



## Radio Test Report

Zinwave Ltd

Zinwave UNItnity 5000 Remote Unit  
**308-0007-2**

47 CFR Part 24 Effective Date 1st October 2021

47 CFR Part 2 Effective Date 1st October 2021

Test Date: 7<sup>th</sup> to 18<sup>th</sup> November 2022

Report Number: 11-13927-1-22 Issue 01

**R.N. Electronics Ltd.**

Arnolds Court  
Arnolds Farm Lane  
Mountnessing  
Essex  
CM13 1UT  
U.K.

[www.RNelectronics.com](http://www.RNelectronics.com)

Telephone: +44 (0) 1277 352219  
Email: [sales@RNelectronics.com](mailto:sales@RNelectronics.com)

This report is not to be reproduced by any means except in full and in any case not without the written approval of R.N. Electronics Ltd.

File Name: Zinwave Ltd.13924-1 Issue 01

**QMF21J - Issue 05 - RNE Issue 03; FCC Part 24 2021**

Page 1 of 42



Arnolds Court, Arnolds Farm Lane, Mountnessing, Brentwood Essex, CM13 1UT  
**Certificate of Test 13927-1**

The equipment noted below has been fully tested by R.N. Electronics Limited and, where appropriate, conforms to the relevant subpart of FCC Part 24. This is a certificate of test only and should not be confused with an equipment authorisation. Other standards may also apply.

|                                                         |                                                                                                 |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Equipment:                                              | Zinwave UNItnity 5000 Remote Unit                                                               |
| Model Number:                                           | 308-0007-2                                                                                      |
| Unique Serial Number:                                   | Sample #2 (T4237)                                                                               |
| Applicant:                                              | Zinwave Ltd<br>Harston Mill, Royston Road<br>Harston, Cambridge<br>CB22 7GG                     |
| Proposed FCC ID                                         | UPO308-0007-2                                                                                   |
| Full measurement results are detailed in Report Number: | 11-13927-1-22 Issue 01                                                                          |
| Test Standards:                                         | 47 CFR Part 24 Effective Date 1st October 2021<br>47 CFR Part 2 Effective Date 1st October 2021 |

**NOTE:**

Certain tests were not performed based upon manufacturer's declarations. Certain other requirements are subject to manufacturer declaration only and have not been tested/verified. For details refer to section 3 of this report.

This report only pertains to the operation of the equipment to 47 CFR part 24, for details of testing to other rule parts please see RN report: 11-13927-2-22 (Part 27).

**DEVIATIONS:** No deviations have been applied.

This certificate relates only to the unit tested as identified by a unique serial number and in the condition at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of unit not meeting the intentions of the standard or the requirements of the Federal Regulations, particularly under different conditions to those during testing. Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Date Of Test: 7th to 18th November 2022

Test Engineer:

A handwritten signature in black ink, appearing to read 'Charlie Blatt'.

Approved By:  
Radio Manager

A rectangular box intended for a handwritten signature.

Customer Representative:

A rectangular box intended for a handwritten signature.



## 1 Contents

|      |                                                       |    |
|------|-------------------------------------------------------|----|
| 1    | Contents .....                                        | 3  |
| 2    | Equipment under test (EUT) .....                      | 4  |
| 2.1  | Equipment specification .....                         | 4  |
| 2.2  | Configurations for testing .....                      | 5  |
| 2.3  | Functional description .....                          | 6  |
| 2.4  | Modes of operation .....                              | 6  |
| 2.5  | Emissions configuration .....                         | 7  |
| 3    | Summary of test results .....                         | 7  |
| 4    | Specifications .....                                  | 9  |
| 4.1  | Relevant standards .....                              | 9  |
| 4.2  | Deviations .....                                      | 9  |
| 5    | Tests, methods and results .....                      | 10 |
| 5.1  | Spurious emissions at antenna terminals .....         | 10 |
| 5.2  | RF Power Output .....                                 | 14 |
| 5.3  | Frequency stability .....                             | 16 |
| 5.4  | Occupied bandwidth / Input versus output signal ..... | 17 |
| 5.5  | Field strength of spurious radiations .....           | 18 |
| 5.6  | Band edge emissions .....                             | 22 |
| 5.7  | Modulation characteristics .....                      | 25 |
| 5.8  | Determination of $f_0$ .....                          | 26 |
| 6    | Plots/Graphical results .....                         | 27 |
| 6.1  | Determination of $f_0$ .....                          | 27 |
| 6.2  | RF Power Output .....                                 | 28 |
| 6.3  | Occupied bandwidth / Input versus output signal ..... | 30 |
| 6.4  | Spurious emissions at antenna terminals .....         | 31 |
| 6.5  | Band edge emissions .....                             | 33 |
| 7    | Photographs .....                                     | 37 |
| 8    | Test equipment calibration list .....                 | 38 |
| 9    | Auxiliary and peripheral equipment .....              | 39 |
| 9.1  | Customer supplied equipment .....                     | 39 |
| 9.2  | RN Electronics supplied equipment .....               | 39 |
| 10   | Condition of the equipment tested .....               | 40 |
| 10.1 | Modifications before test .....                       | 40 |
| 10.2 | Modifications during test .....                       | 40 |
| 11   | Description of test sites .....                       | 41 |
| 12   | Abbreviations and units .....                         | 42 |

## 2 Equipment under test (EUT)

### 2.1 Equipment specification

|                           |                                                                                                          |         |
|---------------------------|----------------------------------------------------------------------------------------------------------|---------|
| Applicant                 | Zinwave Ltd<br>Harston Mill<br>Royston Road<br>Harston<br>Cambridge<br>CB22 7GG                          |         |
| Manufacturer of EUT       | Zinwave Ltd                                                                                              |         |
| Full Name of EUT          | Zinwave UNItnity 5000 Remote Unit                                                                        |         |
| Model Number of EUT       | 308-0007-2                                                                                               |         |
| Serial Number of EUT      | Sample #2 (T4237)                                                                                        |         |
| Date Received             | 7 <sup>th</sup> November 2022                                                                            |         |
| Date of Test:             | 7 <sup>th</sup> to 18 <sup>th</sup> November 2022                                                        |         |
| Purpose of Test           | To demonstrate design compliance to the relevant rules of Chapter 47 of the Code of Federal Regulations. |         |
| Date Report Issued        | 20 <sup>th</sup> November 2022                                                                           |         |
| Main Function             | Distributed Antenna remote unit                                                                          |         |
| Information Specification | Height                                                                                                   | 70 mm   |
|                           | Width                                                                                                    | 440 mm  |
|                           | Depth                                                                                                    | 270 mm  |
|                           | Weight                                                                                                   | 9 kg    |
|                           | Voltage                                                                                                  | 48 V DC |
|                           | Current                                                                                                  | 0.85 A  |

