

P.O. #001988

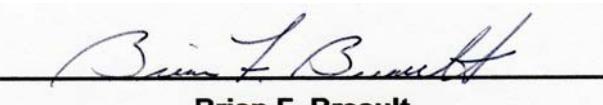
COMPLIANCE WORLDWIDE INC. TEST REPORT 325-08

In Accordance with the Requirements of

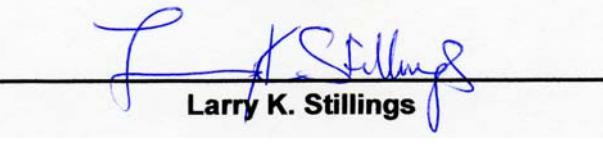
Industry Canada RSS 310, Issue 6
Federal Communications Commission CFR Title 47 Part 15.249 Subpart C
Radio Communication Devices
Intentional Radiators

Issued to

Valeo Raytheon Systems, Inc.
46 River Road
Hudson, NH 03051-5227


Tel: (603) 578-8000

for the


**Blind-Spot Detection Sensor
GM Unit, Gen 2A, Model A**

FCC: ID UR8100206

Report Issued on December 17, 2008

Brian F. Breault

Reviewed By

Larry K. Stillings

This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc.

Table of Contents

1. Scope	3
2. Product Details	3
2.1. Manufacturer	3
2.2. Model Number	3
2.3. Serial Number	3
2.4. Description	3
2.5. Power Source	3
2.6. EMC Modifications	3
3. Product Configuration	3
3.1. Operational Characteristics & Software	3
3.2. Block Diagram	4
4. Measurements Parameters	4
4.1. Measurement Equipment Used to Perform Test	4
4.2. Measurement & Equipment Setup	5
4.3. Measurement Procedure	5
5. Measurement Summary	6
6. Measurement Data	7
6.1. Radiated Field Strength of Fundamental	7
6.2. Radiated Field Strength of Harmonics	8
6.3 Occupied Bandwidth	9
6.4 99% Bandwidth	11
6.5. Band Edge Measurements	13
6.6. Spurious Radiated Emissions, 30 MHz to EUT 10 th Harmonic	14
6.7. Determination of Averaging Factor	17
7. Test Site Description	18

Test Number: 325-08**Issue Date: 12/17/2008**

1. Scope

This test report certifies that the Valeo Raytheon Systems, Inc. Blind-Spot Detection Sensor, as tested, meets the RSS 310 Rules and FCC Part 15.249, requirements. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

2. Product Details

2.1. Manufacturer: Valeo Raytheon Systems, Inc.

2.2. Model Number: Blind-Spot Detection System, GM Gen 2A, Model A

2.3. Serial Number: 033800144

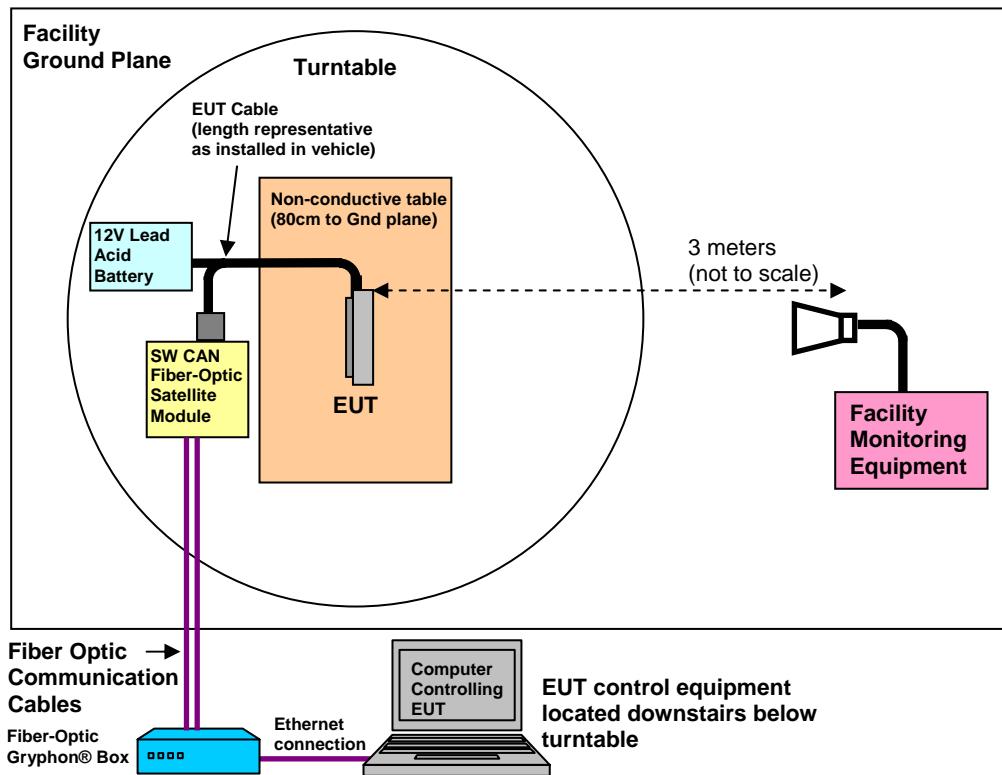
2.4. Description: The Blind-Spot Detection system utilizes multi beam radar sensors located out of sight behind the bumper fascia. These sensors monitor the adjacent lanes of traffic on the left and right sides of the vehicle and alert the driver to the presence of objects of interest, such as cars, trucks and motorcycles, in the driver's blind spots.

2.5. Power Source: 12 Volt DC (Automobile)

2.6. EMC Modifications: None

3. Product Configuration

3.1. Operational Characteristics & Software


The Multi Beam Radar (MBR) is a frequency modulated continuous wave (FMCW) radar sensor module operating in the 24.0–24.25GHz band per FCC part 15, section 15.249. In order to ensure that the unit remains within the band limitations of 15.249, it undergoes a five point frequency calibration process every 256 milliseconds when it is operational. The unit is never operated without the frequency calibration process running when installed in a vehicle.

