

APPLICANT : DRS Tactical Systems, Inc.

EQUIPMENT : Rugged Tablet PC

BRAND NAME : DRS Tactical Systems, Inc.

: X7 MODEL NAME

FCC ID : UGLGOBI2

STANDARD : FCC 47 CFR Part 2 (2.1093)

> **IEEE C95.1-1999** IEEE 1528-2003

FCC OET Bulletin 65 Supplement C (Edition 01-01)

The product was received on Sep. 21, 2010 and completely tested on Sep. 28, 2010. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Roy Wu / Manager

Report No.: FA092105A

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2

Page Number : 1 of 31

Report Issued Date: Oct. 22, 2010

Report No.: FA092105A

Table of Contents

Rev	ision F	listory	. 3
1.	Stater	nent of Compliance	. 4
2.	Admir	nistration Data	. 5
	2.1	Testing Laboratory	. 5
	2.2	Applicant	
	2.3	Manufacturer	
	2.4	Application Details	
3.	Gener	al Information	. 6
	3.1	Description of Device Under Test (DUT)	. 6
	3.2	Product Photos	
	3.3	Applied Standards	
	3.4	Device Category and SAR Limits	
	3.5	Test Conditions	
	0.0	3.5.1 Ambient Condition	
		3.5.2 Test Configuration	
4.	Specif	fic Absorption Rate (SAR)	
••	4.1	Introduction	
	4.2	SAR Definition	
5		Measurement System	
٥.	5.1	E-Field Probe	
	J. I	5.1.1 E-Field Probe Specification	
		5.1.2 E-Field Probe Calibration.	
	5.2	Data Acquisition Electronics (DAE)	
	5.2	Robot	
	5.4	Measurement Server	
	5.5	Phantom	
	5.6	Device Holder	
	5.7	Data Storage and Evaluation	
	5.7	5.7.1 Data Storage	
		5.7.1 Data Storage 5.7.2 Data Evaluation	
	5.8	Test Equipment List	
6		e Simulating Liquids	
		tainty Assessment	
о.		Measurement Evaluation	
	8.1 8.2		
	_	System Setup	
^	8.3	Validation Results	
		esting Positionrement Procedures	
10.			
	10.1	Spatial Peak SAR Evaluation	
	10.2	Area & Zoom Scan Procedures	
	10.3	Volume Scan Procedures	
	10.4	SAR Averaged Methods	
44	10.5	Power Drift Monitoring	
11.		Conducted Down (United Day)	
	11.1	Conducted Power (Unit: dBm)	
40	11.2	Test Records for Body SAR Test	
12.	Retere	ences	J I
Δnn	andiv	A. Plots of System Performance Check	
		B. Plots of SAR Measurement	
		C. DASY Calibration Certificate	
		D. Product Photos	
		D. Floduct Fliotos F. Tast Satur Photos	

Appendix F. FCC 3G SAR Measurement Procedures for WCDMA Appendix G. FCC 3G SAR Measurement Procedures for CDMA2000

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 2 of 31
Report Issued Date : Oct. 22, 2010

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE	
FA092105A	Rev. 01	Initial issue of report	Oct. 15, 2010	
FA092105A	Rev. 02	Revise FCC ID	Oct. 22, 2010	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 3 of 31
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for DRS Tactical Systems, Inc. Rugged Tablet PC DRS Tactical Systems, Inc. X7 are as follows (with expanded uncertainty 21.4 % for 300 MHz to 3 GHz).

Band	Position	SAR _{1g} (W/kg)
GSM850	Body	0.547
GSM1900	Body	0.708
WCDMA Band V	Body	0.479
WCDMA Band II	Body	1.35
CDMA2000 BC0	Body	0.463
CDMA2000 BC1	Body	1.09

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (Edition 01-01).

