

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: October 20 ~ November 03, 2014

Test Report S/N: LR500111411A Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

UNTLM2471-EM

APPLICANT

RadioPulse Inc.

Equipment Class : Digital Transmission System (DTS)

Manufacturing Description: Zigbee ModuleManufacturer: RadioPulse Inc.Model name: LM2471-EM

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2009

Frequency Range : 2405MHz ~ 2475MHz

Max. Output Power : Max 11.75dBm – Conducted

Data of issue : November 03, 2014

This test report is issued under the authority of:

The test was supervised by:

Jae-Ho Lee, Manager

Young-Jin Lee, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this r eport even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 6dB BANDWIDTH	6
3.2.2 PEAK OUTPUT POWER	9
3.2.3 POWER SPECTRAL DENSITY	12
3.2.4 BAND EDGE	15
3.2.5 CONDUCTED SPURIOUS EMISSIONS	18
3.2.6 FIELD STRENGTH OF HARMONICS	22
3.2.7 AC CONDUCTED EMISSIONS	25
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	28

1. General information

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity Reference		
NVLAP	U.S.A	200723-0	2015-09-30	ECT accredited Lab.	
RRA	KOREA	KR0049	KR0049 2015-03-06 EMC a		
FCC	U.S.A	610755	2017-04-21 FCC filing		
FCC	U.S.A	649054	054 2015-04-17 FCC CAB		
VCCI	JAPAN	R2133(10 m), C2307	33(10 m), C2307 2017-06-21 VCCI registration		
VCCI	JAPAN	T-2009	2016-12-23	VCCI registration	
VCCI	JAPAN	G-563	2015-05-28 VCCI registration		
IC	CANADA	5799A-1	2015-06-21	IC filing	
KOLAS	KOREA	NO.551	2017-01-08	KOLAS accredited Lab.	

2. Information about test item

2-1 Client & Manufacturer

Company name : RadioPulse Inc.

3rd Fl., Hans B/D II, 111-6 Seongnae-Dong,

Address : Gangdong-Gu, Seoul, Korea, 134-883, Korea

Tel / Fax : TEL No: +82-2-478-2963 / FAX No: +82-2-478-2966

2-2 Equipment Under Test (EUT)

Trade name : Zigbee Module

Model name : LM2471-EM

Serial number : Identical prototype

Date of receipt : October 14, 2014

EUT condition : Pre-production, not damaged

Antenna type : Dipole antenna (M/N: WE-2400TO) Max Gain 2.5 dBi

Frequency Range : 2405MHz ~ 2475MHz

RF output power : Max 11.75dBm – Conducted

Number of channels : 15

Type of Modulation : O-QPSK
Channel spacing : 5MHz
Power Source : 3.0Vdc
Firmware Version : V1.0.0

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2405	2440	2475

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer		
Notebook	Vostro 1015	DN9RBN1	DELL		

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Conditio n	Status (note 1)
15.247(a)	6 dB Bandwidth	> 500kHz		С
15.247(b)	Transmitter Peak Output Power	< 1Watt	Contour	С
15.247(d)	Transmitter Power Spectral Density	< 8dBm @ 3kHz	Conducted	С
15.247(d)	Band Edge	> 20 dBc		С
15.209	Field Strength of Harmonics Emission		Radiated	С
15.207	AC Conducted Emissions	Emissions	Conducted	С
15.203	Antenna requirement	-	-	С
Note 1: C-Complies NC-	-Not Complies NT-Not Tested NA-	Not Applicable		<u> </u>

<u>Note 1</u>: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

<u>Note 2</u>: The data in this test report are traceable to the national or international standards.

→ Antenna Requirement

The RadioPulse Inc FCC ID: UNTLM2471-EM unit complies with the requirement of §15.203. The antenna connector is the reverse SMA connector.

