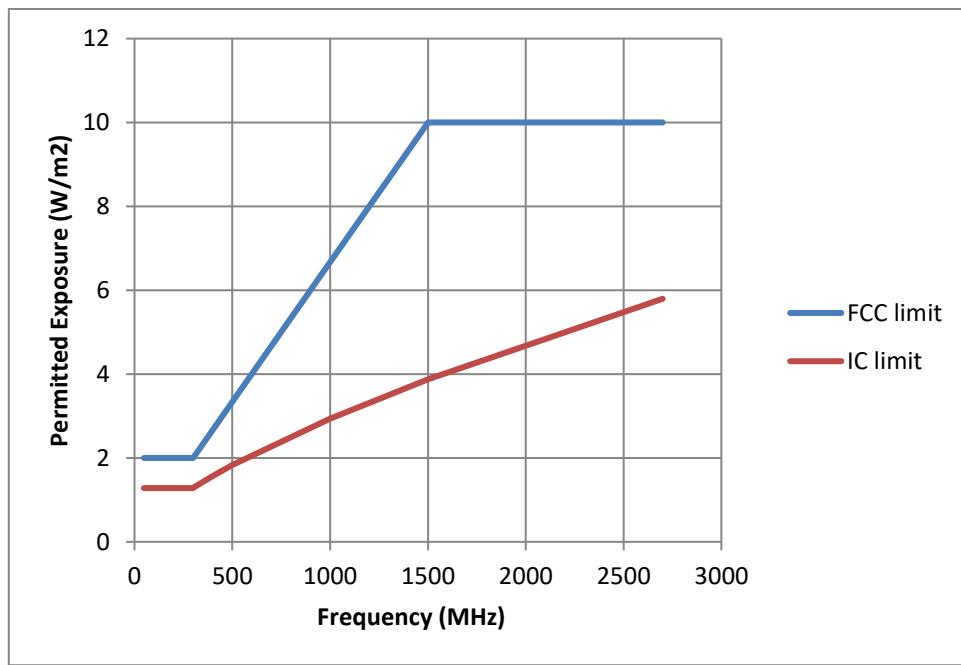


EM Field exposure calculation calculation

RF Exposure – USA and Canada

The 305-0007 remote unit is installed in a fixed location and designed to be used > 20cm from the body.


The device is designed to be used with a variety of antennas and EMF calculations have been done using 8dBi antenna which is higher gain than any of the recommended options so represents worst case for all of them.

Requirement	Frequency range (MHz)	Power Density Limit (W/m ²)	IC Exemption from Routine evaluation (W EIRP)
FCC OET 65	30 - 300	2.0 ¹	N/A
	300 - 1500	$F / 150^1$	
	1500 - 100000	10	
RSS-102 Issue 5	48 - 300	1.281	0.600
	300 - 6000	$0.02619f^{0.6834}$	$0.0131 f^{0.6834}$

Table 1: Permitted Exposure levels and IC exemption levels

Notes:

- For any given Frequency over the whole band of operation, the IC limits are the most stringent
- The routine exemption limit is approximately 50% of the more stringent limit, so emissions complying with that automatically comply with both FCC and IC limits.
- The worst case calculation is for the lowest frequency of operation in each band

Figure 1: FCC vs IC permitted exposure levels for general population

¹ FCC limits are specified in mW/cm², which have been multiplied by 10 to convert into W/m².

EM Field exposure calculation calculation

Demonstration of compliance

- As the product is installed in a fixed location, the power density can be calculated at 20cm and compared to the permitted exposure limits and IC routine exemption limit.
- The product operates over a wide frequency range:
 - Worst case for 30-300 MHz band is operation at 150 MHz
 - Worst case for 300-6000 MHz region is operation at 406.1 MHz

FCC

Using the equation $S = \frac{PG}{4\pi R^2}$, the exposure level at 20 cm can be calculated and compared against the limit

P: power input to antenna in W

G: numeric gain of antenna relative to isotropic radiator

S: power density limit in W/m²

R: distance for evaluation in m, which is 0.2

Freq band	Freq (MHz)	Antenna port power (dBm)	EIRP (W)	S (W/m ²)	FCC limit (W/m ²)
< 300 MHz	174.0	15.85	0.243	0.48	2.00
> 300 MHz	various	20.0	0.631	1.26	$\geq 2.71^2$

Table 2: Calculated Exposure levels at 20 cm

Industry Canada

The radiated power is compared against the exemption limit in section 2.5.2 of RSS-102:

Freq band	Freq (MHz)	Antenna port power (dBm)	EIRP (W)	IC Exemption from Routine evaluation (W EIRP)	Radiated power below exclusion limit
< 300 MHz	150.0	15.85	0.243	0.600	Yes
> 300 MHz	406.1	20.0	0.631	0.794	Yes

Table 3: EIRP calculations for Industry Canada routine evaluation

² Limit at 406 MHz which increases with frequency until it reaches 10.00 at 1500 MHz.