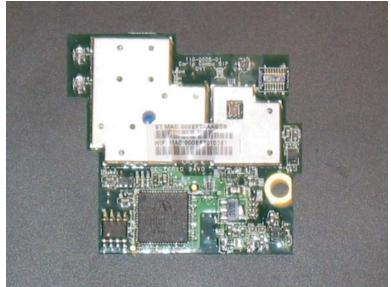


PWB Circuit Side With LAN Module

Shielding Below Keyboard

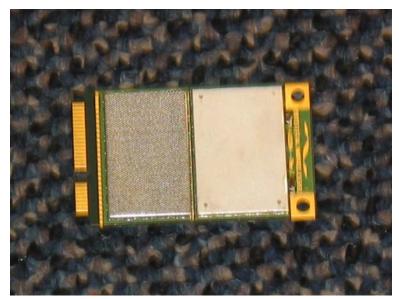
PWB Circuit Side



LAN Module in Place

LAN Module Back

LAN Module Front



Cover Removed Behind LCD With WAN Module

Module On PCB

WAN Module Back

WAN Module Front

Standard Battery Front

Standard Battery Back

Extended Battery Front

Extended Battery Back

Appendix D – Probe Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-681

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 835 MHz

BODY Calibration

Manufacturer: APREL Laboratories

Model No.: E-020 Serial No.: 217

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2

Project No: RFEB-E020CAL-5232

Calibrated: 30th May 2006 Released on: 2nd June 2006

APREL Laboratories Certified Under Laboratory 48 of SCC

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 217.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"

IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe 217 was a re-calibration.

Ambient Temperature of the Laboratory:

22 °C +/- 0.5°C

Temperature of the Tissue:

21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Eddie Payapaya

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 217

Frequency: 835 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Body Tissue

Frequency: 835 MHz

Epsilon: 55.2 (+/-5%) **Sigma:** 1.05 S/m (+/-10%)

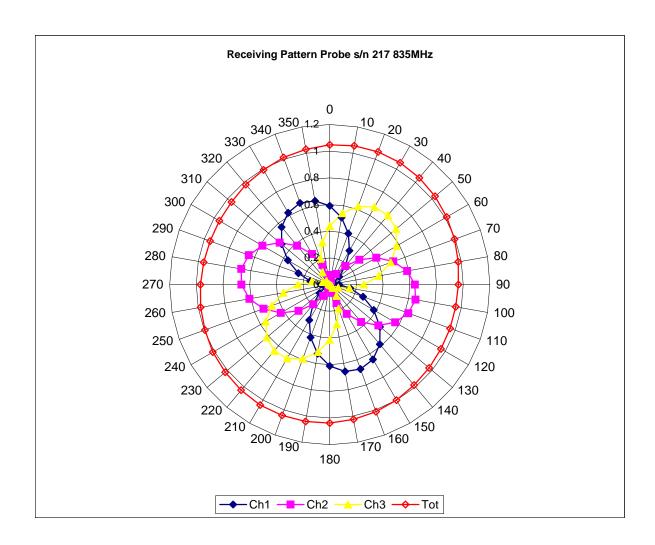
ConvF

Channel X: 6.1

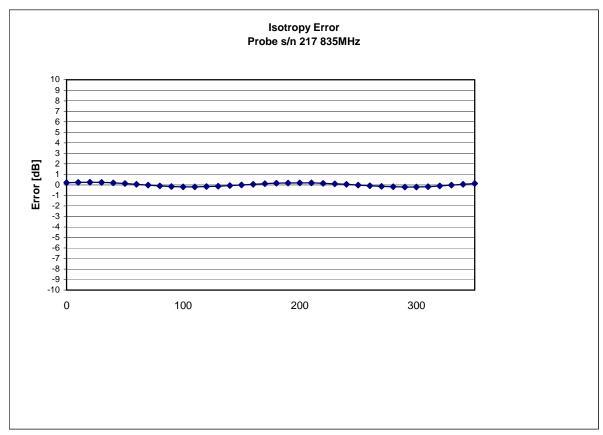
Channel Y: 6.1

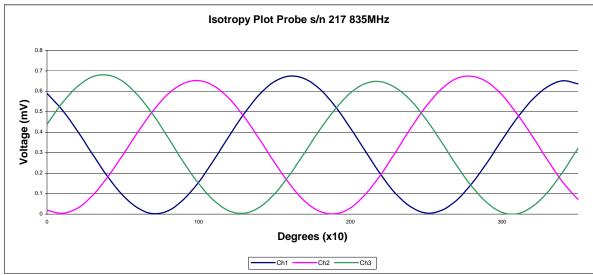
Channel Z: 6.1

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

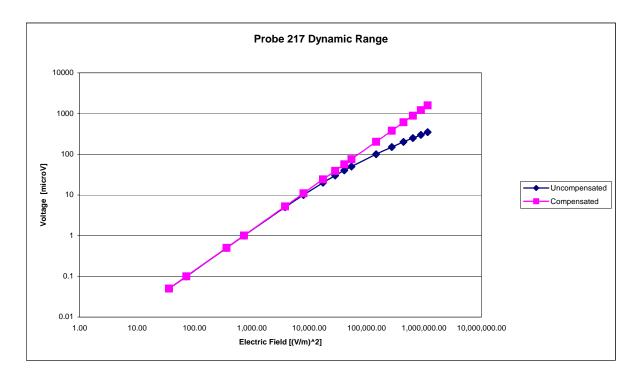
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

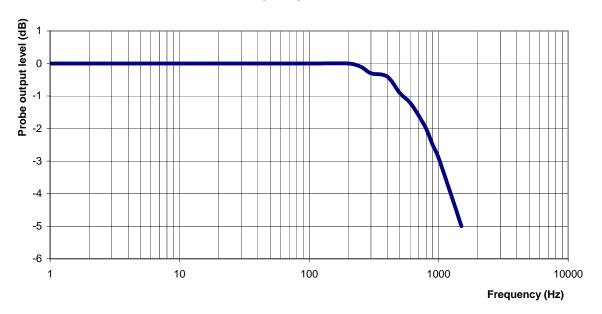

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 835 MHz (Air)

Isotropy Error 835 MHz (Air)



Isotropicity Tissue:


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Sensitivity in Body Tissue

Frequency: 835 MHz

Epsilon: 55.2 (+/-5%) **Sigma:** 1.05 S/m (+/-10%)

ConvF

Channel X: 6.1 7%(K=2)

Channel Y: 6.1 7%(K=2)

Channel Z: 6.1 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.5mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2006.