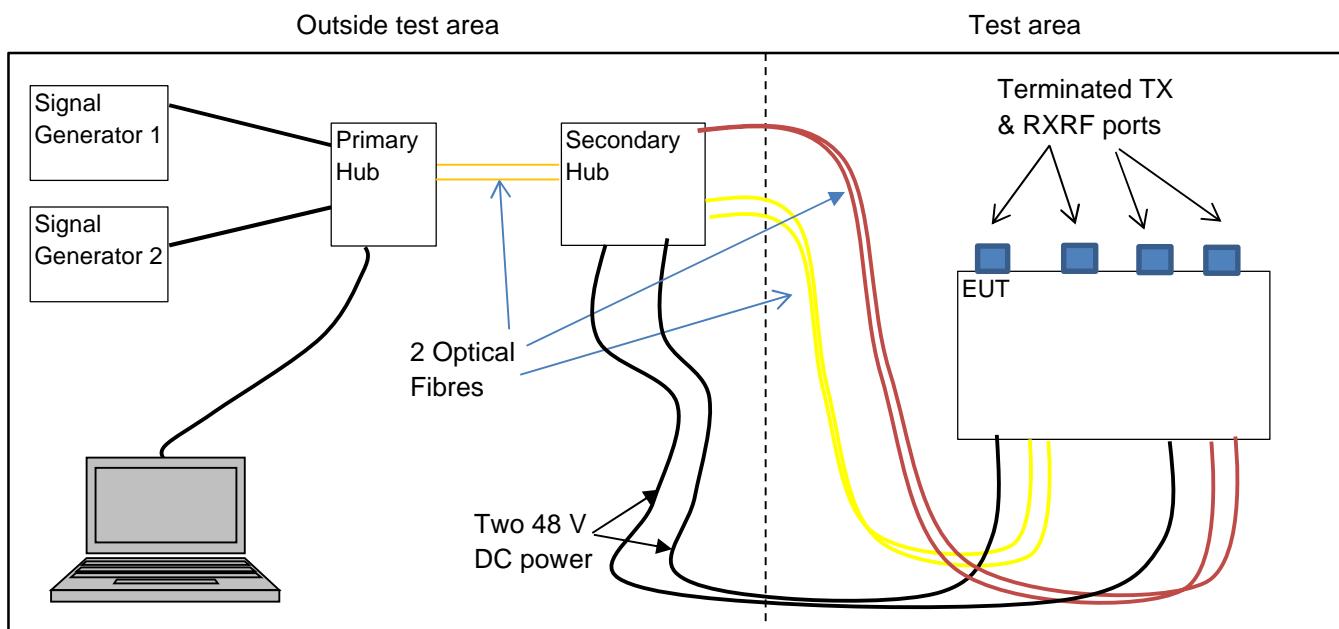
## 2.2 Configurations for testing

| General Parameters                 |                                                                                                        |
|------------------------------------|--------------------------------------------------------------------------------------------------------|
| EUT Normal use position            | Wall mounted                                                                                           |
| Choice of model(s) for type tests  | Production unit                                                                                        |
| Antenna details                    | external max 8dBi                                                                                      |
| Antenna port                       | External: 2x TX; 2x RX (N-type ports)                                                                  |
| Baseband Data port (yes/no)?       | NO                                                                                                     |
| Highest Signal generated in EUT    | 2690 MHz, but 1995MHz is maximum frequency for these rule parts                                        |
| Lowest Signal generated in EUT     | Not stated                                                                                             |
| Hardware Version                   | 1.0                                                                                                    |
| Software Version                   | Hub Software 5.21rc02                                                                                  |
| Firmware Version                   | 5.61                                                                                                   |
| Type of Equipment                  | Booster, Distributed Antenna System                                                                    |
| Technology Type                    | Various – wideband distributed antenna system                                                          |
| Geo-location (yes/no)              | No                                                                                                     |
| TX Parameters                      |                                                                                                        |
| Alignment range – transmitter      | 150 - 2690 MHz                                                                                         |
| EUT Declared Modulation Parameters | Device supports Personal Communications Services under this rule part                                  |
| EUT Declared Power level           | +24dBm per TX port (27 dBm total power)                                                                |
| EUT Declared Signal Bandwidths     | Device supports Personal Communications Services under this rule part                                  |
| EUT Declared Channel Spacing's     | Device supports Public Mobile Radio Services and personal Communications services under this rule part |
| EUT Declared Duty Cycle            | up to 100%                                                                                             |
| Unmodulated carrier available?     | Yes - EUT provides at its output whatever is presented to its input                                    |
| Declared frequency stability       | 0ppm (DAS without frequency translation)                                                               |
| RX Parameters                      |                                                                                                        |
| Alignment range – receiver         | As per Transmitter range                                                                               |
| EUT Declared RX Signal Bandwidth   | As per Transmitter                                                                                     |
| Receiver Signal Level (RSL)        | N/A                                                                                                    |
| Method of Monitoring Receiver BER  | N/A                                                                                                    |

## 2.3 Functional description

The Remote Unit is used as part of the Zinwave UNItivity 5000 system to provide cellular and private radio services within buildings, sports arenas and similar areas.

The system is wideband in nature and can support a wide range of radio services depending upon the system that is connected to the service module of the Primary Hub.


## 2.4 Modes of operation

| Mode Reference | Description                                                        | Used for testing |
|----------------|--------------------------------------------------------------------|------------------|
| Mode 1         | CW Sweep from 1930 – 1995 MHz to determine f0                      | Yes              |
| Mode 2         | Single mode Channel AWGN at f0 (1961.3MHz) in band 1930 – 1995 MHz | Yes              |
| Mode 3         | Single Low channel AWGN at 1932.5 MHz                              | Yes              |
| Mode 4         | Single Mid channel AWGN at 1960.0 MHz                              | Yes              |
| Mode 5         | Single High channel AWGN at 1992.5 MHz                             | Yes              |
| Mode 6         | Dual Low channel AWGN at 1932.5 MHz & 1937.5 MHz                   | Yes              |
| Mode 7         | Dual High channel AWGN at 1987.5 MHz & 1992.5 MHz                  | Yes              |

Note: Modes 3 to 7 were applied to both Optical inputs simultaneously for the Radiated field strength emissions test.

Note: This report only pertains to the operation of the equipment to 47 CFR part 24E, for details of testing to other rule parts please see RN report: 11-13927-2-22 (Part 27)

## 2.5 Emissions configuration



Each half of the unit was powered from the secondary hub at 48V DC. The unit was configured using the supplied network management software using the settings files prepared by Zinwave Ltd, this provided 29dB gain and +24dBm EUT output power at each TX port in conjunction with the signal generator settings of -5dBm. Any attenuation introduced by the Primary/secondary hub system was also accounted for in the set-up files provided by Zinwave Ltd. Test channels and required modulations were set using the signal generators connected to the primary hub. Single channel operation was provided by generator 1 and dual channel was using two signal generators. Output power of the signal generators was set to provide -5dBm at input to primary hub.

The transmit mode was 100% continuous with EUT output power maintained at +24dBm (29dB gain). Test channels and combinations used are stated in test modes section 2.4

The system supports operation with a number of wideband services, so testing was performed with AWGN modulation signal as per KDB 935210 D05, and a CW signal for determination of  $f_0$ .

For conducted RF tests the RF ports were connected via suitable attenuation and filtering where required and connected directly to a spectrum analyser, with losses accounted for in the measurement results.

The system is designed for operation with antennas having a maximum gain of 8.0 dBi or 5.85 dBd. This is the value used for determining EIRP or ERP where required.

### 2.5.1 Signal leads

| Port Name       | Cable Type     | Connected |
|-----------------|----------------|-----------|
| DC power 1      | 2 cores        | Yes       |
| DC power 2      | 2 cores        | Yes       |
| Fibre TX 1      | Fibre          | Yes       |
| Fibre RX 1      | Fibre          | Yes       |
| Fibre TX 2      | Fibre          | Yes       |
| Fibre RX 2      | Fibre          | Yes       |
| Transmit port 1 | N-type coaxial | Yes       |
| Receive port 1  | N-type coaxial | Yes       |
| Transmit port 2 | N-type coaxial | Yes       |
| Receive port 2  | N-type coaxial | Yes       |

### 3 Summary of test results

The Zinwave UNItivity 5000 Remote Unit, 308-0007-2 was tested for compliance to the following standard(s):

47 CFR Part 24 Effective Date 1st October 2021  
47 CFR Part 2 Effective Date 1st October 2021

Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard or the essential requirements of the directive, particularly under different conditions to those during testing. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

| Title                                      | References                                               | Results                     |
|--------------------------------------------|----------------------------------------------------------|-----------------------------|
| <b>Transmitter Tests</b>                   |                                                          |                             |
| 1. Spurious emissions at antenna terminals | FCC Part 24 Clause 24.238<br>FCC Part 2 Clause 2.1051    | PASSED <sup>1</sup>         |
| 2. RF Power Output                         | FCC Part 24 Clause 24.232(a)<br>FCC Part 2 Clause 2.1046 | PASSED                      |
| 3. Frequency stability                     | FCC Part 2 Clause 2.1055                                 | NOT APPLICABLE <sup>2</sup> |
| 4. Occupied bandwidth                      | FCC Part 24 Clause 24.238<br>FCC Part 2 Clause 2.1049    | PASSED                      |
| 5. Field strength of spurious radiations   | FCC Part 24 Clause 24.238<br>FCC Part 2 Clause 2.1053    | PASSED <sup>1</sup>         |
| 6. Band edge emissions                     | FCC Part 24 Clause 24.238<br>FCC Part 2 Clause 2.1051    | PASSED                      |
| 7. Modulation characteristics              | FCC Part 2 Clause 2.1047                                 | PROVIDED <sup>3</sup>       |
| 8. Determination of $f_0$                  | KDB 935210 D05 Clause 3.3                                | PERFORMED                   |

<sup>1</sup> Spectrum investigated started at a frequency of 30MHz up to a frequency of 20GHz based on 10 times the highest channel of 1992.5 MHz.

<sup>2</sup> EUT does not contain an oscillator and only reproduces what is provided at its input.

<sup>3</sup> Modulation characteristics information provided in section 2.2.

## 4 Specifications

The tests were performed and operated in accordance with R.N. Electronics Ltd procedures and the relevant standards listed below.

### 4.1 Relevant standards

| Ref.  | Standard Number       | Version | Description                                                                                                                                                                                           |
|-------|-----------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.1.1 | FCC Part 24           | 2021    | Part 24 – Personal Communications Services                                                                                                                                                            |
| 4.1.2 | 47CFR part 2J         | 2021    | Part 2 – Frequency Allocations and radio treaty matters; General rules and regulations                                                                                                                |
| 4.1.3 | KDB 971168 D01 v03r01 | 2018    | Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement Guidance for Certification of Licensed Digital Transmitters                                   |
| 4.1.4 | ANSI C63.26           | 2015    | American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services                                                                                                     |
| 4.1.5 | KDB 935210 D05 v01r04 | 2020    | Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement guidance for Industrial and Non-consumer signal booster, repeater and amplifier devices       |
| 4.1.6 | 662911 D01 v02r01     | 2013    | Federal Communications Commission Office of Engineering and Technology Laboratory Division; Emissions Testing of transmitters with Multiple Outputs in the Same Band (e.g., MIMO, Smart Antenna, etc) |

### 4.2 Deviations

No deviations were applied.

## 5 Tests, methods and results

### 5.1 Spurious emissions at antenna terminals

#### 5.1.1 Test methods

|                    |                                                                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Test Requirements: | FCC Part 24 Clause 24.238 [Reference 4.1.1 of this report]<br>FCC Part 2 Clause 2.1053 [Reference 4.1.2 of this report]          |
| Test Method:       | ANSI C63.26 2015 Clause 5.5 [Reference 4.1.4 of this report]<br>KDB 935210 D05 Clause 3.6 / 4.7 [Reference 4.1.5 of this report] |
| Limits:            | FCC Part 24 Clause 24.238 [Reference 4.1.1 of this report]                                                                       |

#### 5.1.2 Configuration of EUT

EUT was tested on a bench. The EUT RF port under test was connected to a spectrum analyser via suitable attenuation. RX port was terminated into a 50 Ohm load. EUT was tested across Low, Middle and High channels within each applicable band in a single channel input mode and at bottom and top of the band in dual channel input mode modes, which are specified in section 2.4 of this report.

#### 5.1.3 Test procedure

The EUT system was set up to maximum gain using the network management software provided. EUT signal level was raised until maximum output power was reached per channel/band setting as required. Measurements were made and plots taken in the required Resolution bandwidths, where applicable results are referenced to EIRP limits by consideration of the antenna gain used with the EUT of 8dBi (5.85dBd) and indicated. Only results within 20dB of limits are reported.

