

Wireless test report – 350995-3TRFWL

Applicant:

Eurotech SpA

Product name:

ReliaGATE 10-12

DynaGATE 10-12

Model: Model variant:

REGATE-10-12-GS02 DYGATE-10-12-GS02

FCC ID: IC Registration number: UKMMRG1012 21442-MRG1012

Specifications:

FCC 47 CFR Part 15 Subpart E, §15.407

Unlicensed National Information Infrastructure Devises

RSS-247, Issue 2, Section 6, Feb 2017

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

Test location

Company name	Nemko Canada Inc.
Address	292 Labrosse Avenue
City	Pointe-Claire
Province	QC
Postal code	H9R 5L8
Country	Canada
Telephone	+1 514 694 2684
Facsimile	+1 514 694 3528
Toll free	+1 800 563 6336
Website	www.nemko.com
Site number	FCC: CA2041; IC: 2040G-5 (3 m semi anechoic chamber)

Tested by	Yong Huang Wireless/EMC Specialist
Reviewed by	Kevin Rose, Wireless/EMC Specialist
Review date	September 14, 2018
Reviewer signature	HE

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of o	contents	3
Section 1.	Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test methods	4
1.4	Statement of compliance	4
1.5	Exclusions	4
1.6	Test report revision history	4
Section 2	. Summary of test results	5
2.1	FCC Part 15 Subpart C, general requirements test results	5
2.2	FCC Part 15 Subpart E, test results	5
2.3	IC RSS-GEN, Issue 4, test results	5
2.4	IC RSS-247, Issue 1, test results	6
Section 3	. Equipment under test (EUT) details	7
3.1	Sample information	7
3.2	EUT information	7
3.3	Technical information	7
3.4	Product description and theory of operation	8
3.5	EUT exercise details	8
3.6	EUT setup diagram	9
3.7	EUT sub assemblies	9
Section 4	. Engineering considerations	. 10
4.1	Modifications incorporated in the EUT	.10
4.2	Technical judgment	.10
4.3	Deviations from laboratory tests procedures	.10
Section 5	. Test conditions	.11
5.1	Atmospheric conditions	.11
5.2	Power supply range	.11
Section 6	. Measurement uncertainty	.12
6.1	Uncertainty of measurement	.12
Section 7	. Test equipment	.13
7.1	Test equipment list	.13
Section 8	. Testing data	.14
8.1	FCC 15.403(i) Emission bandwidth	. 14
8.2	RSS-Gen 6.6 Occupied bandwidth	.16
8.3	FCC 15.407(a)(1) 5.15–5.25 GHz band output power and spectral density limits	
8.4	FCC 15.407(b) Undesirable (unwanted) emissions	.23
8.5	FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits	.36
8.6	FCC 15.407(g) Frequency stability	.40
Section 9	. Block diagrams of test set-ups	41
9.1	Radiated emissions set-up for frequencies below 1 GHz	
9.2	Radiated emissions set-up for frequencies above 1 GHz	
9.3	Antenna port conducted measurements set-up	.43
9.4	Power line Conducted emissions set-up	.43

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Eurotech SpA
Address	Via Fratelli Solari 3/a 33020 Amaro, UD, Italy

1.2 Test specifications

FCC 47 CFR Part 15, Subpart E, Clause 15.407	Unlicensed National Information Infrastructure Devises
RSS-247, Issue 2, February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area
	Network (LE-LAN) Devices

1.3 Test methods

789033 D02 General UNII Test Procedures New Rules v02r01 (Dec 14, 2017)	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Details of changes made to test report
TRF	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.31(e)	Variation of power source	Pass ¹
§15.203	Antenna requirement	Pass ²

Notes: ¹Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

2.2 FCC Part 15 Subpart E, test results

Part	Test description	Verdict
§15.403(i)	Emission bandwidth	Pass
§15.407(a)(1)	Power and density limits within 5.15–5.25 GHz band	Pass
§15.407(a)(2)	Power and density limits within 5.25–5.35 GHz and 5.47–5.725 GHz bands	Not applicable
§15.407(a)(3)	Power and density limits within 5.725–5.85 GHz band	Not applicable
§15.407(b)(1)	Undesirable emission limits for 5.15–5.25 GHz band	Pass
§15.407(b)(2)	Undesirable emission limits for 5.25–5.35 GHz band	Not applicable
§15.407(b)(3)	Undesirable emission limits for 5.47–5.725 GHz bands	Not applicable
§15.407(b)(4)	Undesirable emission limits for 5.725–5.85 GHz band	Not applicable
§15.407(b)(6)	Conducted limits for U-NII devices using an AC power line	Pass
§15.407(e)	Minimum 6 dB bandwidth of U-NII devices within the 5.725-5.85 GHz band	Not applicable
§15.407(g)	Frequency stability	Pass
§15.407(h)(1) ¹	Transmit power control (TPC)	Not applicable
§15.407(h)(2) ¹	Dynamic Frequency Selection (DFS)	Not applicable

Note: ¹DFS and TPC requirements are only applicable to 5.25–5.35 GHz and 5.47–5.725 GHz bands

2.3 IC RSS-GEN, Issue 4, test results

Part	Test description	Verdict
6.6	Occupied Bandwidth	Pass
$7.1.2^{1}$	Receiver radiated emission limits	Not applicable
$7.1.3^{1}$	Receiver conducted emission limits	Not applicable
8.8	Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus	Pass
8.11 ²	Frequency stability	Pass

Notes: ¹According to sections 5.2 and 5.3 of RSS-Gen, Issue 4: if EUT does not have a stand-alone receiver neither scanner receiver, then it exempt from receiver requirements.

²According to section 8.11 of RSS-Gen, Issue 4: if the frequency stability of the licence-exempt radio apparatus is not specified in the applicable standard (RSS), measurement of the frequency stability is not required

²The Antennas uses a unique coupling to the intentional radiator.

2.4 IC RSS-247, Issue 1, test results

Section	Test description	Verdict
6.1 ¹	Types of Modulation	Pass
6.2.1.1	Power limits for 5150–5250 MHz band	Pass
6.2.2.1	Power limits for 5250–5350 MHz band	Not applicable
6.2.3.1	Power limits for 5470–5600 MHz and 5650–5725 MHz bands	Not applicable
6.2.4.1	Power limits for 5725–5850 MHz band	Not applicable
6.2.4.1	Minimum 6 dB bandwidth	Not applicable
6.2.1.2	Unwanted emission limits for 5150–5250 MHz band	Pass
6.2.2.2	Unwanted emission limits for 5250–5350 MHz band	Not applicable
6.2.2.2	TPC requirements for devices with a maximum e.i.r.p. greater than 500 mW	Not applicable
6.2.2.3	e.i.r.p. at different elevations restrictions for 5250–5350 MHz band	Not applicable
6.2.3.2	Unwanted emission limits for 5470–5600 MHz and 5650–5725 MHz bands	Not applicable
6.2.4.2	Unwanted emission limits for 5725–5850 MHz band	Not applicable
6.3	Dynamic Frequency Selection (DFS) for devices operating in the bands 5250–5350 MHz, 5470–5600 MHz and 5650–5725 MHz	Not applicable

Notes: ¹ The EUT employs digital modulation: 802.11a/n

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	July 17, 2018
Nemko sample ID number	Item #2

3.2 EUT information

Product name	ReliaGATE 10-12 DynaGATE 10-12
Model	REGATE-10-12-GS02
Model variant	DYGATE-10-12-GS02
Serial number	Y117LQA0010