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-683

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 1900 MHz

BODY Calibration

Manufacturer: APREL Laboratories

Model No.: E-020 Serial No.: 217

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2

Project No: RFEB-E020CAL-5232

Calibrated: 30th May 2006 Released on: 2nd June 2006

APREL Laboratories Certified Under Laboratory 48 of SCC

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 217.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"

IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe 217 was a re-calibration.

Ambient Temperature of the Laboratory:

22 °C +/- 0.5°C

Temperature of the Tissue:

21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Eddie Payapaya

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 217

Frequency: 1900 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Body Tissue

Frequency: 1900 MHz

Epsilon: 53.3 (+/-5%) **Sigma:** 1.52 S/m (+/-10%)

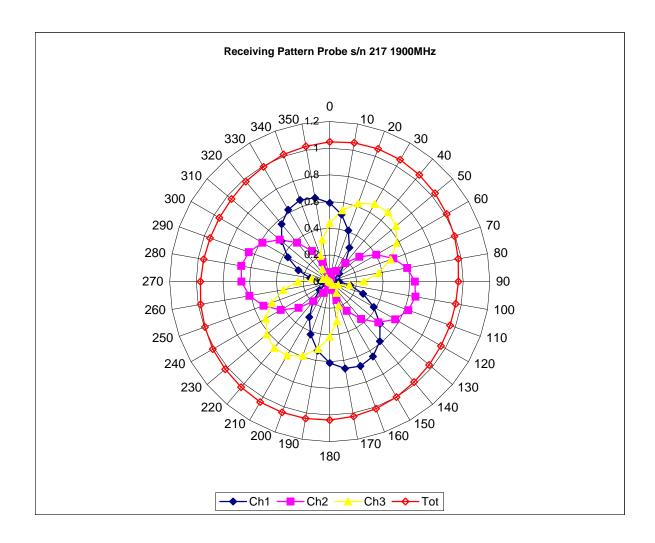
ConvF

Channel X: 4.85

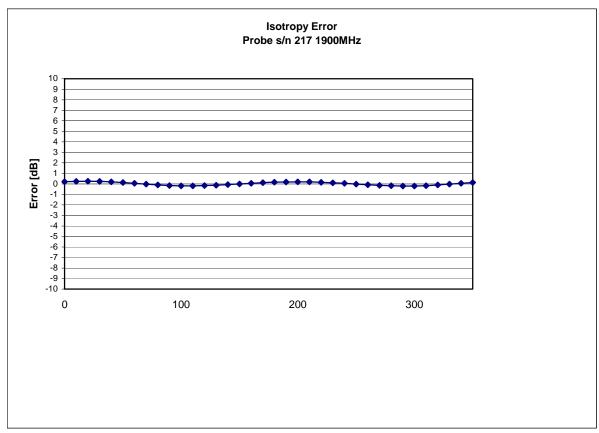
Channel Y: 4.85

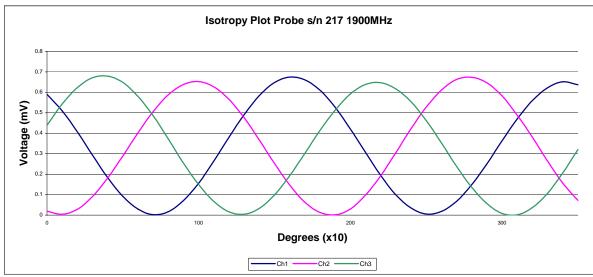
Channel Z: 4.85

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

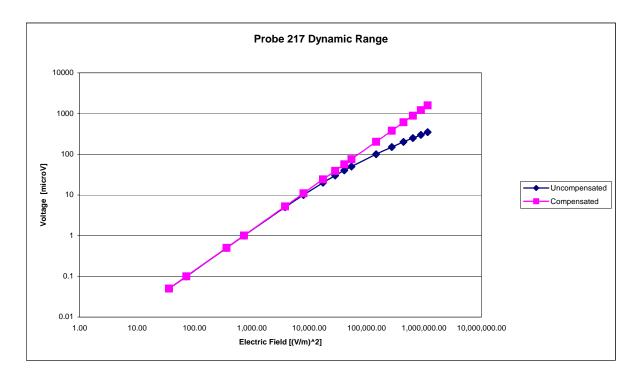
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

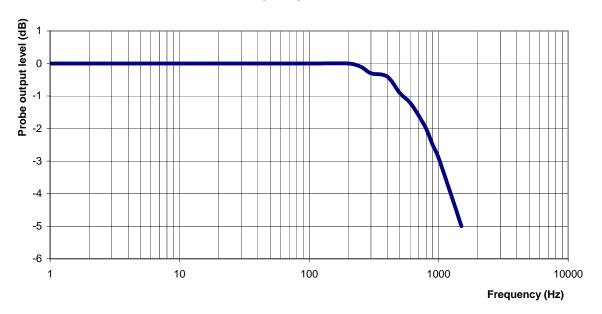

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 1900 MHz (Air)

Isotropy Error 1900 MHz (Air)



Isotropicity Tissue:


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Sensitivity in Body Tissue

Frequency: 1900 MHz

Epsilon: 53.3 (+/-5%) **Sigma:** 1.52 S/m (+/-10%)

ConvF

Channel X: 4.85 7%(K=2)

Channel Y: 4.85 7%(K=2)

Channel Z: 4.85 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.5mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2006.

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-685

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 2450 MHz

BODY Calibration

Manufacturer: APREL Laboratories

Model No.: E-020 Serial No.: 217

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2

Project No: RFEB-E020CAL-5232

Calibrated: 30th May 2006 Released on: 2nd June 2006

APREL Laboratories Certified Under Laboratory 48 of SCC

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 217.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"

IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe 217 was a re-calibration.