The sample was tested according to the following specification:

*FCC Parts 15.247; ANSI C-63.4-2009

*FCC KDB Publication No. 558074 v03r02

*FCC TCB Workshop 2012, April

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz Span = 5 MHz

 $VBW = 100 \text{ kHz} (VBW \ge RBW)$ Sweep = auto

Trace = max hold Detector function = peak

Measurement Data:

Frequency	Test Results				
(MHz)	Measured Bandwidth (MHz)	Result			
2405	1.65	Complies			
2440	1.69	Complies			
2475	1.65	Complies			

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

6 dB Bandwidth > 500kHz

Measurement Setup

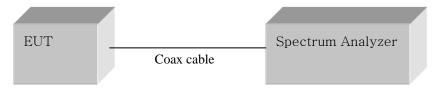
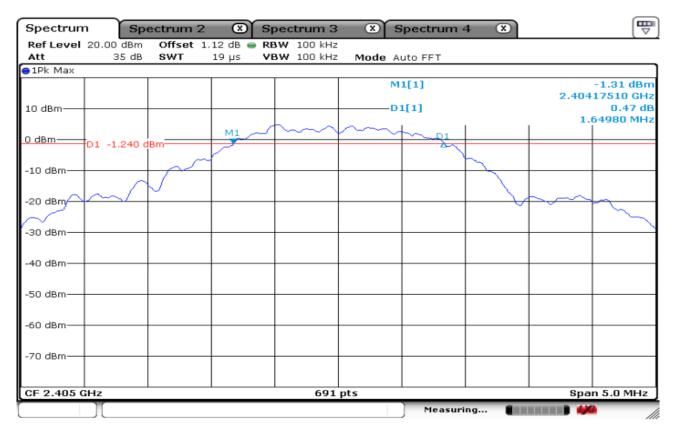
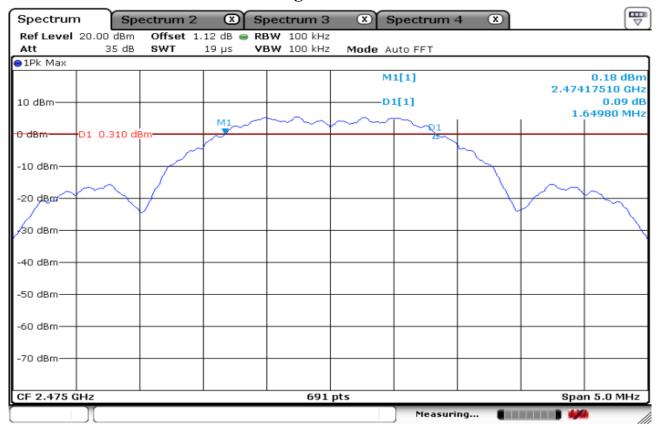



Figure 1: Measurement setup for the carrier frequency separation


Low Channel

Mid Channel

High Channel

3.2.2 Peak Output Power Measurement

Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 1MHz Span = auto

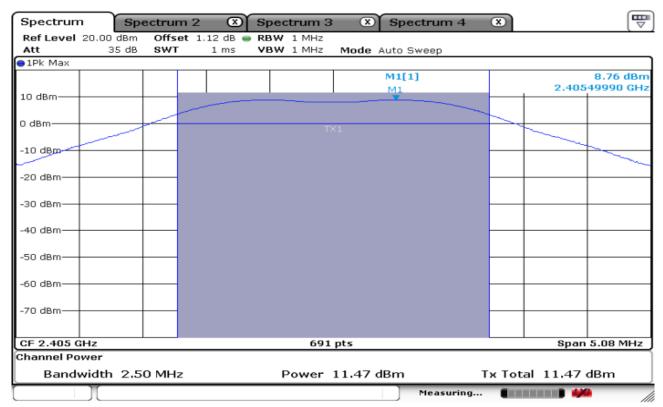
 $VBW = 1MHz (VBW \ge RBW)$ Sweep = auto

Detector function = peak

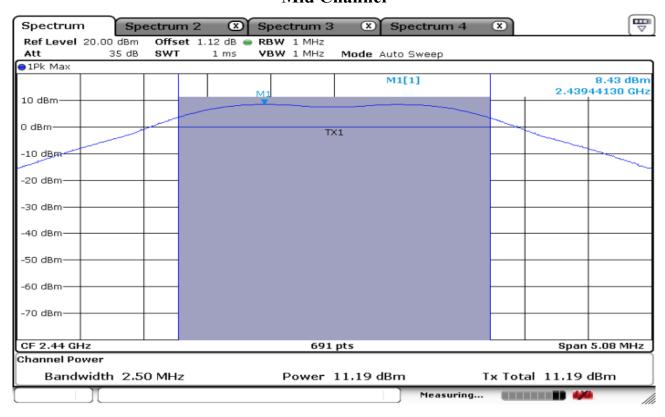
Measurement Data:

Frequency	Test Results				
(MHz)	dBm mW		Result		
2405	11.47	14.03	Complies		
2440	11.19	13.15	Complies		
2475	11.75	14.96	Complies		

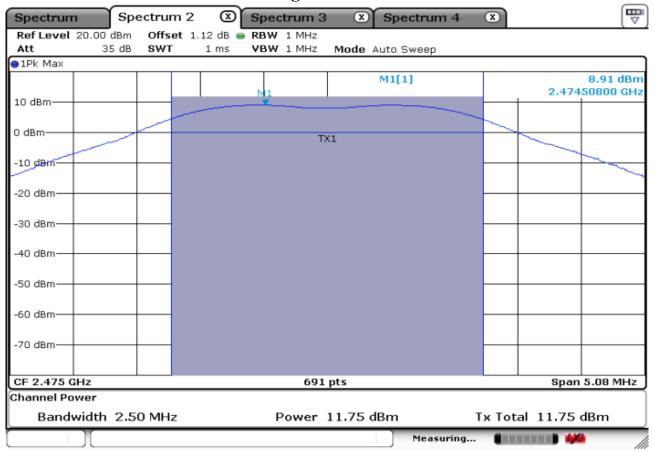
⁻ See next pages for actual measured spectrum plots.


Minimum Standard:

Peak output power	< 1W


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)


Low Channel

Mid Channel

High Channel

3.2.3 Power Spectral Density

Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

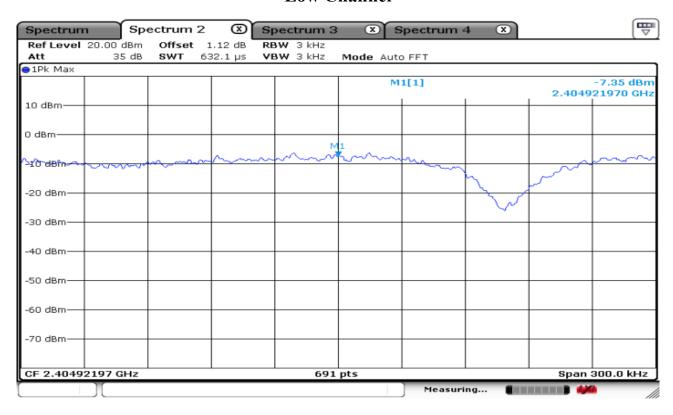
The spectrum analyzer is set to:

RBW = 3 kHz Span = 300 kHz VBW = 3 kHz Sweep = auto Detector function = peak Trace = max hold

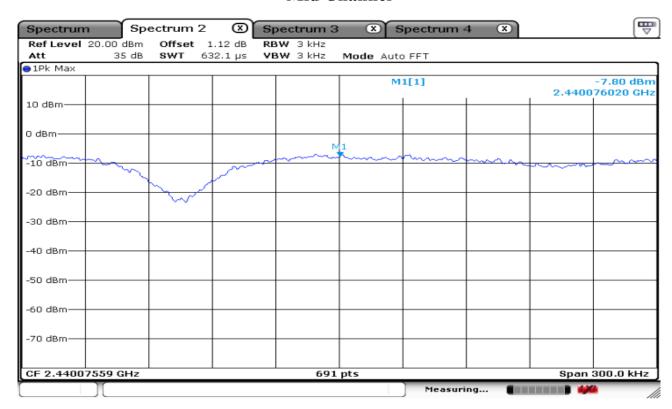
Measurement Data:

Frequency	Test Results				
(MHz)	dBm	Result			
2405	-7.35	Complies			
2440	-7.80	Complies			
2475	-6.69	Complies			