In order to satisfy test requirements, a special test feature has been incorporated so that the frequency sweep can be stopped at the low, mid and upper points of the band. This is accomplished by putting the Voltage Controlled Oscillator (VCO) control voltage at a fixed level that corresponds to the level determined by the last calibration. However, the software does not perform the frequency calibration process when the sweep is stopped. Consequently band edge compliance cannot be ensured in this mode of operation, and therefore it is critical that band edge compliance be verified with the unit in its operational mode. This special test feature is never enabled when the unit is installed in a vehicle.

Test Number: 325-08
Issue Date: 12/17/2008

3. Product Configuration (continued)

3.2. Block Diagram

4. Measurements Parameters

4.1. Measurement Equipment Used to Perform Test

Device	Manufacturer	Model No.	Serial No.	Cal Due
Spectrum Analyzer	Agilent	E4407B	MY45104493	07/09/2010
Spectrum Analyzer	Hewlett Packard	8593E	3829A03887	09/17/2009
EMI Receiver	Hewlett Packard	8546A	3330A00115	9/26/2009
Microwave Preamp	Hewlett Packard	8449B	3008A01323	9/22/2010
Microwave Cable	Andrew	F1-SMSM	Cable 1008	2/21/2009
Microwave Cable	ESM	N/A	Cable 1011	2/21/2009
Bilog Antenna	Com-Power	AC220	25509	8/6/2009
1 – 18 GHz Horn Antenna	Electro-Metrics	EM-6961	6337	7/22/2009
18 – 40 GHz Horn Antenna	Com-Power	AH-840	3075	7/23/2009
26.5 - 40 GHz Harmonic Mixer	Hewlett Packard	11970A	3003A08210	N/A
26.5 - 40 GHz Horn Antenna	Alpha Industries	861A/599	324	N/A
40 - 60 GHz Harmonic Mixer	Hewlett Packard	11970U	2332A00425	N/A
40 – 60 GHz Horn Antenna	M/A COM Baytron	3-19-720	N/A	N/A
50 - 75 GHz Harmonic Mixer	Hewlett Packard	11970V	2521A00357	N/A
50 - 75 GHz Horn Antenna	AI	861W/387	359	N/A
75 – 110 GHz Harmonic Mixer	Hewlett Packard	11970W	2521A00230	N/A
75 – 110 GHz Horn Antenna	Aerowave	15-7025	N/A	N/A

Test Number: 325-08**Issue Date: 12/17/2008**

4. Measurements Parameters (continued)

4.2. Measurement & Equipment Setup

Test Date:	12/10/2008
Test Engineers:	Larry K. Stillings Brian F. Breault
Normal Site Temperature (15 - 35°C):	21.2
Relative Humidity (20 -75%RH):	31
Frequency Range:	30.0 MHz – 100 GHz
Measurement Distance:	3 Meters ¹
EMI Receiver IF Bandwidth:	30 – 1000 MHz: 100 kHz Above 1 GHz : 1 MHz
EMI Receiver Avg Bandwidth:	30 – 1000 MHz: 300 kHz Above 1 GHz : 3 MHz
Detector Function:	30 – 1000 MHz: Quasi-Pk Above 1 GHz : Average

¹ See the footnotes for each section of this report for any variances in the measurement distance.

4.3. Measurement Procedure

Test measurements were made in accordance FCC Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

The test methods used to generate the data in this test report is in accordance with ANSI C63.4: 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. Above 30 GHz, the FCC Millimeter Wave Test Procedures were followed.

In accordance with ANSI C63.4-2003, section 13.1.4.1, c), the device under test was rotated through three orthogonal axes to determine which attitude produced the highest emission relative to the limit. The attitude that produced the highest emission relative to the limit was used for all radiated emission measurements. This procedure was implemented for both the fundamental field strength measurements and spurious measurements.

A fully charged lead-acid battery was used to power the DUT during the testing.

Test Number: 325-08

Issue Date: 12/17/2008

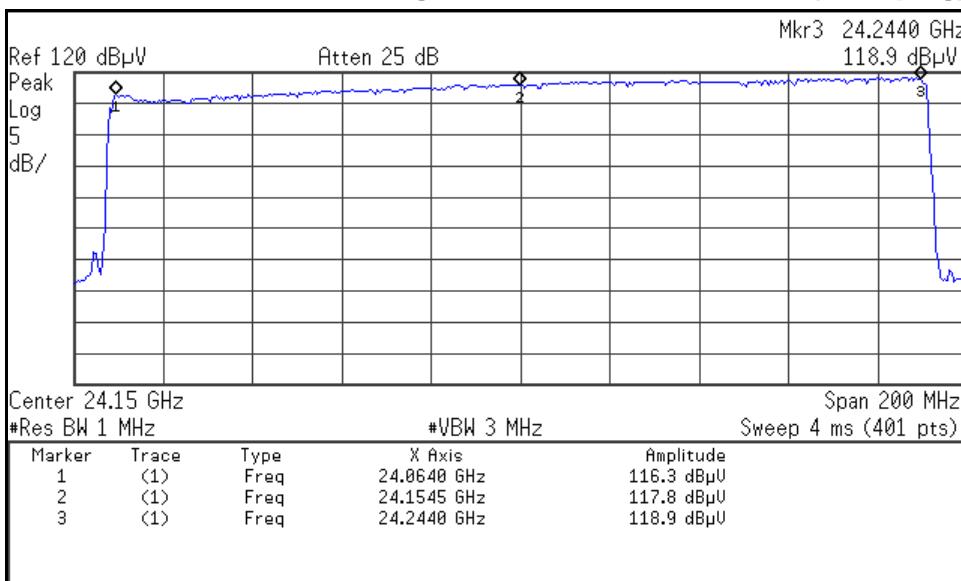
5. Measurement Summary

Test Requirement	FCC Rule Requirement	Test Report Section	Result	Comment
Antenna Requirement	15.203	N.A	Compliant	Unit has an internal PCB etched antenna.
Radiated Field Strength of Fundamental	15.249 (a)	6.1	Compliant	
Radiated Field Strength of Harmonics	15.249 (a)	6.2	Compliant	
Occupied Bandwidth	15.249 (d)	6.3	Compliant	
99% Bandwidth	RSS 310	6.4	Compliant	
Band Edge Measurements	15.249 (d), 15.209	6.5	Compliant	
Spurious Radiated Emissions	15.249 (d), 15.209	6.6	Compliant	
Determination of Averaging Factor	15.35 (c)	6.7	Compliant	
Conducted Emissions	15.207	N/A	N/A	DUT is powered by the automotive electrical system.