3.3 Technical information

Applicant IC company number	21442
IC UPN number	MRG1012
All used IC test site(s) Reg. number	2040G-5
RSS number and Issue number	RSS-247 Issue 2, Section 6, February 2017
Frequency band	5150–5250 MHz
Frequency Min (MHz)	5180(20 MHz channel); 5190 (40 MHz channel)
Frequency Max (MHz)	5240(20 MHz channel); 5230 (40 MHz channel)
Measured BW (MHz) (26 dB)	22.82 (20 MHz channel); 42.20 (40 MHz channel)
Measured BW (MHz) (99%)	17.78 (20 MHz channel); 36.08 (40 MHz channel)
Type of modulation	802.11a/n
Emission classification (F1D, G1D, D1D)	W7D
Transmitter spurious, Units @ distance	51.03dBµV/m @3m, average at 5.15GHz
Power requirements	24 V _{DC} , via 120 V _{AC} adapter or battery
Antenna information	The EUT uses a unique antenna coupling.
	EUT has 2 antenna configurations. The max antenna peak gain is 5.47 dBi at 2.4 GHz band and 7.07 dBi at 5
	GHz WIFI bands.
	Linx Technologies ANT-DB1-RAF-RPS (2.5 dBi for 2.4 GHz, 4.6 dBi antenna for 5 GHz)
	Taoglas MA.950.W.A.LBICG.005 (5.47 dBi for 2.4GHz, 7.07 for 5GHz)

3.4 Product description and theory of operation

The ReliaGATE and DynaGATE 10-12 are loT Edge Gateways that have been designed to deliver LTE connectivity (with 3G fallback) to industrial and lightly rugged applications. Based on the TI AM335x Cortex-A8 (Sitara) processor family, with 1 GB of RAM, 4 GB of eMMC and user-accessible MicroSD and dual Micro-SIM slots, the ReliaGATE and DynaGATE 10-12 are low power gateways suitable for demanding use cases. They support a 6 to 36 V power supply with transient protection and ignition sense, two protected RS-232/RS-485 serial ports, two CAN bus interfaces, three noise and surge protected USB ports, and four isolated digital interfaces

3.5 EUT exercise details

EUT was set to continuously transmit mode during tests, by test software provided by client.

The EUT runs a Linux operating system which allows for the testing to be performed using engineering test tools and scripts. Communication with the EUT is via a serial console or Ethernet connection which provides a Linux command line interface for execution of the test tools/scripts. These tools/scripts configure the radio modules to enable continuous transmission with the ability to adjust modulation, frequency and out put power as required.

WiFi/BT – using a engineering test tool provided by the silicon vendor allowing for full radio control.

Cellular – using Linux scripts running AT command sequences provided by the cellular radio module vendor allowing for full radio control.

3.6 EUT setup diagram

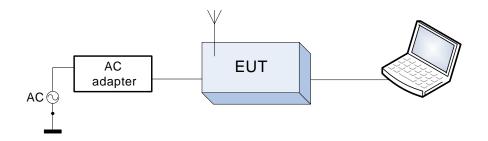


Figure 3.6-1: Setup diagram

3.7 EUT sub assemblies

Table 3.7-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number
REGATE-10-12	Eurotech	REGATE-10-12-GS02	Y117LQA0010
AC adapter	Sunny	SYS15412424	None

Section 4. **Engineering considerations**

Modifications incorporated in the EUT 4.1

There were no modifications performed to the EUT during this assessment.

Technical judgment 4.2

Differences between the variants are as below. REGATE-10-12 was chosen as representative worst-case.

Model	ReliaGATE 10-12			DynaGATE 10-12						
Variant (Base Hardware)	REGATE-10-12-GS02 REGATE-10-12-01 REGATE-10-12-02 REGATE-10-12-03 REGATE-10-12-05				REGATE-10-12-05	DYGATE-10-12-GS02	DYGATE-10-12-01	DYGATE-10-12-02	DYGATE-10-12-03	DYGATE-10-12-05
REGATE-10-12-xx	(EMC Sample Unit)					(EMC Sample Unit)				
OS SW Versions		REGATE-10-12-21	REGATE-10-12-22	REGATE-10-12-23	REGATE-10-12-25	-	DYGATE-10-12-21	DYGATE-10-12-22	DYGATE-10-12-23	DYGATE-10-12-25
Refer Note 1.		REGATE-10-12-31	REGATE-10-12-32	REGATE-10-12-33	REGATE-10-12-35		DYGATE-10-12-31	DYGATE-10-12-32	DYGATE-10-12-33	DYGATE-10-12-35
GENERAL										
Processor						AM3352 1GHz				
DRAM						GB DDR3				
STORAGE						nder service panel openin				
PCB Design			Bot	h models share the sar	me PCB design with po	pulation differences as de	scribed below (8-layer	rs PCB)		
Ethernet						ps on shielded RJ45				
Serial				Two identica	l 2-lines channels(RX/T	X, RA+/RB-) available on	3.5mm terminal			
Debug				RS232	3.3V TTL debug port av	ailable under service pan	el opening			
CAN			Two io	lentical Can bus ports	available on 3.5mm te	rminal header with exter	nal power delivery 5V	@100mA		
Digital I/O		2x Digital Input 36V, 1kV Opto-isolated, 2x Digital Output (40VDC), 500mA fuse protected, 1KHz Max Switching(optorelay)								
USB	3x Host 2.0 (Noise and Surge Protected) - Type A - Electrically identical to DynaGATE 10-12 Variants 3x Host 2.0 (Noise and Surge Protected) - High Retention Type A - Electrically identical to ReliaGATE 10-12 Var				ReliaGATE 10-12 Variar					
Expansion	Yes, for Side Expansion Modules (24way 2mm/2row female header)									
WIRELESS										
LTE	TELIT LE910-NA1 LTE	None	None	TELIT LE910-NA1 LTI	E	TELIT LE910-NA1 LTE	None	None	TELIT LE910-NA1 LT	E
WiFi	Jorjin WG7833-B0	None	Jorjin WG7833-B0	None	Jorjin WG7833-B0	Jorjin WG7833-B0	None	Jorjin WG7833-B0	None	Jorjin WG7833-B0
GPS	U-Blox NEO M8 GPS		Optional U-Blox NE	D-M8x GPS Receiver			Integrat	ed U-Blox NEO-M8x GI	PS Receiver	
OTHER										
RTC	Yes (Lithium BR1225 battery backup) Yes (Supercap backup)									
Sensors	Temperature, Accelerometer									
Buttons	1x RESET, 1x user programmable available under the service panel									
LEDs		1x Power, 1x Cellular, 4x Programmable								
TPM	Factory Option									
SIM slot	2x microSIM (User Accessible under the service panel)									
Power	6-36VDC, with Transient Protection, Vehicle Ignition Sense (2W typ.)									
ENVIRONMENT										
Operating temp. range	- 20 to +70°C - 40 to +85°C									
Storage temp. range					- 40	to +85°C				
MECHANICAL										
Enclosure			ABS Plastic					Aluminium Sheetmet	al	
Ingress						IP40				
Dimensions	138.9x115.0x46.2mm (LxWxH) - with mounting bracket and SMA connectors 138.9x118.2x51.6mm (LxWxH) - with mounting bracket and SMA connectors									

