
V3338 USER MANUAL

Confidential

Document Name: V3338 specification

Version: 01.04

Date : 2009 -11 -12

Status : Draft

General Notes

UFT offers this information as a service to its customers, to support application and engineering efforts that use UFT products. The information provided is based upon requirements specifically provided to UFT by the customers. UFT has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this UFT product within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Important Notes

Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for uncontrolled environment . This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.

Copyright

This document contains proprietary technical information which is the property of UFT Limited., copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.

Copyright © UFT Limited. 2008

Contents

Contents	3
0 Version History.....	4
1 Introduction.....	5
1.1. Related documents	5
2. Product concept.....	6
2.1. V3338 features at a glance.....	6
3. Hardware Interface.....	7
3.1. Module Interface	7
3.2. Pin description.....	7
3.3. Operating modes	9
3.4. Power supply	10
3.5. Power up and power down scenarios	11
3.5.1. Turn on V3338.....	11
3.5.2. Turn off V3338	12
3.5.3. Hardware Shut Off V3338.....	12
3.5.4. Power saving	12
3.6. Serial interfaces.....	12
3.7. Audio interfaces	13
3.8. DAI PCM Interface	14
3.9. PWM and Alerter (needs software support)	15
3.10. Antenna	15
3.11. SIM card interface	16
3.12. Keypad Interface	18
3.13. LCD Interface (Parallel display can not work onV3338)	19
3.14. RTC backup.....	21
3.15. IOs.....	21
3.16. External Interrupt	21
3.17. Open-Drain Output Swith	22
3.18. ADC	22
3.19. Digital Pin Electrical Characteristics	23
3.20. Modem Hardware flow control PIN Description	26
3.21. Module sleep mode control	26
3.22. Behaviors of the RING indication line.....	26
3.23. Network status indication LED lamp	27
3.24. Network Signal Level Indication Pins.....	27
4. Software application.....	28
4.1. Master mode (such as application for fixed wireless phone)	28
4.2. Slave mode (standard GSM/GPRS module application).....	28
4.2.1. AT command	28
4.2.2. The hyper terminal configure method	28
4.2.3. TCP/IP protocol.....	29
5. Mechanics	30
6. Interface board Reference EVB	31
6.1 Standard GSM/GPRS module	31
6.2 Module apply for fixed wireless phone	35

0 Version History

Data	Version	Description of change	Author
2008-03-03	01.00	Origin	George
2008-03-20	01.01		Changchun Zhu
2008-05-29	01.02	Modem Hardware flow control PIN Description	Xiao Youzhi
2008-09-11	01.03	Add Behaviors of the RING line. Add Behaviors of the Network LED. Add Network signal level LED indication.	Xiao Youzhi
2008-12-18	01.04	Modify Behaviors of the RI and Network signal level line	Xiao Youzhi
2009-02-15	01.05	Modify Pin of network led and signal level pin	Xiao Youzhi
2009-05-22	01.06	Modify Pin of network led and signal level pin on page 31 of the Reference SCH of Module	Changchun Zhu
2010-09-30	01.07	Exchange Pin41 from ADC0 to AU_MOUTL on V3338 -XX-XXXX-XXXX- A10	Changchun Zhu

1 Introduction

This document describes the hardware interface of the V3338 GS M/GPRS module which can be integrated with a wide range of applications. This document can help you quickly understand V3338 interface specifications, electrical and mechanical details. With the help of this document and other V3338 application notes, user guide, you can use V3338 module to design and set-up mobile applications quickly.

1.1. Related documents

- [1] GSM 07.07: Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
- [2] GSM 07.05: Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE –DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
- [3] GSM 11.14: Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module –Mobile Equipment (SIM – ME) interface
- [4] GSM 11.11: Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
- [5] GSM 03.38: Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information
- [6] GSM 11.10: Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification
- [7] GSM 07.10: Digital Cellular telecommunications system (Phase 2+); Terminal Equipment to Mobile Station multiplexer protocol, verion 7.2.0 Release 1998
- [8] GSM 07.10 V7.1.0: Digital cellular telecommunications system (Phase 2+); Terminal Equipment to Mobile Station (TE-MS) multiplexer protocol
- [9] GSM 07.07 V7.5.0: AT command set for GSM Mobile Equipment
- [12] UFT 09102006: UFT Wirless Phone feature

Feature	Implementation
Power supply	Single supply voltage 3.4V – 4.2V, typical: 3.8V
Power saving	Typical power consumption in Sleep mode to 3-4mA depends on network condition
Frequency bands	V3338 Dual band: EGSM 900/ DCS 1800 or GSM850/PCS 1900.
Transmit power	Class 4 (2W) at EGSM900 Class 1 (1W) at DCS1800 and PCS 1900
GPRS connectivity	GPRS multi-slot class 12 GPRS mobile station class B
Temperature range	Normal operation: -15°C to +70°C
SMS	MT, MO, CB, Text and PDU mode SMS storage: SIM card Support transmission of SMS alternatively over CSD or GPRS. User can choose preferred mode.
FAX	Group 3 Class 1
SIM interface	Supported SIM card: 3V
External antenna	Connected via antenna pad
Phonebook management	Supported phonebook types: SM, FD, LD, RC, ON, MC.
SIM Application Toolkit	Supports SAT class 3, GSM 11.14 Release 97
Real time clock	Implemented
Timer function	Programmable via AT command
Physical characteristics	Size: 27.4*30.8*2.8 Weight: 8g
Firmware upgrade	Firmware upgradeable over serial interface

3. Hardware Interface

3.1. Module Interface

The **80 pins** described in detail in following chapters:

Power supply
Serial interface
Analog audio interfaces
PCM interface
PWM
Antenna
SIM interface
Keyboard interface
LCD interface
Charger
RTC backup battery
IOs
External Interrupt
Open-Drain Output Switch
ADC

3.2. Pin description

Table 1: Pin description

V338 module pin assignment :			
No.	Name	I/O	Description
1	PCM_IN	I	DAI PCM data input
2	PCM_CLK	O	DAI PCM clock output
3	PCM_SYNC	I	DAI frame synchronization input
4	PCM_RST	I	DAI reset signal input
5	PCM_OUT	O	DAI PCM data output
6	LCD_RSTB	O	Parallel display interface Reset Signal
7	IO14	I/O	General purpose Input/Output pin, No.14/ Can't use in V3338
8	LCD_CS0	O	Parallel display interface chip select 0 output
9	WATCHDOG	O	Watchdog reset output, active low
10	EINT0	I	External interrupt 0
11	EINT2	I	External interrupt 2
12	COL0	I	Keypad column 0
13	COL1	I	Keypad column 1
14	COL2	I	Keypad column 2
15	COL3	I	Keypad column 3
16	COL4	I	Keypad column 4
17	ROW0	O	Keypad row 0
18	ROW1	O	Keypad row 1
19	ROW2	O	Keypad row 2
20	ROW3	O	Keypad row 3

21	ROW4	O	Keypad row 4			
22	IO31	I/O	General purpose Input/Output pin, No.31			
23	EINT3	I	External interrupt 3			
24	CTS	I	UART1-Clear To Send			
25	RTS	O	UART1-Request To Send			
26	EINT1	I	External interrupt 1			
27	VBACKUP	power	BAT_Backup Voltage Input	min 1.3V	typ 1.8V	max 2.0V
28	TXD3					
29	TXD2	O	UART2-Transmit Data			
30	TXD1	O	UART1-Transmit Data			
31	RXD3	I	UART3-Receive Data			
32	RXD2	I	UART2-Receive Data			
33	RXD1	I	UART-Receive Data			
34	VDD	O	2.8V			
35	VBAT	power	System Power Voltage Input	min 3.3V	typ 4.2V	max 4.6V
36	GND					
37	VRSIM	O	Rugulator SIM Output			
38	SIM_RST	O	SIM Reset			
39	SIM_IO	I/O	SIM Input/Output			
40	SIM_CLK	O	SIM Clock			
41	ADC0*	I	Auxiliary ADC input 0 (Exchanged with AU_MOUTL on V3338 - XX - XXXX - XXXX - A10)			
42	Suspend		Do not link to anything or link to GND			
43	LEDA	O	LED Driver, Paging Indicator			
44	PWRKEY	I	Power on the module			
45	GND		Ground			
46	EARN	O	Earphone amplifier negative output(-)			
47	EARP	O	Earphone amplifier positive output(+)			
48	MICIN	I	Microphone amplifier negative input(-)			
49	MICIP	I	Microphone amplifier positive input(+)			
50	AU_MOUTR	O	Audio analog output right channel			
51	AUXI	I	Auxiliary hands free amplifier positive input(+)			
52	GND		Ground			
53	VBAT	power	Power input for RF	min 3.3V	typ 4.2V	max 4.6V
54	VBAT					
55	ADC1/Battery ID	I	ADC			
56	IO22	IO	General purpose Input/Output pin, No. 22			
57	System reset	I	System will reset when input active low (more than 1s low voltage)			
58	IO21	I/O	General purpose Input/Output pin, No. 21			
59	LCD7	O	Parallel display interface Data7			
60	LCD6	O	Parallel display interface Data6			
61	LCD5	O	Parallel display interface Data5/ Can't use in V3338			
62	LCD4	O	Parallel display interface Data4/ Can't use in V3338			
63	LCD_WR	O	Parallel display interface Write Signal/ Can't use in V3338			
64	IO20	I/O	General purpose Input/Output pin, No. 20			
65	IO25/PWM	I/O	General purpose Input/Output pin, No.25			
66	GND	Ground				
67	ANT	Antenna				
68	GND	Ground				
69	LCD_RD	O	Parallel display interface Read Signal/ Can't use in V3338			
70	LCD_A0	O	Parallel display interface address output/ Can't use in V3338			

71	IO30	I/O	General purpose Input/Output pin 30
72	LCD0	O	Parallel display interface Data0/ Can't use in V3338
73	LCD1	O	Parallel display interface Data1/ Can't use in V3338
74	LCD2	O	Parallel display interface Data2/ Can't use in V3338
75	IO24	I/O	General purpose Input/Output pin, No. 24
76	IO0	I/O	General purpose Input/Output pin, No. 0
77	JTDI	I	JTAG-Data Input
78	JTMS	I	JTAG-Test Mode Select
79	JTRST	I	JTAG test port reset input
80	LCD3	O	Parallel display interface Data3/ Can't use in V3338

3.3. Operating modes

The following table summarizes the various operating modes, each operating modes is referred to in the following chapters.

Table 2: Overview of operating modes

Mode	Function	
Normal operation	GSM/GPRS Sleep	Module will automatically go into Sleep mode if there is no air link activation and no hardware interrupt (such as GPIO interrupt or data on serial port). In this case, the current consumption of module will reduce to the minim. During sleep mode, the module can still receive paging message.
	GSM IDLE	Module has registered to the GSM network, and the module is ready to send and receive.
	GSM TALK	CSD connection is going on between two subscribers. In this case, the power consumption depends on network condition and settings such as DTX off/on, FR/EFR/HR, hopping sequences.
	GPRS IDLE	Module is ready for GPRS data transfer, but no data is currently sent or received. In this case, power consumption depends on network settings and GPRS configuration (e.g. multi-slot settings).
	GPRS DATA	There is GPRS data in transfer (PPP or TCP or UDP). In this case, power consumption is related with network settings (e.g. power control level), uplink / downlink data rates and GPRS configuration (e.g. used multi-slot settings).
POWER DOWN		The power management ASIC disconnects the power supply from the base band part of the module, only the power supply for the RTC is remained. Software is not active. The serial interfaces are not accessible.
Alarm mode		RTC alert function launches this restricted operation while the module is in POWER DOWN mode. V3338 will not be registered to GSM network and only parts of AT commands can be available.

3.4. Power supply

The power supply must be able to provide sufficient current up to 2A.

For the VBAT input, a local bypass capacitor is recommended. A capacitor (above 100 μ F, low ESR) is recommended. Multi-layer ceramic chip (MLCC) capacitors can provide the best combination of low ESR and small size but may not be cost effective. A lower cost choice may be a 100 μ F tantalum capacitor (low ESR) with a small (1 μ F to 10 μ F) ceramic in parallel, which is illustrated as following figure. And the capacitors should put as closer as possible to the V3338 VBAT (RF) pins. A voltage regulator diode should be added between the Vbat and Gnd, and the BZV55C5V1 of Philips could be used. The following figure is the recommended circuit.