Test Number: 325-08
Issue Date: 12/17/2008

6. Measurement Data

6.1. Radiated Field Strength of Fundamental (15.249, Section (a))


Requirement: The 3 meter field strength of the fundamental emissions from intentional radiators operated within the 24.0 to 24.25 GHz frequency bands shall comply with the following requirement: 250 millivolts/meter (108 dB μ V/m), average mode measurement.

6.1.1. Peak Radiated Field Strength of Fundamental, Non-Sweeping Mode

Meas. ¹	Frequency (GHz)	Amplitude ² (dB μ V/m @ 3M)		Avg Limit	Margin (dB)	Ant Pol	Ant Ht	TT Pos	Result
		Peak	Average						
1	24.06100	118.1	99.77	108.0	-8.23	V	104	280	Passed
2	24.14815	118.5	100.7	108.0	-7.3	V	104	280	Passed
3	24.24030	118.6	102.8	108.0	-5.2	V	104	280	Passed

1. Individual points representing the low, middle and high points of the device under test were taken across the span of the measured signal in non-sweeping mode. Refer to Section 3.1 for additional information regarding sweeping vs. non-sweeping modes.
2. Amplitude values include all correction factors.

6.1.2. Peak Radiated Field Strength of Fundamental, Normal (Sweeping) Mode

Meas. ¹	Frequency (GHz)	Amplitude ² (dB μ V/m @ 3M)		Avg Limit	Margin (dB)	Ant Pol	Ant Ht	TT Pos	Result
		Peak	Average						
1	24.246400	116.3	63.01	108.0	-44.99	V	100	275	Passed
2	24.246400	117.8	60.75	108.0	-47.25	V	100	275	Passed
3	24.246400	118.9	44.59	108.0	-63.41	V	100	275	Passed

1. Unit was in normal operational (sweeping) mode.
2. Amplitude values include all correction factors.

Test Number: 325-08
Issue Date: 12/17/2008

6. Measurement Data (continued)

6.2. Radiated Field Strength of Harmonics (15.249, Section (a))

Requirement: The 3 meter field strength of the harmonic emissions from intentional radiators operated within the 24.0 to 24.25 frequency bands shall comply with the following: 2500 microvolts/meter (68 dB μ V/m), average mode measurement. Peak field strength may not be greater than 20 dB above the average limit (88 dB μ V/m).

Peak Reading – 1 MHz RBW / 3 MHz VBW

Average Reading – 1 MHz RBW / 10 Hz VBW

6.2.1. Measurement made with unit in normal operating (sweeping) mode¹.

Frequency (MHz)	Amplitude (dB μ V/m) ²		Average Limit	Margin (dB)	Ant Pol	Ant Ht	TT Pos	Result
	Peak	Avg	Avg		H/V	cm	Deg	
48.29125	24.38	6.67	67.96	-61.28	V	105	60	Passed
72	There were no measurable emissions at 72 GHz							Passed
96	There were no measurable emissions at 96 GHz							Passed

¹ Individual points representing the low, middle and high points of the device under test were taken across the span of the measured signal in non-sweeping mode. Refer to Section 3.1 for information regarding sweeping vs. non-sweeping modes.

² Measurement taken at 30 centimeters and corrected for a 3-meter distance.
Distance and measurement equipment correction factors are included in the columns 2 and 3 test data.

6.2.2. Measurement made with unit frequency sweep stopped¹.

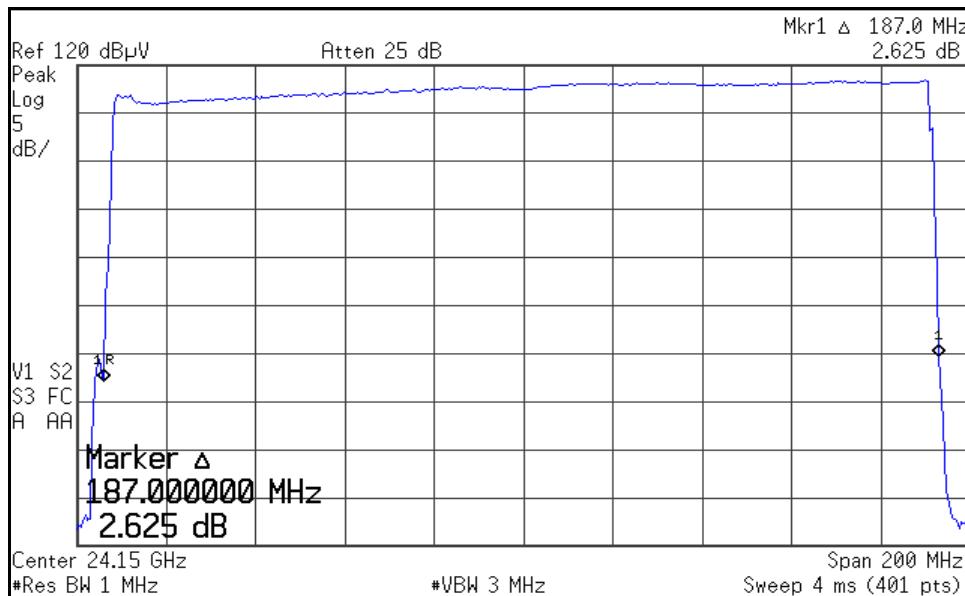
Band	Freq. (GHz)	Amplitude (dB μ V/m) ²		Limit (dB μ V/m)	Margin (dB)	Pol (H/V)	El. (cm)	Az. (deg)	Result
		Peak	Avg	Avg					
Low	48.1233	22.03	8.43	67.96	-59.53	V	110	40	Passed
Mid	48.3054	24.85	11.17	67.96	-56.79	V	107	45	Passed
High	48.4997	22.99	10.32	67.96	-57.64	V	107	45	Passed

¹ Individual points representing the low, middle and high points of the device under test were taken across the span of the measured signal in non-sweeping mode. Refer to Section 3.1 for information regarding sweeping vs. non-sweeping modes.