Note: some emissions >1 MHz from band edge were measured using the spectrum analyser adjacent power function that integrated power from a lower resolution bandwidth into the 1MHz required by the rule part  
Compliance with MIMO operation is demonstrated by following KDB 662911 D01 section E(3) and adding 10log(2), or 3dB, to the spurious emission measured from a single unit

Tests were performed in test site N.

#### 5.1.4 Test equipment

F075, H071, H072, E602

See Section 8 for more details

#### 5.1.5 Test results

|                                 |            |
|---------------------------------|------------|
| Temperature of test environment | 17-23°C    |
| Humidity of test environment    | 35-58%     |
| Pressure of test environment    | 100-103kPa |

For band edge results please refer to section 5.6 within this report

## Single channel results (SISO operation).

Setup Table

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| Low channel     | 1932.5 MHz    |

| Spurious Frequency (MHz) | Measured Spurious Level (dBm) | Difference to Limit (dB) |
|--------------------------|-------------------------------|--------------------------|
| 1926.5                   | -29.75                        | -16.75                   |
| 3864.8                   | -25.05                        | -12.05                   |

| Plots              |
|--------------------|
| 1930-1995 CSE_low  |
| 1930-1995 CSE_high |

Setup Table

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| Mid channel     | 1960.0 MHz    |

| Spurious Frequency (MHz) | Measured Spurious Level (dBm) | Difference to Limit (dB) |
|--------------------------|-------------------------------|--------------------------|
| 3921.2                   | -29.42                        | -16.42                   |

| Plots              |
|--------------------|
| 1930-1995 CSE_low  |
| 1930-1995 CSE_high |

Setup Table

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| High channel    | 1992.5 MHz    |

| Spurious Frequency (MHz) | Measured Spurious Level (dBm) | Difference to Limit (dB) |
|--------------------------|-------------------------------|--------------------------|
| 1998.0                   | -23.01                        | -10.01                   |
| 3986.0                   | -31.27                        | -18.27                   |

| Plots              |
|--------------------|
| 1930-1995 CSE_low  |
| 1930-1995 CSE_high |

## Single channel results (MIMO operation).

### Setup Table

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| Low channel     | 1932.5 MHz    |

| Spurious Frequency (MHz) | Measured Spurious Level (dBm) | Add 3dB | Difference to Limit (dB) |
|--------------------------|-------------------------------|---------|--------------------------|
| 1926.5                   | -29.75                        | -26.75  | -13.75                   |
| 3864.8                   | -25.05                        | -22.05  | -9.05                    |

### Plots

1930-1995 CSE\_low

1930-1995 CSE\_high

### Setup Table

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| Mid channel     | 1960.0 MHz    |

| Spurious Frequency (MHz) | Measured Spurious Level (dBm) | Add 3dB | Difference to Limit (dB) |
|--------------------------|-------------------------------|---------|--------------------------|
| 3921.2                   | -29.42                        | -26.42  | -13.42                   |

### Plots

1930-1995 CSE\_low

1930-1995 CSE\_high

### Setup Table

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| High channel    | 1992.5 MHz    |

| Spurious Frequency (MHz) | Measured Spurious Level (dBm) | Add 3dB | Difference to Limit (dB) |
|--------------------------|-------------------------------|---------|--------------------------|
| 1998.0                   | -23.01                        | -20.01  | -7.01                    |
| 3986.0                   | -31.27                        | -28.27  | -15.27                   |

### Plots

1930-1995 CSE\_low

1930-1995 CSE\_high

Results are also presented graphically in section 6.

**LIMITS:**

24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB.

In accordance with KDB 662911 D01 3dB has been added to measured results for two signal MIMO operation and then compared with the limits.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  
 $\pm 2.8$  dB

## 5.2 RF Power Output

### 5.2.1 Test methods

|                    |                                                                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Test Requirements: | FCC Part 24 Clause 24.232(a) [Reference 4.1.1 of this report]<br>FCC Part 2 Clause 2.1053 [Reference 4.1.2 of this report]       |
| Test Method:       | ANSI C63.26 2015 Clause 5.2 [Reference 4.1.4 of this report]<br>KDB 935210 D05 Clause 3.5 / 4.5 [Reference 4.1.5 of this report] |
| Limits:            | FCC Part 24 Clause 24.232(a) [Reference 4.1.1 of this report]                                                                    |

### 5.2.2 Configuration of EUT

EUT was tested on a bench. The EUT RF port under test was connected to a spectrum analyser via suitable attenuation. RX port was terminated into a 50 Ohm load. EUT was tested centred on  $f_0$ . Test mode was 2.

### 5.2.3 Test procedure

Tests were made in accordance with the test method noted above using the measuring equipment listed in the 'Test Equipment' Section. The EUT system was set up to maximum gain using the network management software provided. EUT signal level was raised until maximum output power was reached per channel/band setting as required and the frequency under test was set to an appropriate channel to include  $f_0$  as determined in section 5.8. An RMS detector was set and Channel power was measured using the channel power function.

The two optical to RF paths are identical, so total power to the antenna is determined by adding  $10\log(2)$ , or 3dB, to the power measured from a single unit.

### 5.2.4 Test equipment

F075, H071, H072, E602

See Section 8 for more details

### 5.2.5 Test results

|                                 |         |
|---------------------------------|---------|
| Temperature of test environment | 18-22°C |
| Humidity of test environment    | 40-50%  |
| Pressure of test environment    | 102kPa  |

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| f0 frequency    | 1961.3MHz     |

| Test conditions               | Average Power (SISO)<br>(dBm) | TX power EIRP<br>(dBm) | TX Power EIRP<br>(W) | PK to Average<br>Power ratio (dB) |
|-------------------------------|-------------------------------|------------------------|----------------------|-----------------------------------|
| Temp Ambient<br>Volts Nominal | 24.37                         | 32.37                  | 1.73                 | 7.89                              |

Note: 8dBi Antenna gain used.

| Test conditions               | Average Power (MIMO)<br>(dBm) | TX power EIRP<br>(dBm) | TX Power EIRP<br>(W) | PK to Average<br>Power ratio (dB) |
|-------------------------------|-------------------------------|------------------------|----------------------|-----------------------------------|
| Temp Ambient<br>Volts Nominal | 27.37                         | 35.37                  | 3.44                 | 7.89                              |

Note: 8dBi Antenna gain used. 3dB added to result for MIMO operation on single port.

Results are also presented graphically in section 6

### LIMITS:

24.232(a) 1640 W ERP

File Name: Zinwave Ltd.13924-1 Issue 01

In accordance with KDB 662911 D01 3dB has been added to measured results for two signal MIMO operation and then compared with the limits.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  
 $< \pm 1$  dB.

### 5.3 Frequency stability

NOT APPLICABLE: EUT does not contain an oscillator and only reproduces what is provided at its input.

## 5.4 Occupied bandwidth / Input versus output signal

### 5.4.1 Test methods

|                    |                                                                             |
|--------------------|-----------------------------------------------------------------------------|
| Test Requirements: | FCC Part 2 Clause 2.1053 [Reference 4.1.2 of this report]                   |
| Test Method:       | ANSI C63.26 2015 Clause 5.4 [Reference 4.1.4 of this report]                |
| Limits:            | KDB 935210 D05 Clause 3.3 / 3.4, 4.3 / 4.4 [Reference 4.1.5 of this report] |

### 5.4.2 Configuration of EUT

EUT was tested on a bench. The EUT RF port under test was connected to a spectrum analyser via suitable attenuation. RX port was terminated into a 50 Ohm load. EUT was tested at f0. Test mode 2 was used

### 5.4.3 Test procedure

Tests were made in accordance with the test method noted above using the measuring equipment listed in the 'Test Equipment' Section. The EUT system was set up to maximum gain using the network management software provided. EUT signal level was raised until maximum output power was reached per channel/band setting as required and the frequency under test was set to an appropriate channel to include f0 as determined in section 5.8. The spectrum analyser was configured to measure 99% occupied bandwidth using peak detector and max hold.

The two radio cards in the unit are identical, so testing on one port is representative of both transmit ports.

### 5.4.4 Test equipment

F075, H071, H072, E602

See Section 8 for more details

### 5.4.5 Test results

|                                 |         |
|---------------------------------|---------|
| Temperature of test environment | 18-22°C |
| Humidity of test environment    | 45-58%  |
| Pressure of test environment    | 102kPa  |

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| f0 frequency    | 1961.3MHz     |

|                    | 26dB BW (MHz)                |
|--------------------|------------------------------|
| Input measurement  | 4.07                         |
| Output measurement | 4.11                         |
| Plot reference     | 1930-1995 Occupied Bandwidth |

Results are also presented graphically in section 6

#### LIMITS:

Emissions to be contained within the applicable emissions mask/band edges.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  
 $< \pm 1.9\%$

## 5.5 Field strength of spurious radiations

### 5.5.1 Test methods

|                    |                                                                  |
|--------------------|------------------------------------------------------------------|
| Test Requirements: | FCC Part 24 Clause 24.238 [Reference 4.1.1 of this report]       |
|                    | FCC Part 2 Clause 2.1053 [Reference 4.1.2 of this report]        |
| Test Method:       | ANSI C63.26 2015 Clause 5.5 [Reference 4.1.4 of this report]     |
| Limits:            | KDB 935210 D05 Clause 3.6 / 4.7 [Reference 4.1.5 of this report] |

### 5.5.2 Configuration of EUT

The EUT was tested in an ALSE and ambient conditions were monitored. The EUT was examined in its declared normal use position. The transmit port was terminated into a 30dB Attenuator and a 50Ohm load. RX port was terminated into a 50 Ohm load. EUT was tested across all required modes as specified in section 2.4 of this report. Both optical fibre inputs had the same converted RF signals distributed to them from the Primary/secondary hub equipment.