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2

Page Number : 4 of 31 Report Issued Date: Oct. 22, 2010

Report No.: FA092105A

2. Administration Data

2.1 Testing Laboratory

Test Site	SPORTON INTERNATIONAL INC.			
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: +886-3-327-3456 FAX: +886-3-328-4978			

2.2 Applicant

Company Name	DRS Tactical Systems, Inc.				
Address	1110 West Hibiscus Blvd., Melbourne FL 32901 USA				

2.3 Manufacturer

Company Name	DRS Tactical Systems, Inc.
Address	1110 West Hibiscus Blvd., Melbourne FL 32901 USA

2.4 Application Details

Date of Receipt of Application	Sep. 21, 2010
Date of Start during the Test	Sep. 28, 2010
Date of End during the Test	Sep. 28, 2010

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 5 of 31
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

3. General Information

3.1 <u>Description of Device Under Test (DUT)</u>

Product Feature & Specification					
DUT Type	Rugged Tablet PC				
Brand Name	DRS Tactical Systems, Inc.				
Model Name	X7				
FCC ID	UGLGOBI2				
	GSM850 : 824 MHz ~ 849 MHz				
	GSM1900 : 1850 MHz ~ 1910 MHz				
Ty Fraguency	WCDMA Band V: 824 MHz ~ 849 MHz				
Tx Frequency	WCDMA Band II: 1850 MHz ~ 1910 MHz				
	CDMA2000 BC0 : 824 MHz ~ 849 MHz				
	CDMA2000 BC1 : 1850 MHz ~ 1910 MHz				
	GSM850 : 869 MHz ~ 894 MHz				
	GSM1900 : 1930 MHz ~ 1990 MHz				
Div Francisco	WCDMA Band V: 869 MHz ~ 894 MHz				
Rx Frequency	WCDMA Band II: 1930 MHz ~ 1990 MHz				
	CDMA2000 BC0 : 869 MHz ~ 894 MHz				
	CDMA2000 BC1 : 1930 MHz ~ 1990 MHz				
	GSM850 : 31.64 dBm				
	GSM1900 : 29.27 dBm				
Maximum Quantu Bayyar ta Antanna	WCDMA Band V : 24.64 dBm				
Maximum Output Power to Antenna	WCDMA Band II: 25.04 dBm				
	CDMA2000 BC0 : 24.43 dBm				
	CDMA2000 BC1 : 24.59 dBm				
Antenna Type	PIFA Antenna				
HW Version	DVT2				
SW Version	V0.09				
	GSM / GPRS : GMSK				
	EDGE: 8PSK				
Type of Modulation	WCDMA: QPSK				
i ype or wodulation	HSDPA: QPSK / 16QAM				
	HSUPA: BPSK				
	CDMA2000 : QPSK				
DUT Stage	Identical Prototype				

Note: This DUT supports (E)GPRS multi-slot class 10 (max. 2 uplink, 4 downlink, total 5 slots). It is class B device and it can't operate in DTM. Therefore, this DUT can't transmit voice (CS) and data (PS) simultaneously.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 6 of 31
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

List of Accessory:

Specification of Accessory					
AC Adoptor	Brand Name	Delta			
AC Adapter	Model Name	ADP-40PH BB			
Dottory.	Model Name	X7			
Battery	Power Rating	7.5 Vdc, 5900mAh (44.6wh)			
WWAN Module	Brand Name	Qualcomm			
WWWAN WIOdule	Model Name	Gobi2000			
WLAN Module	Brand Name	Intel 6200			
WLAN Wodule	Model Name	622ANHMW			
Bluetooth Module	Brand Name	LiteOn			
Biuelooth Module	Model Name	WB112B			

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

3.2 Product Photos

Please refer to Appendix D.

3.3 Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- IEEE C95.1-1999
- IEEE 1528-2003
- FCC OET Bulletin 65 Supplement C (Edition 01-01)
- FCC KDB 447498 D01 v04
- FCC KDB 941225 D01 v02
- FCC KDB 941225 D03 v01
- FCC KDB 941225 D04 v01

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 7 of 31
Report Issued Date : Oct. 22, 2010

Report No.: FA092105A

3.5 Test Conditions

Ambient Condition 3.5.1

Ambient Temperature	20 to 24 ℃
Humidity	< 60 %

Report No.: FA092105A

3.5.2 **Test Configuration**

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT. The DUT was set from the emulator to radiate maximum output power during all tests.

For WWAN SAR testing, the DUT is in GPRS or WCDMA or CDMA2000 link mode.