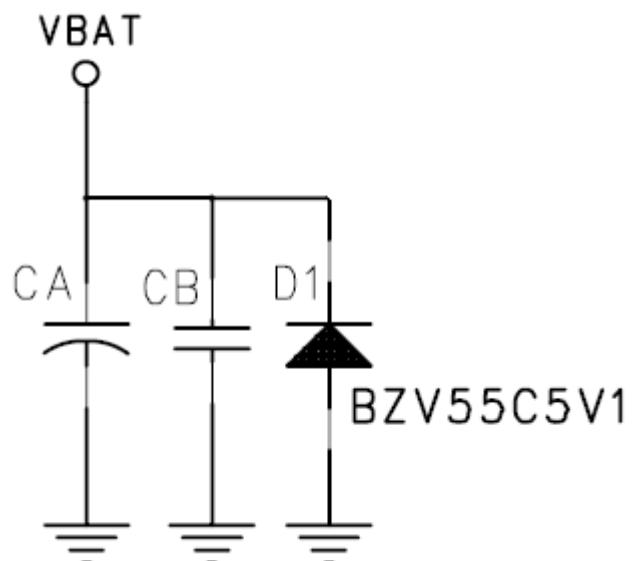
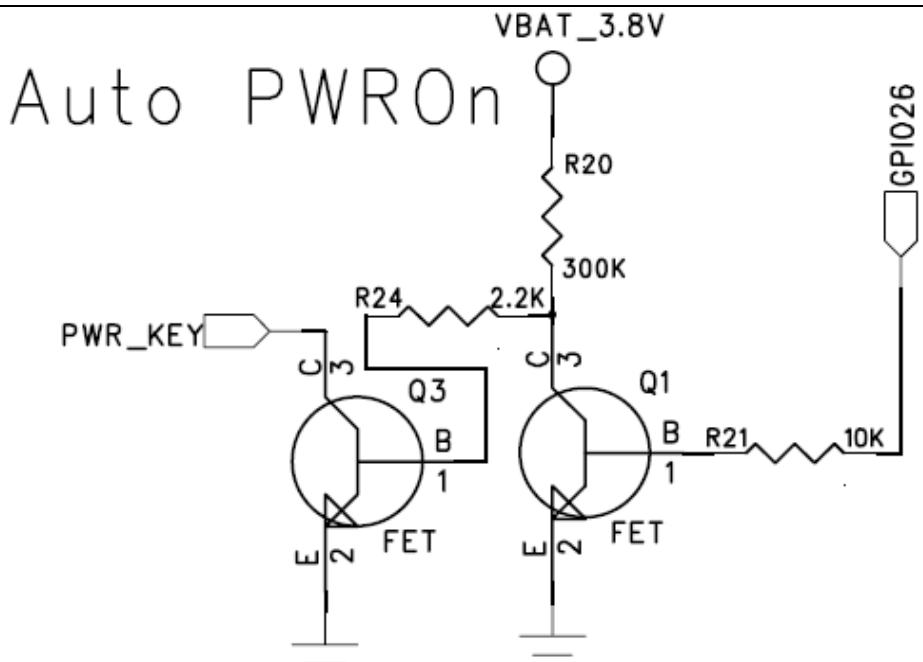


Figure 1: VBAT input

Table3: Power supply pins on the half-circle connector

Num	Name	Function	I/O	Min (V)	Type (V)	Max (V)	Note
35, 53, 54	VBAT	Power Supply	Input	3.3	4.2	4.6	Please make sure that the input voltage will never drops below 3.3V even in a transmit burst during which the current consumption may rise up to 2A.
36, 45, 52, 66, 68	GND	GND	GND				

Minimizing power losses


Please pay special attention to the supply power when you are designing your applications. Please make sure that the input voltage will never drops below 3.3V even in a transmit burst during which the current consumption may rise up to 2A. If the power voltage drops below 3.3V, the module may be switched off. You should also take the resistance of the power supply lines on the host board or of battery pack into account.

3.5. Power up and power down scenarios

3.5.1. Turn on V3338

MD231 can be turned on by following two ways:

- Via PWRKEY pin: You can turn on the V3338 to normal operating mode by driving the PWRKEY to a low level voltage for 1500ms;
- Via RTC interrupt: starts ALARM modes;
- For some application system, we can connect the “PWRKEY” to “GND” so that the module will be turn on as soon as the 3.8V power supply to the module. But, if “PWRKEY” linked to “GND”, other keypad pin could not work. Here is a circuit to make the module power on automatically. GPIO26 is the pin78 of the V3338. If the module power on, the GPIO26 will output high level, on consequence, the “PWR_KEY” will be high level so that other keypad pin could work.

3.5.2. Turn off V3338

V3338 can be turned off by following two ways:

- Driving the PWRKEY to a low level for 1500ms when module working
- Use “AT + CKPD=”P”, 50” command to turn off V3338 module.

3.5.3. System reset for V3338

You can reset V3338 by driving the “system reset” pin to a low level voltage for 500ms. If V3338 blocked in hardware or software, you can not turn off V3338 by “PWRKEY” pin or by AT command, the only way is driving the “System reset” pin to low level for more than 1s and then high level. The module will reset.

3.5.4. Power saving

3.6. Serial interfaces

V3338 provides 3 UARTs with hardware flow control and speed up to 921600 bps. The UARTs provide full duplex serial communication channels between the module and external devices.

Serial Port can be used for CSD FAX, GPRS service and send AT command of controlling module. Serial port supports the communication rate as following:

1200, 2400, 4800, 9600 (Default), 19200, 38400, 57600, 115200

The serial port

The following table is the pin definition of UART.

Table4: UART interface of the MD231

Pin	Name	Function	Pin	Name	Function
-----	------	----------	-----	------	----------

30	TXD1	UART1-Transmit Data	33	RXD1	UART-Receive Data
29	TXD2	UART2-Transmit Data	32	RXD2	UART2-Receive Data
28	TXD3	UART3-Transmit Data	31	RXD3	UART3-Receive Data
24	CTS	UART1-Clear To Send	25	RTS	UART1-Request To Send

The reference design of standard serial port level switching circuit is as follow figure:

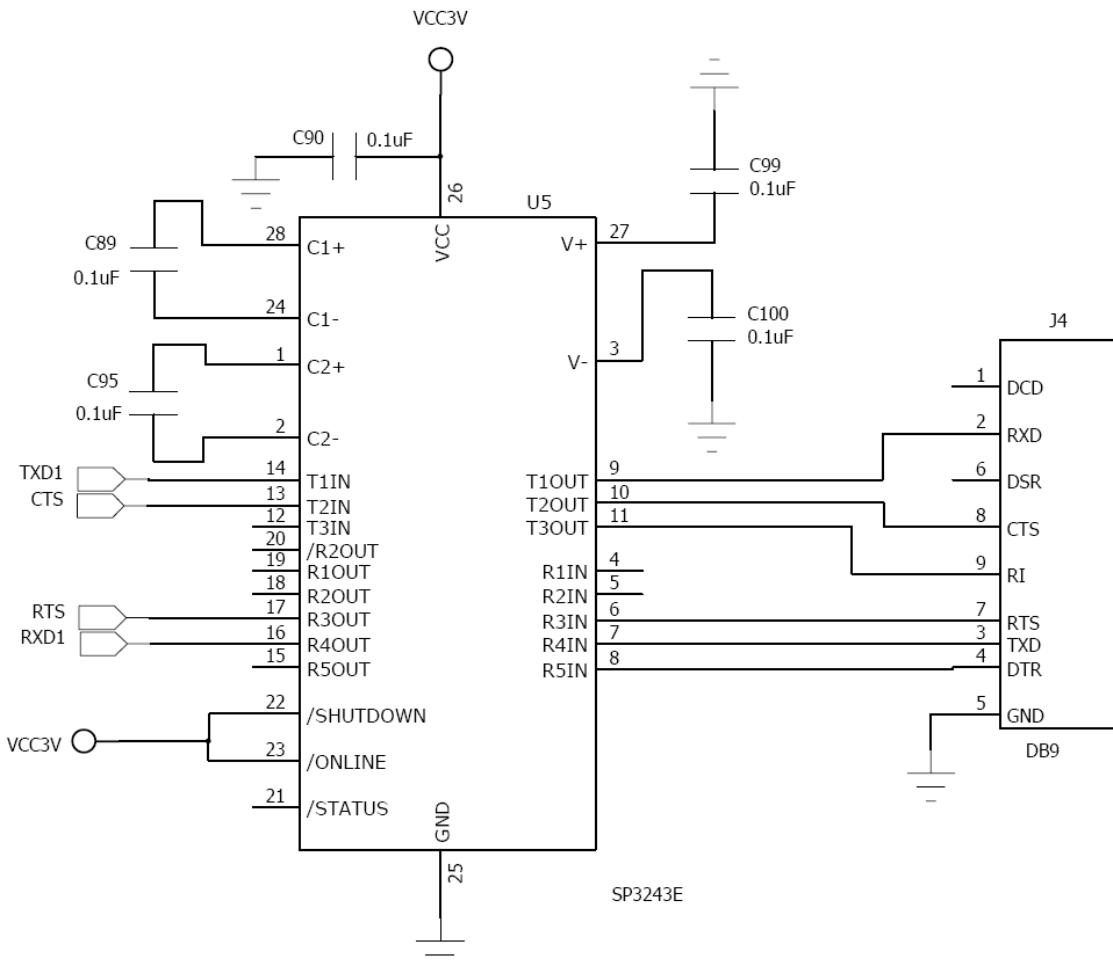


Figure2 The reference diagram of standard serial port level switching circuit

3.7. Audio interfaces

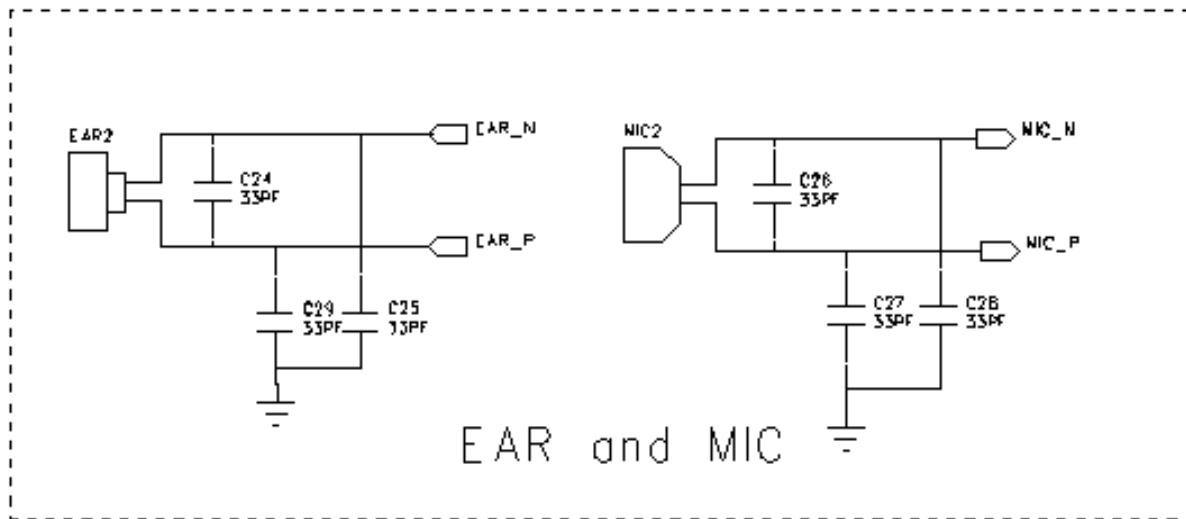
The module provides two audio channels:

EAR and MIC, used for microphone and receiver;

AUXI and AU_MOUT, used for line in and line out;

The audio should be far away from the radio part to reduce TD noise from radio.

The audio pins definitions are as follow table:


Table5: Audio interface of the V3338

Pin	Name	Function	Pin	Name	Function
50	AU_MOUTR	Audio analog output channel	51	AUXI	Auxiliary hands free amplifier positive input(+)

46	EARN	Earphone negative output(-)	47	EARP	Earphone positive output(+)
48	MICIN	Microphone amplifier negative input(-) output	49	MICIP	Microphone amplifier positive input(+) output

It is suggested that you adopt following matching circuit in order to satisfy speaker effect. The difference audio signals have to be layout according to difference signal layout rules. If you want to adopt an amplifier circuit for audio, we commend National company's LM4890. But you can select it according to your needs.

The audio reference design as follow chart:

Figure3 The reference design of audio

The microphone bias electric circuit was designed in V3338. The MIC_BIAS DC characteristics see the table 6.

Table 6: MIC_BIAS DC Characteristics

Parameter	Minimum	Typical	Maximum	Units
Microphone Bias Voltage (MIC_BIAS)		1.9		V
Source Current			2	mA

All voice band data paths comply with the GSM 03.50 specification. Mono hands-free audio are also provided. The audio stereo path facilitates CD-quality playback and voice playback through a headset.