### 5.5.3 Test procedure

Tests were made in accordance with the test method noted above using the measuring equipment listed in the 'Test Equipment' Section. The EUT system was set up to maximum gain using the network management software provided. EUT signal level was raised until maximum output power was reached. Peak field strength pre-scans using the field strength method were performed. The EUT's emissions were maximised by rotating it 360 degrees. This method was used to determine any signals for substitution. An RMS detector was used for any final measurements.

30MHz - 1GHz.

The measuring antenna was scanned 1 - 4m in both Horizontal and Vertical polarisations. Where required a Substitution method was performed using tuned dipoles / a calibrated bi-conical antenna. Measurement distance of 3metres was used.

1GHz – 20GHz.

The measuring antenna was used in both Horizontal and Vertical polarisations. Where required a Substitution method was performed using standard gain horn antennas. Measurement distances used were: 1 – 6 GHz at 3metres, 6 – 18 GHz at 1.2metres and 18 – 20 GHz at 0.3metres.

Tests were performed in test sites B & M.

### 5.5.4 Test equipment

E534, E535, E914, E745, LPE261, LPE333, TMS78, TMS79, CAL08, E830, E007-2, E453, E330, E331, E853, E268, E428, E904, E296-2, E856, E642, E412, E777

See Section 8 for more details

### 5.5.5 Test results

|                                 |         |
|---------------------------------|---------|
| Temperature of test environment | 18-20°C |
| Humidity of test environment    | 50-55%  |
| Pressure of test environment    | 102kPa  |

## Single channel results.

Note: only results within 20dB of limits are shown.

Setup Table

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| Low channel     | 1932.5 MHz    |

File Name: Zinwave Ltd.13924-1 Issue 01

| Spurious Frequency (MHz) | Measured Spurious Level (dBm) | Difference to Limit (dB) | Antenna Polarisation | EUT Polarisation |
|--------------------------|-------------------------------|--------------------------|----------------------|------------------|
| 30.24                    | -27.29                        | -14.29                   | Vertical             | Upright          |
| 39.1                     | -28.38                        | -15.38                   | Vertical             | Upright          |
| 45.55                    | -33.04                        | -20.04                   | Vertical             | Upright          |
| 51.63                    | -37.12                        | -24.12                   | Vertical             | Upright          |
| 11036                    | -16.3                         | -3.3                     | Horizontal           | Upright          |
| 11036                    | -17.97                        | -4.97                    | Vertical             | Upright          |
| 11497                    | -17.14                        | -4.14                    | Horizontal           | Upright          |
| 11497                    | -21.37                        | -8.37                    | Vertical             | Upright          |

Setup Table

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| Mid channel     | 1960.0 MHz    |

| Spurious Frequency (MHz) | Measured Spurious Level (dBm) | Difference to Limit (dB) | Antenna Polarisation | EUT Polarisation |
|--------------------------|-------------------------------|--------------------------|----------------------|------------------|
| 30.24                    | -27.29                        | -14.29                   | Vertical             | Upright          |
| 39.1                     | -28.38                        | -15.38                   | Vertical             | Upright          |
| 45.55                    | -33.04                        | -20.04                   | Vertical             | Upright          |
| 51.63                    | -37.12                        | -24.12                   | Vertical             | Upright          |
| 11036                    | -16.3                         | -3.3                     | Horizontal           | Upright          |
| 11036                    | -17.97                        | -4.97                    | Vertical             | Upright          |
| 11497                    | -17.14                        | -4.14                    | Horizontal           | Upright          |
| 11497                    | -21.37                        | -8.37                    | Vertical             | Upright          |

Setup Table

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| High channel    | 1992.5 MHz    |

| Spurious Frequency (MHz) | Measured Spurious Level (dBm) | Difference to Limit (dB) | Antenna Polarisation | EUT Polarisation |
|--------------------------|-------------------------------|--------------------------|----------------------|------------------|
| 30.24                    | -27.29                        | -14.29                   | Vertical             | Upright          |
| 39.1                     | -28.38                        | -15.38                   | Vertical             | Upright          |
| 45.55                    | -33.04                        | -20.04                   | Vertical             | Upright          |
| 51.63                    | -37.12                        | -24.12                   | Vertical             | Upright          |
| 11036                    | -16.3                         | -3.3                     | Horizontal           | Upright          |
| 11036                    | -17.97                        | -4.97                    | Vertical             | Upright          |
| 11497                    | -17.14                        | -4.14                    | Horizontal           | Upright          |
| 11497                    | -21.37                        | -8.37                    | Vertical             | Upright          |

## DUAL CHANNEL RESULTS.

Setup Table

|                 |                         |
|-----------------|-------------------------|
| Band            | 1930-1995 MHz           |
| Power Level     | 24 dBm                  |
| Channel Spacing | 5 MHz                   |
| Mod Scheme      | AWGN                    |
| Low channels    | 1932.5 MHz + 1937.5 MHz |

| Spurious Frequency (MHz) | Measured Spurious Level (dBm) | Difference to Limit (dB) | Antenna Polarisation | EUT Polarisation |
|--------------------------|-------------------------------|--------------------------|----------------------|------------------|
| 30.24                    | -27.29                        | -14.29                   | Vertical             | Upright          |
| 39.1                     | -28.38                        | -15.38                   | Vertical             | Upright          |
| 45.55                    | -33.04                        | -20.04                   | Vertical             | Upright          |
| 51.63                    | -37.12                        | -24.12                   | Vertical             | Upright          |
| 11036                    | -16.3                         | -3.3                     | Horizontal           | Upright          |
| 11036                    | -17.97                        | -4.97                    | Vertical             | Upright          |
| 11497                    | -17.14                        | -4.14                    | Horizontal           | Upright          |
| 11497                    | -21.37                        | -8.37                    | Vertical             | Upright          |

Setup Table

|                 |                         |
|-----------------|-------------------------|
| Band            | 1930-1995 MHz           |
| Power Level     | 24 dBm                  |
| Channel Spacing | 5 MHz                   |
| Mod Scheme      | AWGN                    |
| High channels   | 1987.5 MHz + 1992.5 MHz |

| Spurious Frequency (MHz) | Measured Spurious Level (dBm) | Difference to Limit (dB) | Antenna Polarisation | EUT Polarisation |
|--------------------------|-------------------------------|--------------------------|----------------------|------------------|
| 30.24                    | -27.29                        | -14.29                   | Vertical             | Upright          |
| 39.1                     | -28.38                        | -15.38                   | Vertical             | Upright          |
| 45.55                    | -33.04                        | -20.04                   | Vertical             | Upright          |
| 51.63                    | -37.12                        | -24.12                   | Vertical             | Upright          |
| 11036                    | -16.3                         | -3.3                     | Horizontal           | Upright          |
| 11036                    | -17.97                        | -4.97                    | Vertical             | Upright          |
| 11497                    | -17.14                        | -4.14                    | Horizontal           | Upright          |
| 11497                    | -21.37                        | -8.37                    | Vertical             | Upright          |

Note: Emissions in above tables are generic emissions and are present regardless of channel settings.

### LIMITS:

24.133(a)

1) For transmitters authorized a bandwidth greater than 10 kHz:

(i) On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (fd in kHz) of up to and including 40 kHz: at least  $116 \log_{10}((fd + 10)/6.1)$  decibels or 50 plus  $10 \log_{10}(P)$  decibels or 70 decibels, whichever is the lesser attenuation;

(ii) On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency ( $f_d$  in kHz) of more than 40 kHz: at least  $43 + 10 \log_{10} (P)$  decibels or 80 decibels, whichever is the lesser attenuation.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty ( $K=2$ ) is as follows:  
30MHz - 1GHz  $\pm 3.9$  dB, 1 – 18 GHz  $\pm 3.5$  dB, 18 – 27 GHz  $\pm 3.9$  dB

## 5.6 Band edge emissions

### 5.6.1 Test methods

|                    |                                                                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Test Requirements: | FCC Part 24 Clause 24.238 [Reference 4.1.1 of this report]<br>FCC Part 2 Clause 2.1053 [Reference 4.1.2 of this report]          |
| Test Method:       | ANSI C63.26 2015 Clause 5.5 [Reference 4.1.4 of this report]<br>KDB 935210 D05 Clause 3.6 / 4.7 [Reference 4.1.5 of this report] |
| Limits:            | FCC Part 24 Clause 24.238 [Reference 4.1.1 of this report]                                                                       |

### 5.6.2 Configuration of EUT

EUT was tested on a bench. The EUT RF port under test was connected to a spectrum analyser via suitable attenuation. RX port was terminated into a 50 Ohm load. EUT was tested across all required modes as specified in section 2.4 of this report.

### 5.6.3 Test procedure

The EUT system was set up to maximum gain using the network management software provided. EUT signal level was raised until maximum output power was reached per channel/band setting as required. Measurements were made and plots taken in the required Resolution bandwidths, where applicable results are referenced to EIRP limits by consideration of the antenna gain used with the EUT of 8dBi (5.85dBd) and indicated. Compliance with MIMO operation is demonstrated by following KDB 662911 D01 section E(3) and adding  $10\log(2)$ , or 3dB, to the spurious emission measured from a single unit

Tests were performed in test site A.

