

RADIO TEST REPORT

Test Report No. 14965792H-A-R1

Customer	Maxell, Ltd.
Description of EUT	RFID UNIT2
Model Number of EUT	RWM2MR
FCC ID	UOE-MR1130MB
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	June 26, 2024
Remarks	-

Representative test engineer

Shousei Hamaguchi
Engineer

Approved by

Takumi Shimada
Engineer

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
It does not cover administrative issues such as Manual or non-Radio test related Requirements.
(if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where
UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in SECTION 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 14965792H-A

This report is a revised version of 14965792H-A. 14965792H-A is replaced with this report.

Revision - (Original)	Test Report No.	Date	Page Revised Contents
	14965792H-A	October 27, 2023	-
1	14965792H-A-R1	June 26, 2024	SECTION 2.1 Test Date September 24 to October 8, 2023 => September 22 to October 8, 2023
1	14965792H-A-R1	June 26, 2024	SECTION 4.1 Temperature of Frequency Tolerance 0 deg. C to +55 deg. C => -20 deg. C to 50 deg. C
1	14965792H-A-R1	June 26, 2024	SECTION 4.2 Distance of Standard Ferrite Core *a), *b), *c) 19 cm => 20 cm
1	14965792H-A-R1	June 26, 2024	APPENDIX 1 <u>20 dB Bandwidth and 99% Occupied</u> <u>Bandwidth</u> 20db Bandwidth => 20dB Bandwidth
1	14965792H-A-R1	June 26, 2024	APPENDIX 2 Addition of The LIMS ID (141855) in Test instruments
1	14965792H-A-R1	June 26, 2024	APPENDIX 3 Worst Case Position ECU => RFID UNIT

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT).....	5
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of EUT during testing	9
SECTION 5: Conducted Emission.....	12
SECTION 6: Radiated Emission (Fundamental, Spurious Emission and Spectrum Mask)	13
SECTION 7: Other tests.....	15
APPENDIX 1: Test data	16
Conducted Emission.....	16
Fundamental Emission and Spectrum Mask	19
Spurious Emission	21
20 dB Bandwidth and 99% Occupied Bandwidth.....	23
Frequency Tolerance	24
APPENDIX 2: Test instruments	25
APPENDIX 3: Photographs of test setup.....	27
Conducted Emission.....	27
Radiated Emission	28
Worst Case Position	29
Frequency Tolerance	31

SECTION 1: Customer Information

Company Name	Maxell, Ltd.
Address	1 Koizumi, Oyamazaki, Oyamazaki-cho, Otokuni-gun, Kyoto 618-8525 Japan
Telephone Number	+81-75-951-1465
Contact Person	Akira Miyake

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	RFID UNIT2
Model Number	RWM2MR
Serial Number	Refer to SECTION 4.2
Condition	Engineering prototype (Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	September 20, 2023
Test Date	September 22 to October 8, 2023

2.2 Product Description

General Specification

Rating	DC 5 V
Operating Temperature	0 deg. C to 55 deg. C

Radio Specification

Equipment Type	Transceiver
Frequency of Operation	13.56 MHz
Type of Modulation	ASK

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C The latest version on the first day of the testing period
Title	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators Section 15.207 Conducted limits Section 15.225 Operation within the band 13.110-14.010 MHz.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section 15.207	13.50 dB, 13.56000 MHz, AV, N, Mode 3	Complied	-
	<ISED> RSS-Gen 8.8	<ISED> RSS-Gen 8.8			
Electric Field Strength of Fundamental Emission	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section 15.225(a)	60.34 dB, 13.56000 MHz, QP, 90 deg., Mode 2	Complied	Radiated
	<ISED> RSS-Gen 6.4, 6.12	<ISED> RSS-210 B.6			
Spectrum Mask	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section 15.225(b)(c)	39.44 dB, 13.56700 MHz, QP, 90 deg., Mode 2	Complied	Radiated
	<ISED> RSS-Gen 6.4, 6.13	<ISED> RSS-210 B.6			
20 dB Bandwidth	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section15.215(c)	See data	Complied	Radiated
	<ISED> -	<ISED> -			
Electric Field Strength of Spurious Emission	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section 15.209, Section 15.225 (d)	0.54 dB 480.003 MHz, Horizontal, QP, Mode 2	Complied	Radiated
	<ISED> RSS-Gen 6.4, 6.13	<ISED> RSS-210 B.6 RSS-Gen 8.9			
Frequency Tolerance	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section 15.225(e)	See data	Complied	Radiated
	<ISED> RSS-Gen 6.11, 8.11	<ISED> RSS-210 B.6			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

However, the supply voltage was varied and tested at 85 % and 115 % of the nominal rated supply voltage during frequency tolerance test according to Section 15.225(e).

FCC Part 15.203/212 Antenna requirement

The EUT has a unique coupling/antenna connector (PH connector).

Therefore, the equipment complies with the antenna requirement of Section 15.203/212.

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% emission bandwidth	<ISED>RSS-Gen 6.7	-	N/A	-	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement.
Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor $k = 2$.

Conducted emission

Item	Frequency Range	Unit	Calculated Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	dB	3.7
	0.15 MHz to 30 MHz	dB	3.3

Radiated emission

Measurement distance	Frequency Range	Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz	dB	3.3
		dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	4.8
		Vertical	5.0
	200 MHz to 1000 MHz	Horizontal	5.1
		Vertical	6.2
10 m	30 MHz to 200 MHz	Horizontal	4.8
		Vertical	4.8
	200 MHz to 1000 MHz	Horizontal	4.9
		Vertical	5.0
3 m	1 GHz to 6 GHz	dB	4.9
	6 GHz to 18 GHz	dB	5.2
1 m	10 GHz to 26.5 GHz	dB	5.5
	26.5 GHz to 40 GHz	dB	5.4

20 dB Bandwidth and 99% Occupied Bandwidth, Frequency Tolerance

Item	Unit	Calculated Uncertainty (+/-)
Bandwidth (OBW)	%	0.96
Frequency Readout (Frequency counter)	ppm	0.67
Frequency Readout (Spectrum analyzer frequency readout function)	ppm	1.61

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan
Telephone: +81-596-24-8999

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919
ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test): 2.0 x 3.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

The mode is used:

Test mode	Remarks
1) Transmitting and Receiving 13.56 MHz With Tag	The EUT transmits and receives at the same time and there is no receiving mode.
2) Transmitting and Receiving 13.56 MHz Without Tag	
3) Transmitting and Receiving 13.56 MHz 50 ohm terminated	