Ambient Temperature of the Laboratory:

22 °C +/- 0.5°C

Temperature of the Tissue:

21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Eddie Payapaya

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 217

Frequency: 2450 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Body Tissue

Frequency: 2450 MHz

Epsilon: 52.7 (+/-5%) **Sigma:** 1.95 S/m (+/-10%)

ConvF

Channel X: 3.61

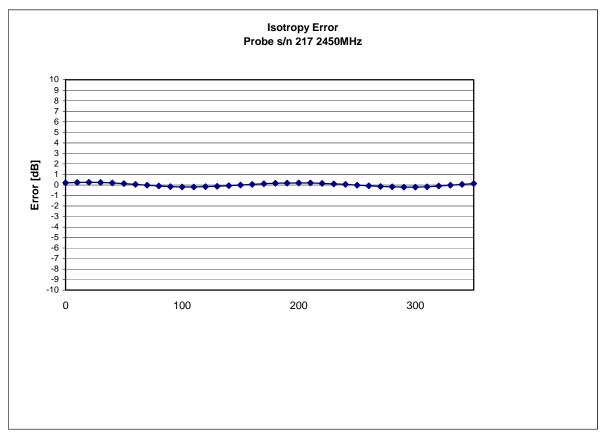
Channel Y: 3.61

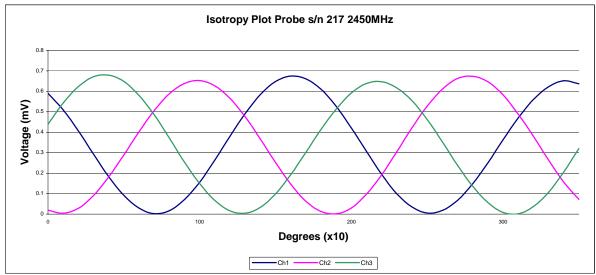
Channel Z: 3.61

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

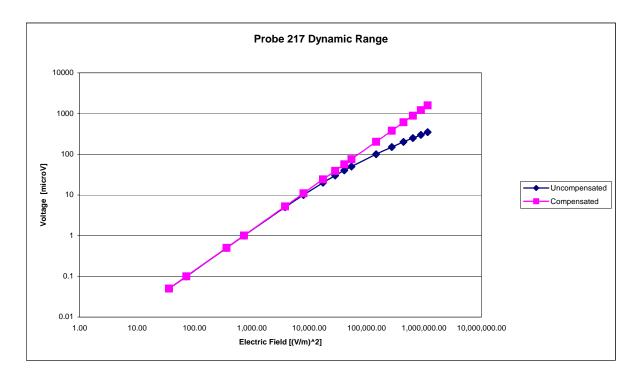
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

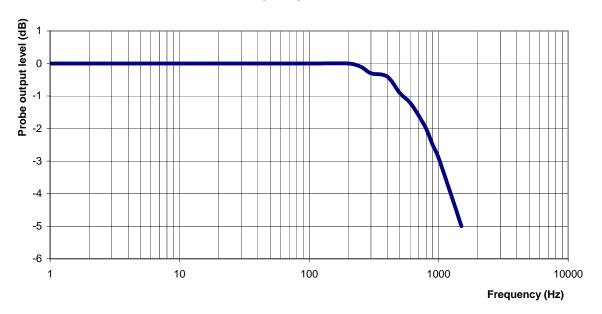

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 2450 MHz (Air)

Isotropy Error 2450 MHz (Air)



Isotropicity Tissue:


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB Division of APREL Laboratories.

Conversion Factor Uncertainty Assessment

Sensitivity in Body Tissue

Frequency: 2450 MHz

Epsilon: 52.7 (+/-5%) **Sigma:** 1.95 S/m (+/-10%)

ConvF

Channel X: 3.61 7%(K=2)

Channel Y: 3.61 7%(K=2)

Channel Z: 3.61 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.5mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Division of APREL Laboratories.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2006.

Appendix E – Dipole Calibration Data Sheets

RF Exposure Lab, LLC

Calibration File No: CAL.20060202

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated at RF Exposure Lab, LLC by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories

Part Number: ALS-D-835-S-2

Frequency: 835 MHz

Serial No: RFE-274

Manufactured: 20 February 2004 Calibrated: 16 February 2006

Calibrated By: Signature on File

Jay Moulton - Technical Manager

Approved By: Signature on File

Tamara Moulton – Quality Manager

Measurement Uncertainty:

Repeatability: 23% Tissue Uncertainty: 3.2% Network Analyzer: 25%

2867 Progress Place, Suite 4D Escondido, CA 92029

Tel: (760) 737-3131 FAX: (760) 737-9131

Calibration Results Summary

The following results relate to the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length: 161.8 mm Height: 91.1 mm

Electrical Specifications

Head

SWR: 1.1357 U Return Loss: -25.165 dB Impedance: 49.691 Ω

System Validation Results

Frequency	1 Gram	10 Gram
835 MHz	9.820	6.360

Body

SWR: 1.1539 U **Return Loss:** -23.122 dB **Impedance:** 51.514 Ω

System Validation Results

Frequency	1 Gram	10 Gram
835 MHz	9.072	5.944

Head Measurement Conditions

The measurements were performed in the Uni-Phantom filled with head simulating liquid of the following electrical parameters at 835 MHz:

Relative Dielectricity	40.88	± 5%
Conductivity	0.88 mho/m	± 5%

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 5.49 at 835 MHz) was used for the measurements.

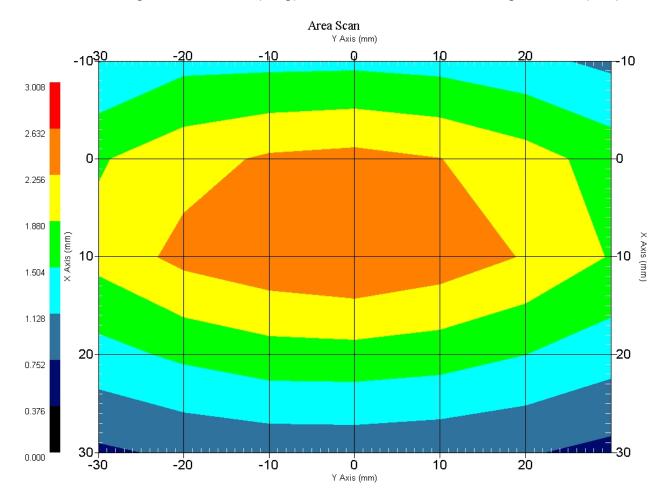
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was $250mW \pm 3\%$. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 21 $^{\circ}$ C \pm 1.0 $^{\circ}$ C Temperature of the Tissue: 20 $^{\circ}$ C \pm 1.0 $^{\circ}$ C

Relative Humidity: 42%



SAR Measurement

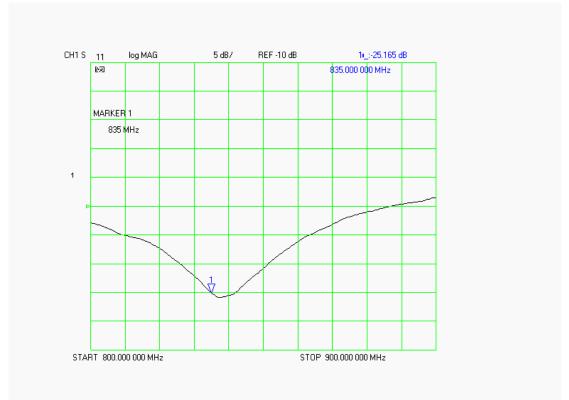
Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm³ (1 g) of tissue: $9.820 \text{ mW/g} \pm 19.0\% \text{ (k=2)}^{1}$