### 5.6.4 Test equipment

F075, H071, H072, E602

See Section 8 for more details

### 5.6.5 Test results

|                                 |         |
|---------------------------------|---------|
| Temperature of test environment | 18-22°C |
| Humidity of test environment    | 40-50%  |
| Pressure of test environment    | 102kPa  |

## Single channel results – SISO operation

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| Low channel     | 1932.5 MHz    |
| High channel    | 1992.5 MHz    |

|                | Lower band edge (1930MHz)   | Upper band edge (1995MHz)    |
|----------------|-----------------------------|------------------------------|
| (dBm)          | -25.24                      | -24.89                       |
| Plot reference | 930-1995 single_channel_low | 930-1995 single_channel_high |

## Single channel results – MIMO operation

|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | 5 MHz         |
| Mod Scheme      | AWGN          |
| Low channel     | 1932.5 MHz    |
| High channel    | 1992.5 MHz    |

|                      | Lower band edge (1930MHz)   | Upper band edge (1995MHz)    |
|----------------------|-----------------------------|------------------------------|
| Measured value (dBm) | -25.24                      | -24.89                       |
| Add 3dB              | -22.24                      | -21.89                       |
| Plot reference       | 930-1995 single_channel_low | 930-1995 single_channel_high |

## Dual channel results – SISO operation

|                 |                     |
|-----------------|---------------------|
| Band            | 1930-1995 MHz       |
| Power Level     | 24 dBm              |
| Channel Spacing | 5 MHz               |
| Mod Scheme      | AWGN                |
| Low channels    | 1932.5 + 1937.5 MHz |
| High channels   | 1987.5 + 1992.5 MHz |

|                      | Lower band edge (1930MHz)  | Upper band edge (1995MHz)   |
|----------------------|----------------------------|-----------------------------|
| Measured value (dBm) | -24.81                     | -25.73                      |
| Plot reference       | 1930-1995 Dual_channel_low | 1930-1995 Dual_channel_high |

## Dual channel results – MIMO operation

|                 |                     |
|-----------------|---------------------|
| Band            | 1930-1995 MHz       |
| Power Level     | 24 dBm              |
| Channel Spacing | 5 MHz               |
| Mod Scheme      | AWGN                |
| Low channels    | 1932.5 + 1937.5 MHz |
| High channels   | 1987.5 + 1992.5 MHz |

|                      | Lower band edge (1930MHz)  | Upper band edge (1995MHz)   |
|----------------------|----------------------------|-----------------------------|
| Measured value (dBm) | -24.81                     | -25.73                      |
| Add 3dB              | -21.81                     | -22.73                      |
| Plot reference       | 1930-1995 Dual_channel_low | 1930-1995 Dual_channel_high |

Results are also presented graphically in section 6

**LIMITS:**

24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB. In accordance with KDB 662911 D01 3dB has been added to measured results for two signal MIMO operation and then compared with the limits.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  
 $< \pm 2.8$  dB

## 5.7 Modulation characteristics

EUT uses digital modulation techniques. Modulation schemes and information is detailed in section 2.2 of this report.

## 5.8 Determination of $f_0$

### 5.8.1 Test methods

Test Requirements: KDB 935210 D05 Clause 3.3 / 4.3 [Reference 4.1.5 of this report]  
Test Method: ANSI C63.26 2015 Clause 5.5 [Reference 4.1.4 of this report]  
KDB 935210 D05 Clause 3.3 / 4.3 [Reference 4.1.5 of this report]  
Limits: None.

### 5.8.2 Configuration of EUT

EUT was tested on a bench. The EUT RF port under test was connected to a spectrum analyser via suitable attenuation. RX port was terminated into a 50 Ohm load. EUT was swept across the operational band with a CW signal to determine the frequency of highest power in the band. Test performed in mode 1.

### 5.8.3 Test procedure

Tests were made in accordance with the test method noted above using the measuring equipment listed in the 'Test Equipment' Section. The EUT system was set up to maximum gain using the network management software provided. EUT signal level was raised until maximum output power was reached. The EUT input signal was then swept across the applicable service band frequency and plots taken showing the frequency of highest power in the band ( $f_0$ ).

The two radio cards in the unit are identical, so testing on one port is representative of both transmit ports.

### 5.8.4 Test equipment

F075, H071, H072, E602

See Section 8 for more details

### 5.8.5 Test results

|                                 |         |
|---------------------------------|---------|
| Temperature of test environment | 18-22°C |
| Humidity of test environment    | 40-50%  |
| Pressure of test environment    | 102kPa  |

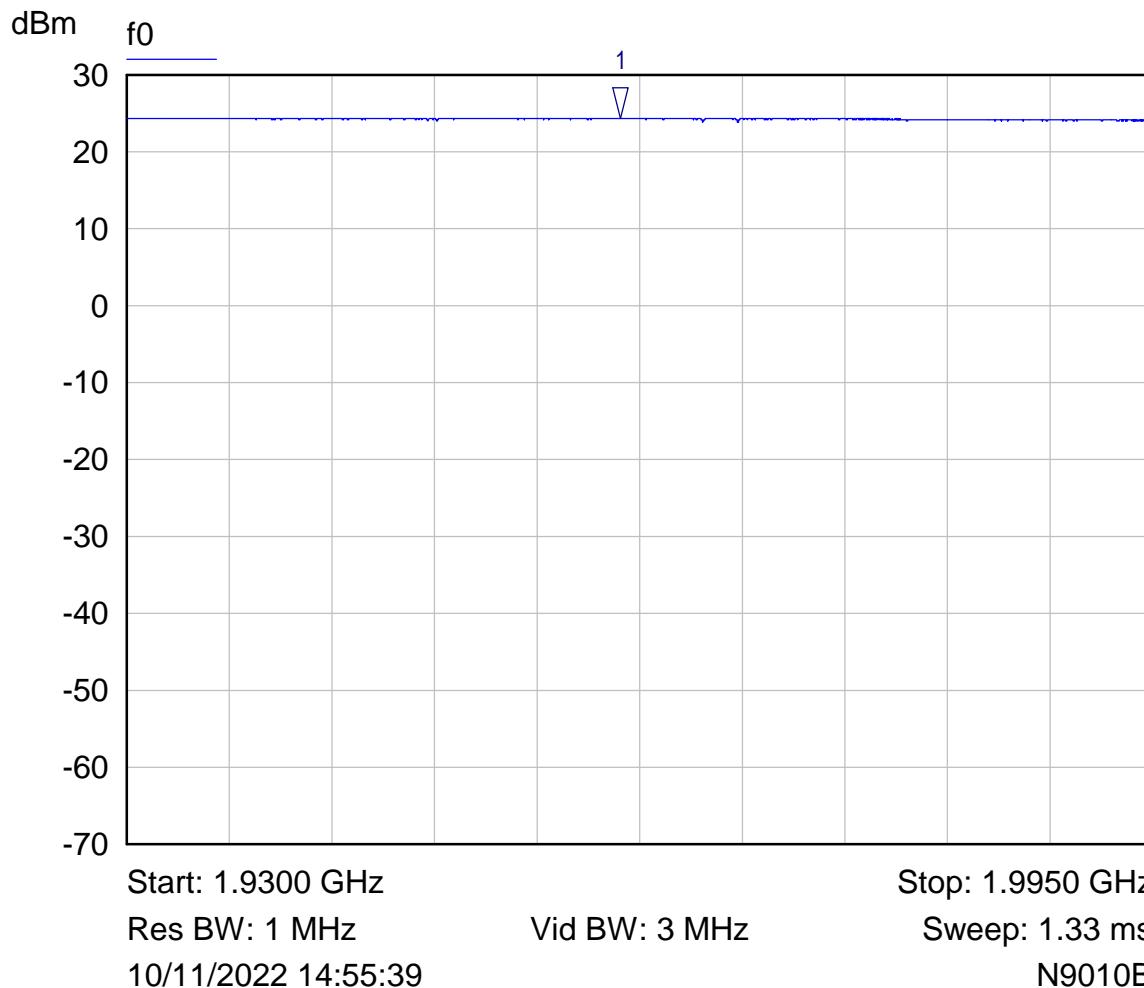
|                 |               |
|-----------------|---------------|
| Band            | 1930-1995 MHz |
| Power Level     | 24 dBm        |
| Channel Spacing | N/A           |
| Mod Scheme      | CW            |

| Band (MHz) | $f_0$ determined (MHz) |
|------------|------------------------|
| 1930-1995  | 1961.3                 |

Note: Measurement was performed over the service band frequency range only.

Results are also presented graphically in section 6.

