

VCO ADJUST

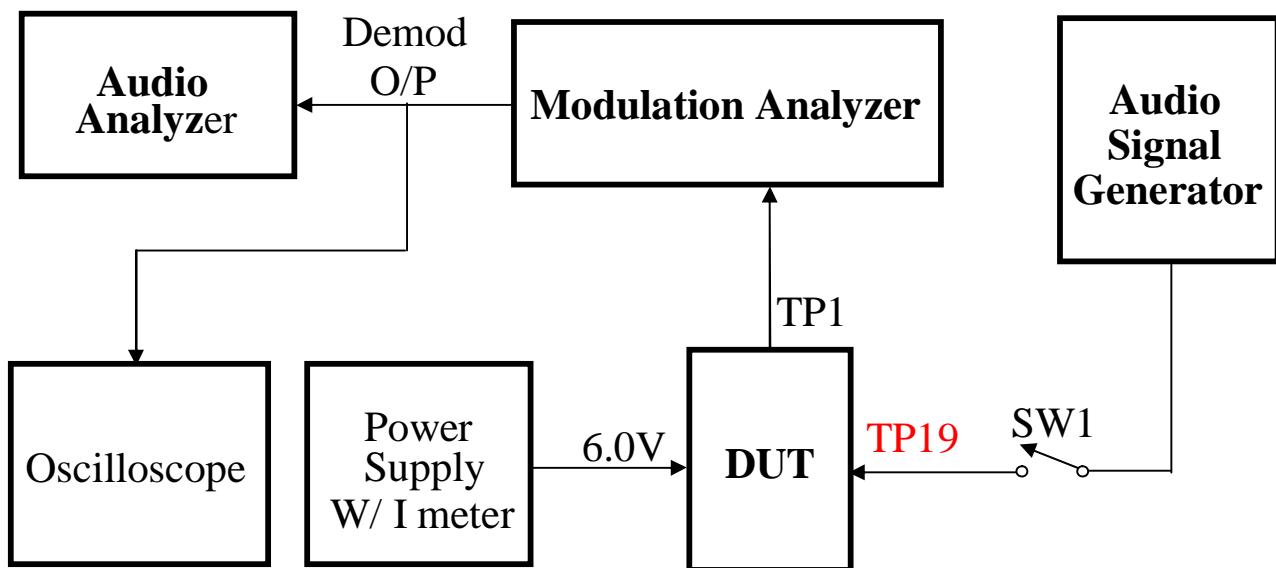
Preparation :

VCO shield case has to be mounted onto the board by soldering 2 to 3 points and the DUT has to be fully cooling down before performing any alignment

Initial Setting :

Temperature --- 25°C

Power Supply --- 6.0V +/- 0.1V


Digital Volt Meter --- Range X.XX Volt

DUT --- Set to CH1 ; CTCSS = 00

Alignment Procedures :

- 1) Depress PTT and adjust the space of L515 to obtain Tx CH1 VCO voltage to 0.6V ~ 1.0V @ TP3
- 2) Check Rx CH1 VCO voltage on TP3 should be within 0.3V ~ 1.5V
- 3) Set DUT to CH14, check Rx CH8 VCO voltage on TP3 should be within 1.5V ~ 2.2V
- 4) Depress PTT, check Tx CH8 VCO voltage on TP3 should be within 1.5V ~ 2.2V

Tx Alignment

Preparation :

Fully solder the shield case onto the board and cool it down

Initial Setting :