Averaged over 10 cm³ (10 g) of tissue: $6.360 \text{ mW/g} \pm 18.5\% \text{ (k=2)}^{1}$

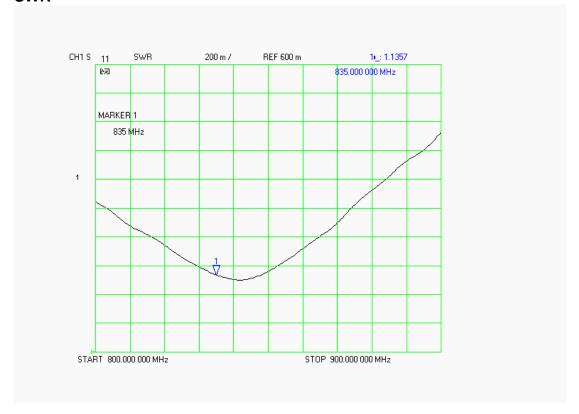
1 gram SAR value : 2.455 W/kg 10 gram SAR value : 1.590 W/kg Area Scan Peak SAR : 2.632 W/kg Zoom Scan Peak SAR : 3.693 W/kg

¹ validation uncertainty

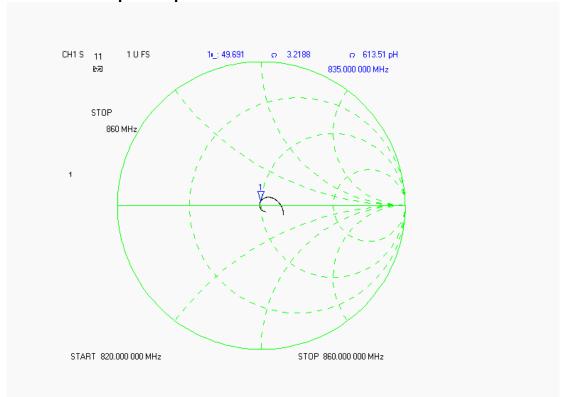

Dipole Impedance and Return Loss

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

Test	Result
S11 R/L	-25.165 dB
SWR	1.1357 U
Impedance	49.691 Ω


The following graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss



SWR

Smith Chart Dipole Impedance

Body Measurement Conditions

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 835 MHz:

Relative Dielectricity	54.03	± 5%
Conductivity	0.96 mho/m	± 5%

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 6.07 at 835 MHz) was used for the measurements.

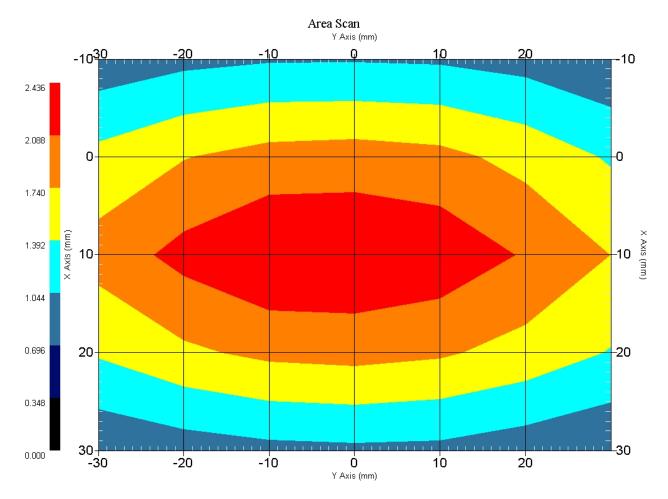
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was $250mW \pm 3\%$. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 22 °C \pm 1.0 °C Temperature of the Tissue: 20 °C \pm 1.0 °C

Relative Humidity: 42%



SAR Measurement

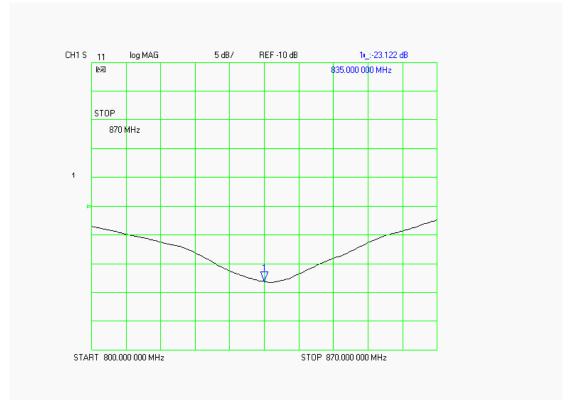
Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm³ (1 g) of tissue: $9.072 \text{ mW/g} \pm 19.1\% \text{ (k=2)}^{1}$

Averaged over 10 cm 3 (10 g) of tissue: 5.944 mW/g ± 18.6% (k=2) 1

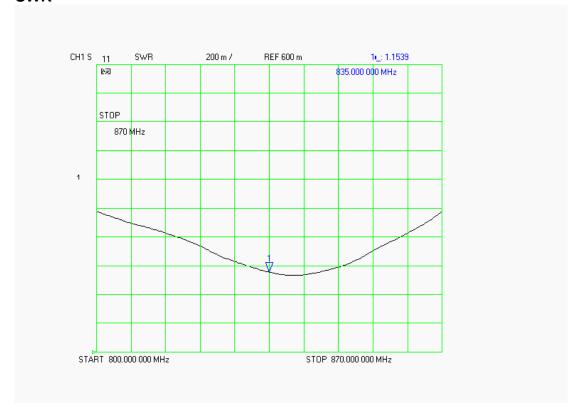
1 gram SAR value : 2.268 W/kg 10 gram SAR value : 1.486 W/kg Area Scan Peak SAR : 2.435 W/kg Zoom Scan Peak SAR : 3.413 W/kg

