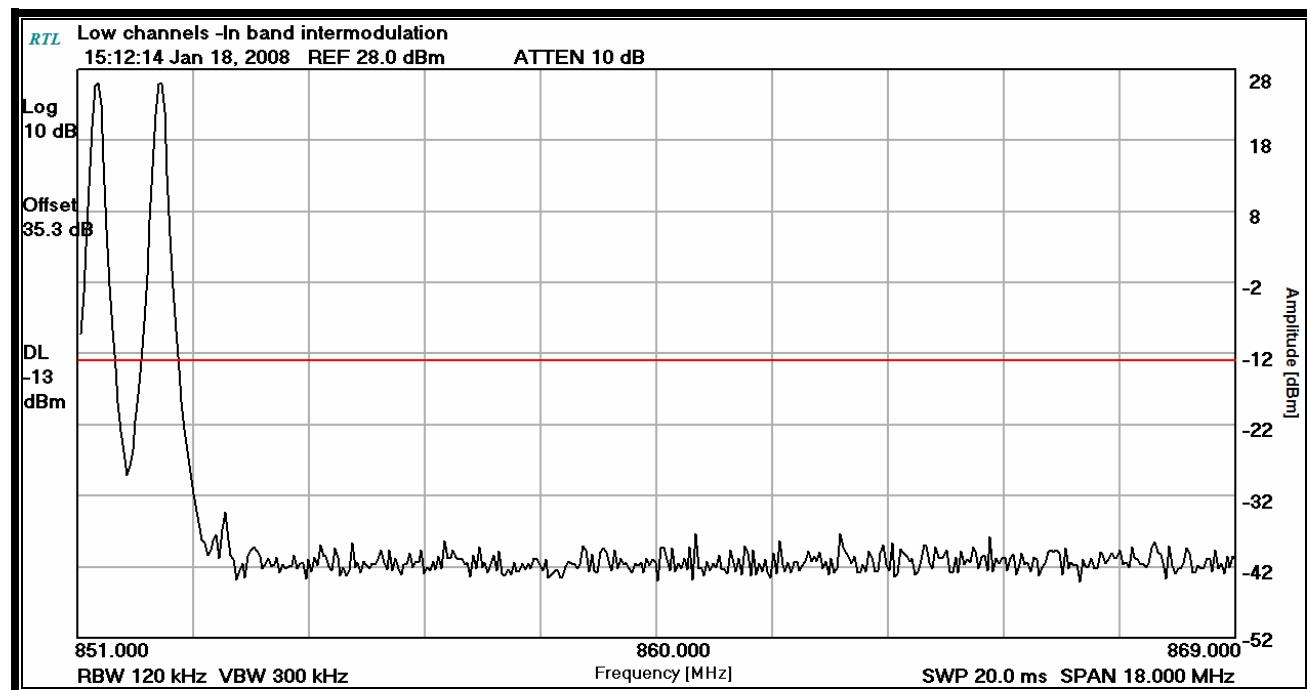
### 8.1 Test Procedure

The transmitter is terminated with a  $50 \Omega$  load and interfaced with a spectrum analyzer. Cable losses were accounted for in the measurement. Two signal generators were used to produce interference signals. Two signals were injected on the low end of the band and two signals were injected on the high end of the band. Testing was performed from 30 MHz – 9 GHz.