3.8. DAI PCM Interface

The Digital Audio Interface (**DAI**) block communicates with the System Simulator for FTA or external Bluetooth modules. To communicate with the external Bluetooth module, the master-mode PCM interface and master-mode I2S/EIAJ interface are supported. The clock of PCM interface is 256 kHz, and the frame sync is 8 kHz. Both long sync and short sync interfaces are supported. The PCM interface can transmit 16-bit stereo or 32-bit mono 8 kHz sampling rate voice signal. Table 6 show the pin map of DAI PCM.

I2S/EIAJ interface is designed to transmit high quality audio data. I2S/EIAJ can support 32 kHz, 44.1kHz, and 48kHz sampling rate audio signals. The clock frequency of I2S/EIAJ can be $32 \times$ (sampling frequency), or $64 \times$ (sampling frequency). For example, to transmit a

44.1 kHz CD-quality music, the clock frequency should be $32 \times 44.1 \text{ kHz} = 1.4112 \text{ MHz}$ or $64 \times 44.1 \text{ kHz} = 2.8224 \text{ MHz}$.

Table 7: Pin mapping of DAI, PCM interfaces

Pin	Name	Function	Pin	Name	Function
4	PCM_RST	DAI reset signal input	3	PCM_SYNC	General purpose Input/Output pin 24
2	PCM_CLK	DAI PCM clock output	1	PCM_IN	DAI PCM data input
5	PCM_OUT	DAI PCM data output			

3.9. PWM and Alerter (needs software support)

The output of the PWM signal should be supported by software. We can do custom software for users to support PWM signal.

Table 8: Alerter and PWM interface of the V3338

Pin	Name	Function	Pin	Name	Function
65	IO25/PWM	Pulse-width modulated signal	75	IO24/Alerter	Pulse-width modulated signal for buzzer

3.10. Antenna

The RF interface has an impedance of 50Ω . The antenna cable can be soldered to the pad. Pay attention, the line between the V3338 antenna pin and antenna connection should be thick and short. It is better to use filter circuit to fit 50 ohms .

Table 9: RF output power:

Frequency	Max	Min
GSM850	$33 \text{ dBm} \pm 2 \text{ dB}$	$5 \text{ dBm} \pm 5 \text{ dB}$
E-GSM900	$33 \text{ dBm} \pm 2 \text{ dB}$	$5 \text{ dBm} \pm 5 \text{ dB}$
DCS1800	$30 \text{ dBm} \pm 2 \text{ dB}$	$0 \text{ dBm} \pm 5 \text{ dB}$
PCS1900	$30 \text{ dBm} \pm 2 \text{ dB}$	$0 \text{ dBm} \pm 5 \text{ dB}$

Table 10: Module RF receive sensitivity:

Frequency	Receive sensitivity
GSM850	$< -106 \text{ dBm}$
E-GSM900	$< -106 \text{ dBm}$
DCS1800	$< -104 \text{ dBm}$
PCS1900	$< -104 \text{ dBm}$

Table 11: V3338 receive/transmit frequency

Frequency	Receive	Transmit
GSM850	869~894MHz	824~849MHz
E-GSM900	925~960MHz	800~915MHz

DCS1800	1710~1785 MHz	1805~1800 MHz	
PCS1900	1850~1910 MHz	1930~1990 MHz	

According to the application, should use GSM900/DCS1800 Dual-band antenna or GSM850/PCS1900 Dual-band antenna.

3.11. SIM card interface

The V3338 contains a dedicated smart card interface to allow the MCU access to the SIM card. The SIM interface supports the functionality of the GSM Phase 1 specification and also supports the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM (intended for use with a SIM application Tool-kit).

The SIM card interface circuitry of PMU meets all ETSI and IMT-2000 SIM interface requirements. It provides level shifting needs for low voltage GSM controller to communicate with either 1.8V or 3V SIM cards. All SIM cards contain a clock input, a reset input, and a bi-directional data input/output. The clock and reset inputs to SIM cards are level shifted from the supply of digital IO (Vio) of baseband chipset to the SIM supply (Vsim). The bi-directional data bus is internal pull high with 10kohm resistor.

All pins that connect to the SIM card (Vsim, SRST, SCLK, SIO) withstand over 5kV of human body mode ESD. In order to ensure proper ESD protection, careful board layout is required.

The interface of SIM is as follow table:

Tbale12: The SIM pins on the Module

Num	Name	Function
37	VRSIM	2.8V power supply for SIM card
38	SIM_RST	SIM card RESET output
39	SIM_IO	SIM card data output and input
40	SIM_CLK	SIM card clock output

Table 13: SIM Interface Electrical Specifications

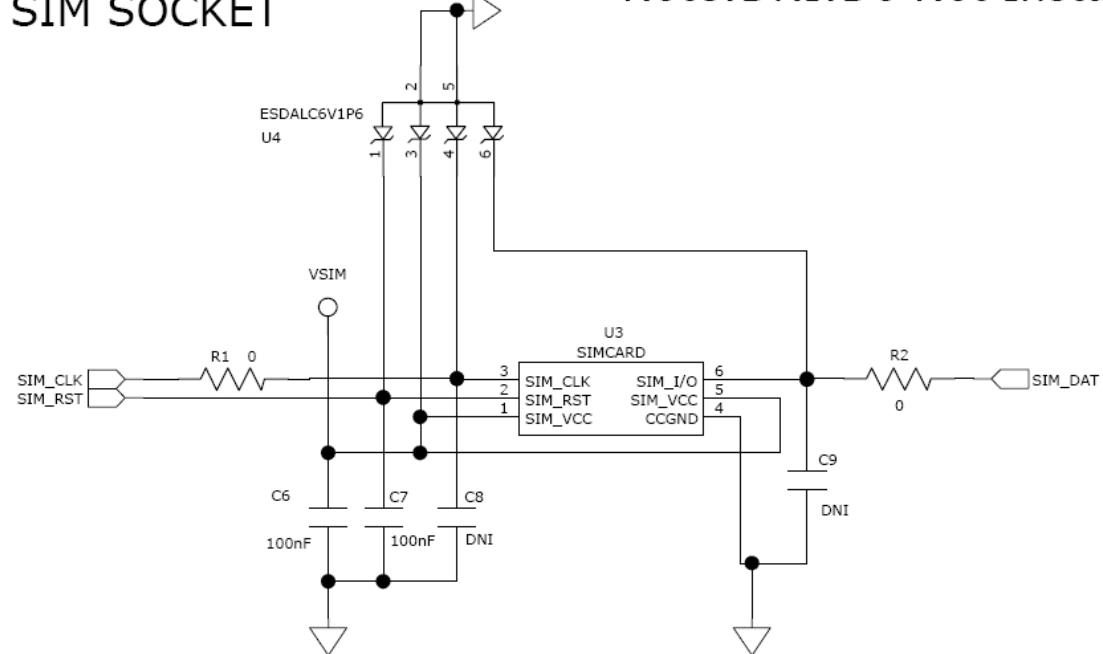
SIM Voltage						
Output voltage (V_SIM)	Register VSIM_SEL=L	1.71	1.8	1.89	V	
	Register VSIM_SEL=H	2.82	3.0	3.18	V	
Output current (Isim_max)			20		mA	
Line regulation				4	mV	
Load regulation				15	mV	

Parameter	Conditions	Min.	Typical	Max.	Unit
Interface to 3 V SIM Card					
Volrst	I = 20 μ A			0.4	V

Vohrst	I = -200 μ A	0.9*VSI M			V
Volclk	I = 20 μ A			0.4	V
Vohclk	I = -200 μ A	0.9*VSI M			V
Vil				0.4	V
Vihsio , Vohsio	I = \pm 20 μ A	VSIM-0.4			V
Iil	Vil = 0 V			-1	mA
Vol	Iol = 1 mA, SIMIO \leq 0.23 V			0.4	V

Interface to 1.8 V SIM Card

Volrst	I = 20 μ A			0.2*VSI M	V
Vohrst	I = -200 μ A	0.9*VSI M			V
Volclk	I = 20 μ A			0.2*VSI M	V
Vohclk	I = -200 μ A	0.9*VSI M			V
Vil				0.4	V
Vihsio , Vohsio	I = \pm 20 μ A	VSIM-0.4			V
Iil	Vil = 0 V			-1	mA
Vol	Iol = 1 mA, SIMIO \leq 0.23 V			0.4	V


SIM Card Interface Timing

SIO pull-up resistance to VSIM		8	10	12	k Ω
SRST, SIO rise/fall times	VSIM = 3, 1.8 V, load with 30 pF			1	μ s
SCLK rise/fall times	VSIM = 3 V, CLK load with 30 pF			18	ns
	VSIM = 1.8 V, CLK load with 30 pF			50	ns
SCLK frequency	CLK load with 30 pF	5			MHz
SCLK duty cycle	SIMCLK Duty = 50%, fsimclk = 5 MHz	47		53	%
SCLK propagation delay			30	50	ns

Following is a reference circuit about SIM interface. We recommend a Electrostatic discharge device ST (www.st.com) ESDA6V1W5 or ONSEMI (www.onsemi.com) SMF05C for “ESD ANTI”.

SIM SOCKET

Note:DNI:Do Not Install

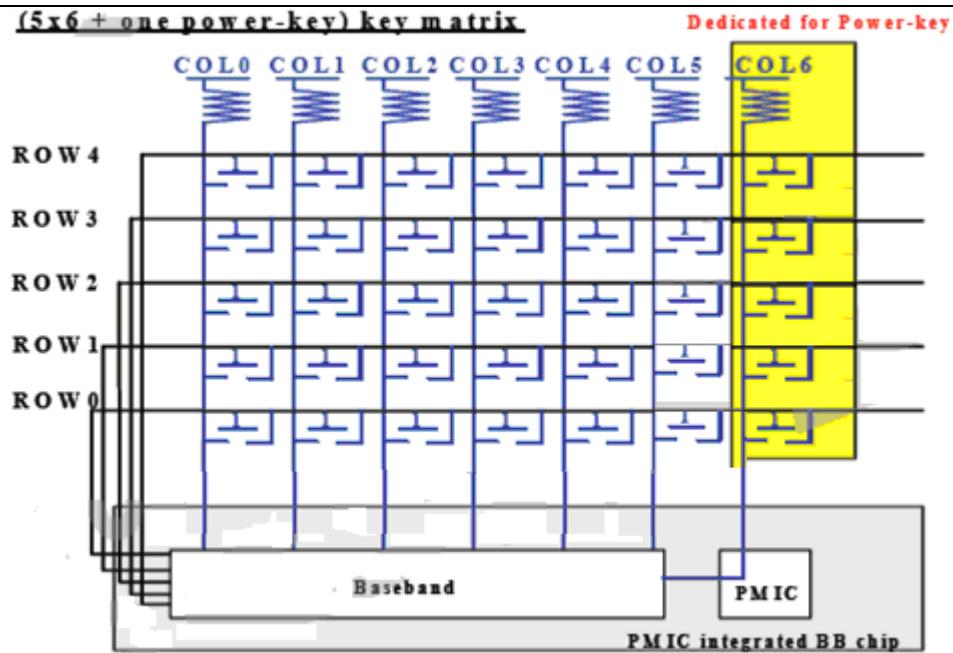
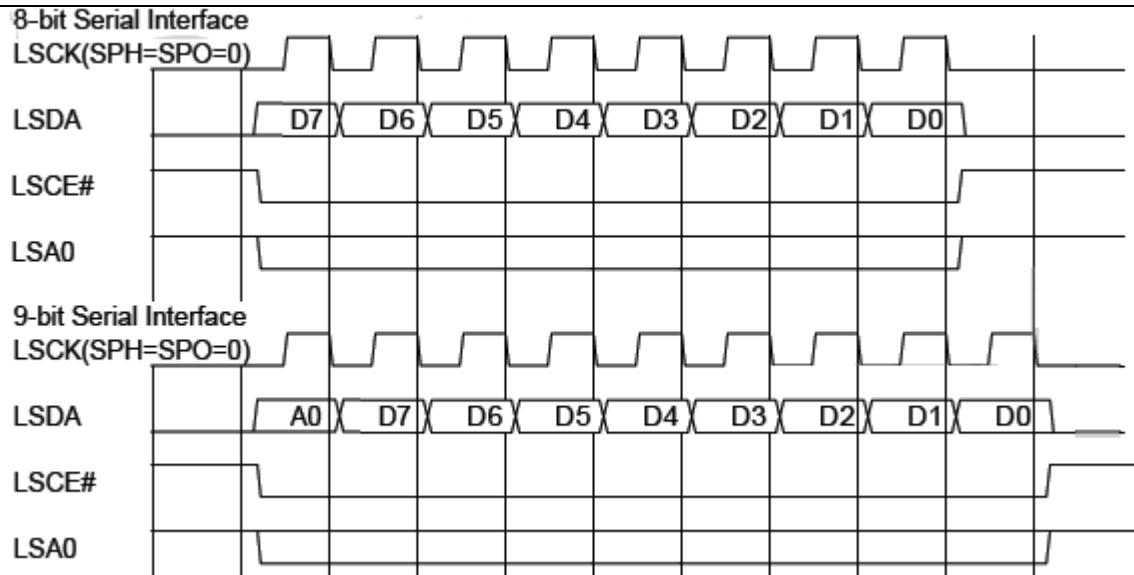


Figure5 The Typical Keypad Interface Circuit

3.13. LCD Interface (Parallel display can not work on V338)

V3338 contains a versatile LCD controller which is optimized for multimedia applications. This controller supports many types of LCD modules and contains a rich feature set to enhance the functionality. These features are:


- Up to 320 x 240 resolution
- Supports 8-bpp (RGB332), 12-bpp (RGB444), 16-bpp (RGB565), 18-bit (RGB666) and 24-bit (RGB808) color depths
- Layers Overlay with individual vertical and horizontal size, vertical and horizontal offset, source key, opacity and display rotation control(90°, 180°, 270°, mirror and mirror then 90°, 180° and 270°)
- Color Look-Up Table

For parallel LCD modules, this special LCD controller can reuse external memory interface or use dedicated 8/9-bit parallel interface to access them and 8080 type interface is supported. It can transfer the display data from the internal SRAM or external SRAM/Flash Memory to the off-chip LCD modules. **V3338 will not support parallel LCD.**

For serial LCD modules, this interface performs parallel to serial conversion and both 8- and 9- bit serial interface is supported. The 8-bit serial interface uses four pins – LSCE#, LSDA, LSCK and LSA0 – to enter commands and data.