Deviations from laboratory tests procedures 4.3

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Flush mount turntable	Sunol	FM2022	FA002550	_	NCR
Controller	Sunol	SC104V	FA002551	_	NCR
Antenna mast	Sunol	TLT2	FA002552	_	NCR
Spectrum analyzer	Rohde & Schwarz	FSV 40	FA002731	1 year	Oct 10/18
50 Ω coax cable	C.C.A.	None	FA002603	_	VOU
50 Ω coax cable	C.C.A.	None	FA002605	_	VOU
50 Ω coax cable	C.C.A.	None	FA002607	_	VOU
Bilog antenna (20–2000 MHz)	Sunol	JB1	FA002517	1 year	Dec. 6/18
Horn antenna (1–18 GHz)	EMCO	3115	FA001452	1 year	Nov. 20/18
Horn antenna (18–40 GHz)	EMCO	3116	FA002487	2 year	Aug. 16/18
Pre-amplifier (0.5–18 GHz)	COM-POWER	PAM-118A	FA002561	1 year	Sept. 21/18
Pre-amplifier (18–40 GHz)	COM-POWER	PAM-840	FA002508	1 year	May 8/19
5150-5350 MHz Notch Filter	Microwave Circuits	N0452501	FA002690	_	VOU
50 Ω coax cable	HUBER+SUHNER	SUCOFLEX 100	FA002564	_	VOU
Three phase power system	TESEQ	ProfLine 2115-400	FA002516	1 year	Aug. 21/18
Power sensor	Rohde & Schwarz	NRP18S	FA002730	1 year	Oct 21/18
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 40	FA002071	1 year	Sept. 18/18
Environmental Chamber	ESPEC	EPX-4H	FA002736	1 year	June 6/19
True RMS Multimeter	Fluke	175	FA002642	1 year	Nov. 2/18
LISN	Rohde & Schwarz	ENV216	FA002514	1 year	Dec. 15/18

Note: NCR - no calibration required, VOU - verify on use

8.1 FCC 15.403(i) Emission bandwidth

8.1.1 Definitions and limits

15.403(i) For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

8.1.2 Test summary

Test start date	July 16, 2018
Test engineer	Yong Huang

8.1.3 Observations, settings and special notes

Spectrum analyzer settings:

Resolution bandwidth	approximately 1% of EBW
Video bandwidth	> RBW
Detector mode	Peak
Trace mode	Max Hold

8.1.4 Test data

Table 8.1-1: 26 dB bandwidth results

Modulation	Frequency, MHz	26 dB bandwidth, MHz
	5180	22.56
802.11a	5200	21.66
	5240	21.18
802.11n HT20	5180	22.08
	5200	22.58
	5240	22.82
802.11n HT40	5190	42.20
	5230	41.64

8.1.4 Test data, continued

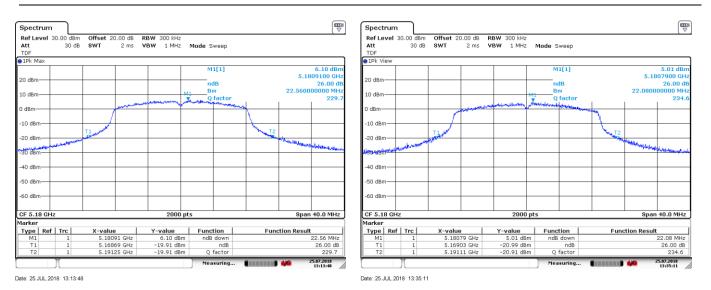


Figure 8.1-1: 26 dB bandwidth on 802.11a, sample plot

Figure 8.1-2: 26 dB bandwidth on 802.11n HT20, sample plot

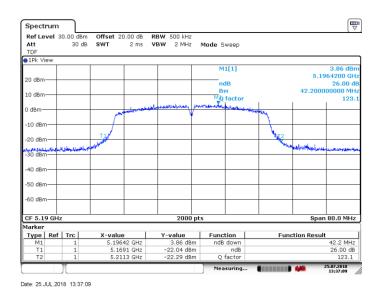


Figure 8.1-3: 26 dB bandwidth on 802.11n HT40, sample plot

8.2 RSS-Gen 6.6 Occupied bandwidth

8.2.1 Definitions and limits

The emission bandwidth (xdB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3× the resolution bandwidth.

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

8.2.2 Test summary

Test start date	July 25, 2018
Test engineer	Yong Huang

8.2.3 Observations, settings and special notes

Spectrum analyser settings:

Resolution bandwidth:	1 % to 5 % of OBW
Video bandwidth:	≥3 × RBW
Detector mode:	Peak
Trace mode:	Max Hold

8.2.4 Test data

Table 8.2-1: 99 % bandwidth results

Modulation	Frequency, MHz	99 % bandwidth, MHz
	5180	16.64
802.11a	5200	16.66
	5240	16.64
	5180	17.76
802.11n HT20	5200	17.72
	5240	17.78
802.11n HT40	5190	36.08
8UZ.11N H14U	5230	36.08

8.2.4 Test data, continued

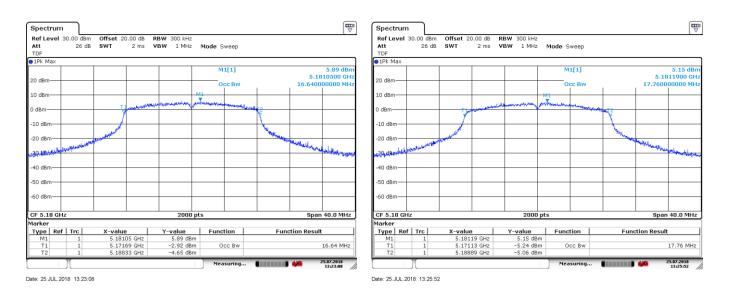


Figure 8.2-1: 99 % bandwidth on 802.11a, sample plot

Figure 8.2-2: 99 % bandwidth on 802.11n HT20, sample plot

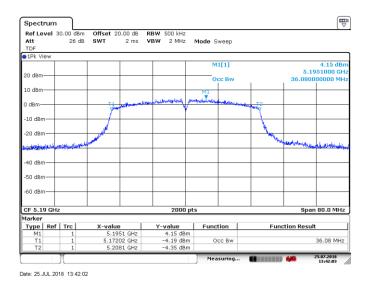


Figure 8.2-3: 99 % bandwidth 802.11n HT40, sample plot

Note: 99% bandwidth is verified for ISED requirement that it does not fall within the 5250-5350 MHz band.

FCC 15.407(a)(1) and and RSS-247 6.2.1(1) 5.15-5.25 GHz band output power and spectral

density limits

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

8.3 FCC 15.407(a)(1) 5.15–5.25 GHz band output power and spectral density limits

8.3.1 Definitions and limits

FCC:

Test name

(i) For an outdoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30 dBm) provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

- (ii) For an indoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30 dBm) provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30 dBm). In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW (24 dBm) provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ISED:

LE-LAN devices are restricted to indoor operation only in the band 5150-5250 MHz.

The maximum e.i.r.p. shall not exceed 200 mW (23 dBm) or $10 + 10 \times \log_{10}(B)$, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

8.3.2 Test summary

Test start date:	July 25, 2018
Test engineer:	Yong Huang

Test name FCC 15.407(a)(1) and and RSS-247 6.2.1(1) 5.15–5.25 GHz band output power and spectral

density limits

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

8.3.3 Observations, settings and special notes

As per manufacturer declaration, EUT is for indoor fix operation only. EUT was configured to continuous transmit mode during tests.

Output power was tested using RMS power meter.

The highest and lowest data rate setting have been investigated, only the worst-cases were presented.