¹ validation uncertainty

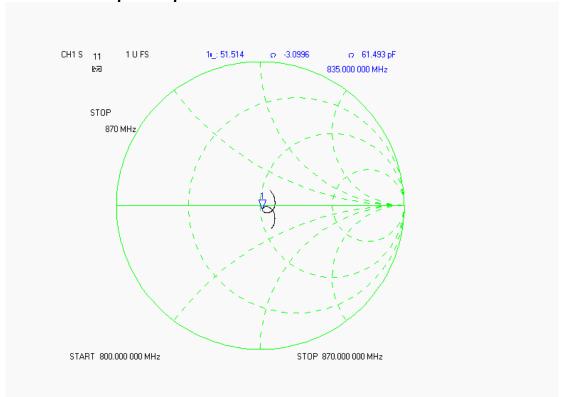

Dipole Impedance and Return Loss

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

Test	Result
S11 R/L	-23.122 dB
SWR	1.1539 U
Impedance	51.514 Ω


The following graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss



SWR

Smith Chart Dipole Impedance

Test Equipment List

Туре	Calibration Due Date	Serial Number
ThermoCRS Robot	N/A	RAF0338198
ThermoCRS Controller	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	06/10/2006	RFE-215
Aprel E-Field Probe ALS-E020	01/25/2007	
Aprel UniPhantom	N/A	RFE-273
Agilent (HP) 437B Power Meter	12/12/2006	3125U08837
Agilent (HP) 8481B Power Sensor	12/19/2006	3318A05384
Agilent (HP) 8350B Signal Generator	03/03/2006	2749A10226
Agilent (HP) 83525A RF Plug-In	03/03/2006	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	02/02/2007	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	02/02/2007	2904A00595
Aprel Dielectric Probe Assembly	N/A	0011
Microwave Power Devices 510-10E Amplifier	03/03/2006	6063-001
Microwave Power Devices 1020-9E Amplifier	03/03/2006	5618-1
Brain Equivalent Matter (835 MHz)	N/A	N/A
Brain Equivalent Matter (1900 MHz)	N/A	N/A
Brain Equivalent Matter (900 MHz)	N/A	N/A
Muscle Equivalent Matter (835 MHz)	N/A	N/A
Muscle Equivalent Matter (1900 MHz)	N/A	N/A
Muscle Equivalent Matter (900 MHz)	N/A	N/A
Muscle Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (5200 MHz)	N/A	N/A

RF Exposure Lab, LLC

Calibration File No: CAL.20060201

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated at RF Exposure Lab, LLC by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories

Part Number: ALS-D-1900-S-2

Frequency: 1.9 GHz

Serial No: RFE-277

Manufactured: 20 February 2004 Calibrated: 15 February 2006

Calibrated By: Signature on File

Jay Moulton - Technical Manager

Approved By: Signature on File

Tamara Moulton – Quality Manager

Measurement Uncertainty:

Repeatability: 23% Tissue Uncertainty: 3.2% Network Analyzer: 25%

Tel: (760) 737-3131

FAX: (760) 737-9131

2867 Progress Place, Suite 4D Escondido, CA 92029

Calibration Results Summary

The following results relate to the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length: 68.0 mm **Height:** 37.5 mm

Electrical Specifications

Head

SWR: 1.0776 U Return Loss: -30.532 dB Impedance: 49.666Ω

System Validation Results

Frequency	1 Gram	10 Gram
1.9 GHz	40.636	20.424

Body

SWR: 1.0927 U **Return Loss:** -33.755 dB **Impedance:** 53.652 Ω

System Validation Results

Frequency	1 Gram	10 Gram
1.9 GHz	41.336	21.464

Head Measurement Conditions

The measurements were performed in the Uni-Phantom filled with head simulating liquid of the following electrical parameters at 1900 MHz:

Relative Dielectricity	39.24	± 5%
Conductivity	1.43 mho/m	± 5%

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 4.5 at 1900 MHz) was used for the measurements.

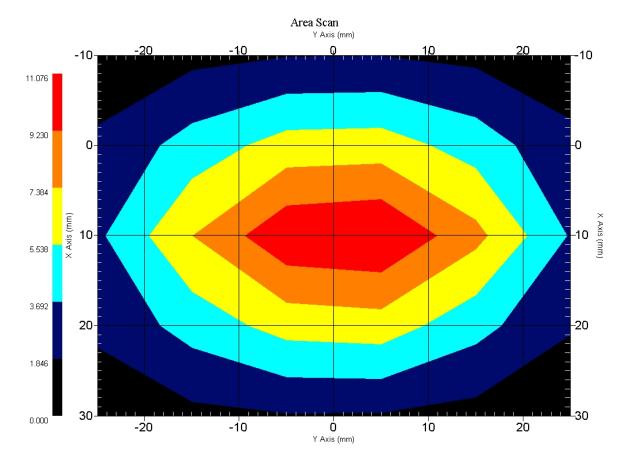
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was $250mW \pm 3\%$. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 22 °C \pm 1.0 °C Temperature of the Tissue: 20 °C \pm 1.0 °C

Relative Humidity: 41%



SAR Measurement

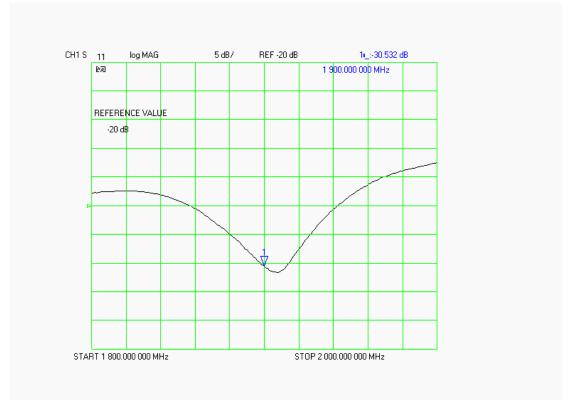
Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm³ (1 g) of tissue: $40.636 \text{ mW/g} \pm 19.2\% \text{ (k=2)}^{1}$

Averaged over 10 cm³ (10 g) of tissue: $20.424 \text{ mW/g} \pm 18.8\% \text{ (k=2)}^1$

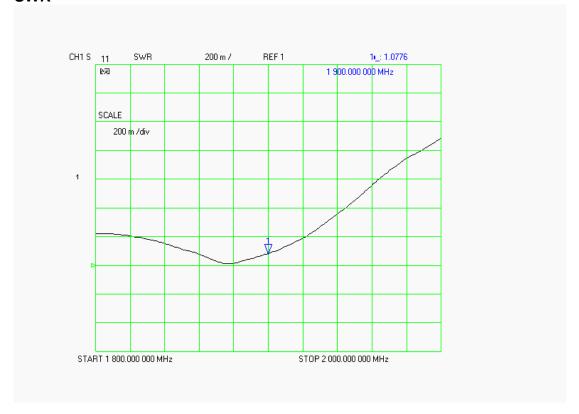
1 gram SAR value : 10.159 W/kg 10 gram SAR value : 5.106 W/kg Area Scan Peak SAR : 11.075 W/kg Zoom Scan Peak SAR : 17.815 W/kg