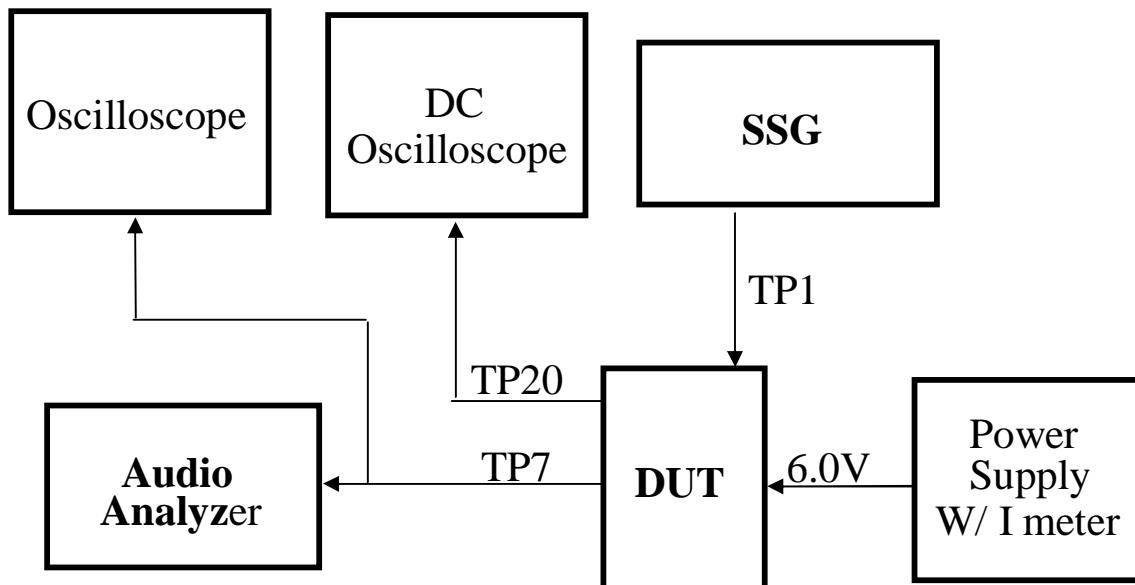
DUT --- Set to CH2 ; CTCSS = 00

Modulation Analyzer --- Set to frequency reading

Audio Analyzer --- Set to Distortion Mode; Filter = 50Hz / 3KHz

SW1 --- Open

AF Gen. --- 1KHz sin wave with 150mv output level


Alignment Procedures :

- 1) Depress PTT and adjust VC501/VC501A to obtain 462587.50 KHz ; +/- 0.3KHz
- 2) Set Mod. Analyzer to Power mode, depress PTT and check Tx Power should be $\geq 24.5\text{dBm}$ and the current should be less than 400mA
- 3) Set Mod. Analyzer to FM mode (+ - Peak /2); AF filter = 300Hz/15KHz, Turn SW1 to On. Depress PTT to obtain +/- 2.0 ~ 2.2KHz deviation.
- 4) Change AF Gen. O/P to 10mV, depress PTT and check Tx Dev. Should be within +/- 0.9 ~ 1.4 KHz and Distortion $\leq 5\%$.
- 5) Change AF Gen. to 10mV; Audio Analyzer to AC level mode, depress PTT and mark the demodulated 1KHz AC level as a reference.
- 6) Change AF Gen. to 500Hz, depress PTT and compare the demodulated 500Hz AC level with the 1KHz reference in terms of dB should be within -5.5 ~ -9.5 dB.

Tx Alignment --- Continue

- 7) Change AF Gen. to 2.5KHz, depress PTT and compare the demodulated 2.5KHz AC level with the 1KHz reference in terms of dB should be within 0 ~ -4.0 dB
- 8) Depress CALL, check call deviation should be within +/- 1.1 ~ 1.5 KHz.
- 9) Set SW1 to Off, CTCSS = 01 and Mod. Analyzer filter to 50Hz/3KHz. Depress PTT and check CTCSS 01 Deviation should be within +/- 0.4 ~ 0.8 KHz.
- 10) Set CTCSS = 38. Depress PTT and check CTCSS 38 Deviation should be within +/- 0.4 ~ 0.8 KHz.
- 11) Set DUT to VOX mode, check level 1,2,3 should be turn on @ 13,9,4mv +/- 2mv respectively.