² Measurement taken at 30 centimeters and corrected for a 3-meter distance.
Measurement equipment correction factors are included in the columns 2 and 3 test data.

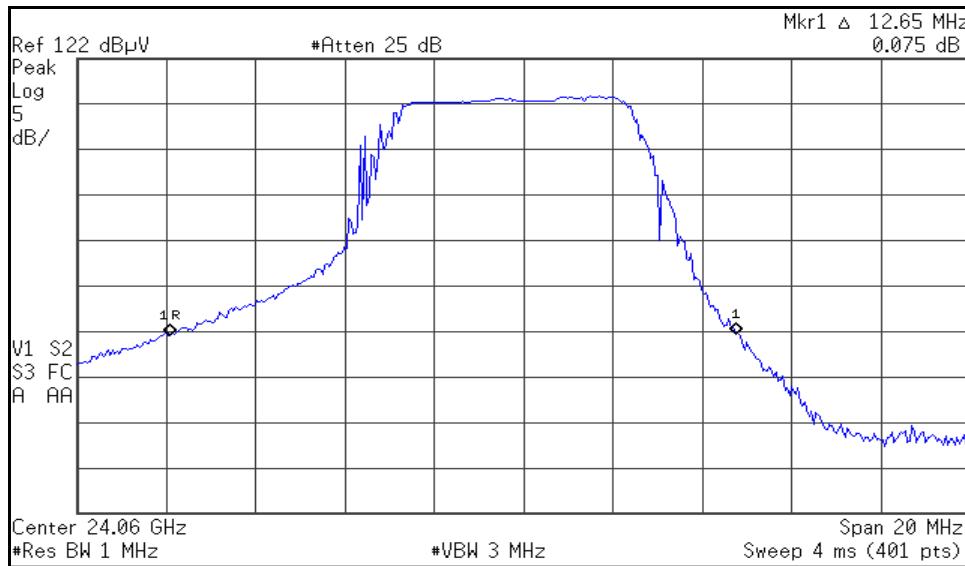
Test Number: 325-08

Issue Date: 12/17/2008


6. Measurement Data (continued)

6.3 Occupied Bandwidth

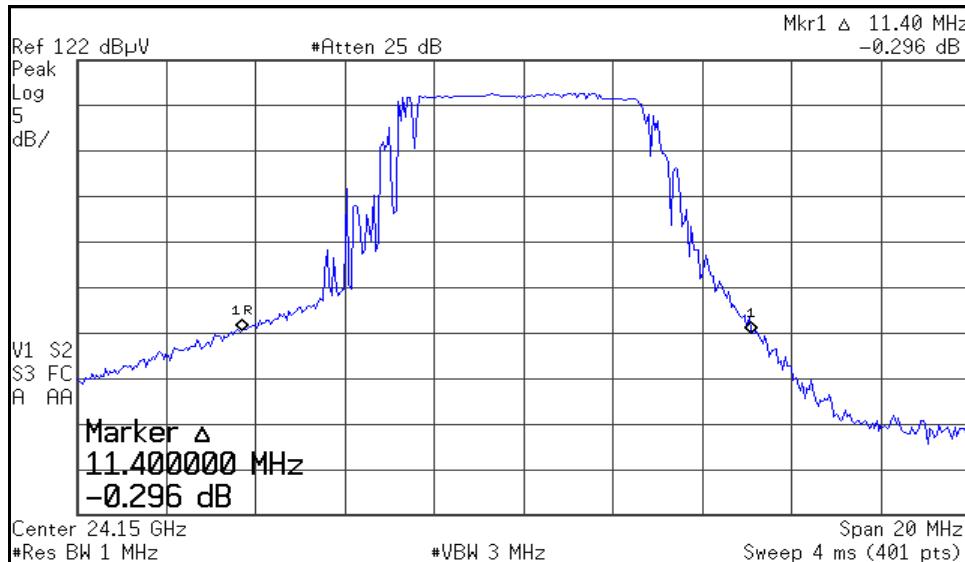
Requirement: The occupied bandwidth measurements on an intentional radiator shall be made in accordance with the requirements outlined in ANSI C63.4-2003, Section 13.1.7.