* EUT has the power settings by the software as follows;

Software: TR3RWManager Version: 3.9.0.0
(Date: 2023.09.21, Storage location: Driven by connected PC)

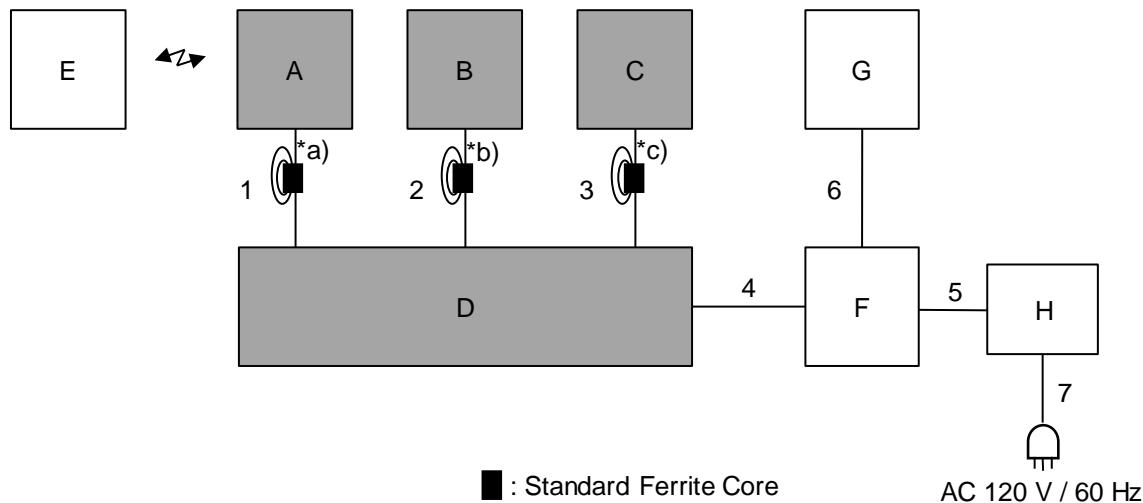
*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Justification: The system was configured in typical fashion (as a user would normally use it) for testing.

Test Item	Operating mode
Conducted Emission	Mode 1 to 3
Electric Field Strength of Fundamental Emission	Mode 1, 2
Spectrum Mask	Mode 1, 2
20 dB Bandwidth and 99 % Occupied Bandwidth	Mode 1, 2
Electric Field Strength of Spurious Emission (Below 30 MHz)	Mode 2*
Electric Field Strength of Spurious Emission (Above 30 MHz)	Mode 2*
Frequency Tolerance	Mode 2


* After the comparison of the test data between Mode 1 and Mode 2, the tests were performed Mode 2 with the worst case.

Frequency Tolerance	
Temperature	-20 deg. C to 50 deg. C Step 10 deg. C
Voltage	Normal Voltage DC 5 V Maximum Voltage DC 5.75 V (DC 5V +15 %) Minimum Voltage DC 4.25 V (DC 5 V -15 %)

*This EUT provides stable voltage constantly to RF Part regardless of input voltage

4.2 Configuration and peripherals

Conducted Emission

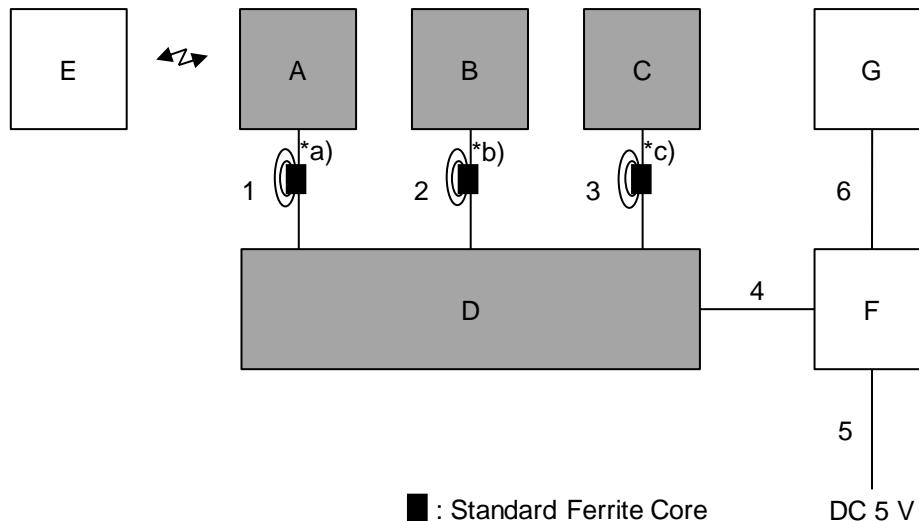
Standard Ferrite Core Model No.	Manufacture	Distance	Turn(s)
*a) TFT-112514N	TAKACHI ELECTRONICS ENCLOSURE CO., LTD.	20 cm from Item A	3 turns
*b) TFT-112514N	TAKACHI ELECTRONICS ENCLOSURE CO., LTD.	20 cm from Item B	3 turns
*c) TFT-112514N	TAKACHI ELECTRONICS ENCLOSURE CO., LTD.	20 cm from Item C	3 turns

* Cabling and setup were taken into consideration and test data was taken under worse case conditions.

*After the comparison of the test data between With Tag and Without Tag, the tests were performed with the worst case.

* As a result of comparing ANT 1, ANT 2 and ANT 3 at pre-check, the tests were performed with ANT 1 as representative because there was no difference.

* With Tag is prechecked at 10 mm intervals from the minimum to the maximum distance specified, the tests were performed under the Worst condition.


Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remark
A	ANTENNA UNIT	TR3-A401-CS13	22120045(F)-1	TAKAYA Corporation	EUT
B	ANTENNA UNIT	TR3-A401-CS13	22120045(F)-2	TAKAYA Corporation	EUT
C	ANTENNA UNIT	TR3-A401-CS13	22120045(F)-3	TAKAYA Corporation	EUT
D	RFID UNIT2	RWM2MR	20002153	TAKAYA Corporation	EUT
E	RFID Tag	-	B-1	-	-
F	Jig Board	-	-	-	-
G	Laptop PC	PR63PBAA337AD7X	6F053913H	TOSHIBA	-
H	DC Power Supply	PW16-5ADP	GJQ810118	TEXIO	

List of Cables Used

No.	Name	Length (m)	Shield		Remark
			Cable	Connector	
1	Antenna Cable	1.0	Shielded	Shielded	-
2	Antenna Cable	1.0	Shielded	Shielded	-
3	Antenna Cable	1.0	Shielded	Shielded	-
4	Signal and DC Cable	2.2	Unshielded	Unshielded	-
5	DC Cable	0.5	Unshielded	Unshielded	-
6	USB Cable	1.0	Shielded	Shielded	-
7	AC Cable	1.7	Unshielded	Unshielded	-

Radiated Emission

	Standard Ferrite Core Model No.	Manufacture	Distance	Turn(s)
*a)	TFT-112514N	TAKACHI ELECTRONICS ENCLOSURE CO., LTD.	20 cm from Item A	3 turns
*b)	TFT-112514N	TAKACHI ELECTRONICS ENCLOSURE CO., LTD.	20 cm from Item B	3 turns
*c)	TFT-112514N	TAKACHI ELECTRONICS ENCLOSURE CO., LTD.	20 cm from Item C	3 turns

* Cabling and setup were taken into consideration and test data was taken under worse case conditions.

*After the comparison of the test data between With Tag and Without Tag, the tests were performed with the worst case.

* As a result of comparing ANT 1, ANT 2 and ANT 3 at pre-check, the tests were performed with ANT 1 as representative because there was no difference.

* With Tag is prechecked at 10 mm intervals from the minimum to the maximum distance specified, the tests were performed under the Worst condition.

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remark
A	ANTENNA UNIT	TR3-A401-CS13	22120045(F)-1	TAKAYA Corporation	EUT
B	ANTENNA UNIT	TR3-A401-CS13	22120045(F)-2	TAKAYA Corporation	EUT
C	ANTENNA UNIT	TR3-A401-CS13	22120045(F)-3	TAKAYA Corporation	EUT
D	RFID UNIT2	RWM2MR	20002153	TAKAYA Corporation	EUT
E	RFID Tag	-	B-1	-	-
F	Jig Board	-	-	-	-
G	Laptop PC	PR63PBAA337AD7X	6F053913H	TOSHIBA	-

List of Cables Used

No.	Name	Length (m)	Shield		Remark
			Cable	Connector	
1	Antenna Cable	1.0	Shielded	Shielded	-
2	Antenna Cable	1.0	Shielded	Shielded	-
3	Antenna Cable	1.0	Shielded	Shielded	-
4	Signal and DC Cable	2.2	Unshielded	Unshielded	-
5	DC Cable	3.5	Unshielded	Unshielded	-
6	USB Cable	1.0	Shielded	Shielded	-

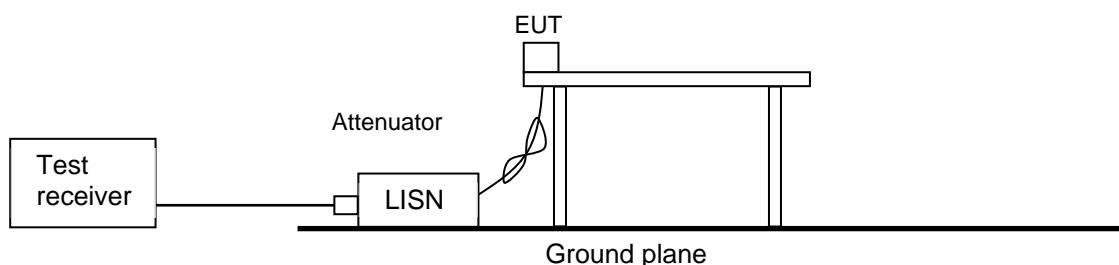
SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80 cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN)/ Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)


I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50 ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

Figure 1: Test Setup

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement range	: 0.15 MHz to 30 MHz
Test data	: APPENDIX
Test result	: Pass

SECTION 6: Radiated Emission (Fundamental, Spurious Emission and Spectrum Mask)

Test Procedure

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[Limit conversion]

The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to $45.5 - 51.5 = -6.0$ dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

[Frequency: From 9 kHz to 30 MHz]

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., 135 deg., and 270 deg.) and horizontal polarization.

*Refer to Figure 3 about Direction of the Loop Antenna.

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore the measured level of emissions may be higher than if measurements were made without a ground plane. However test results were confirmed to pass against standard limit.

[Frequency: From 30 MHz to 1 GHz]

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

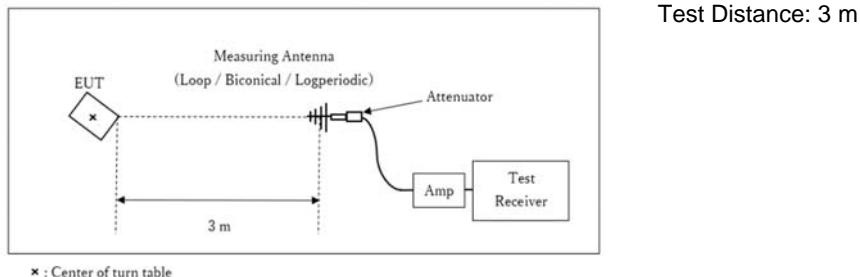
The measurements were performed for both vertical and horizontal antenna polarization.

[Test instruments and test settings]

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz
Antenna Type	Loop	Biconical	Logperiodic

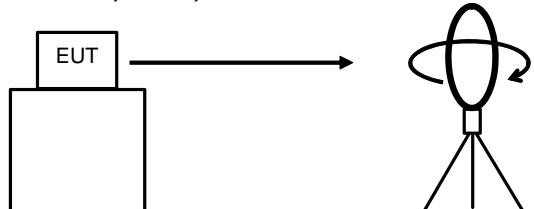
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.


Frequency	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz
Instrument used	Test Receiver				
Detector	PK / AV	QP	PK / AV	QP	QP
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m

*1) Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

*2) Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$


Figure 2: Test Setup

Below 1 GHz

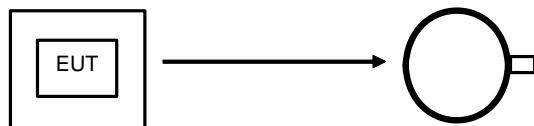
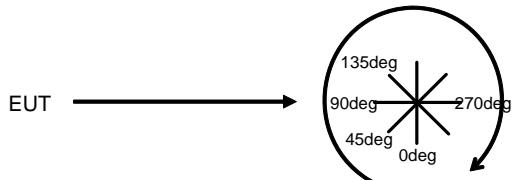


Figure 3: Direction of the Loop Antenna

Side View (Vertical)



Top View (Horizontal)

Antenna was not rotated.