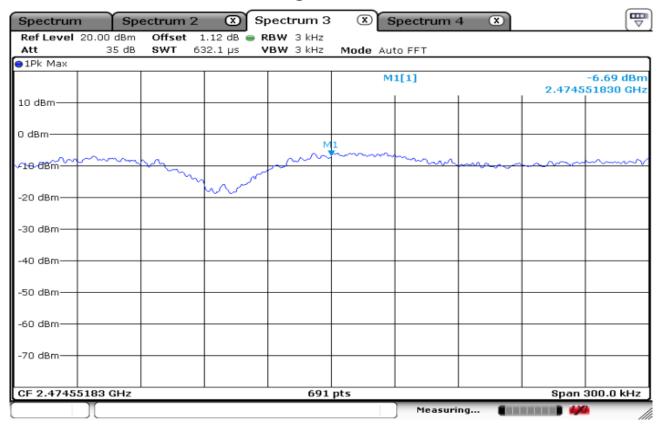
⁻ See next pages for actual measured spectrum plots.


Minimum Standard:

Power Spectral Density	< 8dBm @ 3kHz BW


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)


Power Density Measurement Low Channel

Mid Channel

High Channel

3.2.4 Band - edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 40MHz Detector function = peak

Trace = \max hold Sweep = auto

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

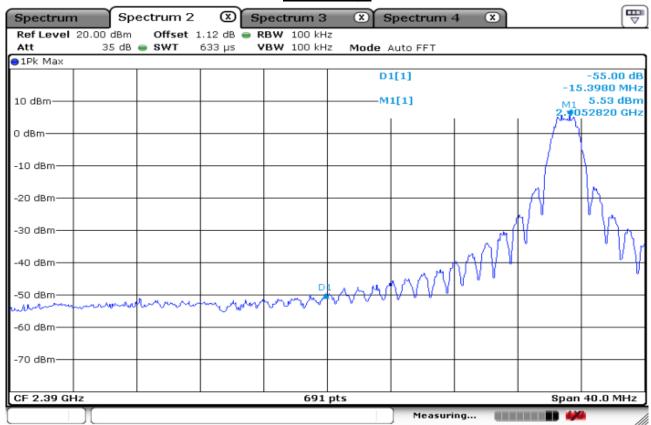
The spectrum analyzer is set to:

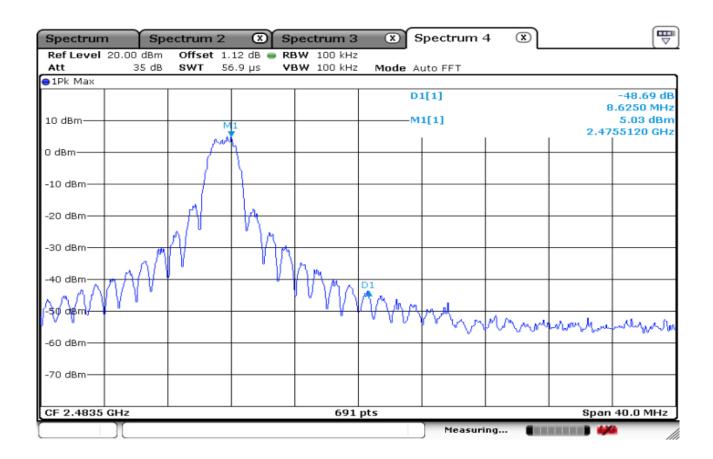
Center frequency = the highest, the lowest channels

PEAK: RBW = VBW = 1MHz, Sweep=Auto

Average: RBW = 1MHz, VBW=10Hz, Sweep=Auto

Measurement Distance: 3m


Polarization: Horizontal / Vertical


Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20d B lower than the highest inband spectral density. Therefore the applying equipment meets the requirem ent.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc
-------------------	----------

Band-edge

Radiated Band-edges in the restricted band 2310-2390 MHz measurement

Frequency	Reading [dBuV/m]			(Correction Factor	Limits [dBuV/m]		Res	sult V/m]	Mai [d	
[MHz]	AV /	' Peak	Pol.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV /	Peak	AV /	Peak
2323.0	42.8	53.7	V	27.5	21.7	54.0	74.0	48.6	59.5	5.4	14.5

Radiated Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Reading [dBuV/m]		Correction Factor		Limits [dBuV/m]	Result [dBuV/m]	Margin [dB]	
[MHz]	AV / Peak	Pol.	Antenna	Amp. Gain + Cable Loss	AV / Peak	AV / Peak	AV / Peak	
2484.5	40.7 51.6	V	27.5	21.7	54.0 74.0	46.5 57.4	7.5 16.6	

Note: This EUT was tested in 3 orth ogonal positions and the w orst-case data was presented

3.2.5 Conducted Spurious Emissions

Procedure:

The test follows KDB558074. The conducted spurious emissions were measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, set the marker on the peak of any spurious emission recorded.