6.3.1. Occupied Bandwidth, Normal Operation

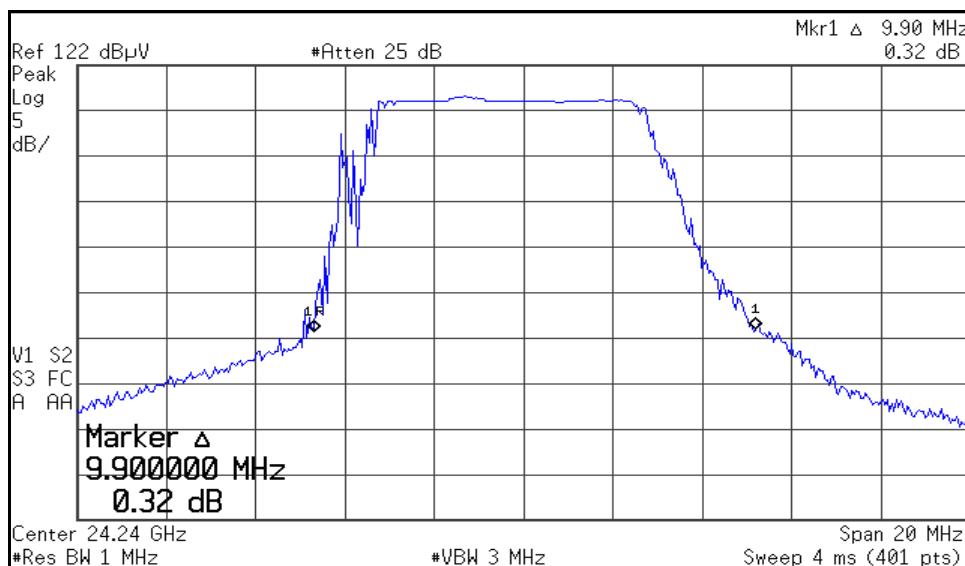
-26 dB Bandwidth = 187.00 MHz

6.3.2. Occupied Bandwidth, Non-Sweeping Operation, Low Frequency

-26 dB Bandwidth = 12.65 MHz


Test Number: 325-08

Issue Date: 12/17/2008

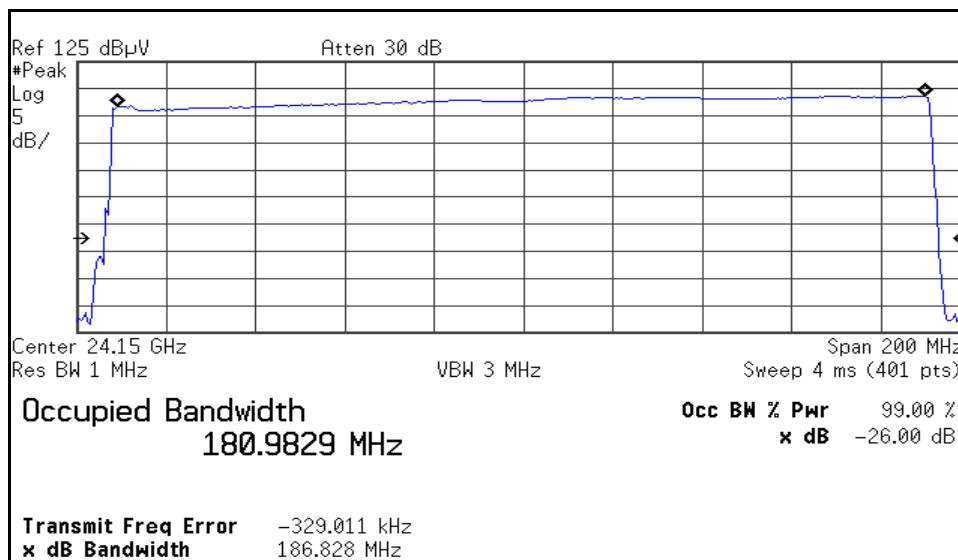

6. Measurement Data (continued)

6.3. Occupied Bandwidth (continued)

6.3.3. Occupied Bandwidth, Non-Sweeping Operation, Middle Frequency -26 dB Bandwidth = 11.40 MHz

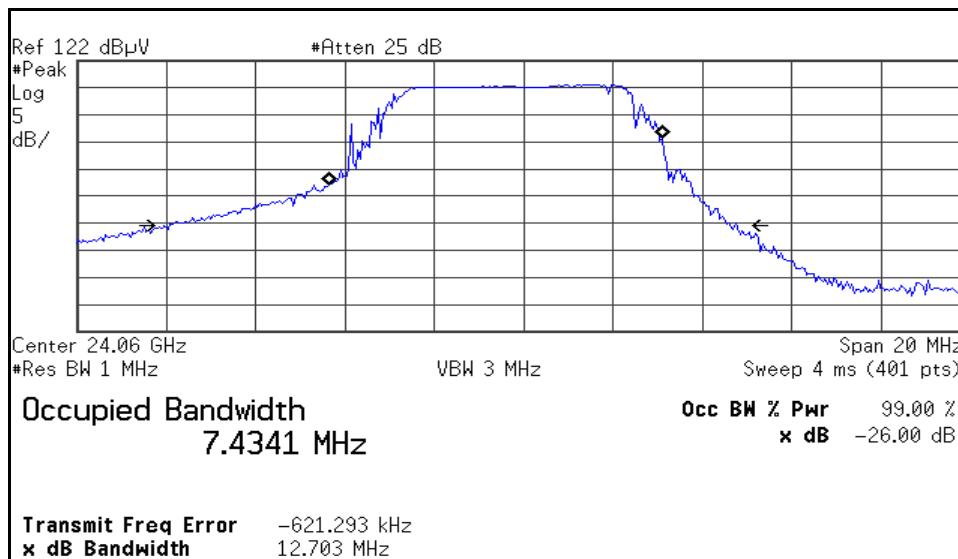
6.3.4. Occupied Bandwidth, Non-Sweeping Operation, High Frequency -26 dB Bandwidth = 9.9 MHz