Top View (Vertical)

Front side: 0 deg.
Forward direction: clockwise

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz to 1 GHz
Test data : APPENDIX
Test result : Pass

SECTION 7: Other tests

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	500 kHz	10 kHz	30 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
Frequency Tolerance	-	-	-	-	-	-	Spectrum Analyzer *2)

*1) The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %.
*2) The measurement was performed with Marker Frequency Counter Function.


Test data : APPENDIX
Test result : Pass

APPENDIX 1: Test data

Conducted Emission

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.3
 Date October 8, 2023
 Temperature / Humidity 23 deg. C / 52 % RH
 Engineer Shousei Hamaguchi
 Mode Mode 1

Limit : FCC_Part 15 Subpart C(15.207)

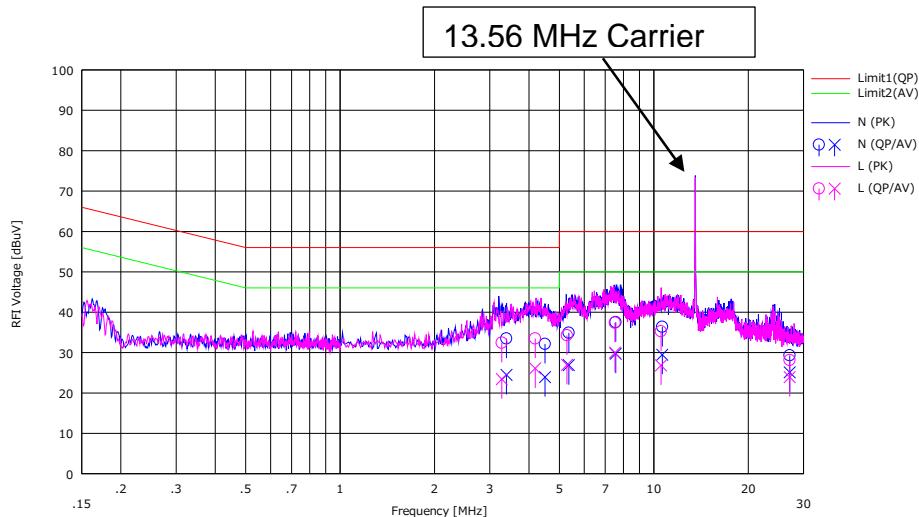

No.	Freq. [MHz]	Reading		LISN [dB]	LOSS [dB]	Results		Limit		Margin		Phase	Comment
		⟨QP⟩ [dBuV]	⟨AV⟩ [dBuV]			⟨QP⟩ [dBuV]	⟨AV⟩ [dBuV]	⟨QP⟩ [dBuV]	⟨AV⟩ [dBuV]	⟨QP⟩ [dB]	⟨AV⟩ [dB]		
		⟨QP⟩ [dB]	⟨AV⟩ [dB]			⟨QP⟩ [dB]	⟨AV⟩ [dB]	⟨QP⟩ [dB]	⟨AV⟩ [dB]	⟨QP⟩ [dB]	⟨AV⟩ [dB]		
1	3.32450	19.20	10.00	0.11	13.34	32.65	23.45	56.00	46.00	23.35	22.55	N	
2	3.96050	19.40	11.80	0.12	13.37	32.89	25.29	56.00	46.00	23.11	20.71	N	
3	5.45650	19.70	11.80	0.15	13.44	33.29	25.39	60.00	50.00	26.71	24.61	N	
4	7.19500	23.30	15.70	0.18	13.49	36.97	29.37	60.00	50.00	23.03	20.63	N	
5	11.03000	21.70	13.90	0.28	13.61	35.59	27.79	60.00	50.00	24.41	22.21	N	
6	27.12000	15.30	11.00	0.55	13.96	29.81	25.51	60.00	50.00	30.19	24.49	N	
7	3.46250	19.90	11.60	0.09	13.35	33.34	25.04	56.00	46.00	22.66	20.96	L	
8	3.95550	19.70	12.00	0.10	13.37	33.17	25.47	56.00	46.00	22.83	20.53	L	
9	5.29100	20.60	12.50	0.13	13.43	34.16	26.06	60.00	50.00	25.84	23.94	L	
10	7.28550	23.30	15.70	0.17	13.50	36.97	29.37	60.00	50.00	23.03	20.63	L	
11	11.35800	21.60	14.20	0.29	13.62	35.51	28.11	60.00	50.00	24.49	21.89	L	
12	27.12000	14.10	9.70	0.56	13.96	28.62	24.22	60.00	50.00	31.38	25.78	L	

CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT)
Except for the above table: adequate margin data below the limits.

Conducted Emission

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.3
 Date October 8, 2023
 Temperature / Humidity 23 deg. C / 52 % RH
 Engineer Shousei Hamaguchi
 Mode Mode 2

Limit : FCC_Part 15 Subpart C(15.207)