Meanwhile, the 9-bit serial interface uses three pins – LSCE#, LSDA and LSCK – for the same purpose. Data read is not available with the serial interface and data entered must be 8 bits.

Figure 6 shows the timing diagram of this serial interface. When the block is idle, LSCK is forced LOW and LSCE# is forced HIGH. Once the data register contains data and the interface is enabled, LSCE# is pulled LOW and remain LOW for the duration of the transmission.

Figure 6 LCD Interface Transfer Timing Diagram

Tbale14: The LCD pins on the Module

Num	Name	Function
8	LCD_CS0	Parallel display interface chip select 0 output
70	LCD_A0	Parallel display interface address output
6	LCD_RSTB	Parallel display interface Reset Signal
63	LCD_WR	Parallel display interface Write Signal
59	LCD_D7	Parallel display interface Data7
60	LCD_D6	Parallel display interface Data6
61	LCD_D5	Parallel display interface Data5
62	LCD_D4	Parallel display interface Data4
80	LCD_D3	Parallel display interface Data3
74	LCD_D2	Parallel display interface Data2
73	LCD_D1	Parallel display interface Data1
72	LCD_D0	Parallel display interface Data0
76	IO0/LCD8	Parallel display interface Data8
69	LCD_RD	Parallel display interface Read Signal
7	LCD_CS1/IO14	Parallel display interface chip select 1 output

In addition, V3338 provide another feature, that is, LCD controller can be used for memory card. Only MC_CLK and LCD_D[4:0] is used for MSDC interface. LCD controller generates MC_CLK when writing or reading offset 6000h.

The timing of memory card data and clock is shared with LCD_PCNF0. MC_CLK is shared with BPI_BUS2 and BPI_BUS3, and the MC_CLK output is enabled by ACIF_CON0[15:14]. To control memory cards, extra ACIF_CON0 settings are required. LCD_D0~LCD_D4 has nature of pull-down when in input mode, which may violate MSDC access nature (ex. Most SD card expect data to be high when in idle). Besides the MC_CLK output enable setting, in order to accommodate MSDC nature, PD (pull-down) of LCD_D0 to LCD_D4 should be disabled by use of ACIF_CON0[12]. As for more detail of ACIF_CON0 setting, please refer to GPIO functional specification.

3.14. RTC backup

The Real Time Clock (RTC) module provides time and data information. The clock is based on a 32.768KHz oscillator with an independent power supply. When the module is powered off, a dedicated regulator supplies the RTC block. If the main battery is not present, a backup supply such as a small mercury cell battery or a large capacitor is used through the pin27 of VBACKUP. Figure 7 give the example diagram of the two ways. In addition to providing timing data, an alarm interrupt is generated and can be used to power up the baseband core via the BBWAKEUP pin. Regulator interrupts corresponding to seconds, minutes, hours and days can be generated whenever the time counter value reaches a maximum value (e.g., 59 for seconds and minutes, 23 for hours, etc.). The year span is supported up to 2127. The maximum day-of-month values, which depend on the leap year condition, are stored in the RTC block.

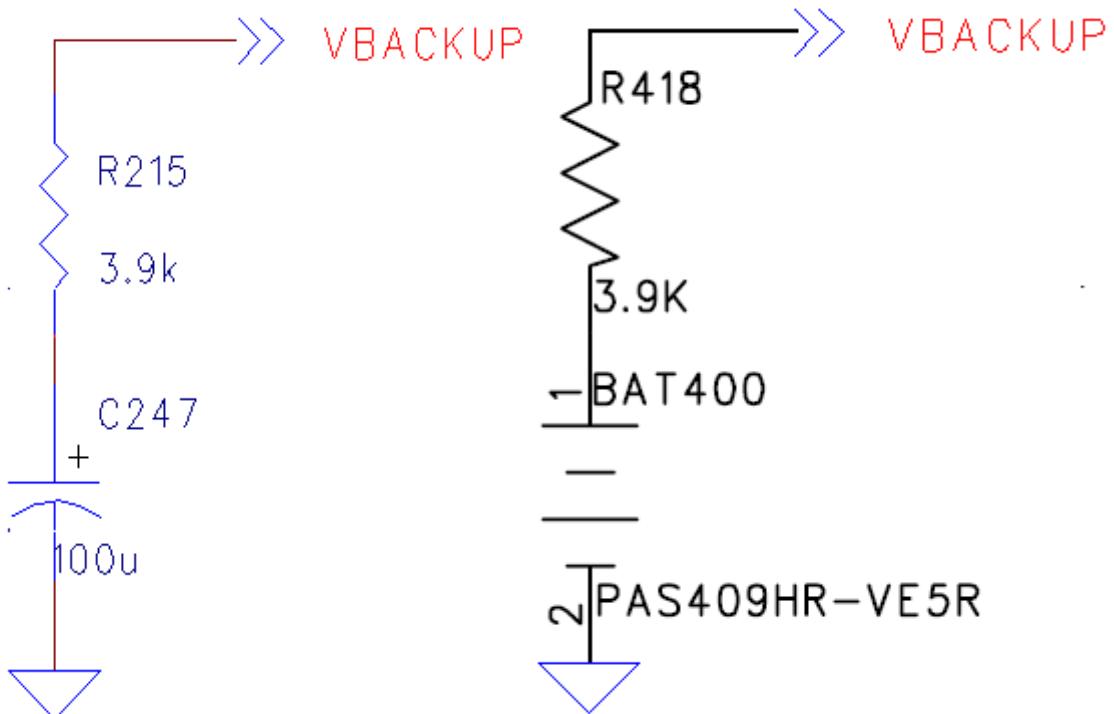


Figure7 The RTC battery diagram for the module

3.15. IOs

V3338 module has several IO pins which are configurable according to customer's requirement. We can do custom software for users.

Upon hardware reset (SYSRST#), IOs are all configured as inputs.

3.16. External Interrupt

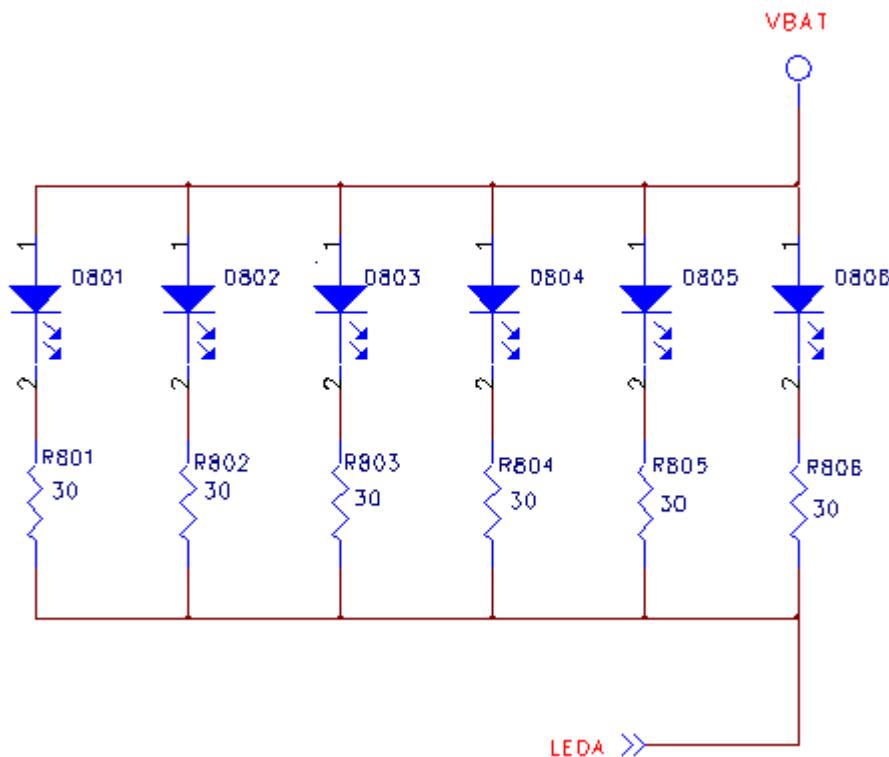
V3338 module has several IO pins which are configurable according to customer's requirement. We can do custom software for users.

The four external interrupts can be used for different kind of applications, mainly for event detections: detection of hand free connection, detection of hood opening, detection of

battery charger connection.

Since the external event may be unstable in a certain period, a de-bounce mechanism is introduced to ensure the functionality. The circuitry is mainly used to verify that the input signal remains stable for a programmable number of periods of the clock. When this condition is satisfied, for the appearance or the disappearance of the input, the output of the de-bounce logic changes to the desired state. Note that, because it uses the 32 KHz slow clock for performing the de-bounce process, the parameter of de-bounce period and de-bounce enable takes effect no sooner than one 32 KHz clock cycle (~31.25us) after the software program sets them. However, the polarities of EINTs are clocked with the system clock. Any changes to them take effect immediately.

The ENT pins can be configurable to “EDGE/LEVEL” according to the external signal.


3.17. Open-Drain Output Swith

The LEDA pin and VIB pin are Open-Drain Output Switch.

Two built-in open-drain output switches drive the vibrator motor and Keypad LED in the module. Each switch is controlled by baseband with enable registers. The switch of keypad LED can sink 150mA. Figure 8 give one example of the LEDA application.

Table 18 VIB and LEDA Pins On The Module

Num	Name	Function
43	LEDA	LED Driver

Figure8 The reference application of LEDA

3.18. ADC

V3338 provides one auxiliary ADC (General purpose analog to digital converter.) as voltage input pin, which can be used to detect the values of some external items such as

voltage, temperature etc. For module application, user can use AT command “**AT+CADC#**” to read the voltage value added on ADC pin.

The functional specifications of the auxiliary ADC are listed in the following table.

Table 19 The Functional specification of Auxiliary ADC

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution		10		Bit
FC	Clock Rate	0.1	1.0833	5	MHz
FS	Sampling Rate @ N-Bit			5/(N+1)	MSPS
	Input Swing	1.0		AVDD	V
T	Operating Temperature	-20		80	°C
	Current Consumption Power-up Power-Down		300 1		µA µA

3.19. Digital Pin Electrical Characteristics

About the digital pin electrical characteristics of V3338, please reference the table 20.