Test Number: 325-08


Issue Date: 12/17/2008

6. Measurement Data (continued)

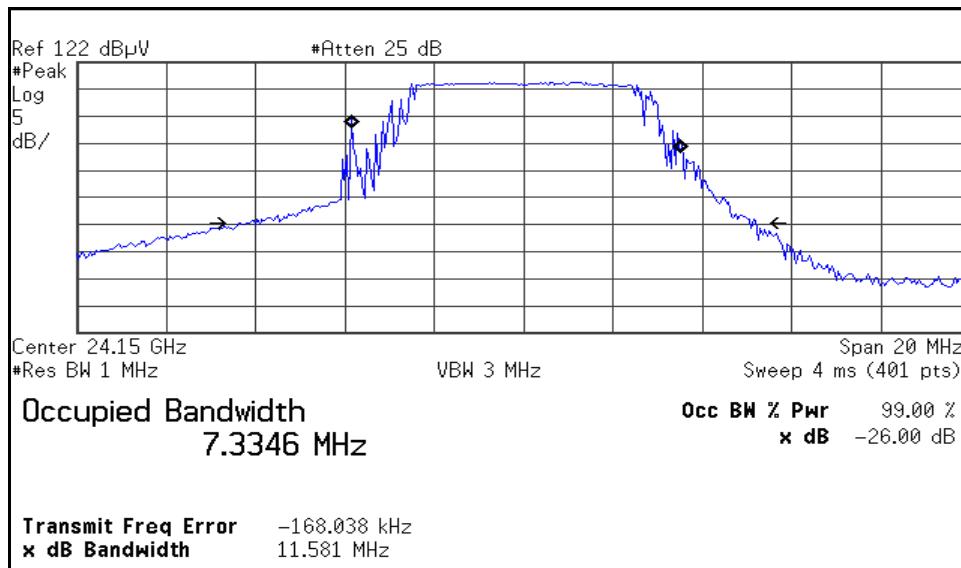
6.4. 99% Bandwidth


6.4.1. 99% Bandwidth, Normal Operation

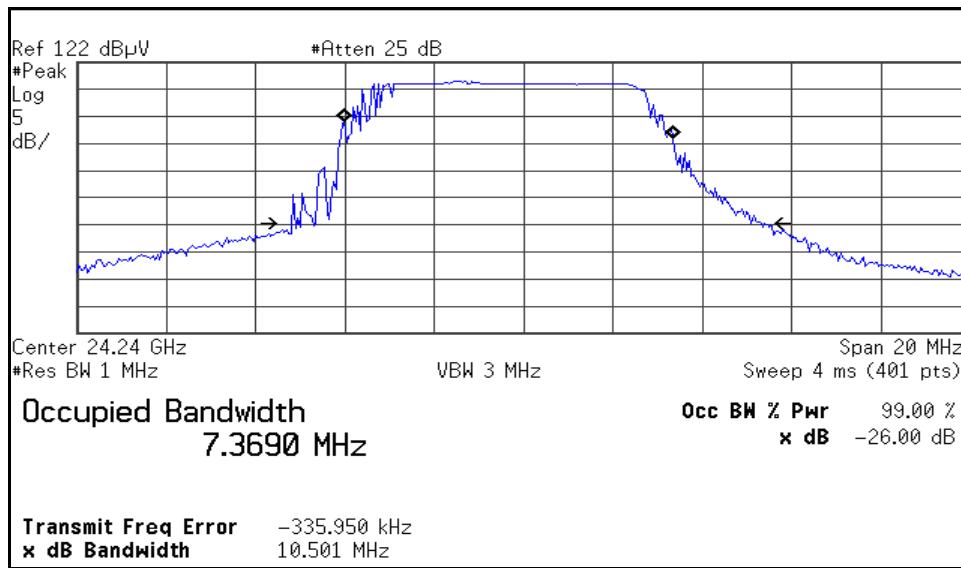
99% Bandwidth= 180.98 MHz

6.4.2. 99% Bandwidth, Non-Sweeping Operation, Low Frequency

99% Bandwidth = 7.43 MHz


Test Number: 325-08

Issue Date: 12/17/2008


6. Measurement Data (continued)

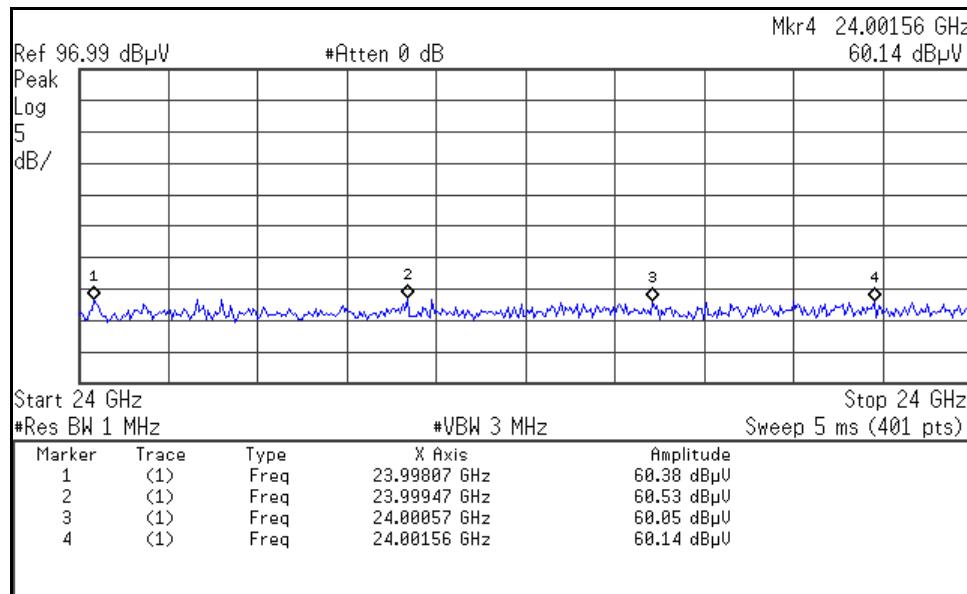
6.4. 99% Bandwidth (continued)

6.4.3. 99% Bandwidth, Non-Sweeping Operation, Middle Frequency 99% Bandwidth = 7.33 MHz

6.4.4. 99% Bandwidth, Non-Sweeping Operation, High Frequency 99% Bandwidth = 7.37 MHz

Test Number: 325-08
Issue Date: 12/17/2008

6. Measurement Data (continued)


6.5. Band Edge Measurements

Requirement: Emissions radiated outside of the specified frequency band of 24 GHz to 24.25 GHz, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

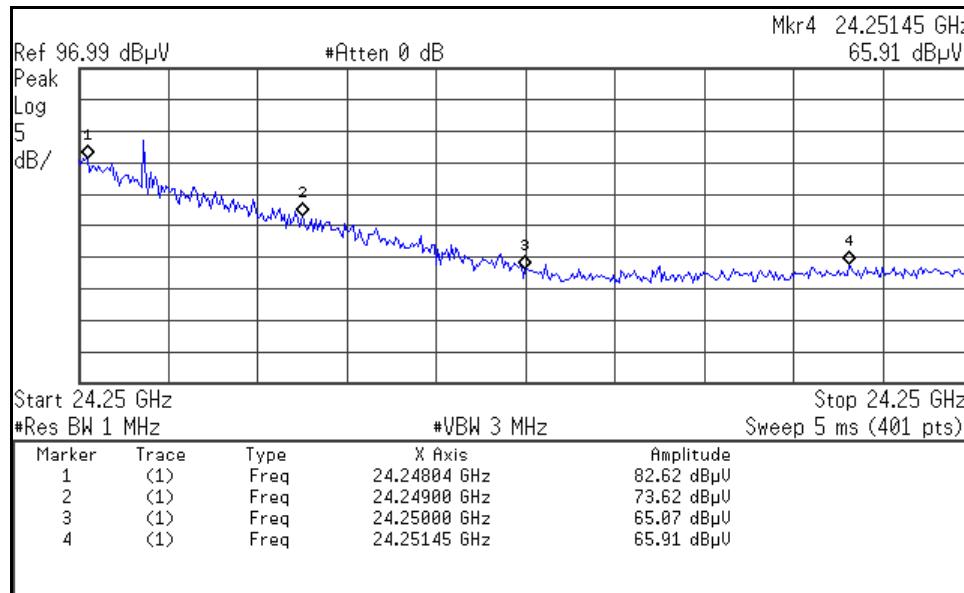
6.5.1. Measurement Results – Lower Band Edge