#### LIMITS:

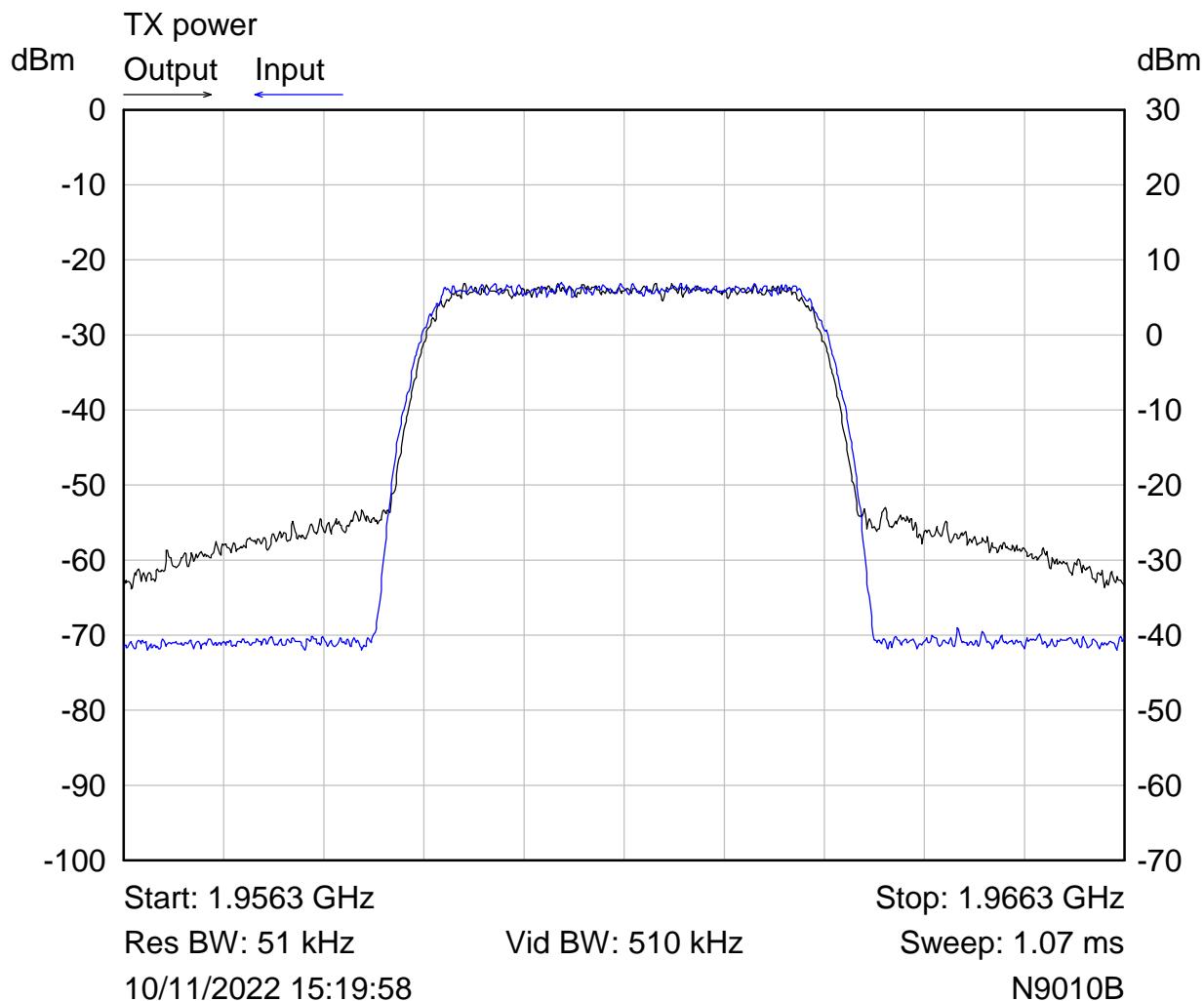

None.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  
 $\pm 1$  dB

## 6 Plots/Graphical results

### 6.1 Determination of $f_0$

RF Parameters: Band 1930-1995 MHz, Power +24 dBm, Swept CW




| Mkr | Trace | X-Axis     | Value     | Notes |
|-----|-------|------------|-----------|-------|
| 1   | f0    | 1.9613 GHz | 24.36 dBm |       |

Plot of  $f_0$  determined in band 1930-1995 MHz.

## 6.2 RF Power Output

RF Parameters: Band 1930-1995 MHz, Power +24 dBm, Channel Spacing 5MHz, Modulation AWGN, Channel centre f0 of 1961.3 MHz.

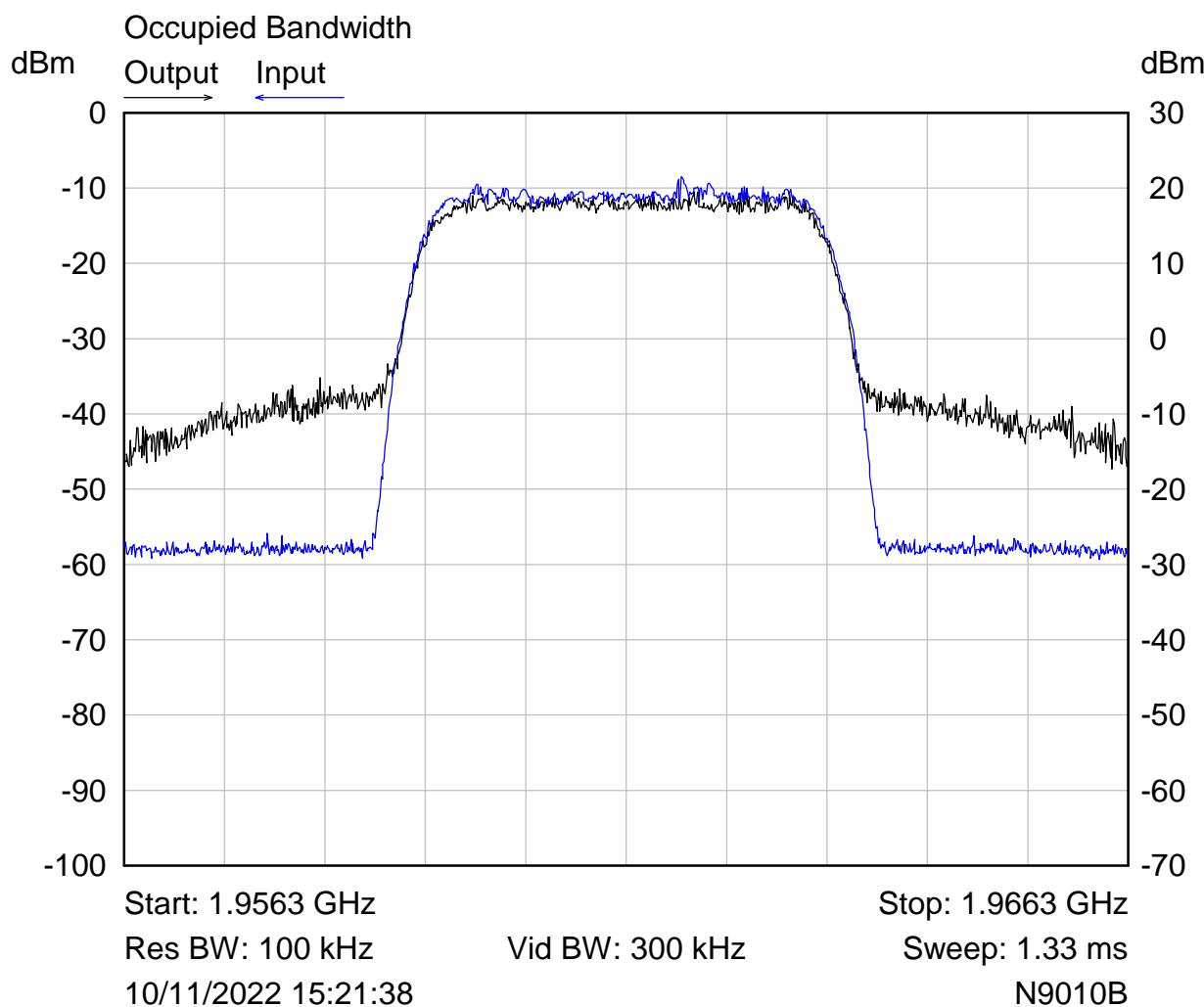


### Output

| Measurement Parameter | Value     |
|-----------------------|-----------|
| Total channel power   | 24.37 dBm |

### Input

| Measurement Parameter | Value     |
|-----------------------|-----------|
| Total channel power   | -5.40 dBm |


Plot of Channel power at determined f<sub>0</sub> in band 1930-1995 MHz (1930-1995 f0\_1961.3MHz)



Plot of Peak to Average power ratio at determined  $f_0$  in band 1930-1995 MHz (1961.3 MHz)

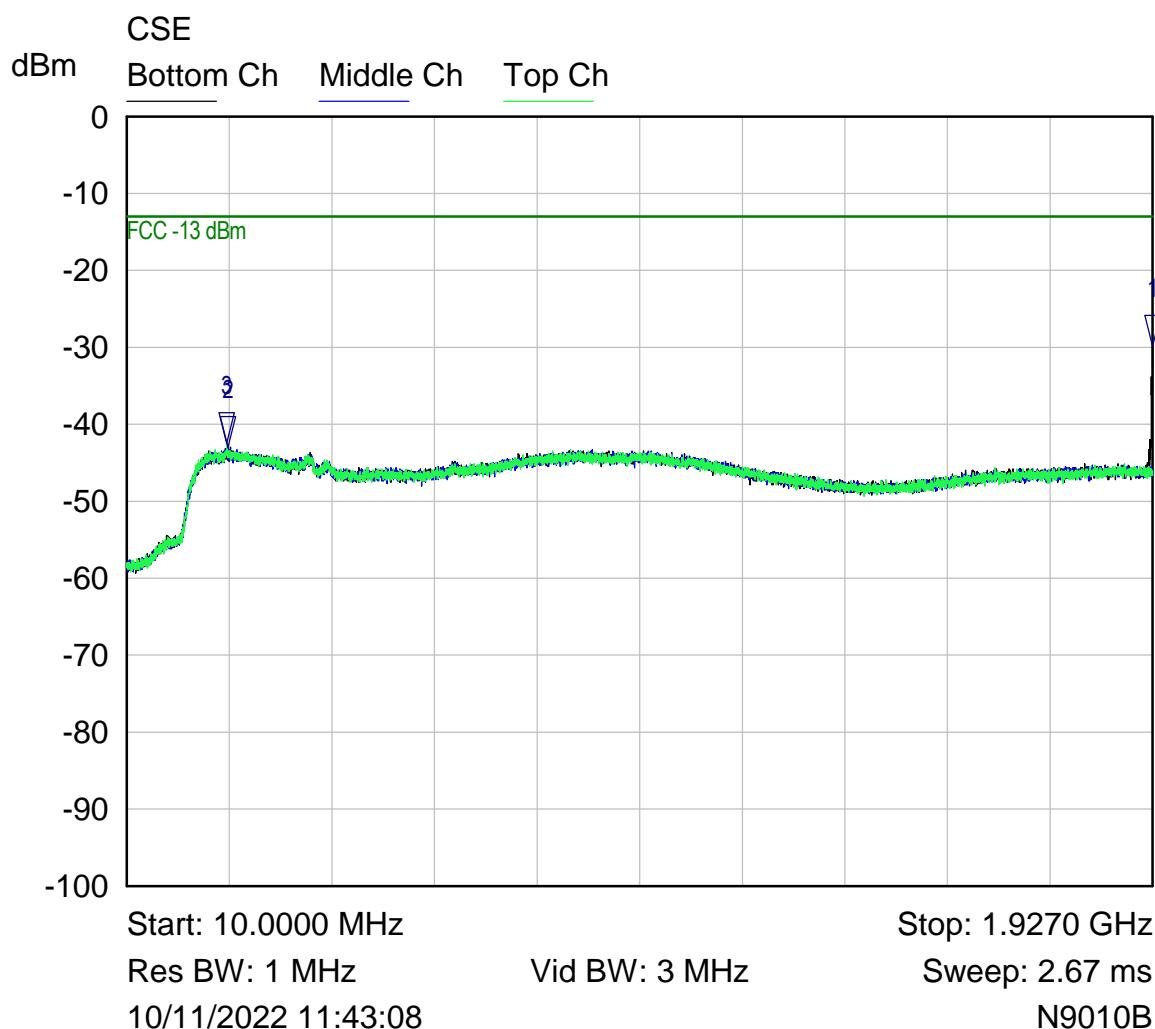
### 6.3 Occupied bandwidth / Input versus output signal