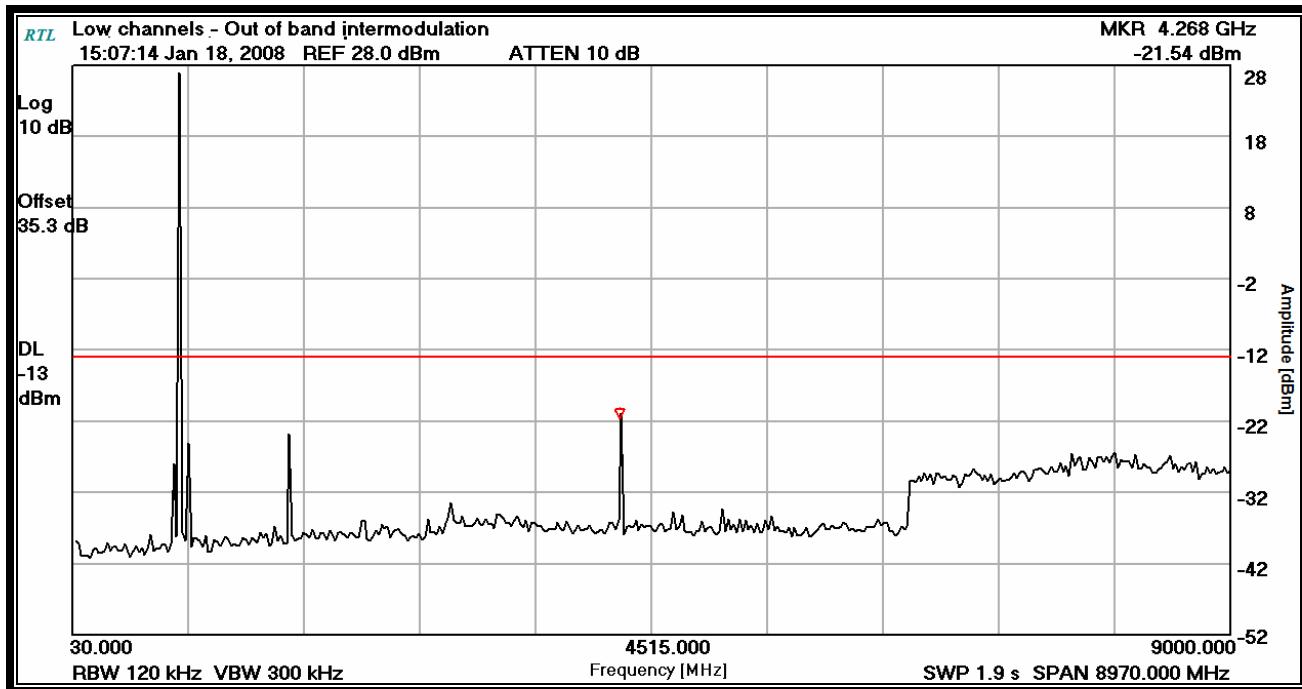
Low end: Plots 8-1-8-3

851.2125 MHz – 5 kHz deviation, 2.5 kHz tone at -50 dBm

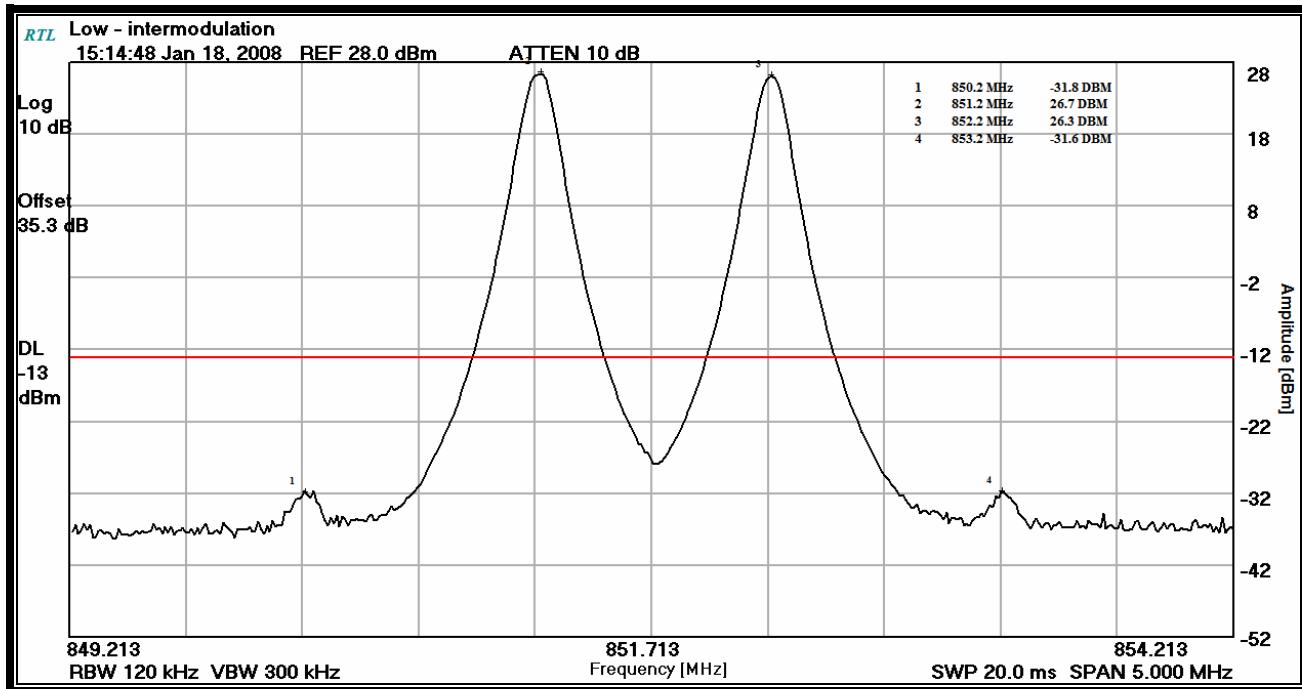
852.2125 MHz - 5 kHz deviation, 2.5 kHz tone at -50 dBm