The spectrum analyzer is set to:

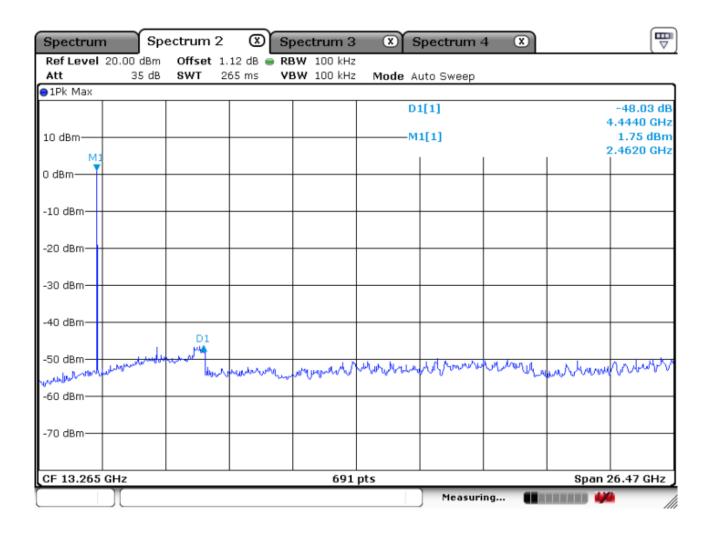
Span = wide enough to capture the peak level of the in-band emission and all spurious emissions

RBW = 100 kHz Sweep = auto

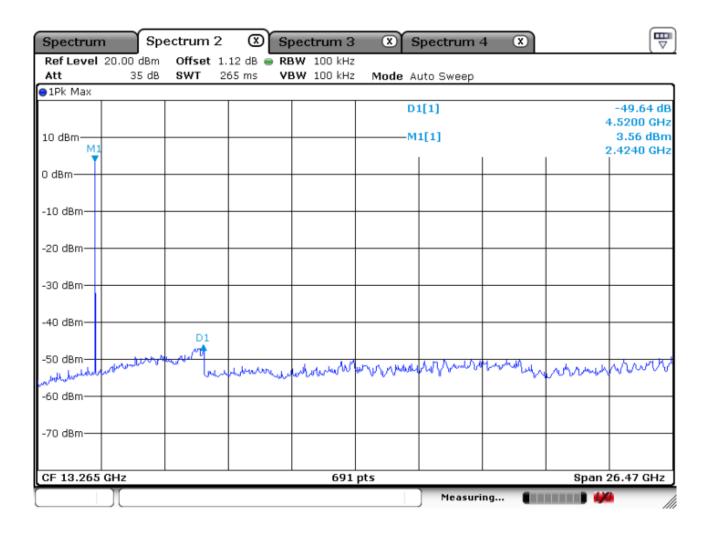
VBW = 100 kHz Detector function = peak

Trace = max hold

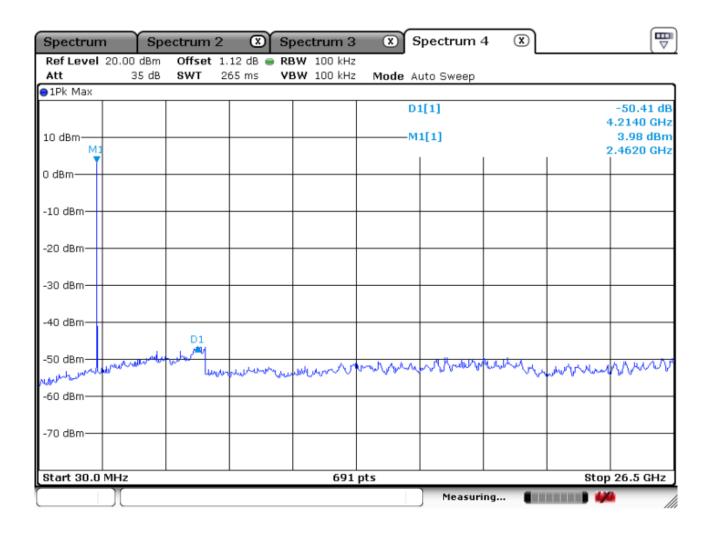
Measurement Data: Complies


- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20d B lower than the highest inband spectral density. Therefore the applying equipment meets the requirem ent.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc
-------------------	----------