RF Parameters: Band 1930-1995 MHz, Power +24 dBm, Channel Spacing 5MHz, Modulation AWGN, f0 1961.3MHz



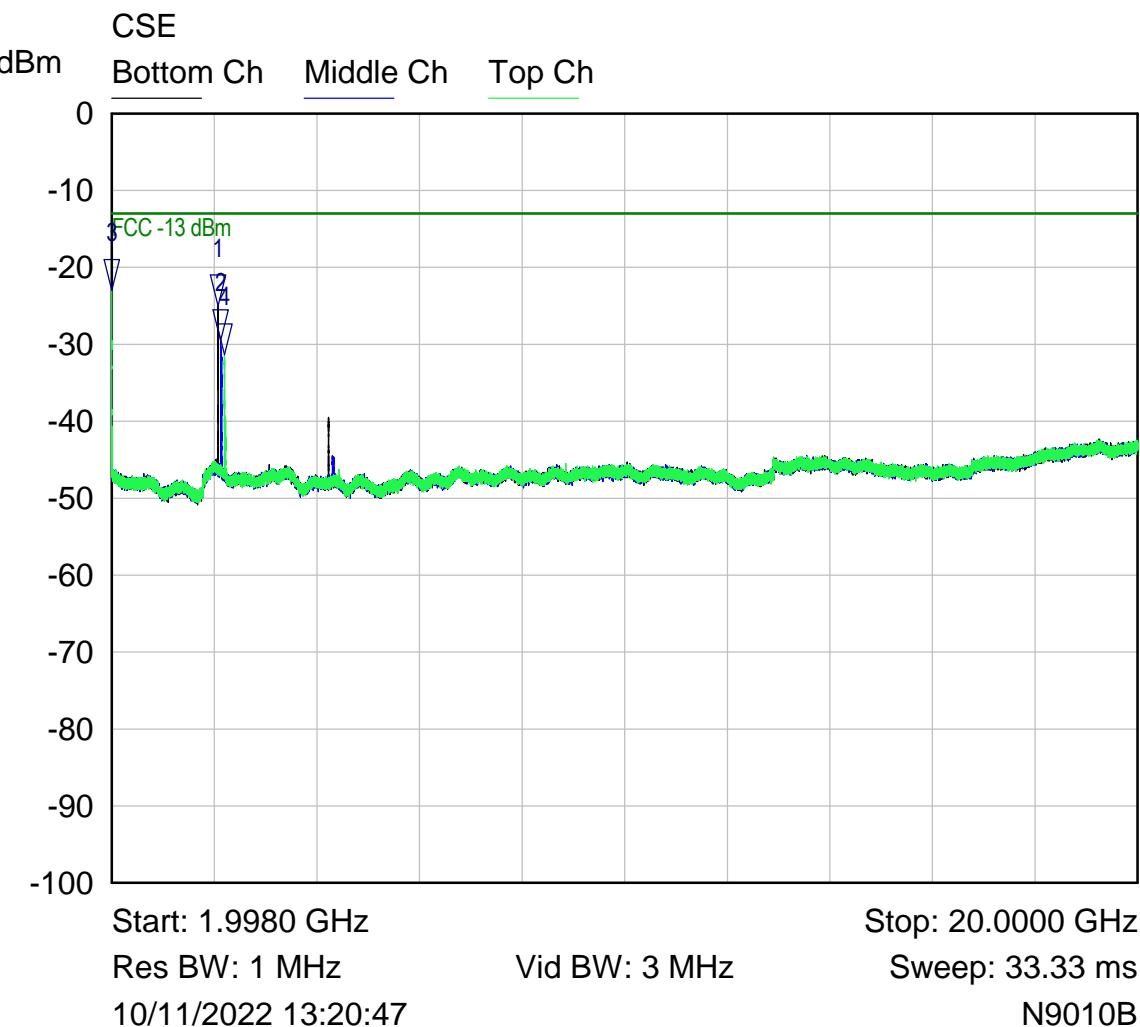
#### Output

| Measurement Parameter | Value      |
|-----------------------|------------|
| Occupied Bandwidth    | 4.1142 MHz |


#### Input

| Measurement Parameter | Value      |
|-----------------------|------------|
| Occupied Bandwidth    | 4.0715 MHz |

Occupied BW at f0, 1961.3MHz


## 6.4 Spurious emissions at antenna terminals

RF Parameters: Band 1930-1995 MHz, Power +24 dBm, Channel Spacing 5MHz, Modulation AWGN,  
Channels 1932.5 MHz, 1960 MHz, 1992.5 MHz, Single channel mode



| Mkr | Trace     | X-Axis       | Value      | Notes |
|-----|-----------|--------------|------------|-------|
| 1   | Bottom Ch | 1.9265 GHz   | -29.75 dBm |       |
| 2   | Middle Ch | 198.6422 MHz | -43.07 dBm |       |
| 3   | Top Ch    | 197.2044 MHz | -42.56 dBm |       |

Plot of conducted emissions 10 MHz – 1.927 GHz range



| Mkr | Trace     | X-Axis     | Value      | Notes |
|-----|-----------|------------|------------|-------|
| 1   | Bottom Ch | 3.8648 GHz | -25.05 dBm |       |
| 2   | Middle Ch | 3.9212 GHz | -29.42 dBm |       |
| 3   | Top Ch    | 1.9980 GHz | -23.01 dBm |       |
| 4   | Top Ch    | 3.9860 GHz | -31.27 dBm |       |

Plot of conducted emissions 2 GHz – 20 GHz range

## 6.5 Band edge emissions

RF Parameters: Band 1930-1995 MHz, Power +24 dBm, Channel Spacing 5MHz, Modulation AWGN, Channel 1932.5 MHz, Single channel mode



Plot of lower band edge for Low channel (1932.5 MHz)

RF Parameters: Band 1930-1995 MHz, Power +24 dBm, Channel Spacing 5MHz, Modulation AWGN,  
Channel 1992.5 MHz, Single channel mode



Plot of upper band edge for High channel (1992.5 MHz)

RF Parameters: Band 1930-1995 MHz, Power +24 dBm, Channel Spacing 5MHz, Modulation AWGN,  
Channels 1932.5 & 1937.5 MHz, Dual channel mode



Plot of lower band edge for Low channels (1932.5 & 1937.5 MHz)

RF Parameters: Band 1930-1995 MHz, Power +24 dBm, Channel Spacing 5MHz, Modulation AWGN,  
Channels 1987.5 & 1992.5 MHz, Dual channel mode



Plot of upper band edge for High channels (1987.5 & 1992.5 MHz)

## 7 Photographs

For confidentiality purposes, photographs are not included at client's request.

## 8 Test equipment calibration list

The following is a list of the test equipment used by R.N. Electronics Ltd to test the unit detailed within this report. In line with our procedures, the equipment was within calibration for the period during which testing was carried out.