While the device under test was running in its normal operating mode, a span of 4 MHz, centered at the lower band edge frequency of 24 GHz, was investigated. The worst case emissions in each of the two bandwidths (1 MHz) just outside the lower band edge were measured and recorded. In addition, the worst case emissions in each of the two bandwidths just inside the lower band edge were measured and recorded.

Freq. (GHz)	Amplitude (dB μ V/m)		Limit (dB μ V/m)	Margin (dB)	Result	Comment
	Peak	Average				
23.99807	60.38	47.61	54	-6.39	Passed	Second bandwidth outside the lower band edge.
23.99947	60.53	47.85	54	-6.05	Passed	First bandwidth outside the lower band edge.
24.00057	60.05	47.98	N/A	N/A	N/A	First bandwidth inside the lower band edge.
24.00156	60.14	48.11	N/A	N/A	N/A	Second bandwidth inside the lower band edge.

Test Number: 325-08
Issue Date: 12/17/2008

6. Measurement Data (continued)


6.5. Band Edge Measurements (continued)

Requirement: Emissions radiated outside of the specified frequency band of 24 GHz to 24.25 GHz, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

6.5.2. Measurement Results – Upper Band Edge

While the device under test was running in its normal operating mode, a span of 4 MHz, centered at the upper band edge frequency of 24.25 GHz, was investigated. The worst case emissions in each of the two bandwidths (1 MHz) just outside the upper band edge were measured and recorded. In addition, the worst case emissions in each of the two bandwidths just inside the upper band edge were measured and recorded.

Freq. (GHz)	Amplitude (dB μ V/m)		Limit (dB μ V/m)	Margin (dB)	Result	Comment
	Peak	Average				
24.24804	82.62	47.80	N/A	N/A	N/A	Second bandwidth inside the upper band edge.
24.24900	73.62	47.98	N/A	N/A	N/A	First bandwidth inside the upper band edge.
24.25000	65.07	48.12	54	-5.88	Passed	First bandwidth outside the upper band edge.
24.25145	65.91	48.19	54	-5.81	Passed	Second bandwidth outside the upper band edge.

Test Number: 325-08

Issue Date: 12/17/2008

6. Measurement Data (continued)

6.6. Spurious Radiated Emissions, 30 MHz to EUT 10th Harmonic or 100 GHz, whichever is the lower value. (15.249, Section (d))

Requirement: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

6.6.1. Spurious Radiated Emissions, 30 MHz to EUT 10th Harmonic Test Setup

6.6.1.1. Regulatory Limit: FCC Part 209, Quasi-Peak & Average (above 1 GHz)

Frequency Range (MHz)	Distance (Meters)	Limit (dB μ V/m)
30 to 88	3	40.0
88 to 216	3	43.5
216 to 960	3	46.0
Above 960	3	54.0

6.6.1.2. Measurement Equipment Used to Perform Test

The Measurement equipment used to perform spurious emissions testing is listed in section 4.1.

6.6.1.3. Measurement & Equipment Setup

Test Date:	12/10/2008
Test Engineer:	Brian Breault
Site Temperature (°C):	21.5
Relative Humidity (%RH):	34
Frequency Range:	30 MHz to 1 GHz
EMI Receiver IF Bandwidth :	120 kHz
EMI Receiver Avg Bandwidth:	300 kHz
Detector Functions:	Peak and Quasi-Peak
Frequency Range:	1 GHz to 10 th Harmonic
EMI Receiver IF Bandwidth :	1 MHz
EMI Receiver Avg Bandwidth:	3 MHz
Detector Functions:	Peak and Average
Antenna Height:	1 to 4 meters
Measurement Distance:	3 Meters ¹

¹ See the footnotes for each section of this report for any variances in the measurement distance.

6.6.1.4. Test Procedure

Test measurements were made in accordance with ANSI C63.4-2003, Standard Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronics Equipment in the Range of 9 kHz to 40 GHz. Above 30 GHz, the FCC Millimeter Wave Test Procedures were followed.

Test Number: 325-08
Issue Date: 12/17/2008

6. Measurement Data (continued)

6.6. Spurious Radiated Emissions, 30 MHz to EUT 10th Harmonic (15.249, Section (d))

6.6.2. Spurious Radiated Emissions, 30 MHz – 1 GHz Test Results

There were no measurable spurious emissions from 30 MHz to 1 GHz.

6.6.3. Spurious Radiated Emissions, 1 GHz – 30 GHz Test Results

Freq. (GHz)	Amplitude (dB μ V)		Corr. Factor (dB)	Amplitude (dB μ V/m)		Limit (dB μ V/m)	Margin (dB)	Pol (H/V)	El. (cm)	Az. (deg)
	Peak	Avg		Peak	Avg					
1.508800	57.49	43.12	Included	57.49	43.12	54	-10.88	V	127	5
4.511675 ¹	49.57	35.29	Included	49.57	35.29	54	-18.71	H	168	355
4.532175 ¹	48.18	34.53	Included	48.18	34.53	54	-19.47	H	168	355
4.554580 ¹	47.03	32.57	Included	47.03	32.57	54	-21.43	H	168	355
12.122250 ¹	58.64	44.71	Included	58.64	44.71	54	-9.29	H	128	75

¹ – Multiple points were taken across the bandwidth of the emission. Measurement distance = 3 meters.