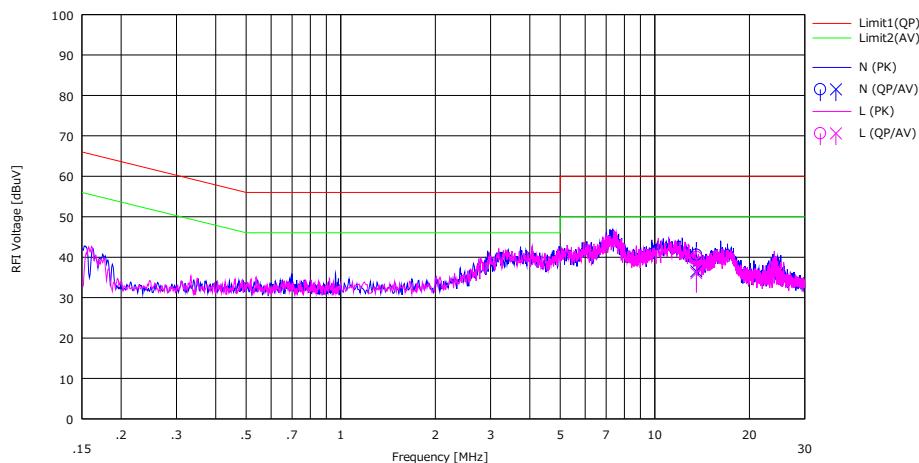

No.	Freq. [MHz]	Reading		LISN [dB]	LOSS [dB]	Results		Limit		Margin		Phase	Comment
		$\langle QP \rangle$ [dBuV]	$\langle AV \rangle$ [dBuV]			$\langle QP \rangle$ [dBuV]	$\langle AV \rangle$ [dBuV]	$\langle QP \rangle$ [dBuV]	$\langle AV \rangle$ [dBuV]	$\langle QP \rangle$ [dB]	$\langle AV \rangle$ [dB]		
1	3.38950	20.00	11.00	0.11	13.35	33.46	24.46	56.00	46.00	22.54	21.54	N	
2	4.49900	18.60	10.40	0.13	13.40	32.13	23.93	56.00	46.00	23.87	22.07	N	
3	5.35800	21.30	13.30	0.15	13.43	34.88	26.88	60.00	50.00	25.12	23.12	N	
4	7.56250	23.80	16.00	0.19	13.51	37.50	29.70	60.00	50.00	22.50	20.30	N	
5	10.64100	22.50	15.60	0.27	13.60	36.37	29.47	60.00	50.00	23.63	20.53	N	
6	27.12000	14.80	10.60	0.55	13.96	29.31	25.11	60.00	50.00	30.69	24.89	N	
7	3.27550	19.00	10.00	0.09	13.34	32.43	23.43	56.00	46.00	23.57	22.57	L	
8	4.18750	20.00	12.60	0.11	13.38	33.49	26.09	56.00	46.00	22.51	19.91	L	
9	5.28600	20.70	13.40	0.13	13.43	34.26	26.96	60.00	50.00	25.74	23.04	L	
10	7.51850	23.70	16.30	0.18	13.50	37.38	29.98	60.00	50.00	22.62	20.02	L	
11	10.54100	21.40	13.00	0.25	13.59	35.24	26.84	60.00	50.00	24.76	23.16	L	
12	27.12000	13.60	9.40	0.56	13.96	28.12	23.92	60.00	50.00	31.88	26.08	L	

CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT)
Except for the above table: adequate margin data below the limits.

Conducted Emission

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.3
 Date October 8, 2023
 Temperature / Humidity 23 deg. C / 52 % RH
 Engineer Shousei Hamaguchi
 Mode Mode 3

Limit : FCC_Part 15 Subpart C(15.207)

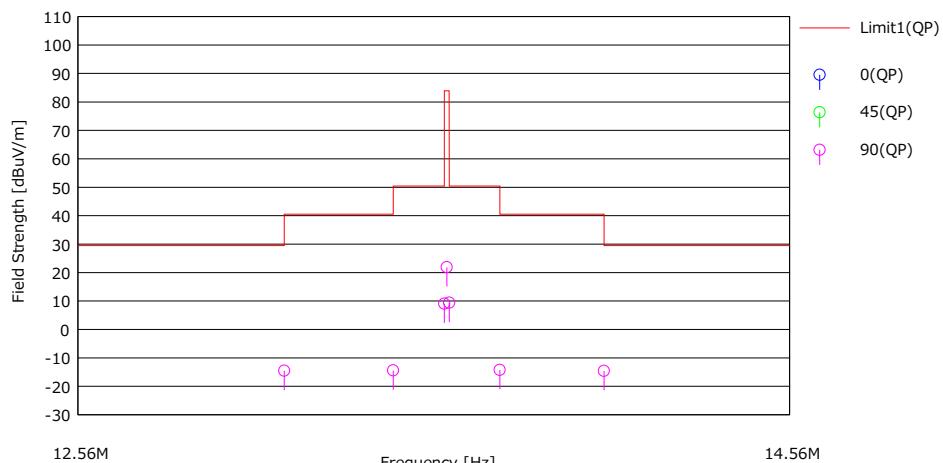

No.	Freq. [MHz]	Reading		LISN [dB]	LOSS [dB]	Results		Limit		Margin		Phase	Comment
		$\langle QP \rangle$ [dBuV]	$\langle AV \rangle$ [dBuV]			$\langle QP \rangle$ [dBuV]	$\langle AV \rangle$ [dBuV]	$\langle QP \rangle$ [dBuV]	$\langle AV \rangle$ [dBuV]	$\langle QP \rangle$ [dB]	$\langle AV \rangle$ [dB]		
1	13.56000	26.60	22.50	0.33	13.67	40.60	36.50	60.00	50.00	19.40	13.50	N	
2	13.56000	26.00	22.00	0.34	13.67	40.01	36.01	60.00	50.00	19.99	13.99	L	

CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT)
Except for the above table: adequate margin data below the limits.

Fundamental Emission and Spectrum Mask

Test place Ise EMC Lab.
Semi Anechoic Chamber No.1
Date September 22, 2023
Temperature / Humidity 23 deg. C / 51 % RH
Engineer Shousei Hamaguchi
Mode Mode 1

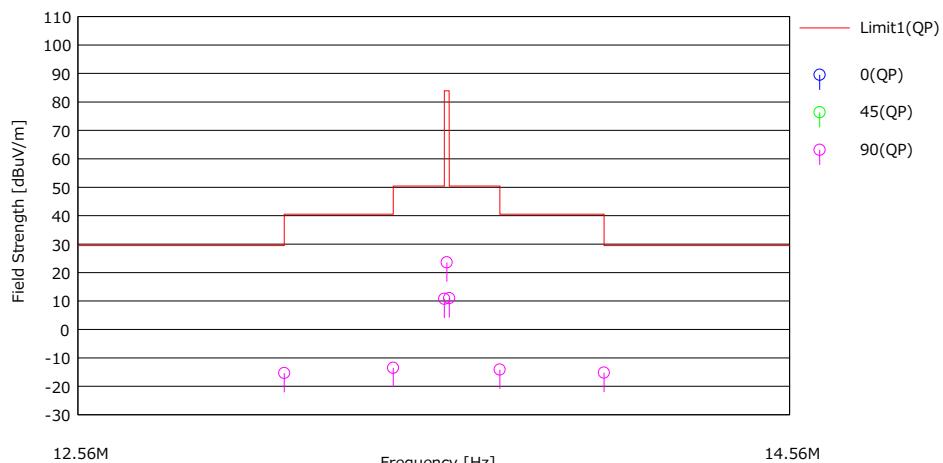
Limit : FCC15.225(a), 9-90kHz:PK, 110-490kHz:PK, other:QP