Table 20: Module digital electrical characteristics

Based on I/O power supply (VDD33) = 3.3 V

Vil (max) = 0.8 V

Vih (min) = 2.0 V

Pin Name	Driving(mA)	Pull	Vol at max. Iol	Voh at max. Ioh	PU/PD Resistor(K ohm) (min, typical, max)	Cin(pF)
IO20	2	PD	0.4	2.4		5.2
IO21	2	PD	0.4	2.4	40, 75, 190	5.2
IO22	2	PU	0.4	2.4		5.2
PCM_CLK	6	PU	0.4	2.4	40, 75, 190	5.2
PCM_OUT	6	PD	0.4	2.4	40, 75, 190	5.2
PCM_IN	6	PU	0.4	2.4	40, 75, 190	5.2
PCM_RST	6	PU	0.4	2.4	40, 75, 190	5.2
PCM_SYNC	6	PU	0.4	2.4	40, 75, 190	5.2
IO24/ALERTER	4	PD	0.4	2.4	40, 75, 190	5.2
IO25/PWM	4	PD	0.4	2.4	40, 75, 190	5.2
JRTCK	6	PU	0.4	2.4	40, 75, 190	5.2
JTRST	2	PD	0.4	2.4	40, 75, 190	5.2
JTCK	input only	PU			40, 75, 190	5.2
JTDI		PU	0.4	2.4	40, 75, 190	5.2
JTMS		PU	0.4	2.4	40, 75, 190	5.2

JTDO	PU	0.4	2.4	40, 75, 190	5.2
IO0/LCD_D8	PD	0.4	2.4	40, 75, 190	5.2
LCD_D7	PD	0.4	2.4	40, 75, 190	5.2
LCD_D6	PD	0.4	2.4	40, 75, 190	5.2
LCD_D5	PD	0.4	2.4	40, 75, 190	5.2
LCD_D4	PD	0.4	2.4	40, 75, 190	5.2
LCD_D3	PD	0.4	2.4	40, 75, 190	5.2
LCD_D2	PD	0.4	2.4	40, 75, 190	5.2
LCD_D1	PD	0.4	2.4	40, 75, 190	5.2
LCD_RSTB	PU	0.4	2.4	40, 75, 190	5.2
LCD_WR	PU	0.4	2.4	40, 75, 190	5.2
LCD_RD	PU	0.4	2.4	40, 75, 190	5.2
LCD_D0	PD	0.4	2.4	40, 75, 190	5.2
LCD_A0	PU	0.4	2.4	40, 75, 190	5.2
LCD_CS0	PU	0.4	2.4	40, 75, 190	5.2
IO14/LCD_CS1	PU	0.4	2.4	40, 75, 190	5.2
WATCHDOG		0.4	2.4		5.2
IO30/EA0	PD	0.4	2.4	40, 75, 190	
SRCLKENAI	PD	0.4	2.4	40, 75, 190	5.2
COL4	PU	0.4	2.4	40, 75, 190	5.2
COL3	PU	0.4	2.4	40, 75, 190	5.2
COL2	PU	0.4	2.4	40, 75, 190	5.2
COL1	PU	0.4	2.4	40, 75, 190	5.2
COL0	PU	0.4	2.4	40, 75, 190	5.2
ROW4		0.4	2.4		5.2
ROW3		0.4	2.4		5.2
ROW2		0.4	2.4		5.2
ROW1		0.4	2.4		5.2
ROW0		0.4	2.4		5.2
EINT0	PU			40, 75, 190	5.2
EINT1	PU			40, 75, 190	5.2
EINT2	PU	0.4	2.4	40, 75, 190	5.2
EINT3	PU	0.4	2.4	40, 75, 190	5.2
UTXD1	PU	0.4	2.4	40, 75, 190	5.2
UCTS1	PU	0.4	2.4	40, 75, 190	5.2
URTS1	PU	0.4	2.4	40, 75, 190	5.2
UTXD3	PU	0.4	2.4	40, 75, 190	5.2
URXD3	PU	0.4	2.4	40, 75, 190	5.2
URXD2	PU	0.4	2.4	40, 75, 190	5.2
URXD1	PU	0.4	2.4	40, 75, 190	5.2
UTXD2	PU	0.4	2.4	40, 75, 190	5.2

About the digital IO LDO (VIO) is a regulator that could source 100mA (max) with 2.8V output voltage. It supplies the baseband circuitry of the Module. The LDO is optimized for very low quiescent current and will power up at the same time as the digital core LDO. Table21 show the electrical characteristics of VIO.

Table 21 VIO electrical characteristics

VBAT = 3 V ~ 5 V, minimum loads applied on all outputs, unless other noted. Typical values are at TA = 25 °C.

Parameter	Conditions	Min.	Typical	Max.	Unit
Digital IO Voltage					
Output voltage (V _{IO})		2.7	2.8	2.9	V
Output current (I _{IO_max})			60		mA
Line regulation				5	mV
Load regulation				30	mV

Confidential

3.20.Modem Hardware flow control PIN Description

Flow control is essential to prevent loss of data or avoid errors when, in a data or fax call, the sending device is transferring data faster than the receiving side is ready to accept. When the receiving buffer reaches its capacity, the receiving device should be capable to cause the sending device to pause until it catches up.

There are basically two approaches to regulate data flow: software flow control and hardware flow control. Hardware flow control sets or resets the RTS/CTS wires. This approach is faster and more reliable, and therefore, the better choice. When the High Watermark is reached, CTS is set inactive until the transfer from the buffer has completed. When the Low Watermark is passed, CTS goes active once again.

If the Module be used as modem with hardware flow control, PIN function will be as follow description:

Table22: Hardware flow control PIN description:

No.	Name	PIN	I/O	Description
1	DCD	28	O	Data Carrier Detected
2	TXD	30	O	Transmitted Data
3	RXD	33	I	Received Data
4	DSR	78	I	Data Set Ready
5	GND	GND	GND	Signal Ground
6	DTR	31	O	Data Terminal Ready
7	CTS	24	I	Clear To Send
8	RTS	25	O	Request To Send
9	RI	11*	O	Ring Indicator

3.21.Module sleep mode control

Our Module support two ways to control module enter sleep mode or not:

1) Hardware control method: **DSR(Pin78)** is used for hardware sleep mode control.

LOW Level: disable module enter sleep mode;

HIGH Level: enable module enter sleep mode.

2) Software control method: AT command “AT+ESLP”

“AT+ESLP=0”: disable module enter sleep mode;

“AT+ESLP=1”: enable module enter sleep mode.

NOTE1: Module default software value is disable enter sleep mode.

NOTE2: If module enter sleep mode, the AT command can not be sent to module normally.

3.22.Behaviors of the RING indication line

V3338: Pin11 (GPIO42) is used for Ring indication when network event. The working state of this pin is listed in following table:

Table 23: The Behaviors of the RING line

State	RI respond
Standby	High

Voice calling	Change low, then: 1) Change to high when establish calling. 2) Sender hang up, change to high.
SMS	When receive SMS, The ring will change to LOW and hold LOW level at least 200 ms, then change to HIGH.

3.23. Network status indication LED lamp

V3338:Pin22(GPIO31) is used to drive a network status indication LED lamp. The working state of this pin is listed in following table:

Table 23: Working state of network status indication LED pin

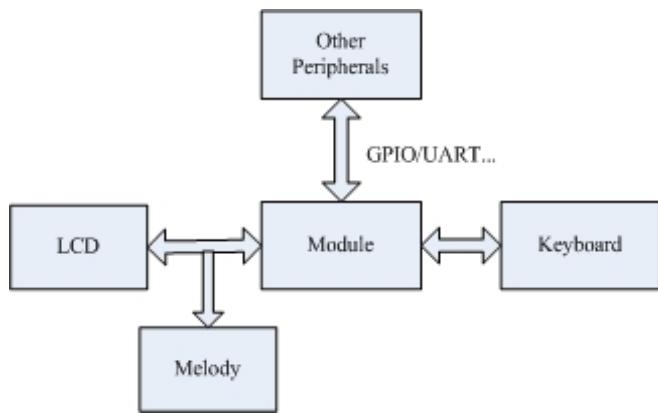
State	Module function
Off	Module is not running
64ms On/800ms Off	Module does not find the network
64ms On/3000ms Off	Module find the network
64ms On/300ms Off	GPRS communication

3.24. Network Signal Level Indication Pins

V3338: Pin75 (GPIO24), Pin76 (GPIO0), Pin77 (GPIO27) are used to indication the network signal level. The working state of this pin is listed in following table:

Table 24: Network signal level indication pins

State(Pin77,Pin76,Pin75)	Network signal level
0,0,0	No signal
0,0,1	Signal Low
0,1,1	Signal Middle
1,1,1	Signal High


Note: State 0: Low Level;
State 1: High Level.

4. Software application

The module can be used in master mode and slave mode.

4.1. Master mode (such as application for fixed wireless phone)

In master mode, the module acted as main board of mobile terminal. The LCD or melody processor can be connected to the module via data and address bus. Users can control the module via keyboard and the MMI software can be customized according to requirement.

Please get schematic information from chap 6.2.

4.2. Slave mode (standard GSM/GPRS module application)

In slave mode, the module communicated with master MCU via UART interface using AT commands.

Please get schematic information from chap 6.1.

4.2.1. AT command

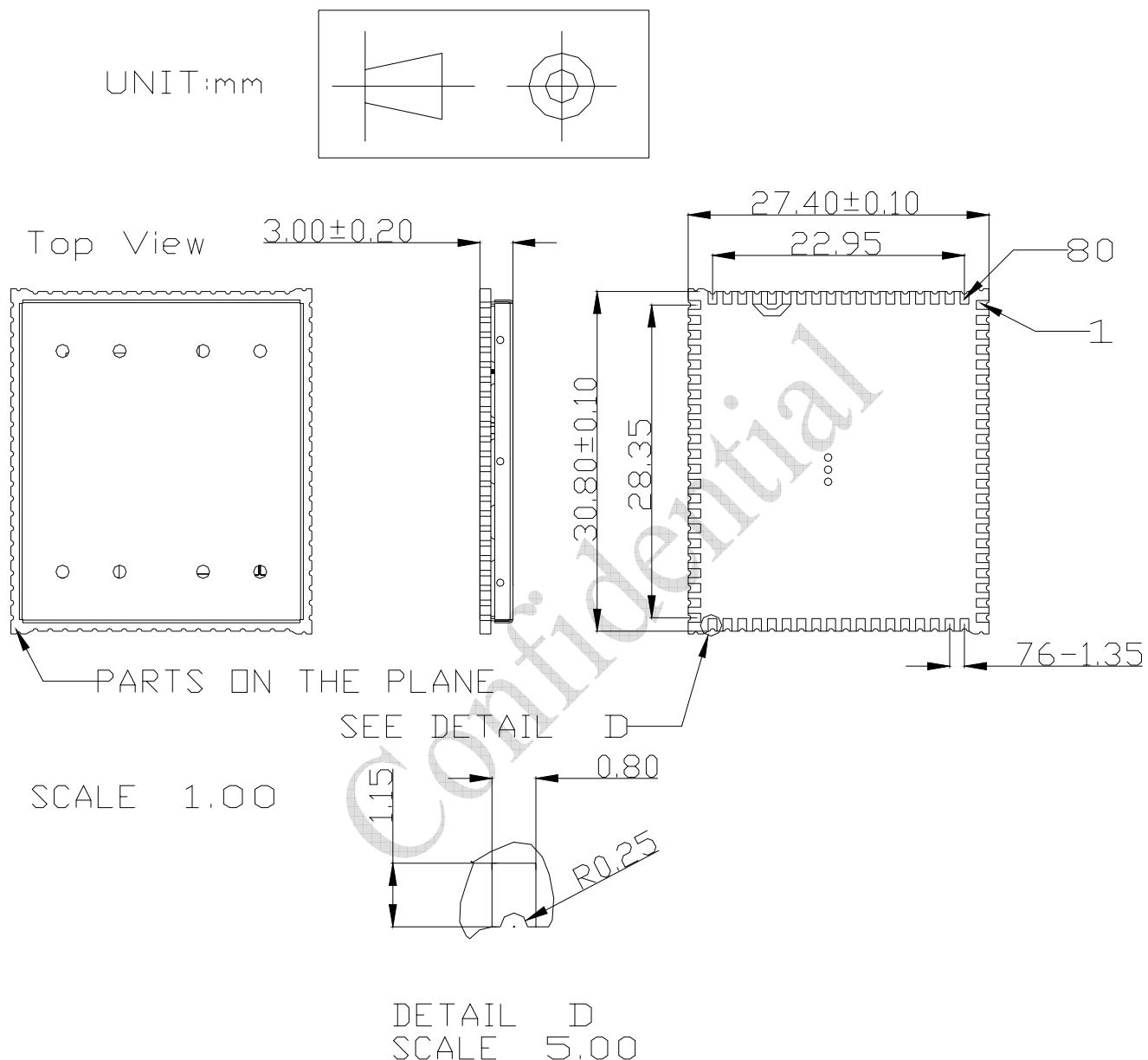
Please get detail information from refer[10]

4.2.2. The hyper terminal configure method

User can control the V3338 module using hyper terminal to send AT Command. The configuration in hyper terminal:

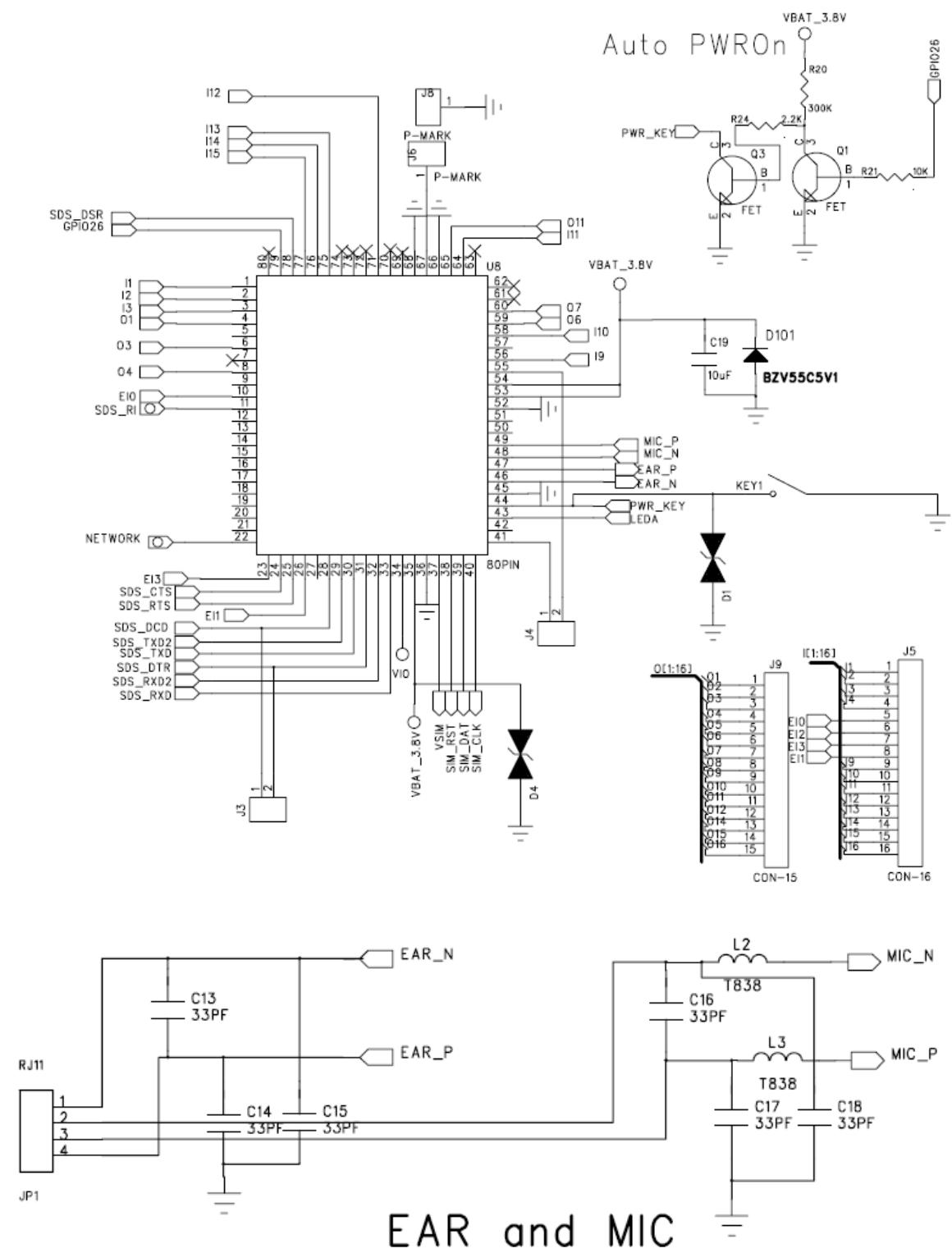
Bits per second: 115200 (depends on SW)

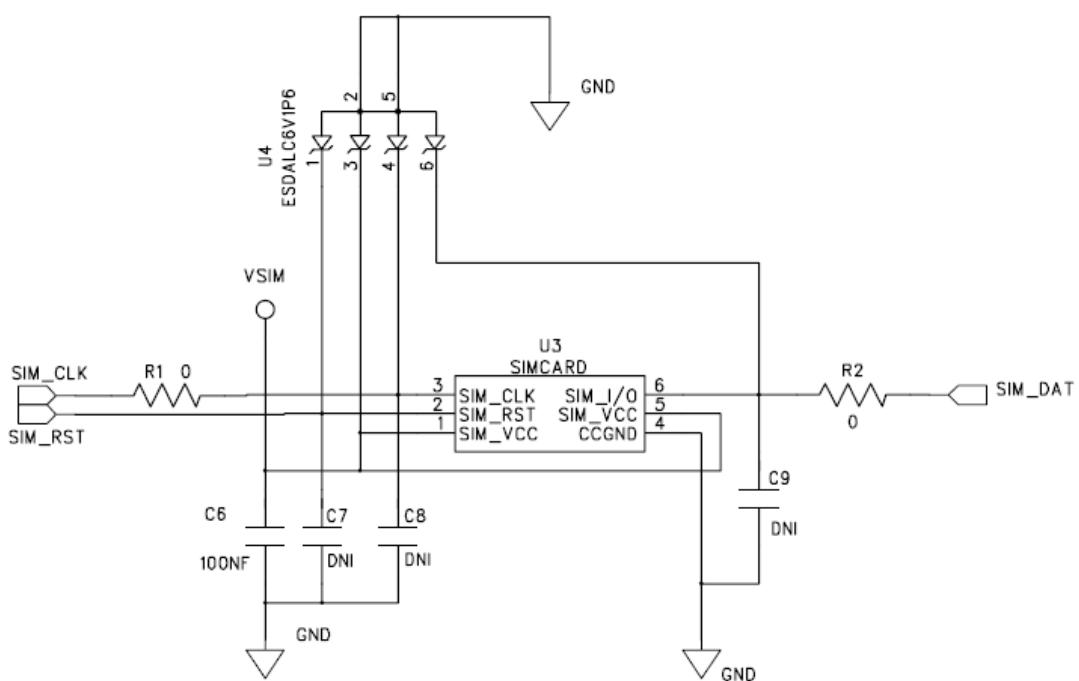
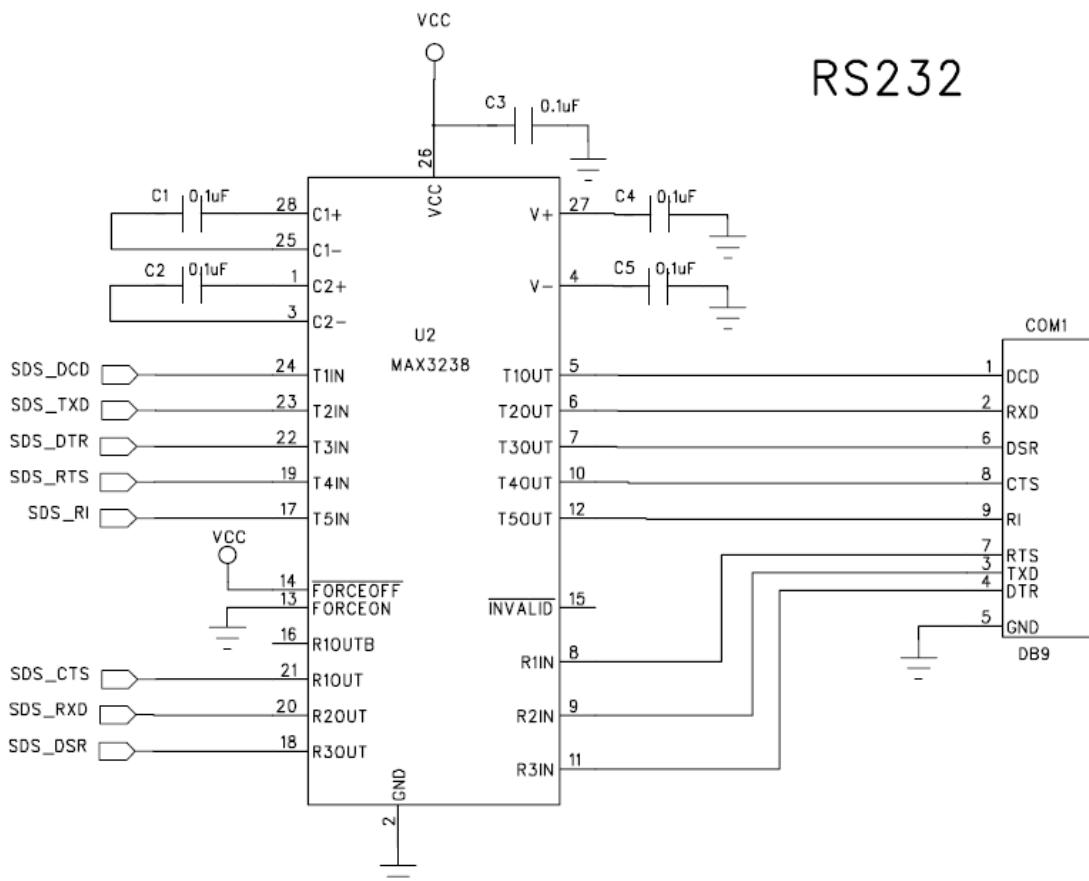
Data bits: 8

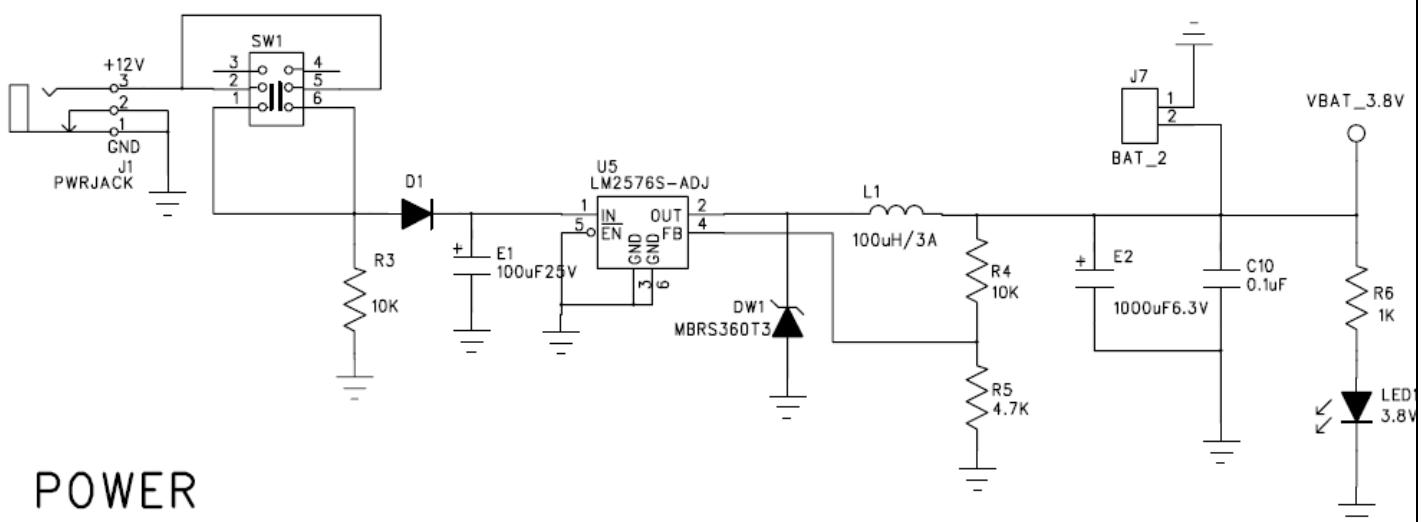

Parity: None
Stop bits: 1
Flow control: None

4.2.3. TCP/IP protocol

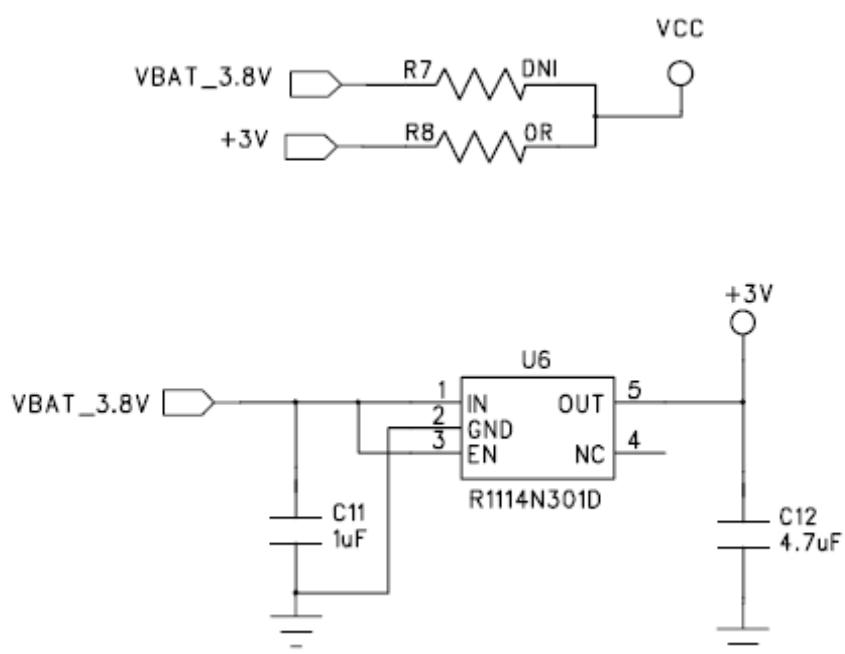
The module can support TCP/IP protocol. Please get detail information from reference [11].