High end: Plots 8-4-8-6

867.7875 MHz – 5 kHz deviation, 1 kHz tone at -50 dBm


868.7875 MHz - 5 kHz deviation, 2.5 kHz tone at -50 dBm

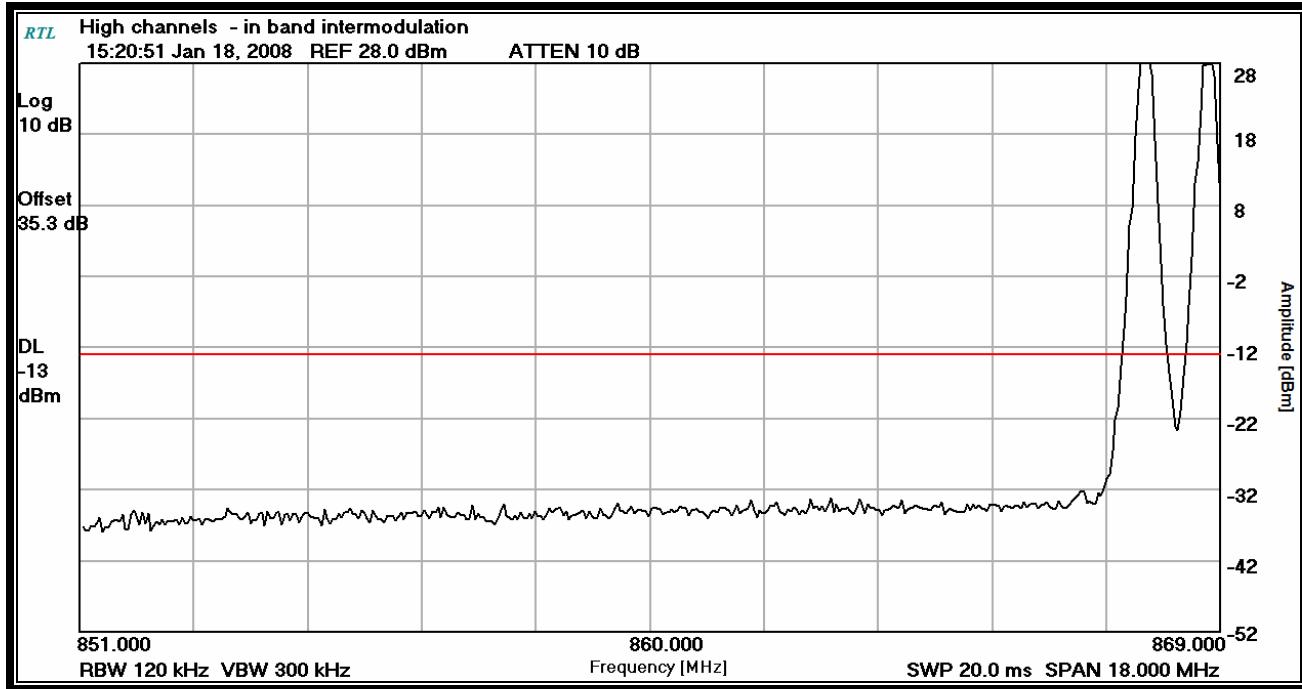
### 8.2 Test Data


**Plot 8-1: Intermodulated Spurious Emissions - Low Channels In-Band Intermodulation**

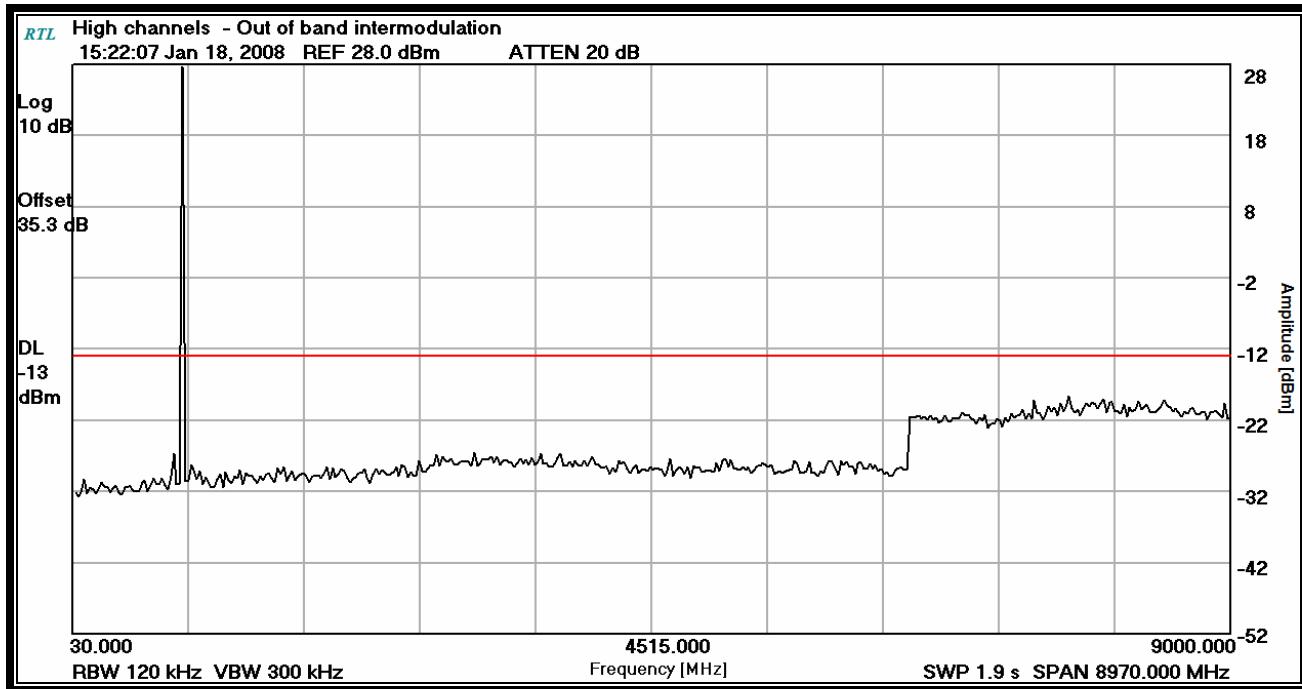


**Plot 8-2: Intermodulated Spurious Emissions - Low Channels Out of Band Intermodulation**

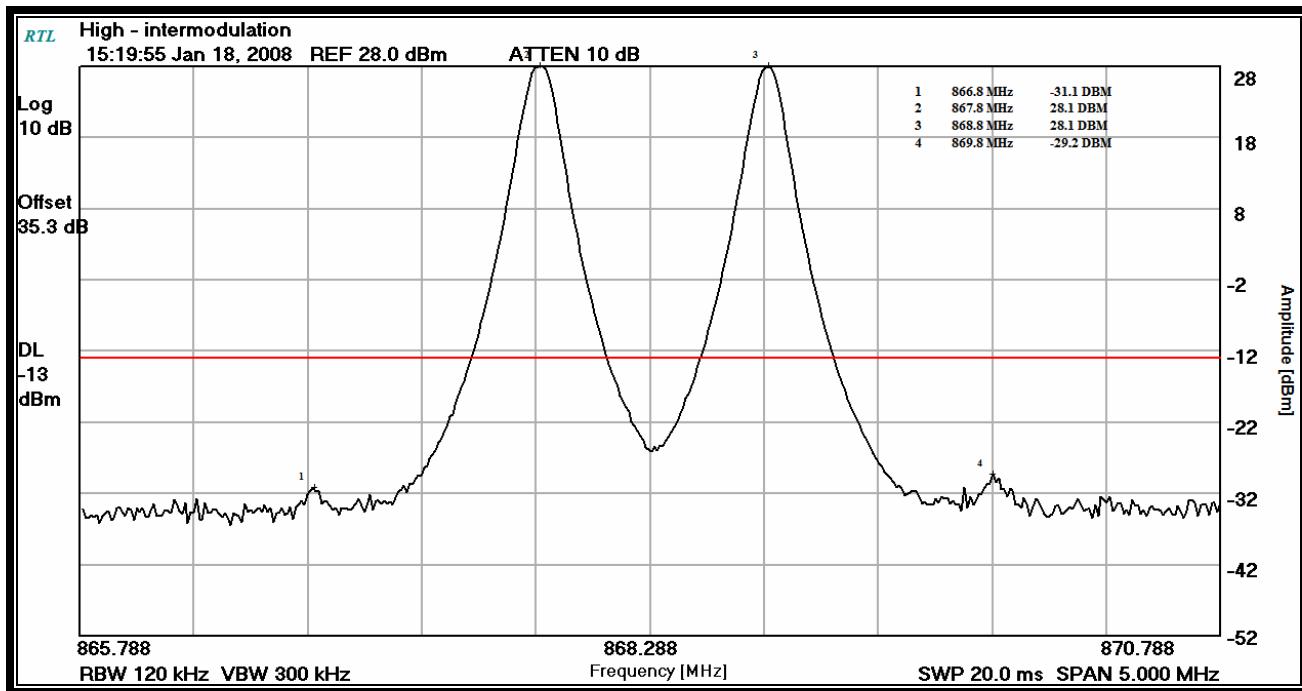



**Plot 8-3: Intermodulated Spurious Emissions - Low Channels Intermodulation**




Rhein Tech Laboratories, Inc.  
360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
<http://www.rheintech.com>

Client: Airolite Communications, Inc.  
Model: 50289-BAM-8-800-DL  
Standards: FCC Part 90  
FCC ID: UT650289BAM8800DL  
Report Number: 2007315


**Plot 8-4: Intermodulated Spurious Emissions - High Channels In-Band Intermodulation**



**Plot 8-5: Intermodulated Spurious Emissions - High Channels Out of Band Intermodulation**



**Plot 8-6: Intermodulated Spurious Emissions - High Channels Intermodulation**



Rhein Tech Laboratories, Inc.  