6.6.4. Spurious Radiated Emissions, 30 GHz – 100 GHz Test Results

6.6.4.1. Measurement made with unit in normal operating (sweeping) mode¹.

Freq. (GHz)	Amplitude (dB μ V/m) ²		Limit (dB μ V/m)	Margin (dB)	Pol (H/V)	El. (cm)	Az. (deg)
	Peak	Avg	Avg				
36.367 ¹	25.31	1.98	54.0	-52.02	V	105	330
48.291 ¹	24.38	3.60	54.0	-51.40	V	105	330

¹ Refer to Section 3.1 for information regarding sweeping vs. non-sweeping modes.

² Measurement taken at 30 centimeters and corrected for a 3-meter distance.

Measurement equipment correction factors are included in the columns 2 and 3 data.

6.6.4.2. Measurement made with unit frequency sweep stopped¹.

Band	Freq. (GHz)	Amplitude (dB μ V/m) ²		Limit (dB μ V/m)	Margin (dB)	Pol (H/V)	El. (cm)	Az. (deg)
		Peak	Avg					
Low	36.089	25.09	15.82	54.0	-38.18	V	115	330
Mid	36.228	25.58	18.01	54.0	-35.99	V	115	330
High	36.367	25.31	20.00	54.0	-34.00	V	115	330
Low	48.123	22.03	8.43	54.0	-45.57	V	115	330
Mid	48.305	24.85	11.17	54.0	-42.83	V	115	330
High	48.489	22.99	10.32	54.0	-43.68	V	115	330

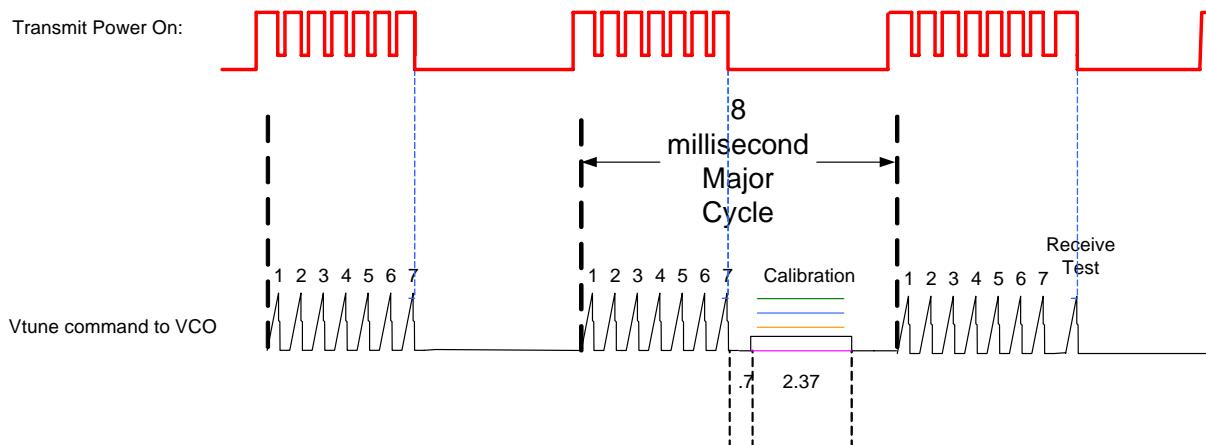
¹ Refer to Section 3.1 for information regarding sweeping vs. non-sweeping modes.

² Measurement taken at 30 centimeters and corrected for a 3-meter distance.

Measurement equipment correction factors are included in the columns 3 and 4 data.

Test Number: 325-08
Issue Date: 12/17/2008

6. Measurement Data (continued)


6.7. Determination of Averaging Factor

The EUT sweeps is VCO from 24.055 GHz to 24.245 GHz in 341 μ S, it repeats this sweep 7 times. There is a 150 μ S delay before each sweep begins, and after the succession of 7 pulses, there is an OFF time for calibration of the VCO at difference frequencies over the operational range. A total period for the 7 pulses and OFF time is 8 mS. This sequence is repeated 32 times, on the 32nd time there is an additional 150 μ S pulse for "receive chain testing". Therefore in a given period the device has 7 pulses of 150 μ S for a total ON time of 1.05 mS (not including the insignificant off time). Over a 100 mS period, the device completes 12.5 of 32 major cycles it performs. Using this determination the device has an ON time of

12.5 times in 100 mS. $12.5 * 1.05$ mS of ON time or a total ON time of 13.125 mS

13.125 mS (ON) / 100 mS max period = 0.13125

$20 * \log (0.13125) = -17.6$ dB averaging Factor

The test sequence for 32 major cycles is:

1. Calibration Low	9. Calibration Center Low	17. Receive Chain Test	25. Calibration Center Low
2. Calibration Low Intermediate	10. Calibration Center High	18. Calibration Center High	26. Calibration Center High
3. Calibration Center	11. Calibration Center Low	19. Calibration Center Low	27. Calibration Center Low
4. Calibration High Intermediate	12. Calibration Center High	20. Calibration Center High	28. Calibration Center High
5. Calibration High	13. Calibration Center Low	21. Calibration Center Low	29. Calibration Center Low
6. Calibration Center High	14. Calibration Center High	22. Calibration Center High	30. Calibration Center High
7. Calibration Center Low	15. Calibration Center Low	23. Calibration Center Low	31. Calibration Center Low
8. Calibration Center High	16. Calibration Center High	24. Calibration Center High	32. Calibration Center High

High	= 24.245 GHz
High Intermediate	= 24.1975 GHz
Center	= 24.150 GHz
Low Intermediate	= 24.1025 GHz
Low	= 24.055 GHz

Test Number: 325-08

Issue Date: 12/17/2008

7. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with Federal Communications Commission (FCC) and Industry Canada standards. A description of the test sites is on file with the FCC (registration number **96392**) and Industry Canada (file number **IC 3023A-1**).

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16' x 20' x 12' ferrite tile chamber and uses one of the walls for the vertical ground plane required by EN 55022.

Both sites are designed to test products or systems 1.5 meter W x 1.5 meter L x 2.0 meter H, floor standing or table top.