

US Tech
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15.247
UJX-ROAMMOD0001
12-0300
July 25, 2012
Acuity Brands
ROAMMOD0001

Maximum Public Exposure to RF (MPE) CFR 15.247 (i)

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density, **S**, of 1 mW/cm² at a distance, **d**, of 20 cm from the EUT.

Therefore, for:

Antenna 1- MICA/PCB

Peak Power (Watts) = 0.094 (from Table 13 of Test Report)

Gain of Transmit Antenna = 1.9 dB_i = 1.549, numeric (from Table 4 of Test Report)

d = Distance = 20 cm = 0.2 m

$$\begin{aligned}\mathbf{S} &= (PG / 4\pi d^2) = EIRP/4A = 0.094 (1.549) / 4\pi \cdot 0.2^2 \\ &= 0.1456 / 0.503 = 0.2895 \text{ W/m}^2 \\ &= (0.2895 \text{ W/m}^2) (1\text{m}^2/\text{W}) (0.1 \text{ mW/cm}^2) \\ &= 0.02895 \text{ mW/cm}^2\end{aligned}$$

which is << less than 1 mW/cm²

Antenna 2- Monopole

Peak Power (Watts) = 0.094 (from Table 13 of Test Report)

Gain of Transmit Antenna = 5.0 dB_i = 3.162, numeric (from Table 4 of Test Report)

d = Distance = 20 cm = 0.2 m

$$\begin{aligned}\mathbf{S} &= (PG / 4\pi d^2) = EIRP/4A = 0.094 (3.162) / 4\pi \cdot 0.2^2 \\ &= 0.2972 / 0.503 = 0.5909 \text{ W/m}^2 \\ &= (0.5909 \text{ W/m}^2) (1\text{m}^2/\text{W}) (0.1 \text{ mW/cm}^2) \\ &= 0.05909 \text{ mW/cm}^2\end{aligned}$$

which is << less than 1 mW/cm²

US Tech
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15.247
UJX-ROAMMOD0001
12-0300
July 25, 2012
Acuity Brands
ROAMMOD0001

Antenna 3-Integral Dipole

Peak Power (Watts) = 0.094 (from Table 13 of Test Report)

Gain of Transmit Antenna = 2.0 dB_i = 1.585, numeric (from Table 4 of Test Report)

d = Distance = 20 cm = 0.2 m

$$\begin{aligned} \mathbf{S} &= (PG / 4\pi d^2) = EIRP/4A = 0.094 (1.585)/4\pi \cdot 0.2^2 \\ &= 0.1490/0.503 = 0.2962 \text{ W/m}^2 \\ &= (0.2960 \text{ W/m}^2) (1\text{m}^2/\text{W}) (0.1 \text{ mW/cm}^2) \\ &= 0.02960 \text{ mW/cm}^2 \end{aligned}$$

which is << less than 1 mW/cm²