No.	Freq. [MHz]	Reading (QP)		Ant.Fac [dB/m]	Loss [dB]	Gain [dB]	Result (QP)	Limit (QP)	Margin (QP)	Antenna	Table [deg]	Comment
		[dBuV]	[dBuV/m]									
1	13.11000	30.00	20.55	-32.91	32.20	-14.56	29.50	44.06	90	246		
2	13.41000	30.10	20.55	-32.89	32.19	-14.43	40.50	54.93	90	246		
3	13.55300	53.60	20.54	-32.89	32.19	9.06	50.40	41.34	90	246		
4	13.56000	66.40	20.54	-32.89	32.19	21.86	83.90	62.04	90	246		
5	13.56700	53.90	20.54	-32.89	32.19	9.36	50.40	41.04	90	246		
6	13.71000	30.30	20.54	-32.88	32.19	-14.23	40.50	54.73	90	246		
7	14.01000	29.90	20.54	-32.86	32.19	-14.61	29.50	44.11	90	246		

RESULT = READING + ANT FACTOR + LOSS (CABLE + Attenuator + Distance Factor*) - GAIN(AMP)

*) Distance Factor: $40 \times \log(3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

Result of the fundamental Emission at 3 m without Distance factor


QP	Ant Deg [deg]	Frequency [MHz]	Detector	Reading [dBuV]	Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Remark
0	13.56000	QP		66.40	20.54	7.11	32.19	-	61.86	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amplifier)

Fundamental Emission and Spectrum Mask

Test place Ise EMC Lab.
Semi Anechoic Chamber No.1
Date September 22, 2023
Temperature / Humidity 23 deg. C / 51 % RH
Engineer Shousei Hamaguchi
Mode Mode 2

Limit : FCC15.225(a), 9-90kHz:PK, 110-490kHz:PK, other:QP

No.	Freq. [MHz]	Reading (QP)		Ant.Fac [dB/m]	Loss [dB]	Gain [dB]	Result (QP)	Limit (QP)	Margin (QP)	Antenna	Table [deg]	Comment
		Field Strength [dBuV/m]	Antenna Factor [dBuV]									
1	13.11000	29.20	20.55	-32.91	32.20	-15.36	29.50	44.86	90	233		
2	13.41000	31.00	20.55	-32.89	32.19	-13.53	40.50	54.03	90	233		
3	13.55300	55.30	20.54	-32.89	32.19	10.76	50.40	39.64	90	233		
4	13.56000	68.10	20.54	-32.89	32.19	23.56	83.90	60.34	90	233		
5	13.56700	55.50	20.54	-32.89	32.19	10.96	50.40	39.44	90	233		
6	13.71000	30.40	20.54	-32.88	32.19	-14.13	40.50	54.63	90	233		
7	14.01000	29.30	20.54	-32.86	32.19	-15.21	29.50	44.71	90	233		

RESULT = READING + ANT FACTOR + LOSS (CABLE + Attenuator + Distance Factor*) - GAIN(AMP)

*) Distance Factor: $40 \times \log(3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

Result of the fundamental Emission at 3 m without Distance factor

QP	Ant Deg [deg]	Frequency [MHz]	Detector	Reading [dBuV]	Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Remark
0	13.56000	QP		68.10	20.54	7.11	32.19	-	63.56	-	-	Fundamental

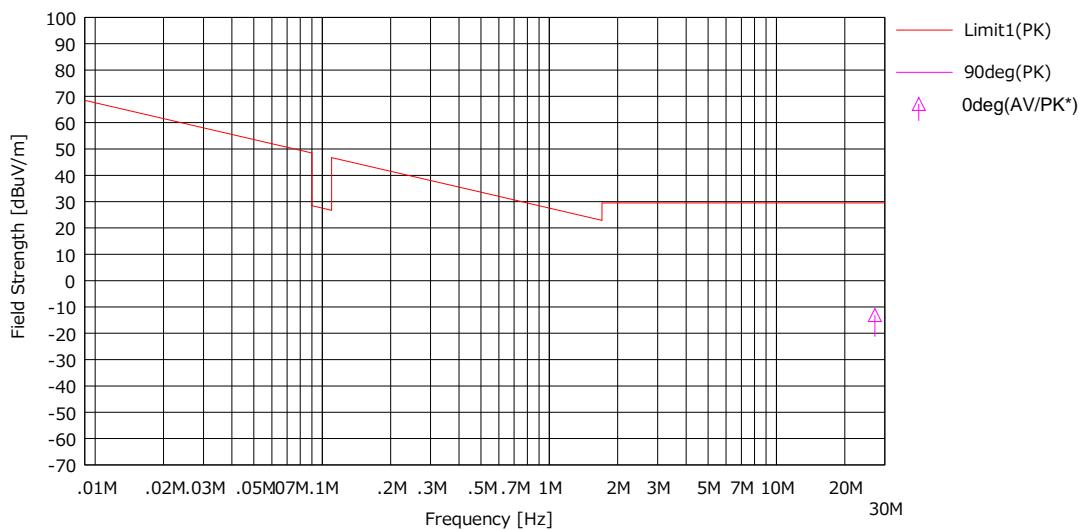
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amplifier)

Spurious Emission

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.1 No.4
 Date September 22, 2023 September 24, 2023
 Temperature / Humidity 23 deg. C / 51 % RH 23 deg. C / 48 % RH
 Engineer Shousei Hamaguchi Yuichiro Yamazaki
 (Below 30 MHz) (Above 30 MHz)
 Mode Mode 2