Spectrum analyzer settings for PSD measurement:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Frequency span	> EBW
Detector mode	RMS
Trace mode	Power Averaging over 100 sweeps

EIRP was calculated as follows: $EIRP = P_{combined} + antenna \ directional \ gain$

Output power/EIRP/PSD limit adjustment: Output power/EIRP/PSD limit - (Total antenna gain - 6 dBi).

FCC Output power limit is 30 dBm FCC PSD limit is 17 dBm/MHz ISED e.i.r.p limit is 200 mW (23 dBm) or $10 + 10 \times \log_{10}$ (B), dBm, whichever power is less. ISED PSD limit is 10 dBm/MHz e.i.r.p

Test name FCC 15.407(a)(1) and and RSS-247 6.2.1(1) 5.15–5.25 GHz band output power and spectral

density limits

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

8.3.4 Test data

Table 8.3-1: FCC Output power measurements results , Taoglas Antenna configuration

Modulation	Frequency, MHz	Output power, dBm	Power limit, dBm	Margin, dB
	5180	12.3	28.9	16.6
802.11a	5200	13.3	28.9	15.6
	5240	12.7	28.9	16.2
	5180	12.3	28.9	16.6
802.11n HT20	5200	12.6	28.9	16.3
	5240	12.6	28.9	16.3
802.11n HT40	5190	12.1	28.9	16.8
802.1111 H140	5230	12.0	28.9	16.9

 Table 8.3-2: ISED e.i.r.p measurements results , Taoglas Antenna configuration

Modulation	Frequency, MHz	Output power, dBm	Antenna Gain, dBi	EIRP, dBm	EIRP limit, dBm	Margin, dB
	5180	12.3	7.07	19.4	22.2	2.8
802.11a	5200	13.3	7.07	20.4	22.2	1.8
	5240	12.7	7.07	19.8	22.2	2.4
	5180	12.3	7.07	19.4	22.5	3.1
802.11n HT20	5200	12.6	7.07	19.7	22.5	2.8
	5240	12.6	7.07	19.7	22.5	2.8
802.11n HT40	5190	12.1	7.07	19.2	23.0	3.8
0UZ.IIII 114U	5230	12.0	7.07	19.1	23.0	3.9

 Table 8.3-3: FCC Output power measurements results , Linx Technology Antenna configuration

Modulation	Frequency, MHz	Output power, dBm	Power limit, dBm	Margin, dB
	5180	12.3	30.0	17.7
802.11a	5200	13.3	30.0	16.7
	5240	12.7	30.0	17.3
	5180	12.3	30.0	17.7
802.11n HT20	5200	12.6	30.0	17.4
	5240	12.6	30.0	17.4
802.11n HT40	5190	12.1	30.0	17.9
802.11fi H140	5230	12.0	30.0	18.0

 Table 8.3-4: ISED e.i.r.p measurements results , Linx Technology Antenna configuration

Modulation	Frequency, MHz	Output power, dBm	Antenna Gain, dBi	EIRP, dBm	EIRP limit, dBm	Margin, dB
	5180	12.3	4.6	16.9	22.2	5.3
802.11a	5200	13.3	4.6	17.9	22.2	4.3
	5240	12.7	4.6	17.3	22.2	4.9
	5180	12.3	4.6	16.9	22.5	5.6
802.11n HT20	5200	12.6	4.6	17.2	22.5	5.3
	5240	12.6	4.6	17.2	22.5	5.3
002 11 _m UT40	5190	12.1	4.6	16.7	23.0	6.3
802.11n HT40	5230	12.0	4.6	16.6	23.0	6.4

Test name FCC 15.407(a)(1) and and RSS-247 6.2.1(1) 5.15–5.25 GHz band output power and spectral

density limits

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

 Table 8.3-5:
 FCC PSD measurements results , Taoglas Antenna configuration

Modulation	Frequency, MHz	PSD on ch0, dBm/MHz	Limit, dBm/MHz	Margin, dB
	5180	2.26	15.93	13.67
802.11a	5200	2.30	15.93	13.63
	5240	2.55	15.93	13.38
	5180	1.13	15.93	14.80
802.11n HT20	5200	1.34	15.93	14.59
	5240	1.78	15.93	14.15
802.11n HT40	5190	-2.72	15.93	18.65
802.1111 H140	5230	-2.41	15.93	18.34

 $\textbf{\textit{Table 8.3-6:}} \ \textit{ISED PSD measurements results , Taoglas Antenna configuration}$

Modulation	Frequency, MHz	Conducted PSD, dBm/MHz	Antenna Gain, dBi	PSD, dBm/MHz e.i.r.p	Limit, dBm/MHz	Margin, dB
	5180	2.26	7.07	9.33	10	0.67
802.11a	5200	2.30	7.07	9.37	10	0.63
	5240	2.55	7.07	9.62	10	0.38
	5180	1.13	7.07	8.20	10	1.80
802.11n HT20	5200	1.34	7.07	8.41	10	1.59
	5240	1.78	7.07	8.85	10	1.15
002 11 m LIT40	5190	-2.72	7.07	4.35	10	5.65
802.11n HT40	5230	-2.41	7.07	4.66	10	5.34

 Table 8.3-7:
 FCC PSD measurements results , Linx Technology Antenna configuration

Modulation	Frequency, MHz	PSD on ch0, dBm/MHz	Limit, dBm/MHz	Margin, dB
	5180	2.26	17	14.74
802.11a	5200	2.30	17	14.70
	5240	2.55	17	14.45
	5180	1.13	17	15.87
802.11n HT20	5200	1.34	17	15.66
	5240	1.78	17	15.22
902 11 × UT40	5190	-2.72	17	19.72
802.11n HT40	5230	-2.41	17	19.41

 Table 8.3-8:
 ISED PSD measurements results , Linx Technology Antenna configuration

Modulation	Frequency, MHz	Conducted PSD, dBm/MHz	Antenna Gain, dBi	PSD, dBm/MHz e.i.r.p	Limit, dBm/MHz	Margin, dB
	5180	2.26	4.6	6.86	10	3.14
802.11a	5200	2.30	4.6	6.90	10	3.10
	5240	2.55	4.6	7.15	10	2.85
	5180	1.13	4.6	5.73	10	4.27
802.11n HT20	5200	1.34	4.6	5.94	10	4.06
	5240	1.78	4.6	6.38	10	3.62
002 11 × UT40	5190	-2.72	4.6	1.88	10	8.12
802.11n HT40	5230	-2.41	4.6	2.19	10	7.81

Test name FCC 15.407(a)(1) and and RSS-247 6.2.1(1) 5.15–5.25 GHz band output power and spectral

density limits

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

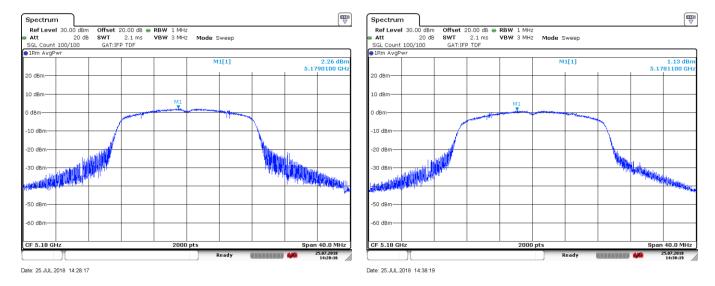


Figure 8.3-1: PSD on 802.11a Sample plot

Figure 8.3-2: PSD on 802.11n HT20, Sample plot

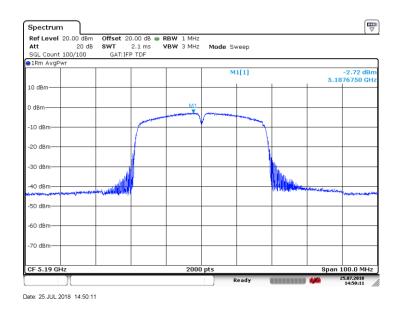


Figure 8.3-3: PSD on 802.11n HT40, Sample plot

8.4 FCC 15.407(b) Undesirable (unwanted) emissions

8.4.1 Definitions and limits

FCC:

- (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.
- (7) The provisions of § 15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

ISED:

For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

RSS-Gen 8.10 Emissions falling within restricted frequency bands

Restricted bands, identified in Table 8.4-2, are designated primarily for safety-of-life services (distress calling and certain aeronautical bands), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following restrictions apply:

- (a) fundamental components of modulation of licence-exempt radio apparatus shall not fall within the restricted bands of below;
- (b) unwanted emissions falling into restricted bands of below shall comply with the limits specified in RSS-Gen;
- (c) unwanted emissions not falling within restricted frequency bands shall either comply with the limits specified in the applicable RSS, or with those specified in RSS-Gen.

Field strength of emissions Frequency, Measurement distance, MHz μV/m dBμV/m m 2400/F (F in kHz) $67.6 - 20 \times \log_{10}(F)$ (F in kHz) 0.009-0.490 300 24000/F (F in kHz) 0.490 - 1.705 $87.6 - 20 \times \log_{10}(F)$ (F in kHz) 30 1.705-30.0 30 29.5 30 30-88 100 40.0 3 88-216 150 43.5 3 216-960 200 46.0 3 54.0 3 500

Table 8.4-1: FCC §15.209 and RSS-Gen - Radiated emission limits

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

FCC Part 15 Subpart E and RSS-247, Issue 2

8.4.1 Definitions and limits, continued

Table 8.4-2: ISED restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.51975-12.52025	399.9–410	5.35-5.46
2.1735-2.1905	12.57675-12.57725	608-614	7.25–7.75
3.020-3.026	13.36–13.41	960–1427	8.025–8.5
4.125-4.128	16.42-16.423	1435–1626.5	9.0–9.2
4.17725-4.17775	16.69475-16.69525	1645.5-1646.5	9.3–9.5
4.20725-4.20775	16.80425-16.80475	1660-1710	10.6–12.7
5.677-5.683	25.5–25.67	1718.8-1722.2	13.25-13.4
6.215-6.218	37.5–38.25	2200-2300	14.47-14.5
6.26775-6.26825	73–74.6	2310–2390	15.35–16.2
6.31175-6.31225	74.8–75.2	2655-2900	17.7–21.4
8.291-8.294	108–138	3260–3267	22.01–23.12
8.362-8.366	156.52475-156.52525	3332–3339	23.6–24.0
8.37625-8.38675	156.7–156.9	3345.8–3358	31.2–31.8
8.41425-8.41475	240–285	3500-4400	36.43-36.5
12.29–12.293	322–335.4	4500–5150	Above 38.6

Note: Certain frequency bands listed in Table 8.4-2 and above 38.6 GHz are designated for low-power license-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard

Table 8.4-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123–138	2200–2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72-173.2	3332–3339	31.2-31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36–13.41			

8.4.2 Test summary

Test start date:	July 26, 2018
Test engineer:	Yong Huang

Section 8 Test name Testing data

FCC 15.407(b) and RSS-247 6.2.1.2 Undesirable (unwanted) emissions

Specification

FCC Part 15 Subpart E and RSS-247, Issue 2

8.4.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to 40 GHz while the EUT was continuously transmitting.

Conducted measurements were performed on the antenna ports, with the highest and the lowest data rate, the worst case is presented.

In the conducted plots below, the reference level offset was adjusted to include antenna directional gains, the max peak gain of two antenna configurations has been applied to show as representative worst case.

Radiated measurements below 18 GHz were performed at a distance of 3 m. Radiated measurements above 18 GHz were performed at a distance of 1 m. Cabinet radiation were performed while the antenna connector was terminated with 50 Ω load. Below 1 GHz and above 18 GHz, no emissions related to RF transmitter were detected within 6 dB below the limit.

Spectrum analyser for peak conducted measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser for peak conducted measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

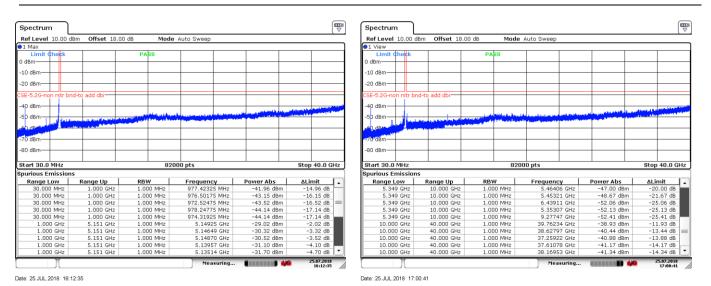
Spectrum analyser for average conducted measurements within restricted bands above 1 GHz for frequencies where peak results were above the average limit:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	RMS
Trace mode:	Power average
Number of averaging traces:	100

Spectrum analyser for peak conducted measurements outside restricted bands:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyzer settings for radiated measurements within restricted bands below 1 GHz:


Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyzer settings for peak radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

8.4.4 Test data

Figure 8.4-1: Spurious emissions outside restricted bands, Tx on ch 36, 802.11a

Figure 8.4-2: Spurious emissions outside restricted bands, Tx on ch 40, 802.11a

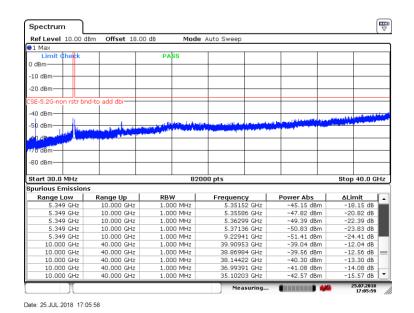
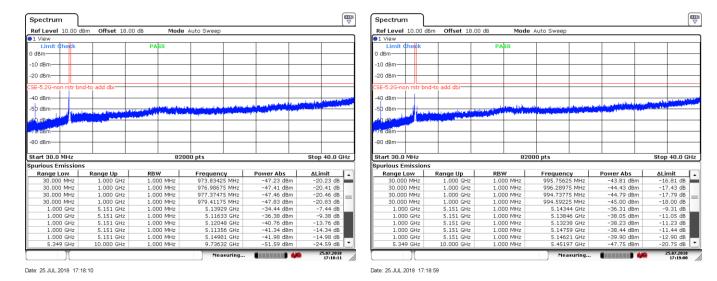



Figure 8.4-3: Spurious emissions outside restricted bands, Tx on ch 48, 802.11a

Test name FCC 15.407(b) and RSS-247 6.2.1.2 Undesirable (unwanted) emissions

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

Figure 8.4-4: Spurious emissions outside restricted bands, Tx on ch 36, 802.11n HT20

Figure 8.4-5: Spurious emissions outside restricted bands, Tx on ch 40, 802.11n HT20