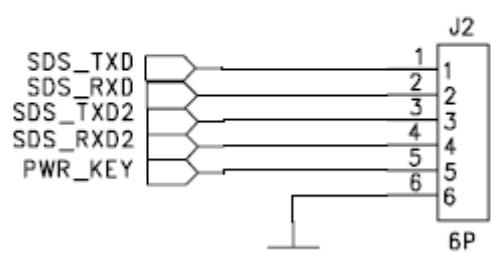

Confidential

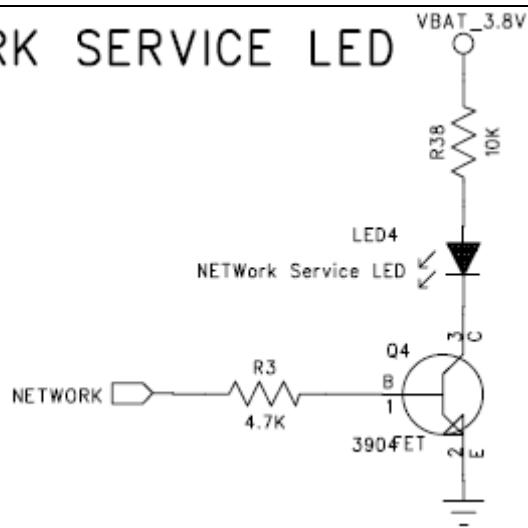


5. Mechanics

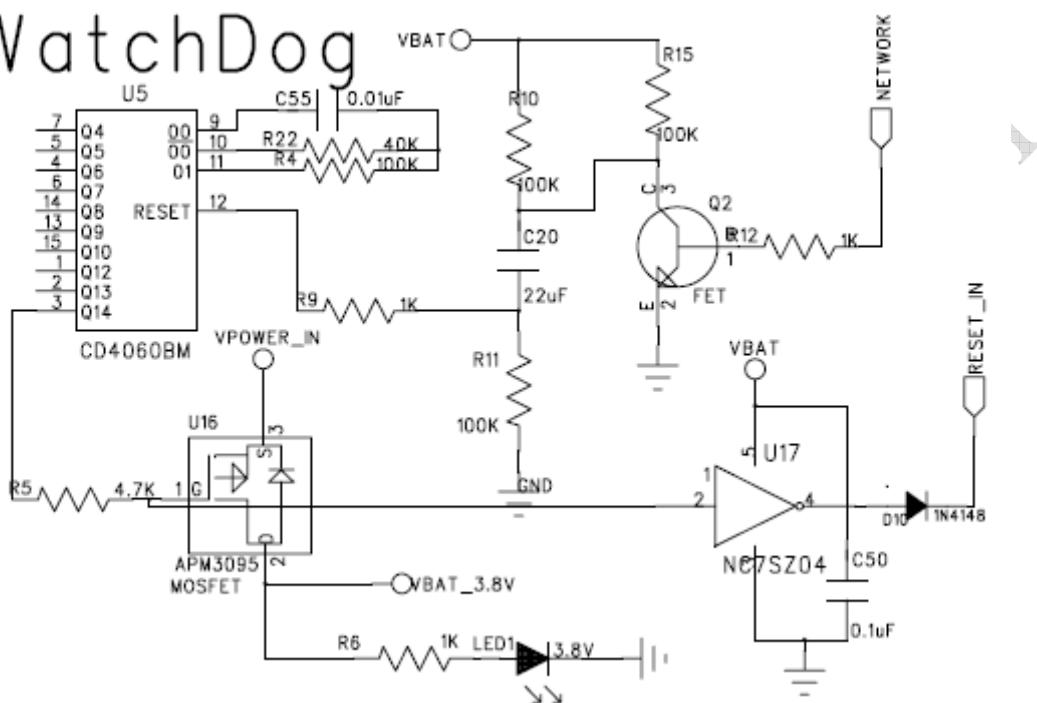

6. Interface board Reference EVB

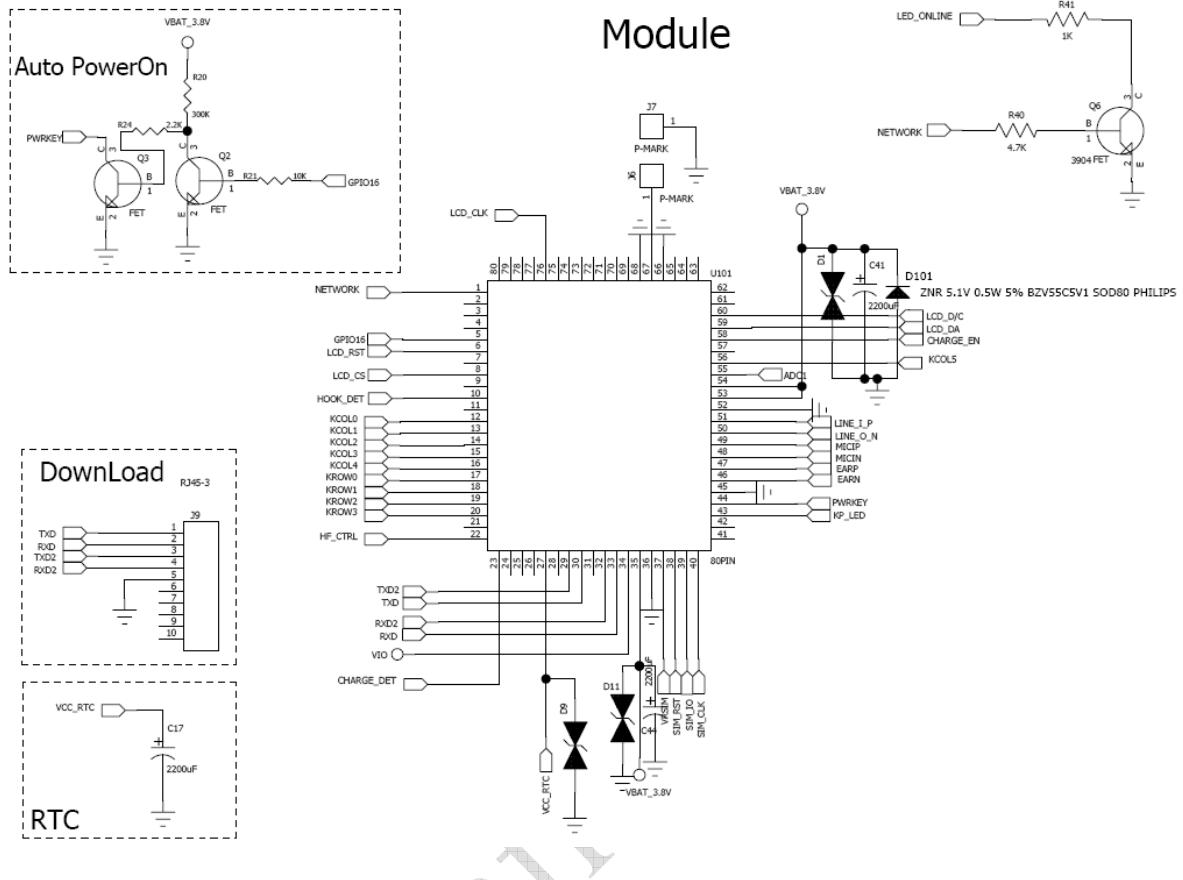
6.1 Standard GSM/GPRS module

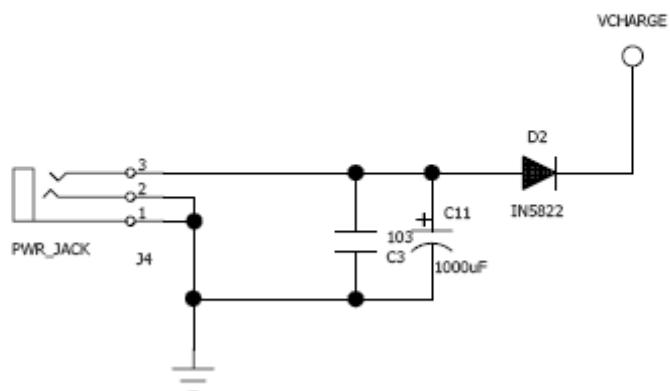


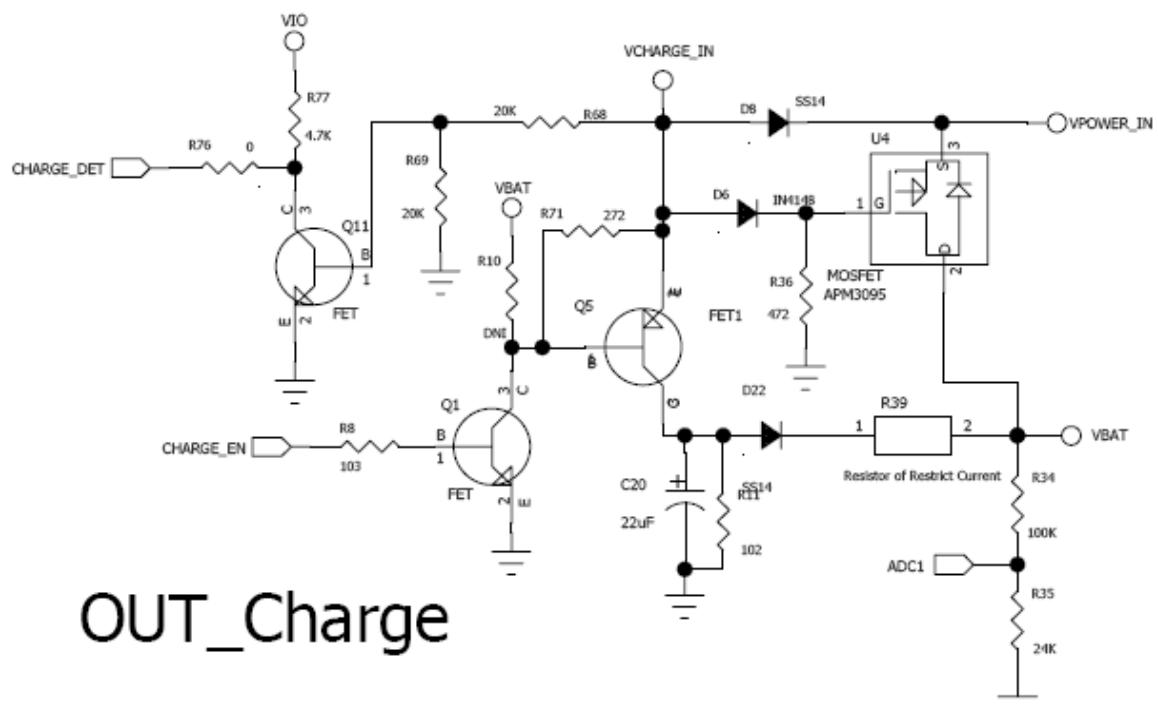

SIM SOCKET


POWER

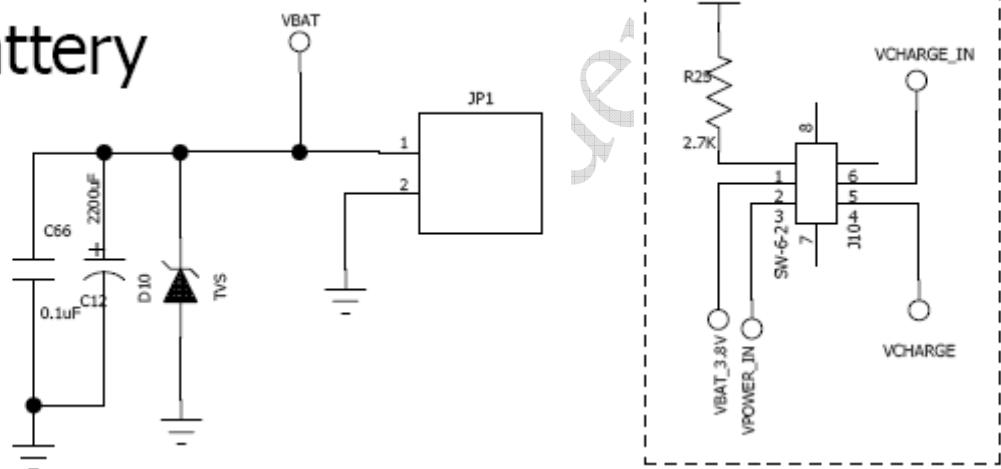