¹ validation uncertainty

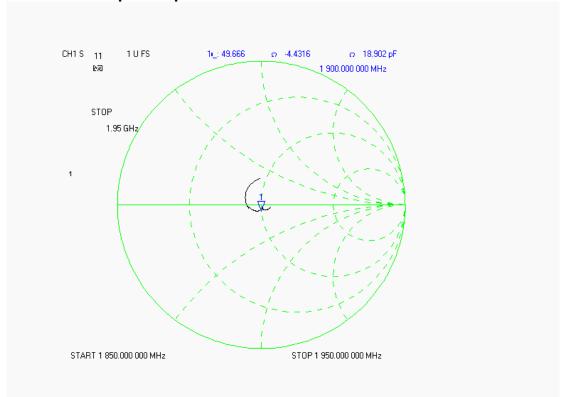

Dipole Impedance and Return Loss

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

Test	Result
S11 R/L	-30.532 dB
SWR	1.0776 U
Impedance	49.666 Ω


The following graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss



SWR

Smith Chart Dipole Impedance

Body Measurement Conditions

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 1900 MHz:

Relative Dielectricity	52.91	± 5%
Conductivity	1.49 mho/m	± 5%

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 3.8 at 1900 MHz) was used for the measurements.

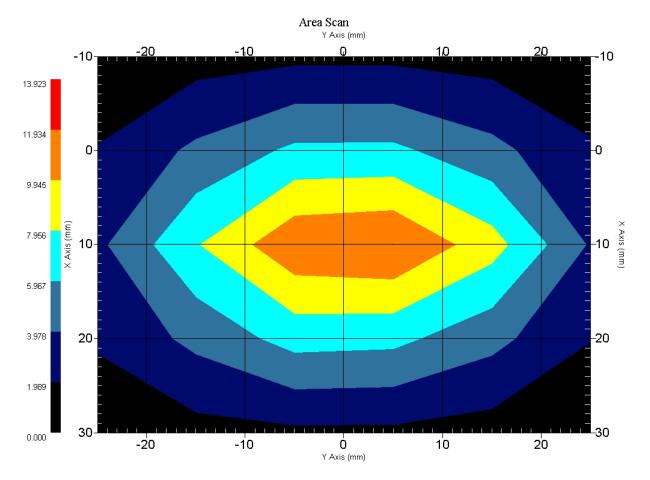
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was $250mW \pm 3\%$. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 23 °C \pm 1.0 °C Temperature of the Tissue: 20 °C \pm 1.0 °C

Relative Humidity: 44%



SAR Measurement

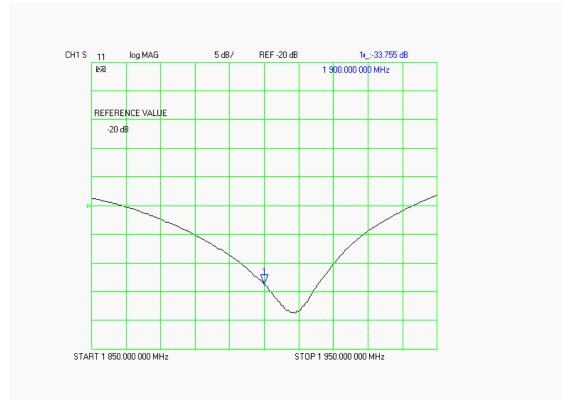
Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm³ (1 g) of tissue: $41.336 \text{ mW/g} \pm 18.9\% \text{ (k=2)}^{1}$

Averaged over 10 cm³ (10 g) of tissue: $21.464 \text{ mW/g} \pm 18.5\% \text{ (k=2)}^1$

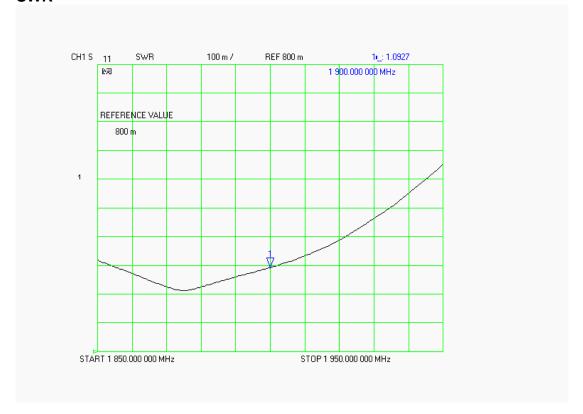
1 gram SAR value : 10.334 W/kg 10 gram SAR value : 5.366 W/kg Area Scan Peak SAR : 11.936 W/kg Zoom Scan Peak SAR : 18.616 W/kg

¹ validation uncertainty

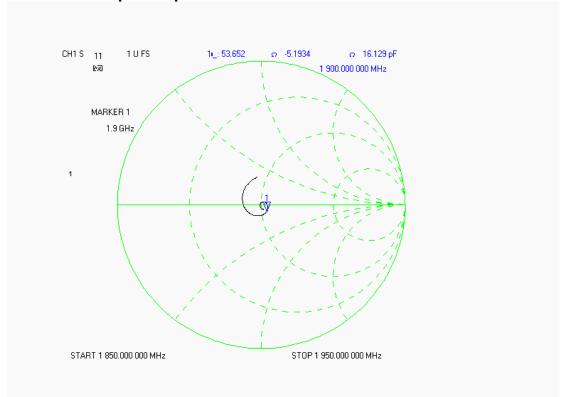

Dipole Impedance and Return Loss

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

Test	Result
S11 R/L	-33.755 dB
SWR	1.0927 U
Impedance	53.652 Ω


The following graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss



SWR

Smith Chart Dipole Impedance

Test Equipment List

Туре	Calibration Due Date	Serial Number
ThermoCRS Robot	N/A	RAF0338198
ThermoCRS Controller	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	06/10/2006	RFE-215
Aprel E-Field Probe ALS-E020	01/25/2007	
Aprel UniPhantom	N/A	RFE-273
Agilent (HP) 437B Power Meter	12/12/2006	3125U08837
Agilent (HP) 8481B Power Sensor	12/19/2006	3318A05384
Agilent (HP) 8350B Signal Generator	03/03/2006	2749A10226
Agilent (HP) 83525A RF Plug-In	03/03/2006	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	02/02/2007	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	02/02/2007	2904A00595
Aprel Dielectric Probe Assembly	N/A	0011
Microwave Power Devices 510-10E Amplifier	03/03/2006	6063-001
Microwave Power Devices 1020-9E Amplifier	03/03/2006	5618-1
Brain Equivalent Matter (835 MHz)	N/A	N/A
Brain Equivalent Matter (1900 MHz)	N/A	N/A
Brain Equivalent Matter (900 MHz)	N/A	N/A
Muscle Equivalent Matter (835 MHz)	N/A	N/A
Muscle Equivalent Matter (1900 MHz)	N/A	N/A
Muscle Equivalent Matter (900 MHz)	N/A	N/A
Muscle Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (5200 MHz)	N/A	N/A