| RN No. | Model No.   | Description                           | Manufacturer          | Calibration date | Cal period |
|--------|-------------|---------------------------------------|-----------------------|------------------|------------|
| CAL08  | MWX221      | Cable N Type to SMA Blue 2m           | Junflon               | 12-Aug-2022      | 12 months  |
| E007-2 | VHA9103     | Antenna Bi-con                        | Schwarzbeck           | 23-Apr-2021      | 36 months  |
| E268   | BHA 9118    | Horn Antenna 1 - 18 GHz               | Schaffner             | 02-Apr-2022      | 12 months  |
| E330   | 2224-20     | Horn Antenna 26.5-40GHz               | Flann (FMI)           | 22-Apr-2022      | 12 months  |
| E331   | 22093-KF20  | Horn Antenna 26.5-40GHz               | Flann (FMI)           | 22-Apr-2022      | 12 months  |
| E412   | E4440A      | PSA 3 Hz - 26.5 GHz                   | Agilent Technologies  | 21-Jun-2022      | 24 months  |
| E428   | HF906       | Horn Antenna 1 - 18 GHz               | Rohde & Schwarz       | 02-Apr-2022      | 12 months  |
| E453   | 20240-20-AA | Horn Std Gain 17.6 - 26.7 GHz         | Flann (FMI)           | 25-May-2022      | 12 months  |
| E534   | E4440A      | PSA 3 Hz - 26.5 GHz                   | Agilent Technologies  | 24-Jan-2022      | 24 months  |
| E535   | N9039A      | 9 kHz - 1 GHz RF Filter Section       | Agilent Technologies  | 25-Jan-2022      | 12 months  |
| E602   | MG3692A     | Signal Generator 10 MHz - 20 GHz      | Anritsu               | 21-Feb-2022      | 12 months  |
| E642   | E4440A      | PSA 3 Hz - 26.5 GHz                   | Agilent Technologies  | 14-Dec-2021      | 24 months  |
| E745   | 2017 4/2dB  | Attenuator 4/2dB 30-1000MHz           | RN Electronics        | 04-Feb-2022      | 12 months  |
| E777   | MG3695B     | Signal Generator 8 MHz - 50 GHz       | Anritsu               | 21-Jun-2022      | 12 months  |
| E856   | N9039A      | 9 kHz - 1 GHz RF Filter Section       | Agilent Technologies  | 14-Dec-2021      | 12 months  |
| E904   | 5086-7805   | Pre-Amplifier 1GHz - 26.5GHz          | Hewlett Packard       | 04-Mar-2022      | 12 months  |
| E914   | VULB 9163   | Antenna BiLog 30MHz to 3GHz           | Schwarzbeck           | 23-Apr-2022      | 12 months  |
| F075   | AA18-10H    | Attenuator SMA 10dB 18GHz             | AtlanTecRF            | 19-Aug-2022      | 12 months  |
| H071   | N9010B      | EXA Signal Analyser 10 Hz to 44 GHz   | Keysight Technologies | #09-Nov-2022     | 3 months   |
| H072   | N9000B      | PXA Signal Analyser 9 kHz to 26.5 GHz | Keysight Technologies | 09-Feb-2021      | 24 months  |
| LPE261 | 3115        | Horn Antenna 1 - 18 GHz               | EMCO                  | 02-Apr-2022      | 12 months  |
| LPE333 | 8449B       | Pre-Amplifier 1GHz - 26.5GHz          | Hewlett Packard       | 27-May-2022      | 12 months  |
| TMS78  | 3160-08     | Horn Std Gain 12.4 - 18 GHz           | ETS Systems           | 30-Sep-2022      | 12 months  |
| TMS79  | 3160-09     | Horn Std Gain 18 - 26.5 GHz           | ETS Systems           | 25-May-2022      | 12 months  |

# Equipment was within calibration dates for tests and has been re-calibrated since/during date of tests.

## 9 Auxiliary and peripheral equipment

### 9.1 Customer supplied equipment

| Item No. | Model No. | Description                   | Manufacturer  | Serial No.   |
|----------|-----------|-------------------------------|---------------|--------------|
| 1        | N5172B    | EXG signal generator          | Agilent       | MY53050810   |
| 2        | N5172B    | EXG signal generator          | Keysight      | MY53050728   |
| 3        | 15542     | 30 dB attenuator              | Mini-Circuits | VUU78901032  |
| 4        | 15542     | 30 dB attenuator              | Mini-Circuits | VUU72800911  |
| 5        | UNAT-20+  | 20 dB attenuator              | Mini-Circuits | 42600852     |
| 6        | UNAT-20+  | 20 dB attenuator              | Mini-Circuits | 42600852     |
| 7        | 306-0001  | UNItnity 5000 Primary Hub     | Zinwave Ltd   | 680102010400 |
| 8        | 305-0004  | Zinwave Secondary Hub         | Zinwave Ltd   | 620110000204 |
| 9        | E4432B    | ESG-D signal generator        | Keysight      | ZE000094     |
| 10       | E4432B    | ESG-D signal generator        | Keysight      | ZE000107     |
| 11       | -         | Dual long fibre optic cables  | -             | -            |
| 12       | -         | DC power cable                | -             | -            |
| 13       | -         | Male to Male N RF cables (x4) | -             | -            |
| 14       | 306-0001  | UNItnity 5000 primary hub     | Zinwave Ltd   | 680102010401 |
| 15       | 308-0004  | Zinwave Secondary Hub         | Zinwave Ltd   | 830110000216 |
| 16       | N5172B    | EXG Signal Generator          | Keysight      | ZE0000007    |
| 17       | N5172B    | EXG Signal Generator          | Keysight      | ZE000107     |

### 9.2 RN Electronics supplied equipment

| RN No. | Model No. | Description             | Manufacturer           | Serial No        |
|--------|-----------|-------------------------|------------------------|------------------|
| E587   | 68217-02  | Cable N-N               | Rosenberger Micro Coax | Fa210b1015007070 |
| E482   | 26-6-34   | Attenuator 6dB 18GHz    | Weinschel Corp         | BC4907           |
| E478   | LQ2992/H  | Filter Band Pass 1-3GHz | RACAL-MESL             | 006              |

## 10 Condition of the equipment tested

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

### 10.1 Modifications before test

No modifications were made before test by RN Electronics Ltd.

### 10.2 Modifications during test

No modifications were made during test by RN Electronics Ltd.

## 11 Description of test sites

Site A Radio Laboratory and Anechoic Chamber

Site B Semi-Anechoic Chamber and Control Room  
FCC Registration No. 293246, ISED Registration No. 5612A-4

Site C Transient Laboratory

Site D Screened Room (Conducted Immunity)

Site E Screened Room (Control Room for Site D)

Site F Screened Room (Conducted Emissions)

Site G Screened Room (Control Room for Site H)

Site H 3m Semi-Anechoic Chamber (indoor OATS)  
FCC Registration No. 293246, ISED Registration No. 5612A-2, VCCI Registration No. 4065

Site J Transient Laboratory

Site K Screened Room (Control Room for Site M)

Site M 3m Semi-Anechoic Chamber (indoor OATS)  
FCC Registration No. 293246, ISED Registration No. 5612A-3

Site N Radio Laboratory

Site Q Fully-Anechoic Chamber

Site OATS 3m and 10m Open Area Test Site  
FCC Registration No. 293246, ISED Registration No. 5612A-1

Site R Screened Room (Conducted Immunity)

Site S Safety Laboratory

Site T Transient Laboratory

RN Electronics CAB identifier as issued by Innovation, Science and Economic Development Canada is UK0002  
RN Electronics CAB identifier as issued by FCC is UK0015

## 12 Abbreviations and units

|                                 |                                                                      |        |                                                |
|---------------------------------|----------------------------------------------------------------------|--------|------------------------------------------------|
| %                               | Percent                                                              | LBT    | Listen Before Talk                             |
| $\mu\text{A}/\text{m}$          | microAmps per metre                                                  | LO     | Local Oscillator                               |
| $\mu\text{V}$                   | microVolts                                                           | mA     | milliAmps                                      |
| $\mu\text{W}$                   | microWatts                                                           | max    | maximum                                        |
| AC                              | Alternating Current                                                  | kPa    | Kilopascal                                     |
| ALSE                            | Absorber Lined Screened Enclosure                                    | Mbit/s | MegaBits per second                            |
| AM                              | Amplitude Modulation                                                 | MHz    | MegaHertz                                      |
| Amb                             | Ambient                                                              | mic    | Microphone                                     |
| ATPC                            | Automatic Transmit Power Control                                     | min    | minimum                                        |
| BER                             | Bit Error Rate                                                       | mm     | milliMetres                                    |
| $^{\circ}\text{C}$              | Degrees Celsius                                                      | ms     | milliSeconds                                   |
| C/I                             | Carrier / Interferer                                                 | mW     | milliWatts                                     |
| CEPT                            | European Conference of Postal and Telecommunications Administrations | NA     | Not Applicable                                 |
| COFDM                           | Coherent OFDM                                                        | nom    | Nominal                                        |
| CS                              | Channel Spacing                                                      | nW     | nanoWatt                                       |
| CW                              | Continuous Wave                                                      | OATS   | Open Area Test Site                            |
| dB                              | deciBels                                                             | OFDM   | Orthogonal Frequency Division Multiplexing     |
| $\text{dB}\mu\text{A}/\text{m}$ | deciBels relative to $1\mu\text{A}/\text{m}$                         | ppm    | Parts per million                              |
| $\text{dB}\mu\text{V}$          | deciBels relative to $1\mu\text{V}$                                  | PRBS   | Pseudo Random Bit Sequence                     |
| dBc                             | deciBels relative to Carrier                                         | QAM    | Quadrature Amplitude Modulation                |
| dBm                             | deciBels relative to $1\text{mW}$                                    | QPSK   | Quadrature Phase Shift Keying                  |
| DC                              | Direct Current                                                       | R&TTE  | Radio and Telecommunication Terminal Equipment |
| DTA                             | Digital Transmission Analyser                                        | Ref    | Reference                                      |
| EIRP                            | Equivalent Isotropic Radiated Power                                  | RF     | Radio Frequency                                |
| ERP                             | Effective Radiated Power                                             | RFC    | Remote Frequency Control                       |
| EU                              | European Union                                                       | RSL    | Received Signal Level                          |
| EUT                             | Equipment Under Test                                                 | RTP    | Room Temperature and Pressure                  |
| FM                              | Frequency Modulation                                                 | RTPC   | Remote Transmit Power Control                  |
| FSK                             | Frequency Shift Keying                                               | Rx     | Receiver                                       |
| g                               | Grams                                                                | s      | Seconds                                        |
| GHz                             | GigaHertz                                                            | SINAD  | Signal to Noise And Distortion                 |
| Hz                              | Hertz                                                                | Tx     | Transmitter                                    |
| IF                              | Intermediate Frequency                                               | V      | Volts                                          |
| kHz                             | kiloHertz                                                            |        |                                                |