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)


<u>Unwanted Emission – Low channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

<u>Unwanted Emission – Middle channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

<u>Unwanted Emission – High channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

3.2.6 Field Strength of Harmon ics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

 $RBW = 100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$ $VBW \geq RBW$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = peak

Trace = $\max \text{ hold}$ Sweep = auto

Measurement Data: Complies

- See next pages for actual measured data.

Minimum Standard: FCC Part 15.209(a)

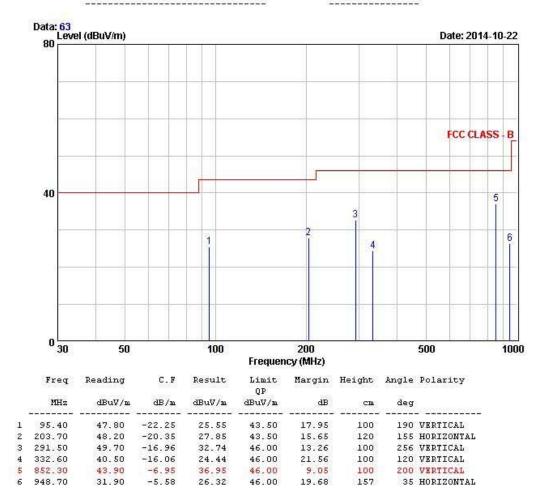
Frequency (MHz)	Limit (uV/m) @ 3m			
30 ~ 88	100 **			
88 ~ 216	150 **			
216 ~ 960	200 **			
Above 960	500			

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data:

Fraguency	Reading			Correction		Limits		Result		Margin	
Frequency	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV / Peak			Antenna Amp.Gain+Cable		AV/Peak		AV/Peak		AV / Peak	
1322.7 43.7 60.4		V	24.8	21.8	54.0	74.0	46.7	63.4	7.3	10.6	
Frequency	Reading			Correction		Limits		Result		Margin	
rrequency	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV / Peak			Antenna Amp.Gain+Cable		AV/Peak		AV/Peak		AV / Peak	
1332.7	43.7	63.4	V	24.8	21.8	54.0	74.0	46.7	66.4	7.3	7.6
Frequency	Reading			Correction		Limits		Result		Margin	
rrequeries	[dBuV/m] F		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV / Peak			Antenna Amp.Gain+Cable		AV/Peak		AV/Peak		AV / Peak	
1327.1	44.6	63.6	V	24.8	21.8	54.0	74.0	47.6	66.6	6.4	7.4

⁻ No other emissions were detected at a level greater than 20dB below limit.


Radiated Emissions - Zigbee

4, Songjuro236Beon-gil, Yangji-myeon, Cheoin-gu, Youngin-si, Gyeonggi-do, 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: LM2471-EM TEST MODE: zig bee mode

Temp Humi : 22 / 43 Tested by: SIN S U

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.6 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 20dB below limit.

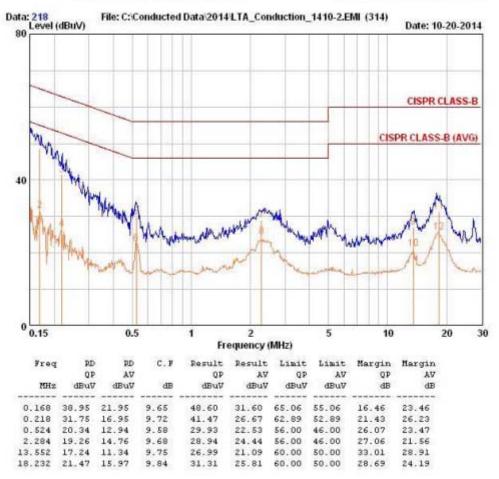
Minimum Standard: FCC Part 15.207(a)/EN 55022