RF Exposure Lab, LLC

Calibration File No: CAL.20060203

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated at RF Exposure Lab, LLC by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories

Part Number: ALS-D-2450-S-2

Frequency: 2.4 GHz

Serial No: RFE-278

Manufactured: 20 February 2004 Calibrated: 17 February 2006

Calibrated By: Signature on File

Jay Moulton - Technical Manager

Approved By: Signature on File

Tamara Moulton – Quality Manager

Measurement Uncertainty:

Repeatability: 23% Tissue Uncertainty: 3.2% Network Analyzer: 25%

2867 Progress Place, Suite 4D Escondido, CA 92029

Tel: (760) 737-3131 FAX: (760) 737-9131

Calibration Results Summary

The following results relate to the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length: 51.5 mm **Height:** 30.5 mm

Electrical Specifications

Head

SWR: 1.0994 U Return Loss: -28.139 dB Impedance: 53.471Ω

System Validation Results

Frequency	1 Gram	10 Gram
2.45 GHz	52.920	26.370

Body

SWR: 1.1373 U **Return Loss:** -31.923 dB **Impedance:** 53.338 Ω

System Validation Results

Frequency	1 Gram	10 Gram
2.45 GHz	54.230	24.880

Head Measurement Conditions

The measurements were performed in the Uni-Phantom filled with head simulating liquid of the following electrical parameters at 2450 MHz:

Relative Dielectricity	39.63	± 5%
Conductivity	1.82 mho/m	± 5%

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 4.6 at 2450 MHz) was used for the measurements.

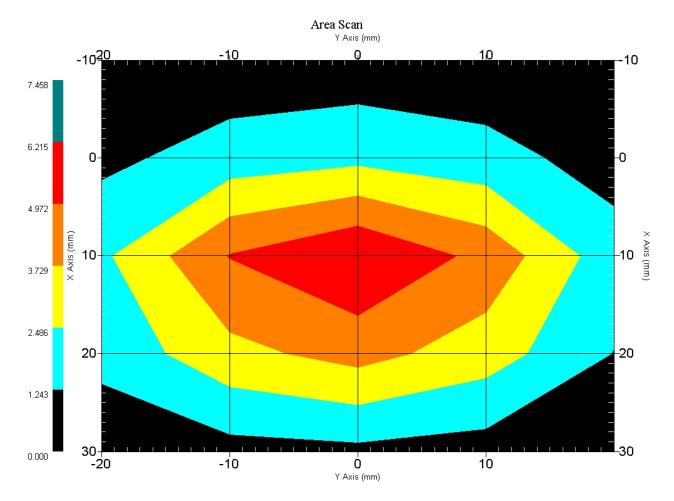
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was $100mW \pm 3\%$. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 23 °C \pm 1.0 °C Temperature of the Tissue: 20 °C \pm 1.0 °C

Relative Humidity: 42%



SAR Measurement

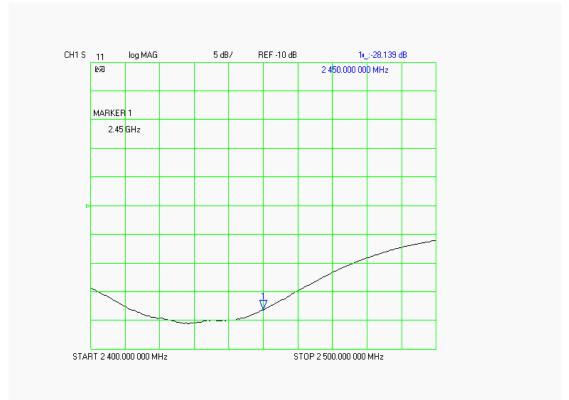
Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm³ (1 g) of tissue: $52.920 \text{ mW/g} \pm 19.7\% \text{ (k=2)}^{1}$

Averaged over 10 cm³ (10 g) of tissue: $26.370 \text{ mW/g} \pm 19.4\% \text{ (k=2)}^1$

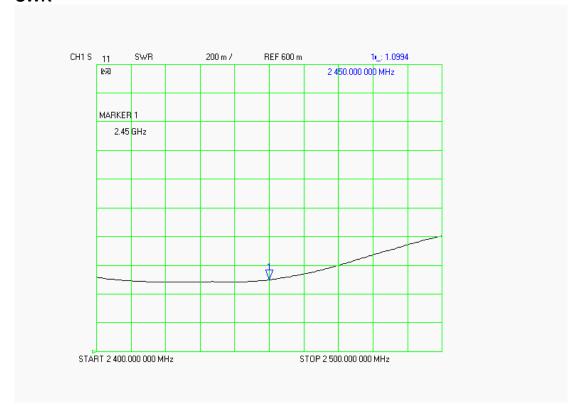
1 gram SAR value : 5.292 W/kg 10 gram SAR value : 2.637 W/kg Area Scan Peak SAR : 6.215 W/kg Zoom Scan Peak SAR : 10.080 W/kg

¹ validation uncertainty

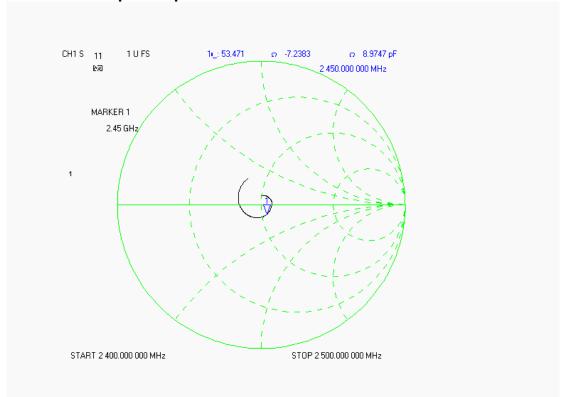

Dipole Impedance and Return Loss

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

Test	Result
S11 R/L	-28.139 dB
SWR	1.0994 U
Impedance	53.471 Ω


The following graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss



SWR

Smith Chart Dipole Impedance

Body Measurement Conditions

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 2450 MHz:

Relative Dielectricity	51.09	± 5%
Conductivity	1.96 mho/m	± 5%

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 4.6 at 2450 MHz) was used for the measurements.