Rx Alignment

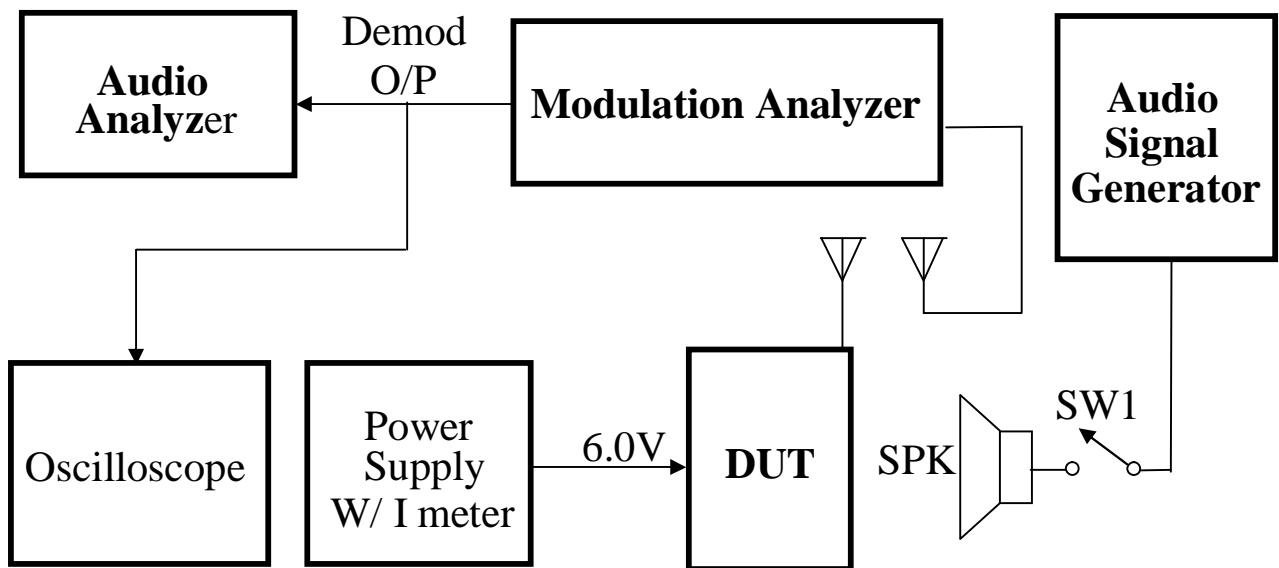
Initial Setting :

DUT --- Set to CH8 ; Vol Level = 5

SSG --- Freq : 467.56250 MHz ; FM modulation : +/- 1.5KHz ; Int. Mod Sig : 1KHz
RF O/P Level : -47dBm

Audio Analyzer --- Set to AC level mode ; Filter : 300Hz/3KHz

DC Oscilloscope --- 1V DC scale


Alignment Procedures :

- 1). Check 1 KHz AC level on the Audio Analyzer is 1V +/- 150mV. and the current consumption should $\leq 150\text{mA}$.
- 2) Change DUT to Vol 5, SSG to Ext. Mod. Mark the 1KHz O/P level as a reference.
- 3) Change AF Gen. to 500Hz, compare the 500Hz AC level with the 1KHz reference in terms of dB should be within +2 ~ +6 dB.
- 4) Change AF Gen. to 2.5KHz, compare the 2.5KHz AC level with the 1KHz reference in terms of dB should be within -9 ~ -13 dB.
- 5) Change the Audio analyzer to Distortion mode, check Distortion should be $\leq 5\%$
- 6) Change Audio Analyzer to SINAD mode, decrease SSG O/P level until the 12dB SINAD reading is obtained. Check the SSG O/P level should be $\leq -117\text{dBm}$.

Rx Alignment --- Continue

- 7) Decrease SSG O/P level slowly in 0.2dB step until the DC level goes just Low, then increase the level slowly again until the level becomes just Hi. Check the SSG O/P level difference between the Hi & Low points should be within 1 ~ 5 dB and the Hi level should be observed within 6 ~ 13 dB SINAD