 360 Herndon Parkway  
 Suite 1400  
 Herndon, VA 20170  
<http://www.rheintech.com>

Client: Airorlite Communications, Inc.  
 Model: 50289-BAM-8-800-DL  
 Standards: FCC Part 90  
 FCC ID: UT650289BAM8800DL  
 Report Number: 2007315

**Table 8-1: Test Equipment for Testing Intermodulated Spurious Emissions**

| RTL Asset # | Manufacturer         | Model             | Part Type                                   | Serial Number | Calibration Due |
|-------------|----------------------|-------------------|---------------------------------------------|---------------|-----------------|
| 901215      | Hewlett Packard      | 8596EM            | EMC Analyzer (9 kHz–12.8 GHz)               | 3826A00144    | 10/17/08        |
| 900352      | Werlatone            | C1795             | Directional Coupler                         | 4989          | 06/06/08        |
| 901157      | Marconi Instruments  | 2022D             | Signal Generator                            | 119161/056    | 12/12/08        |
| 900099      | Marconi              | 52022-910E        | Signal Generator, (10 kHz-1GHz)             | 119044-189    | 3/28/08         |
| 901057      | Hewlett Packard      | 3336B             | Synthesizer/Level Generator (100 Hz-20 MHz) | 2514A02585    | 12/13/08        |
| 901118      | Hewlett Packard      | HP8901B           | Modulation Analyzer (150 kHz-1300 MHz)      | 2406A00178    | 8/20/08         |
| 901424      | Insulated Wire Inc.  | KPS-1503-360-KPS  | RF cable 36"                                | NA            | 10/5/08         |
| 901425      | Insulated Wire, Inc. | KPS-1503-2400-KPS | RF cable, 20'                               | NA            | 10/5/08         |
| 901139      | Weinschel Corp.      | 48-20-34 DC-18GHz | Attenuator, 100W 20dB                       | BK5859        | 1/13/09         |