Download

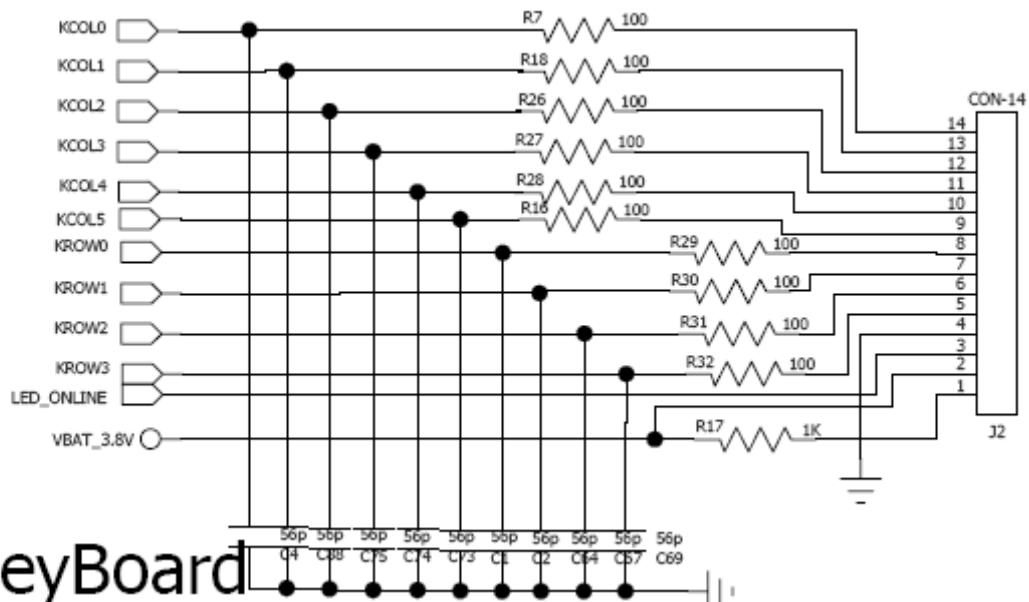

NET WORK SERVICE LED

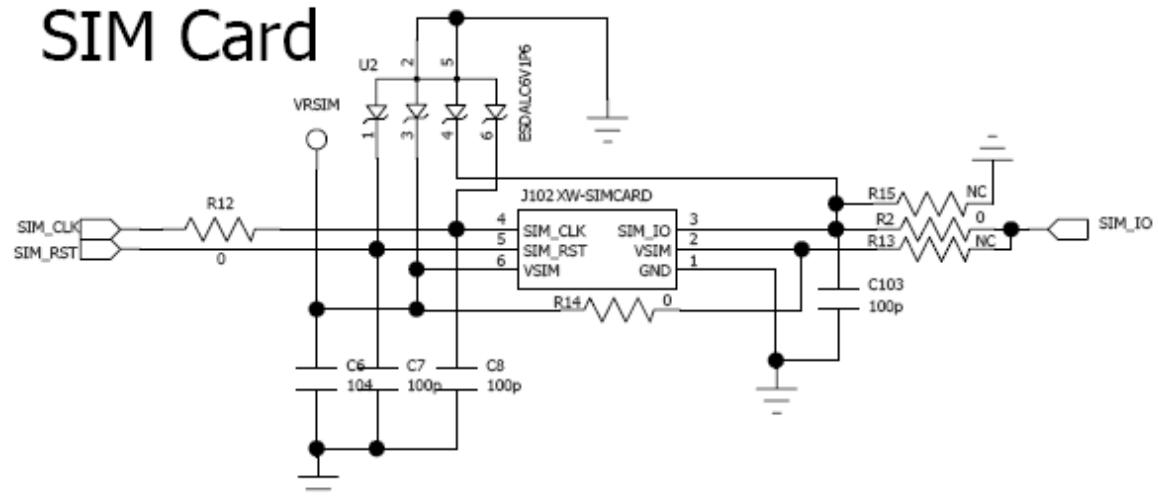

WatchDog



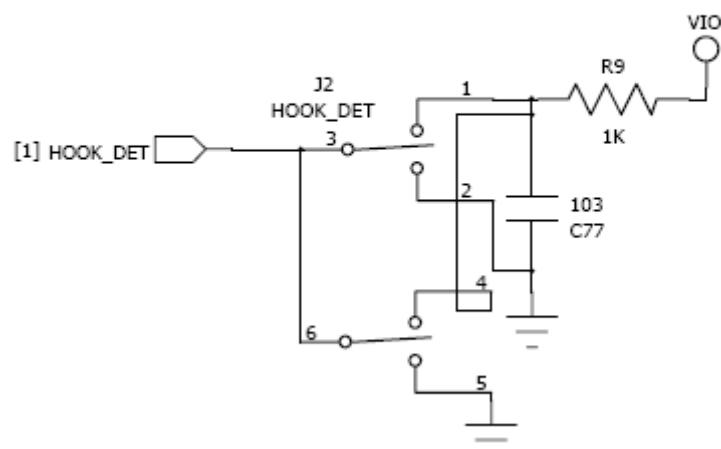
6.2 Module apply for fixed wireless phone

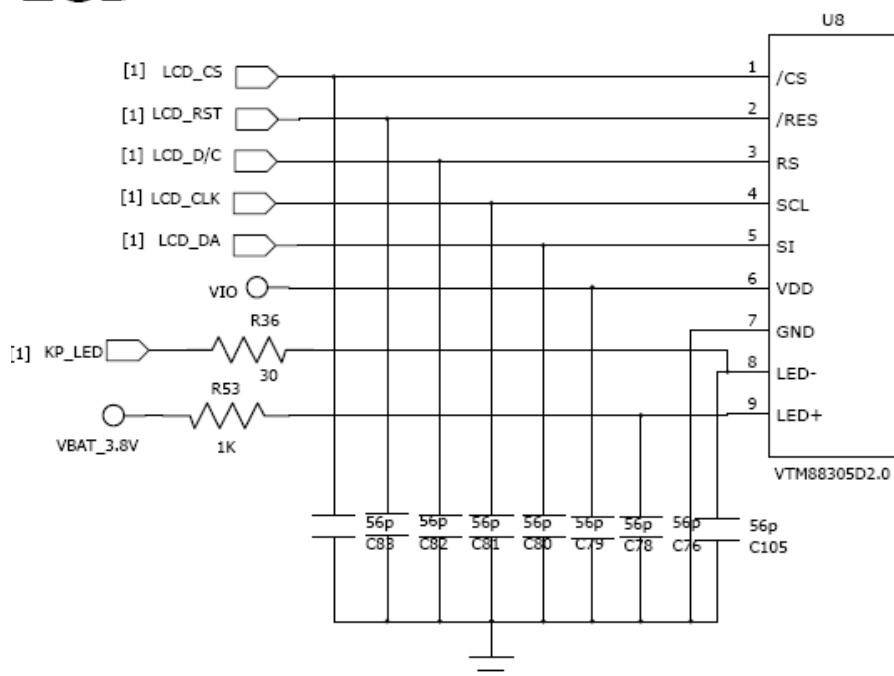


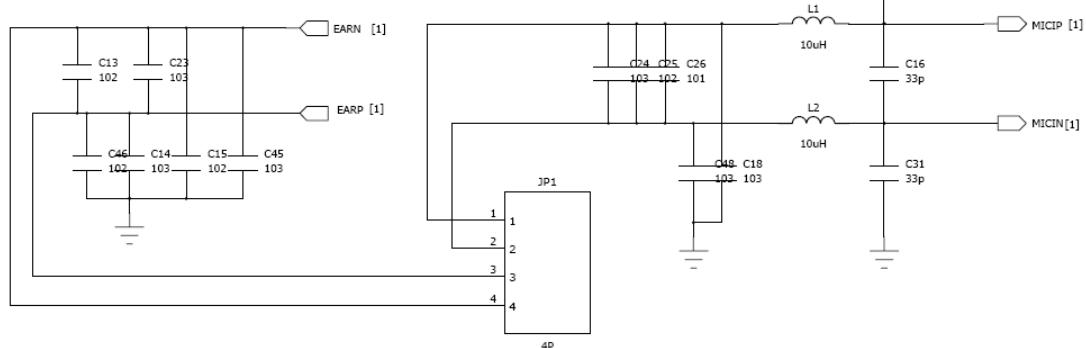

Charger

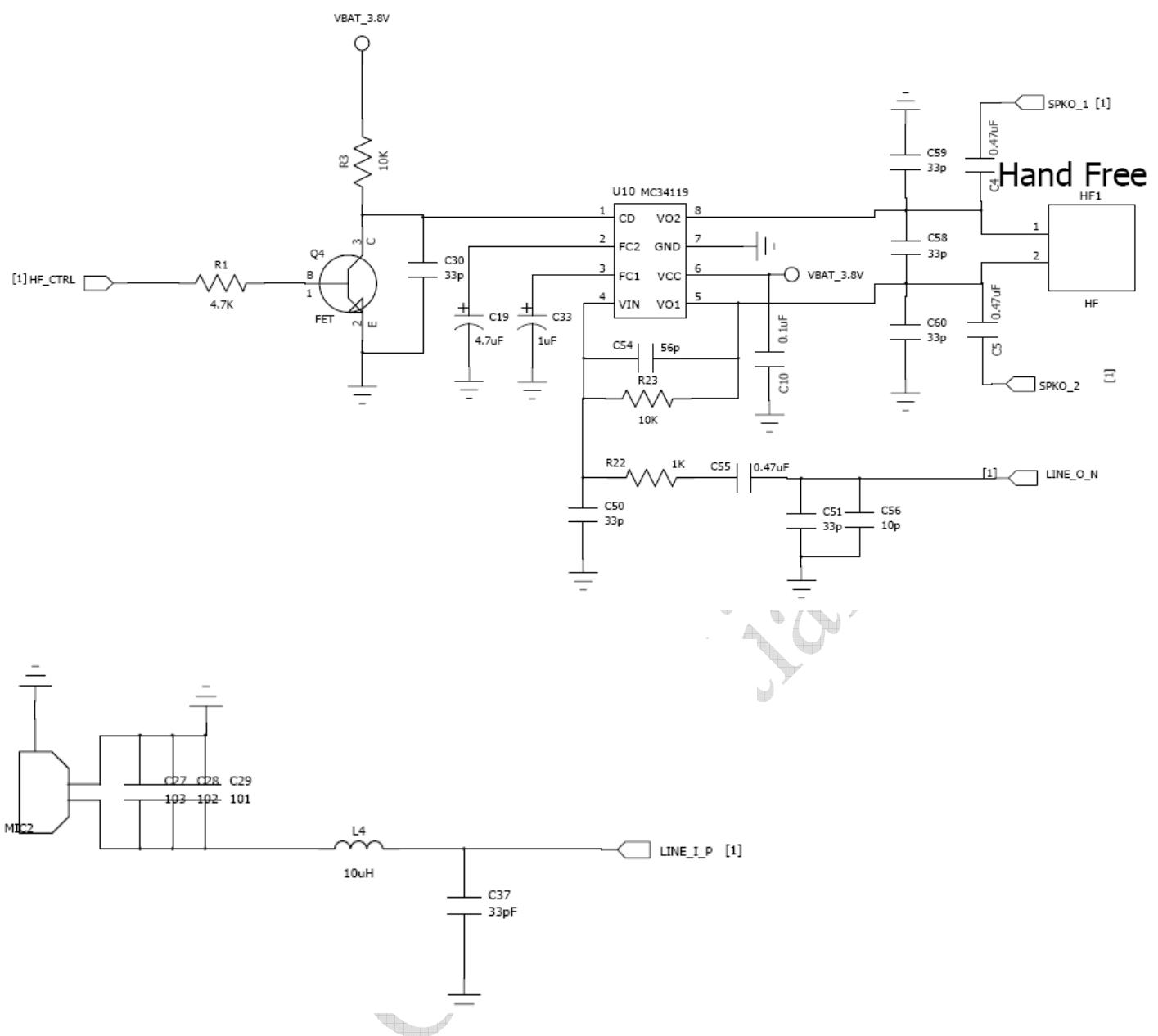


Battery




Keyboard


Receive&Hangup



LCD

EAR and MIC