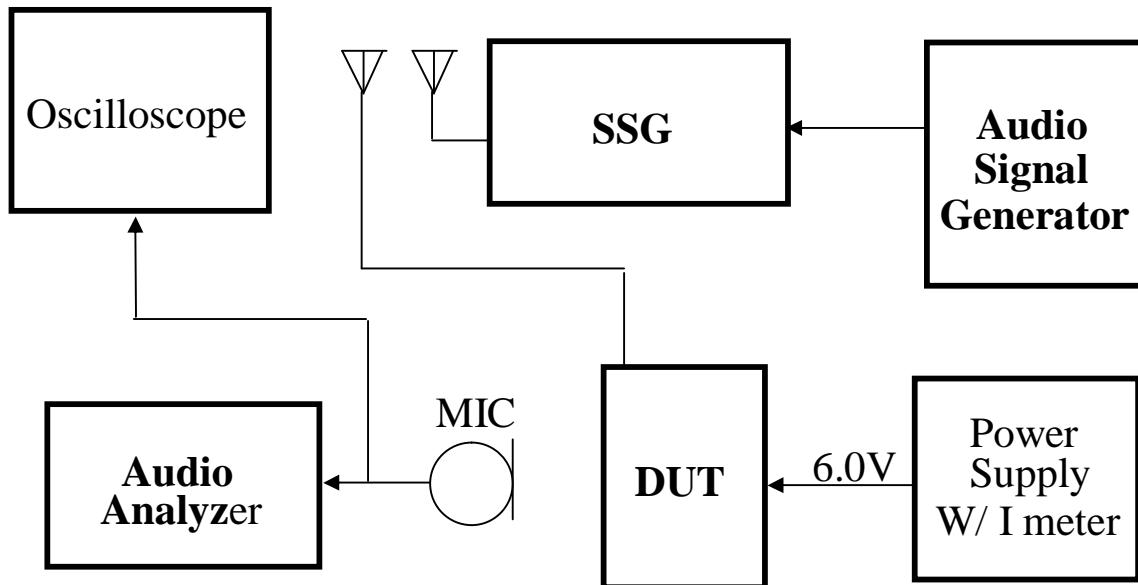
Tx Radiation Test

Initial Settings :

DUT --- Set to CH5 ; CTCSS = 00

Modulation Analyzer --- Set to Frequency reading

Audio Analyzer --- Set to AC Distortion mode ; Filter 300Hz/15KHz


Audio Signal Generator --- 1KHz sinwave ; O/P level = 100mV ; SW1 = Off

Test fixture: QA test fixture or equivalent.

Testing Procedures :

- 1) Depress PTT, check frequency should be within 462662.50KHz +/-1000Hz
- 2) Change Mod. Analyzer to Power mode, depress PTT and check Tx Power level should be >/= ??? (TBD) ; current should be </= 400mA
- 3) Change Mod. Analyzer to FM mode, DUT CTCSS = 01 & 38 respectively, depress PTT and check the deviation should be within +/- 0.4 ~ 0.8 KHz
- 4) Set DUT CTCSS = 00; Sw1 = On, depress PTT and check maximum deviation should be </= 2.2 KHz
- 5) Change AF Gen. to ???mV (TBD) O/P, depress PTT and check deviation should be within +/- 0.9 ~ 1.4 KHz. & the distortion should be </= 5 %.
- 6) Depress CALL, check call deviation should be within +/- 1.1 ~ 1.5 KHz.

Rx Radiated

Initial Settings :

DUT --- Set to CH10 ; CTCSS = 00 ; Volume = 5

SSG --- Set freq. to 467.61250 MHz, Int. Mod. +/- 1.5KHz, Int. Mod. Sig. = 1KHz
RF O/P level -47dBm

Audio Analyzer --- Distortion mode ; Filter 300Hz / 3KHz

AF Sig. Gen --- 1Khz sinwave ; Set O/P level to cooperate with SSG Ext.Mod. I/P

Test fixture: QA test fixture or equivalent.

Testing Procedures :

- 1) Check maximum speaker O/P level should be $>/=$???mV (TBD).
- 2) Change DUT to Vol 5, check distortion to be $</=$ 5%
- 3) Change Audio Analyzer to SINAD mode, decrease RF O/P level to -???dBm (TBD),
Check SINAD reading should be $>/=$ 12dB.
- 4) Decrease RF O/P level slowly in 0.2 dB step until the 1Khz sinwave is disappeared
on the Osc. Check the SINAD should be within 6 ~ 10dB.
- 5) Increase RF O/P level slowly in 0.2 dB step until the 1Khz sinwave is appeared
on the Osc. Check the SINAD should be within 6 ~ 13dB.
- 6) Check the dB difference in item 4 & 5 should be within 1 ~ 5 dB.

Changing History