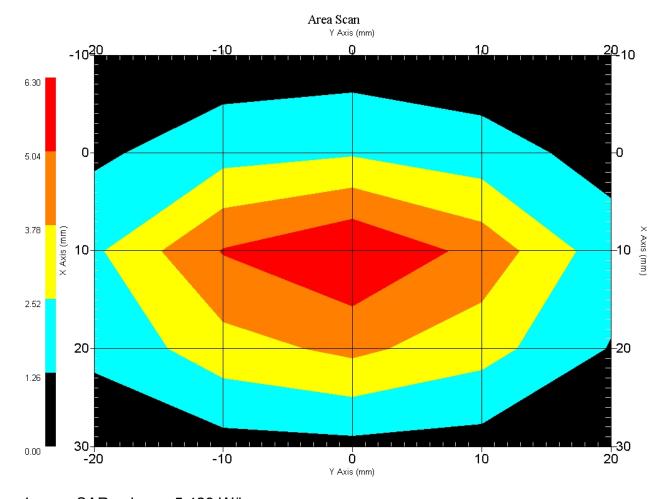
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was $100mW \pm 3\%$. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: $20 \, ^{\circ}\text{C} \pm 1.0 \, ^{\circ}\text{C}$ Temperature of the Tissue: $20 \, ^{\circ}\text{C} \pm 1.0 \, ^{\circ}\text{C}$

Relative Humidity: 43%



SAR Measurement

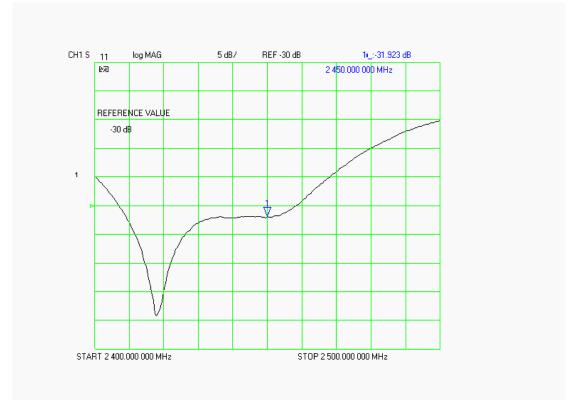
Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm³ (1 g) of tissue: $54.230 \text{ mW/g} \pm 18.8\% \text{ (k=2)}^1$

Averaged over 10 cm³ (10 g) of tissue: $24.880 \text{ mW/g} \pm 18.4\% \text{ (k=2)}^1$

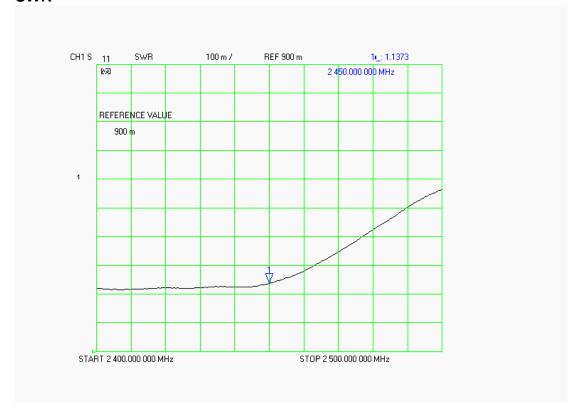
1 gram SAR value : 5.423 W/kg 10 gram SAR value : 2.488 W/kg Area Scan Peak SAR : 6.298 W/kg Zoom Scan Peak SAR : 11.090 W/kg

¹ validation uncertainty

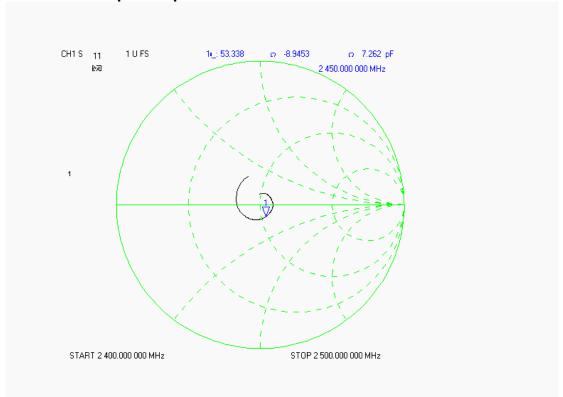

Dipole Impedance and Return Loss

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

Test	Result
S11 R/L	-31.923 dB
SWR	1.1373 U
Impedance	53.338 Ω


The following graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss



SWR

Smith Chart Dipole Impedance

Test Equipment List

Туре	Calibration Due Date	Serial Number
ThermoCRS Robot	N/A	RAF0338198
ThermoCRS Controller	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	06/10/2006	RFE-215
Aprel E-Field Probe ALS-E020	01/25/2007	
Aprel UniPhantom	N/A	RFE-273
Agilent (HP) 437B Power Meter	12/12/2006	3125U08837
Agilent (HP) 8481B Power Sensor	12/19/2006	3318A05384
Agilent (HP) 8350B Signal Generator	03/03/2006	2749A10226
Agilent (HP) 83525A RF Plug-In	03/03/2006	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	02/02/2007	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	02/02/2007	2904A00595
Aprel Dielectric Probe Assembly	N/A	0011
Microwave Power Devices 510-10E Amplifier	03/03/2006	6063-001
Microwave Power Devices 1020-9E Amplifier	03/03/2006	5618-1
Brain Equivalent Matter (835 MHz)	N/A	N/A
Brain Equivalent Matter (1900 MHz)	N/A	N/A
Brain Equivalent Matter (900 MHz)	N/A	N/A
Muscle Equivalent Matter (835 MHz)	N/A	N/A
Muscle Equivalent Matter (1900 MHz)	N/A	N/A
Muscle Equivalent Matter (900 MHz)	N/A	N/A
Muscle Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (5200 MHz)	N/A	N/A

Appendix F – Phantom Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: RFE-273

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to National Standards.

Thickness of the UniPhantom is 2 mm ± 10% Pinna thickness is 6 mm ± 10%

Resolution:

0.01 mm

Calibrated to: 0.0 mm

Stability:

OK

Accuracy:

< 0.1 mm

Calibrated By: Raven K Feb 17/04.

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161