**Test Personnel:**

|                 |                                                                                     |                  |
|-----------------|-------------------------------------------------------------------------------------|------------------|
| Daniel Baltzell |  | January 18, 2008 |
| Test Engineer   | Signature                                                                           | Date Of Tests    |

## 9 FCC Rules and Regulations Part 90 §90.210 and Part 2 §2.1053(a): Field Strength of Spurious Radiation

### 9.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.12.

The EUT was placed on a floor-mounted turntable at a distance of 3 meters from the receiving antenna. The receiving antenna was varied between 1–4 meters to maximize emissions. The spurious emissions levels were measured and the device under test was replaced by a substitution antenna connected to a signal generator. This signal generator level was then corrected by subtracting the cable loss from the substitution antenna to the signal generator, and the gain of the antenna was further corrected to a half wave dipole.

The output was terminated with  $50 \Omega$  load.

### 9.2 Test Data

#### 9.2.1 CFR 47 Part 90.210 Requirements

The worst-case emissions test data are shown.

Limit:  $P(\text{dBm}) - (43 + 10 \times \text{LOG } P(\text{W}))$

**Table 9-1: Field Strength of Spurious Radiation - 867.875 MHz Horizontal Polarity**

| Frequency (MHz) | Measured Level (dBuV) | Signal Gen. Level (dB) | Cable Loss (dB) | Antenna Gain (dBd) | ERP (dBc) | Limit (dBc) | Margin (dB) |
|-----------------|-----------------------|------------------------|-----------------|--------------------|-----------|-------------|-------------|
| 1735.750        | 33.8                  | -62.8                  | 8.0             | 5.5                | 65.3      | 40.5        | -24.8       |
| 2603.625        | 41.3                  | -45.7                  | 9.7             | 7.2                | 48.2      | 40.5        | -7.7        |
| 3471.500        | 29.4                  | -55.6                  | 11.3            | 7.5                | 59.4      | 40.5        | -18.9       |
| 4339.375        | 11.6                  | -69.2                  | 12.7            | 8.1                | 73.8      | 40.5        | -33.3       |
| 5207.250        | 9.4                   | -71.8                  | 13.4            | 8.3                | 76.9      | 40.5        | -36.4       |
| 6075.125        | 11.6                  | -70.5                  | 14.5            | 8.9                | 76.1      | 40.5        | -35.6       |
| 6943.000        | 12.3                  | -69.6                  | 15.4            | 9.3                | 75.7      | 40.5        | -35.2       |
| 7810.875        | 15.2                  | -64.5                  | 15.6            | 8.8                | 71.3      | 40.5        | -30.8       |
| 8678.750        | 12.2                  | -62.5                  | 15.8            | 9.1                | 69.2      | 40.5        | -28.7       |

\*This insertion loss corresponds to the cable connecting the RF Signal Generator to the  $\frac{1}{2}$  wave dipole antenna.