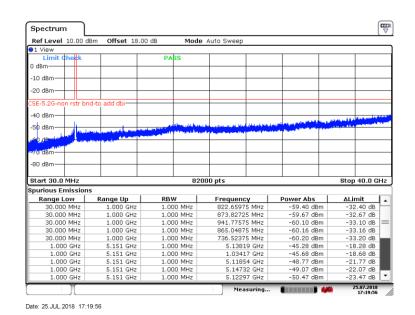
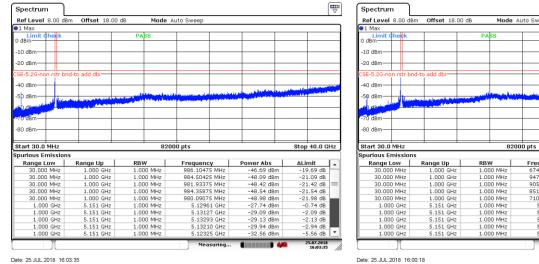



Figure 8.4-6: Spurious emissions outside restricted bands, Tx on ch 48, 802.11n HT20

FCC 15.407(b) and RSS-247 6.2.1.2 Undesirable (unwanted) emissions Test name

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

Mode Auto Sweep Power Abs
-58.93 dBm
-59.11 dBm
-59.38 dBm
-59.43 dBm
-59.69 dBm
-37.90 dBm
-38.25 dBm
-40.40 dBm
-41.15 dBm
-41.24 dBm

Figure 8.4-7: Spurious emissions outside restricted bands, Tx on ch 38, 802.11n HT40

Figure 8.4-8: Spurious emissions outside restricted bands, Tx on ch 46, 802.11n HT40

Test name FCC 15.407(b) and RSS-247 6.2.1.2 Undesirable (unwanted) emissions

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

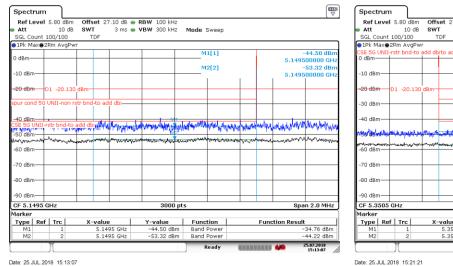


Figure 8.4-9: Lower band edge, Tx on ch 36 802.11a

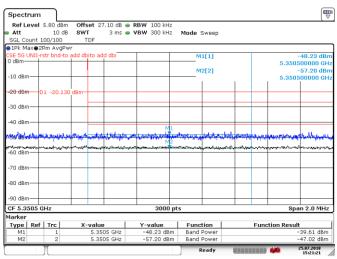
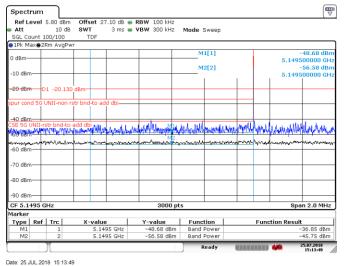



Figure 8.4-10: Upper band edge, Tx on ch 48, 802.11a

Figure 8.4-11: Lower band edge, Tx on ch 36 802.11n HT20

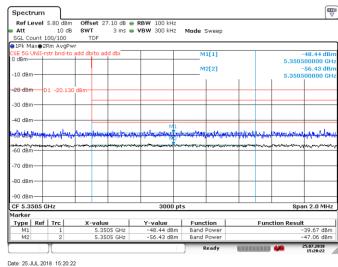


Figure 8.4-12: Upper band edge, Tx on ch 48, 802.11n HT20

Note: Transmitter spurious emission calculation as below: E = EIRP - 20log D + 104.8 = -44.22 - 20Log 3 + 104.8 = 51.03 dB μ V/m at 3m margin of compliance = 54 - 51.03 = 3.97 dB where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm = -44.22 dBm

D = specified measurement distance in meters = 3 m

Average field strength limit = 54 dBµV/m at 3m

Test name FCC 15.407(b) and RSS-247 6.2.1.2 Undesirable (unwanted) emissions

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

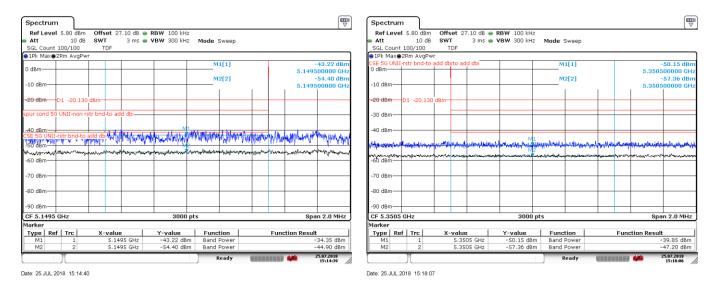


Figure 8.4-13: Lower band edge, Tx on ch 38 802.11n HT40

Figure 8.4-14: Upper band edge, Tx on ch 46, 802.11n HT40

Test name

FCC 15.407(b) and RSS-247 6.2.1.2 Undesirable (unwanted) emissions

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

In order to comply with the ISED band edge emissions requirements at 5.25 GHz, occupied bandwidth is verified to be within 5150 to 5250 MHz.

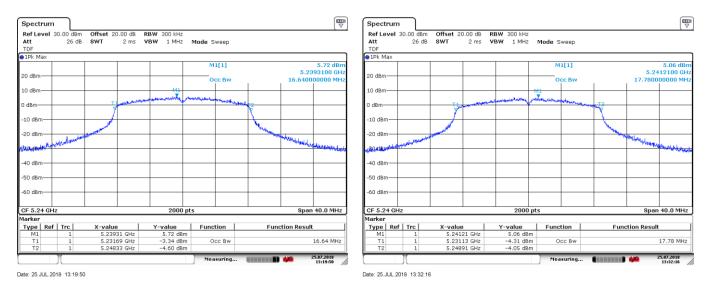


Figure 8.4-15: Band edge emission for ISED at 5.25 GHz, Tx on ch 48 802.11a

Figure 8.4-16: Band edge emission for ISED at 5.25 GHz Tx on ch 48 802.11n HT20

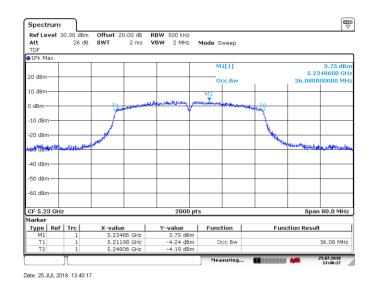
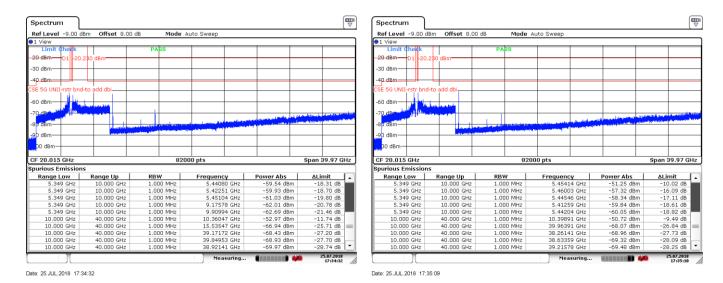