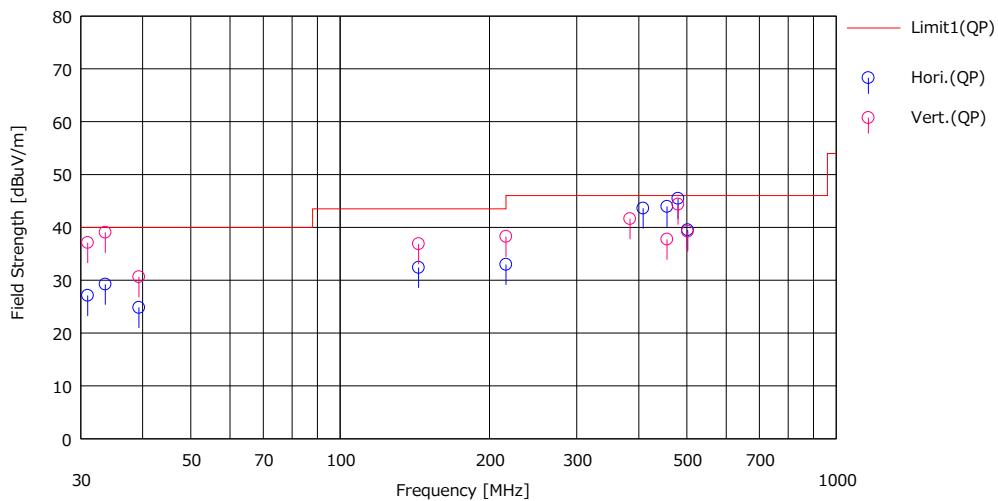
PK or QP

Ant.Deg [deg] or Polarity [Hori/Vert]	Frequency [MHz]	Detector	Reading [dBuV]	Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Remark
90deg	27.120	QP	31.50	19.90	-32.31	32.17	-	-13.08	29.5	42.58	
Hori.	30.990	QP	33.90	18.26	7.05	32.10	-	27.11	40.0	12.89	
Hori.	33.625	QP	37.00	17.26	7.09	32.10	-	29.25	40.0	10.75	
Hori.	39.314	QP	34.60	15.16	7.18	32.10	-	24.84	40.0	15.16	
Hori.	144.000	QP	41.40	14.73	8.29	32.03	-	32.39	43.5	11.13	
Hori.	216.000	QP	44.80	11.26	8.92	32.01	-	32.97	43.5	10.55	
Hori.	408.003	QP	49.50	16.00	10.23	32.11	-	43.62	46.0	2.40	
Hori.	456.003	QP	48.90	16.69	10.51	32.15	-	43.95	46.0	2.07	
Hori.	480.003	QP	49.80	17.19	10.66	32.17	-	45.48	46.0	0.54	
Hori.	501.720	QP	43.10	17.81	10.80	32.19	-	39.52	46.0	6.50	
Vert.	30.990	QP	43.90	18.26	7.05	32.10	-	37.11	40.0	2.89	
Vert.	33.625	QP	46.80	17.26	7.09	32.10	-	39.05	40.0	0.95	
Vert.	39.314	QP	40.40	15.16	7.18	32.10	-	30.64	40.0	9.36	
Vert.	144.000	QP	45.90	14.73	8.29	32.03	-	36.89	43.5	6.63	
Vert.	216.000	QP	50.10	11.26	8.92	32.01	-	38.27	43.5	5.25	
Vert.	384.002	QP	48.40	15.22	10.09	32.09	-	41.62	46.0	4.40	
Vert.	456.003	QP	42.70	16.69	10.51	32.15	-	37.75	46.0	8.27	
Vert.	480.003	QP	48.70	17.19	10.66	32.17	-	44.38	46.0	1.64	
Vert.	501.720	QP	42.80	17.81	10.80	32.19	-	39.2	46.0	6.8	


Result = Reading + Ant Factor + Loss (Cable + Attenuator + D.Factor) - Gain(Amprifier)

Radiated Spurious Emission (Plot data, Worst case for Spurious Emission)

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	September 22, 2023
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Shousei Hamaguchi (Below 30 MHz) Yuichiro Yamazaki (Above 30 MHz)
Mode	Mode 2

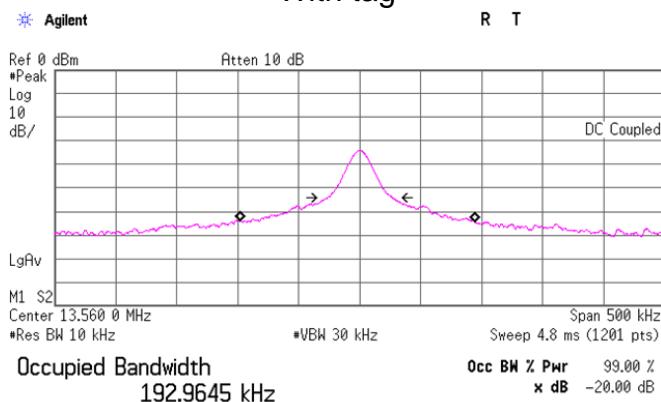

(below 30MHz)

Limit : FCC15.209(a), 9-90kHz:PK, 110-490kHz:PK, other:QP

* Data above 490 kHz were measured using a QP detector.

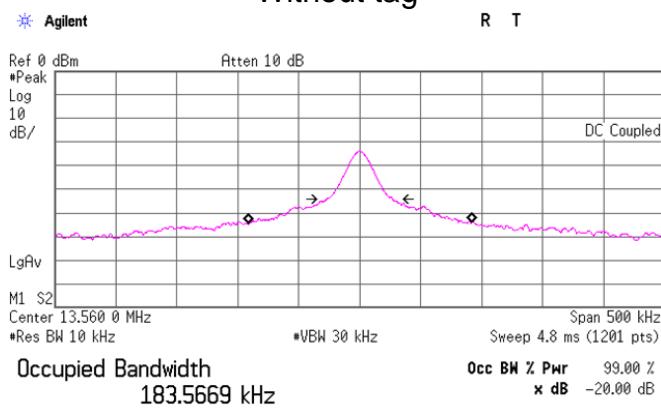
(above 30MHz)

*These plots data contains sufficient number to show the trend of characteristic features for EUT.


20 dB Bandwidth and 99% Occupied Bandwidth

Test place Ise EMC Lab.
 Measurement room No.1
 Date September 22, 2023
 Temperature / Humidity 23 deg. C / 51 % RH
 Engineer Shousei Hamaguchi
 Mode Mode 1, 2

FREQ [MHz]	Mode	20dB Bandwidth [kHz]	99% Occupied Bandwidth [kHz]
13.5600	With Tag	53.363	192.9645
	Without Tag	53.896	183.5669


20dB Bandwidth

With tag

Transmit Freq Error -1.507 kHz
x dB Bandwidth 53.363 kHz

Without tag

Transmit Freq Error 481.373 Hz
x dB Bandwidth 53.896 kHz

Since the transmitter signal is CW-like it is impractical to use a RBW setting of 1 – 5% of the emission bandwidth since the emission bandwidth will be proportional to the RBW.