**Table 9-2: Field Strength of Spurious Radiation - 867.8750 MHz Vertical Polarity**

| Frequency (MHz) | Measured Level (dBuV) | Signal Gen. Level (dB) | Cable Loss (dB) | Antenna Gain (dBi) | ERP (dBc) | Limit (dBc) | Margin (dB) |
|-----------------|-----------------------|------------------------|-----------------|--------------------|-----------|-------------|-------------|
| 1735.750        | 41.4                  | -51.9                  | 8.0             | 5.5                | 54.4      | 40.5        | -13.9       |
| 2603.625        | 41.4                  | -46.2                  | 9.7             | 7.2                | 48.7      | 40.5        | -8.2        |
| 3471.500        | 29.0                  | -53.1                  | 11.3            | 7.5                | 56.9      | 40.5        | -16.4       |
| 4339.375        | 14.4                  | -64.5                  | 12.7            | 8.1                | 69.1      | 40.5        | -28.6       |
| 5207.250        | 9.4                   | -70.6                  | 13.4            | 8.3                | 75.7      | 40.5        | -35.2       |
| 6075.125        | 10.9                  | -71.2                  | 14.5            | 8.9                | 76.8      | 40.5        | -36.3       |
| 6943.000        | 12.1                  | -70.7                  | 15.4            | 9.3                | 76.8      | 40.5        | -36.3       |
| 7810.875        | 12.7                  | -66.8                  | 15.6            | 8.8                | 73.6      | 40.5        | -33.1       |
| 8678.750        | 12.6                  | -62.5                  | 15.8            | 9.1                | 69.2      | 40.5        | -28.7       |

\*This insertion loss corresponds to the cable connecting the RF Signal Generator to the ½ wave dipole antenna.

**Table 9-3: Test Equipment for Testing Field Strength of Spurious Radiation**

| RTL Asset # | Manufacturer         | Model              | Part Type                                   | Serial Number | Calibration Due |
|-------------|----------------------|--------------------|---------------------------------------------|---------------|-----------------|
| 901053      | Schaffner-Chase      | CBL6112            | Antenna (25 MHz–2 GHz)                      | 2648          | 12/20/08        |
| 901365      | MITEQ                | JS4-00102600-41-5P | Amplifier, 0.1–26 GHz, 30dB gain            | N/A           | 10/8/08         |
| 901215      | Hewlett Packard      | 8596EM             | Portable Spectrum Analyzer (9 kHz–12.8 GHz) | 3826A00144    | 10/17/08        |
| 900928      | Hewlett Packard      | HP 83752A          | Synthesized Sweeper (.01–20 GHz)            | 3610A00866    | 12/7/08         |
| 900772      | EMCO                 | 3161-02            | Horn Antenna (2–4 GHz)                      | 9504-1044     | 6/14/10         |
| 900321      | EMCO                 | 3161-03            | Horn Antenna (4–8 GHz)                      | 9508-1020     | 6/14/10         |
| 900323      | EMCO                 | 3160-07            | Horn Antenna (8.2–12.4 GHz)                 | 9605-1054     | 6/14/10         |
| 900814      | Electrometrics       | RGA-60             | Double Ridge Horn Antenna (1–18 GHz)        | 2310          | 3/30/09         |
| 901424      | Insulated Wire Inc.  | KPS-1503-360-KPS   | RF cable 36"                                | NA            | 10/5/08         |
| 901425      | Insulated Wire, Inc. | KPS-1503-2400-KPS  | RF cable, 20'                               | NA            | 10/5/08         |
| 901426      | Insulated Wire Inc.  | KPS-1503-3600-KPS  | RF cable, 30'                               | NA            | 10/5/08         |

**Test Personnel:**

|                 |                                                                                     |                  |
|-----------------|-------------------------------------------------------------------------------------|------------------|
| Daniel Baltzell |  | January 16, 2008 |
| Test Engineer   | Signature                                                                           | Date Of Tests    |

Rhein Tech Laboratories, Inc.  
360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
<http://www.rheintech.com>

Client: Airorlite Communications, Inc.  
Model: 50289-BAM-8-800-DL  
Standards: FCC Part 90  
FCC ID: UT650289BAM8800DL  
Report Number: 2007315

## 10 FCC Rules and Regulations Part 90 §90.213 and Part 2 §2.1055: Frequency Stability

There are no frequency determining elements, hence the EUT is not subject to frequency stability requirements.

## 11 Conclusion

The data in this measurement report shows that the **Airorlite Communications, Inc. Model 50289-BAM-8-800-DL, FCC ID: UT650289BAM8800DL**, complies with all the applicable requirements of FCC Parts 90 and 2.