Figure 8.4-17: Band edge emission for ISED at 5.25 GHz, Tx on ch 46 802.11n HT40

Test name FCC 15.407(b) and RSS-247 6.2.1.2 Undesirable (unwanted) emissions

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

Figure 8.4-18: Spurious emissions within restricted bands, Tx on ch 36, 802.11a

Figure 8.4-19: Spurious emissions within restricted bands, Tx on ch 40, 802.11a

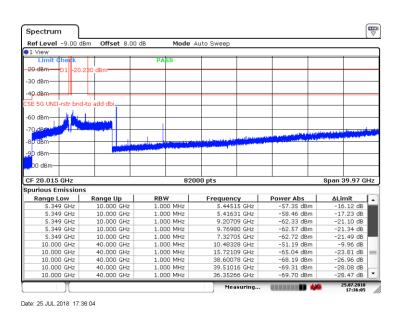
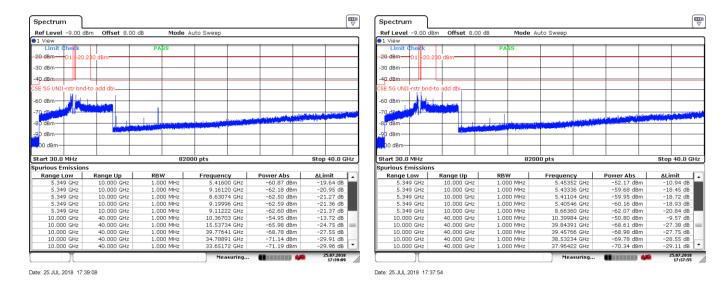


Figure 8.4-20: Spurious emissions within restricted bands, Tx on ch 48, 802.11a

Note: Peak limit EIRP equivalent: $74 \text{ dB}\mu\text{V/m} - 95.23 \text{ dB} = -21.23 \text{ dBm}$


Average limit EIRP equivalent: 54 dB μ V/m - 95.23 dB = -41.23 dBm

EUT's antenna max gain and ground reflection factors below 1 GHz have been included in the factors of the plots above.

Test name FCC 15.407(b) and RSS-247 6.2.1.2 Undesirable (unwanted) emissions

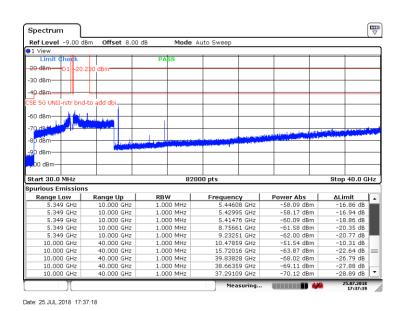
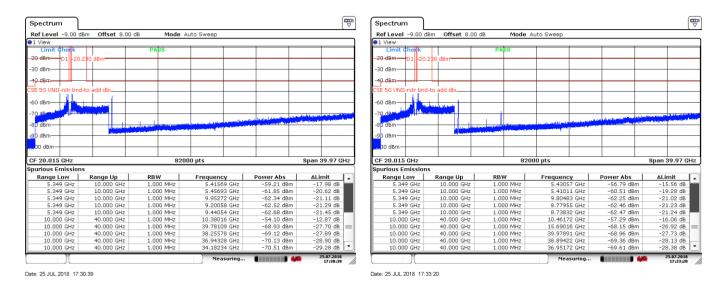

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

Figure 8.4-21: Spurious emissions within restricted bands, Tx on ch 36, 802.11n HT20

Figure 8.4-22: Spurious emissions within restricted bands, Tx on ch 40, 802.11n HT20

Figure 8.4-23: Spurious emissions within restricted bands, Tx on ch 48, 802.11n HT20

Note: Peak limit EIRP equivalent: 74 dB μ V/m – 95.23 dB = -21.23 dBm


Average limit EIRP equivalent: 54 dB μ V/m - 95.23 dB = -41.23 dBm

EUT's antenna max gain and ground reflection factors below 1 GHz have been included in the factors of the plots above.

Test name FCC 15.407(b) and RSS-247 6.2.1.2 Undesirable (unwanted) emissions

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

Figure 8.4-24: Spurious emissions within restricted bands, Tx on ch 38, 802.11n HT40, Peak detector

Figure 8.4-25: Peak Spurious emissions within restricted bands, Tx on ch 46, 802.11n HT40, Peak detector

Note: Peak limit EIRP equivalent: 74 dB μ V/m – 95.23 dB = -21.23 dBm

Average limit EIRP equivalent: 54 dB μ V/m - 95.23 dB = -41.23 dBm

Where peak level of any emission had exceeded average limit line, those emissions were then re-measured with RMS detector.

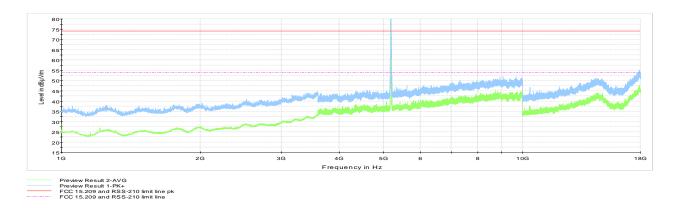


Figure 8.4-26: Cabinet Radiated spurious emission 1 to 18 GHz Tx on low channel

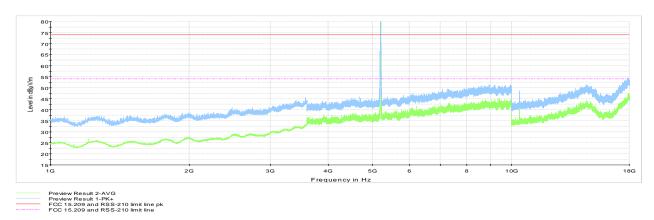


Figure 8.4-27: Cabinet Radiated spurious emission 1 to 18 GHz, Tx on mid channel

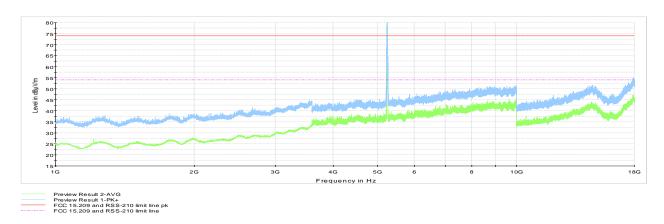


Figure 8.4-28: Cabinet Radiated spurious emission 1 to 18 GHz, Tx on high channle

Spectrum was searched from 30 MHz to 25 GHz. Below 1 GHz and above 18 GHz, no emissions related to RF transmitter were detected within 6 dB below the limit. The emissions above limit on plots above are from intentional transmission.

Note:

FCC Part 15 Subpart E and RSS-Gen, Issue 4

8.5 FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits

8.5.1 Definitions and limits

FCC §15.407(6)(b):

Any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207

FCC §15.207(a):

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \, \mu H/50 \, \Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ISED

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.5-1: Conducted emissions limit

Frequency of emission	Conducte	ed limit (dBµV)
(MHz)	Quasi-peak	Average**
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

Note:

8.5.2 Test summary

Test start date:	August 17, 2018
Test engineer:	Yong Huang

^{* -} The level decreases linearly with the logarithm of the frequency.

^{** -} A linear average detector is required.

Section 8 Test name Testing data

FCC 15.407(b)(6) and RSS-Gen 8.8 AC power line conducted emissions limits

Specification FCC Part 15 Subpart E and RSS-Gen, Issue 4

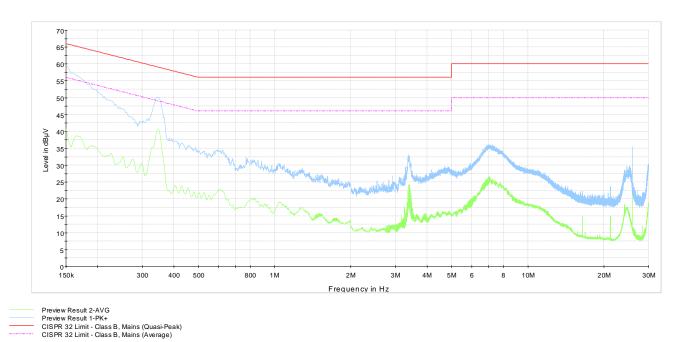
8.5.3 Observations, settings and special notes

The EUT was set up as tabletop configuration.