Class B

Frequency Range	quasi-peak	Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

^{*} Decreases with the logarithm of the frequency

AC Conducted Emissions - Zigbee - Line



4, Songjuro236Beon-gil, Yangji-myeon Cheoin-gi, Youngin-si, Gyeonggi-do 449-822 Korea Fai:+82-31-3236008,9 Fai:+82-31-3236010

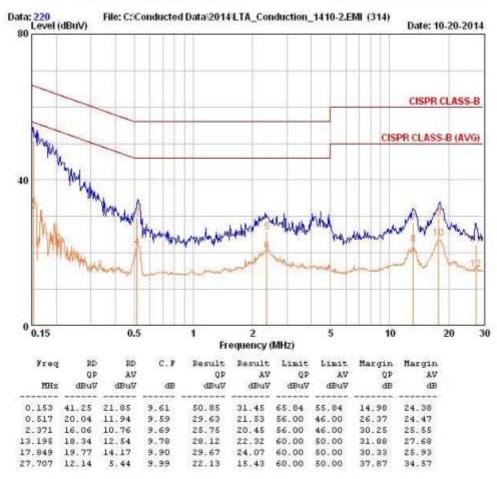
EUT / Model No. : LM2471-EM Phase : LINE

Test Hode : zig bee mode Test Power : 120 / 60

Temp./Humi. : 26 / 47 Test Engineer : SIN S U

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions - Zigbee - Neutral



4, Songjuro236Beon-gil, Yangji-myeon Cheoin-gu, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT / Model No. : LM2471-EM Phase : NEUTRAL

Test Mode : zig bee mode Test Power : 120 / 60

Temp./Humi. : 26 / 47 Test Engineer : SIN S U

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Signal Analyzer (9kHz~30GHz)	FSV-30	100757	R&S	1 year	2014-01-16
2	Signal Generator (~3.2GHz)	8648C	3623A02597	НР	1 year	2014-03-25
3	SYNTHESIZED CW GENERATOR	83711B	US34490456	НР	1 year	2014-03-25
4	Attenuator (3dB)	8491A	37822	НР	1 year	2014-09-16
5	Attenuator (10dB)	8491A	63196	НР	1 year	2014-09-16
6	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	1 year	2014-03-25
7	EMI Test Receiver (~7GHz)	ESCI7	100722	R&S	1 year	2014-09-15
8	RF Amplifier (~1.3GHz)	8447D OPT 010	2944A07684	НР	1 year	2014-09-16
9	RF Amplifier (1~26.5GHz)	8449B	3008A02126	НР	1 year	2014-03-25
10	Horn Antenna (1~18GHz)	3115	00114105	ETS	2 year	2013-05-13
11	DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2014-02-26
12	DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2014-02-26
13	TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2013-05-14
14	Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2014-04-03
15	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
16	Power Divider 11636A 06243 HP		НР	1 year	2014-09-16	
17	DC Power Supply	6674A	3637A01657	Agilent	-	-
18	Frequency Counter	5342A	2826A12411	НР	1 year	2014-03-25
19	Power Meter	EPM-441A	GB32481702	НР	1 year	2014-03-25
20	Power Sensor	8481A	3318A99464	НР	1 year	2014-01-17
21	Audio Analyzer	8903B	3729A18901	НР	1 year	2014-09-15
22	Modulation Analyzer	8901B	3749A05878	НР	1 year	2014-09-15
23	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2014-09-16
24	Stop Watch	HS-3	812Q08R	CASIO	2 year	2014-04-03
25	LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2014-09-15
26	Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2014-03-26
27	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	1 year	2014-07-11
28	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	-	-
29	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	-	-
30	Active Loop Antenna	FMZB1519	1519-031	SCHWARZBECK	1 year	2014-01-07
31	OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2014-08-20
32	Signal Generator(100kHz~40GHz)	SMB100A03	177621	R&S	1 year	2014-08-20
33	Signal Analyzer (10Hz~40GHz)	FSV40	101367	R&S	1 year	2014-08-20