Frequency Tolerance

Test place Ise EMC Lab.
Measurement room No.6
Date September 25, 2023
Temperature / Humidity 25 deg. C / 34 % RH
Engineer Takeshi Hiyaji
Mode Mode 2

Temp. [deg. C]	Voltage [V]	Tested timing	Measured frequency [MHz]	Frequency error [MHz]	Result		Limit [+/- %]
					[%]	[ppm]	
50	5	Power on	13.560034	0.000034	0.00025	2.5	0.01
		+ 2 min.	13.560034	0.000034	0.00025	2.5	0.01
		+ 5 min.	13.560033	0.000033	0.00024	2.4	0.01
		+ 10 min.	13.560032	0.000032	0.00024	2.4	0.01
40	5	Power on	13.560072	0.000072	0.00053	5.3	0.01
		+ 2 min.	13.560063	0.000063	0.00046	4.6	0.01
		+ 5 min.	13.560057	0.000057	0.00042	4.2	0.01
		+ 10 min.	13.560053	0.000053	0.00039	3.9	0.01
30	5	Power on	13.560102	0.000102	0.00075	7.5	0.01
		+ 2 min.	13.560086	0.000086	0.00063	6.3	0.01
		+ 5 min.	13.560084	0.000084	0.00062	6.2	0.01
		+ 10 min.	13.560082	0.000082	0.00060	6.0	0.01
20	5	Power on	13.560088	0.000088	0.00065	6.5	0.01
		+ 2 min.	13.560088	0.000088	0.00065	6.5	0.01
		+ 5 min.	13.560088	0.000088	0.00065	6.5	0.01
		+ 10 min.	13.560087	0.000087	0.00064	6.4	0.01
20	4.25 (5V -15%)	Power on	13.560088	0.000088	0.00065	6.5	0.01
		+ 2 min.	13.560088	0.000088	0.00065	6.5	0.01
		+ 5 min.	13.560087	0.000087	0.00064	6.4	0.01
		+ 10 min.	13.560087	0.000087	0.00064	6.4	0.01
20	5.75 (5V +15%)	Power on	13.560090	0.000090	0.00066	6.6	0.01
		+ 2 min.	13.560088	0.000088	0.00065	6.5	0.01
		+ 5 min.	13.560087	0.000087	0.00064	6.4	0.01
		+ 10 min.	13.560087	0.000087	0.00064	6.4	0.01
10	5	Power on	13.560120	0.000120	0.00088	8.8	0.01
		+ 2 min.	13.560120	0.000120	0.00088	8.8	0.01
		+ 5 min.	13.560126	0.000126	0.00093	9.3	0.01
		+ 10 min.	13.560127	0.000127	0.00094	9.4	0.01
0	5	Power on	13.560134	0.000134	0.00099	9.9	0.01
		+ 2 min.	13.560136	0.000136	0.00100	10.0	0.01
		+ 5 min.	13.560137	0.000137	0.00101	10.1	0.01
		+ 10 min.	13.560137	0.000137	0.00101	10.1	0.01
-10	5	Power on	13.560136	0.000136	0.00100	10.0	0.01
		+ 2 min.	13.560134	0.000134	0.00099	9.9	0.01
		+ 5 min.	13.560133	0.000133	0.00098	9.8	0.01
		+ 10 min.	13.560129	0.000129	0.00095	9.5	0.01
-20	5	Power on	13.560078	0.000078	0.00058	5.8	0.01
		+ 2 min.	13.560083	0.000083	0.00061	6.1	0.01
		+ 5 min.	13.560087	0.000087	0.00064	6.4	0.01
		+ 10 min.	13.560088	0.000088	0.00065	6.5	0.01

Calculation formula: Frequency error = Measured frequency - Tested frequency
Result [%] = Frequency error / Tested frequency * 100

*The test was begun from 50 deg. C and the temperature was lowered each 10 deg. C.

APPENDIX 2: Test instruments

Test Equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
CE	COTS-MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
CE	MAEC-03	142008	AC3_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/23/2022	24
CE	MAT-67	141248	Attenuator	JFW Industries, Inc.	50FP-013H2 N	-	12/22/2022	12
CE	MCC-112	141216	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM14/sucoform141-PE/421-010/RFM-E321(SW)	-/00640	07/25/2023	12
CE	MJM-16	142183	Measure	KOMELON	KMC-36	-	10/03/2022	12
CE	MLS-23	141357	LISN(AMN)	Schwarzbeck Mess-Elektronik OHG	NSLK8127	8127-729	07/05/2023	12
CE	MLS-24	141358	LISN(AMN)	Schwarzbeck Mess-Elektronik OHG	NSLK8127	8127-730	07/13/2023	12
CE	MMM-08	141532	DIGITAL HiTESTER	HIOKI E.E. CORPORATION	3805	51201197	01/17/2023	12
CE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/13/2023	12
CE	MTA-51	141933	Terminator	TME	CT-01BP	-	12/14/2022	12
CE	MTR-08	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	05/17/2023	12
FT	MCH-04	141429	Temperature and Humidity Chamber	Espec	PL-2KP	14015723	08/09/2023	12
FT	MFC-01	141498	Microwave Counter	ADVANTEST	R5373	120100309	07/24/2023	12
FT	MJM-24	142225	Tape Measure	ASKUL	-	-	-	-
FT	MLPA-08	202511	Loop Antenna	UL Japan	-	-	-	-
FT	MMM-18	141558	Digital Tester (TRUE RMS MULTIMETER)	Fluke Corporation	115	17930030	05/29/2023	12
FT	MOS-14	141561	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1401	01/13/2023	12
RE	COTS-MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-01	141998	AC1_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	06/28/2022	24
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2022	24
RE	MAT-08	141213	Attenuator(6dB)	Weinschel Corp	2	BK7971	11/19/2022	12
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/01/2023	12
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+BBA9106	VHA 91031302	08/10/2023	12
RE	MCC-03	141215	Coaxial Cable	Fujikura/Suhner/TSJ	5D-2W/3D-2W/RG400u/RFM-E421(SW)	-/01068(Switcher)	06/23/2023	12
RE	MRENT-130	141855	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187750	12/01/2022	12
RE	MCC-219	159670	Coaxial Cable	UL Japan	-	-	11/18/2022	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	11/18/2022	12
RE	MJM-25	142226	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	MJM-29	142230	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	MLA-21	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-190	07/11/2023	12
RE	MLPA-02	142152	Loop Antenna	Rohde & Schwarz	HFH2-Z2	836553/009	10/11/2022	12
RE	MMM-03	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	01/18/2023	12
RE	MMM-10	141545	DIGITAL HiTESTER	HIOKI E.E. CORPORATION	3805	51201148	01/18/2023	12
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/13/2023	12
RE	MOS-27	141566	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	A08Q26	01/13/2023	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/07/2023	12
RE	MTR-09	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	10/11/2022	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12

***Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.**

**The expiration date of the calibration is the end of the expired month.
As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.**

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

CE: Conducted Emission

RE: Radiated Emission

FT: Frequency Tolerance