The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver settings for preview measurements:


Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average
Trace mode	Max Hold
Measurement time	100 ms

Receiver settings for final measurements:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Quasi-Peak and Average
Trace mode	Max Hold
Measurement time	100 ms

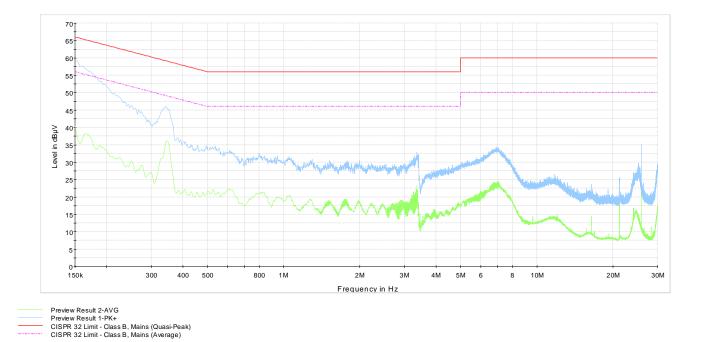
8.5.4 Test data

Plot 8.5-1: Conducted emissions on phase line

Table 8.5-2: Quasi-Peak conducted emissions results on phase line

Frequency, MHz	Q-Peak result, dBμV	Correction, dB	Margin, dB	Limit, dBµV
0.150	57.5	9.4	8.5	66.0
0.348	47.0	9.4	12.0	59.0

Table 8.5-3: Average conducted emissions results on phase line


•	Frequency, MHz	Average result, dBμV	Correction,	Margin,	Limit,
			dB	dB	dBμV
- [0.346	40.5	9.4	8.6	49.1

Notes:

- $^{1}\,\text{Result}$ (dBµV) = receiver/spectrum analyzer value (dBµV) + correction factor (dB)
- 2 Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)
- ³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions have been recorded.

Sample calculation: 37.1 dB μ V (result) = 26.6 dB μ V (receiver reading) + 9.5 dB (Correction factor)

Plot 8.5-2: Conducted emissions on neutral line

 Table 8.5-4: Quasi-Peak conducted emissions results on neutral line

Frequency, MHz	Q-Peak result, dBμV	Correction,	Margin,	Limit,
		dB	dB	dBμV
0.150	57.5	9.4	8.5	66.0

Notes:

- 1 Result (dB μ V) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)
- ² Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)
- ³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions have been recorded.

Sample calculation: 37.1 dB μ V (result) = 26.6 dB μ V (receiver reading) + 9.5 dB (Correction factor)

Section 8 Test name Testing data

FCC 15.407(g) Frequency stability

Specification FCC Part 15 Subpart E

8.6 FCC 15.407(g) Frequency stability

8.6.1 Definitions and limits

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

8.6.2 Test summary

Test start date:	August 20, 2018
Test engineer:	Yong Huang

8.6.3 Observations, settings and special notes

As per EUT's document provided by client, EUT's Operating Temperature is -40 °C to +70 °C(REGATE-10-12) and -40 °C to +85 °C (DYGATE-10-12), Nominal AC input voltage is 120 V.

Spectrum analyzer settings:

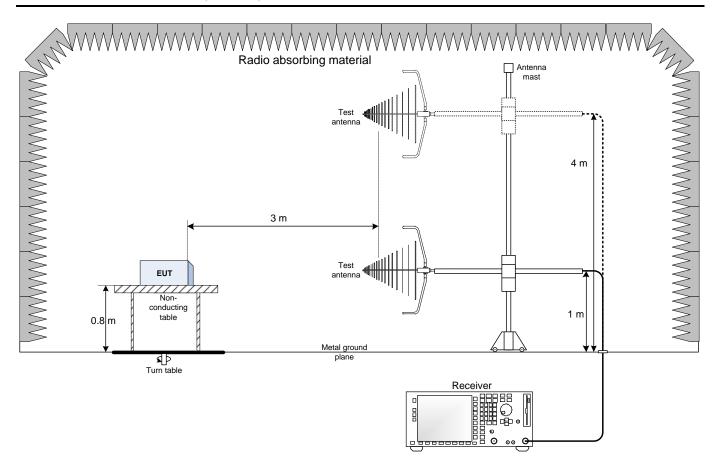
Resolution bandwidth:	10 Hz
Video bandwidth:	10 Hz
Detector mode:	Peak
Trace mode:	Max Hold

8.6.4 Test data

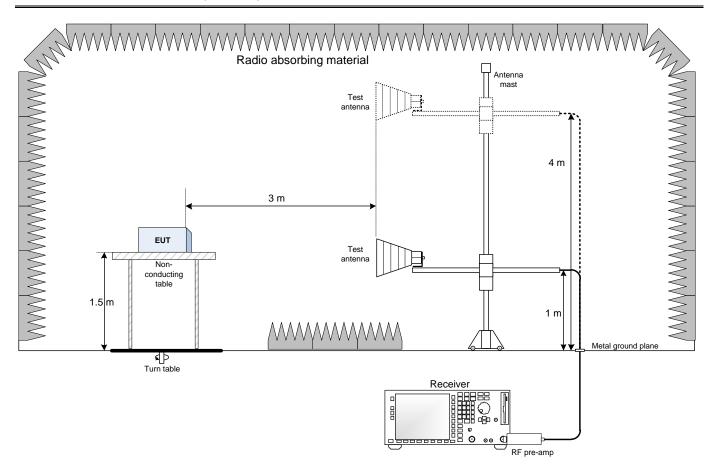
Table 8.6-1: Frequency drift measurement

Test conditions Temperature, Voltage	Nominal frequency, GHz	Frequency, GHz	Drift, Hz
+85 °C, Nominal	5.2	5.2000889280	91105.1
+70 °C, Nominal	5.2	5.2000091900	11367.1
+23 °C, +15 %	5.2	5.1999978229	0
+23 °C, Nominal	5.2	5.1999978229	reference
+23 °C, −15 %	5.2	5.1999978229	0
-40 °C, Nominal	5.2	5.1999969610	-861.9

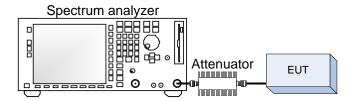
Minimum lower band edge margin is more than 1 kHz


Minimum upper band edge margin is more than 100 kHz

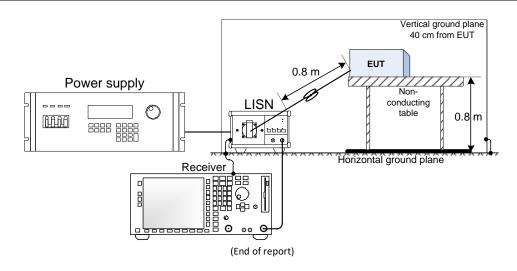
The frequency drifts in above table are within these minimum margins, the emissions are deemed to maintain within the band of operation.


Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up for frequencies below 1 GHz



9.2 Radiated emissions set-up for frequencies above 1 GHz



9.3 Antenna port conducted measurements set-up

9.4 Power line Conducted emissions set-up