In general, the crest factor is 8.3 for GSM and GPRS/EDGE multi-slot class 8, 4 for GPRS/EDGE multi-slot class 10, and 1 for CDMA2000/WCDMA/HSDPA/HSUPA.

For GSM/GPRS/EDGE body SAR testing, the DUT was set in GPRS multi-slot class 10 with 2 uplink slots due to maximum source-based time-averaged output power as following table:

Source-Based Time-Averaged Power									
Band		GSM850		GSM1900					
Channel	128	189	251	512	661	810			
GPRS 8 (1 Uplink)	22.64	22.57	22.41	20.05	20.26	20.27			
GPRS 10 (2 Uplink)	<mark>25.59</mark>	25.53	25.38	22.94	23.13	<mark>23.24</mark>			
EDGE 8 (1 Uplink)	18.18	18.09	17.93	16.54	16.73	16.83			
EDGE 10 (2 Uplink)	21.14	21.08	20.91	19.49	19.69	19.82			

Note:

The source-based time-averaged power is linearly scaled the maximum burst averaged power based on time slots. The calculated method are shown as below:

Source based time averaged power = Maximum burst averaged power (1 Uplink) - 9 dB

Source based time averaged power = Maximum burst averaged power (2 Uplink) - 6 dB

The maximum burst averaged power can be referred to section 11.1 of this report.

<Maximum SAR list for each band and position>

	GSM 850	GSM 1900	WCDMA Band V	WCDMA Band II	CDMA BC0	CDMA BC1	802.11b/g	802.11a	Max. SAR Summation
Primary Landscape	0.110	0.150	0.097	0.136	0.081	<mark>0.199</mark>	0.00525	0	0.20
Bottom (Air Gap)	0.547	0.708	0.479	<mark>1.35</mark>	0.463	1.09	0.070	0.025	1.42

Note: The maximum SAR summation is calculated based on the same configuration and test position.

According KDB 447498, the simultaneous transmission SAR for WWAN and WLAN was not required, because the SAR summation is less than 1.6 W/kg. WWAN / Bluetooth simultaneous transmission SAR are also not required because the Bluetooth power (0.78 dBm) is less than 60/f (13.8 dBm).

SPORTON INTERNATIONAL INC.

FCC ID: UGLGOBI2

Page Number : 8 of 31 TEL: 886-3-327-3456 Report Issued Date: Oct. 22, 2010 FAX: 886-3-328-4978 Report Version : Rev. 02

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 9 of 31
Report Issued Date : Oct. 22, 2010

: Rev. 02

Report Version

Report No. : FA092105A

5. SAR Measurement System

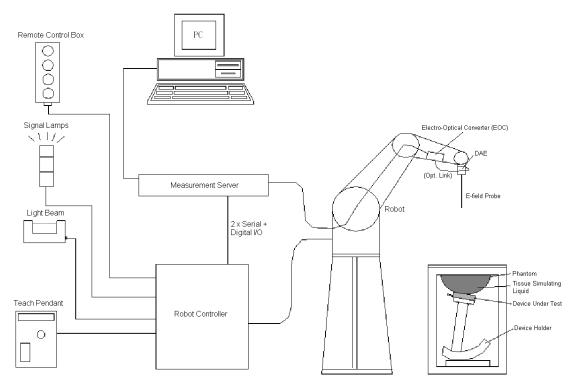


Fig 5.1 SPEAG DASY4 or DASY5 System Configurations

The DASY4 or DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY4 or DASY5 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- > Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 10 of 31
Report Issued Date : Oct. 22, 2010

5.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 E-Field Probe Specification

<ET3DV6>

<e13dv0></e13dv0>			
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Frequency	10 MHz to 3 GHz; Linearity: ± 0.2 dB		
Directivity	± 0.2 dB in HSL (rotation around probe axis)± 0.4 dB in HSL (rotation normal to probe axis)		
Dynamic Range	5 μ W/g to 100 mW/g; Linearity: \pm 0.2 dB		
Dimensions	Overall length: 330 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm	Fig 5.2 Photo	o of ET3DV6

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core		
	Built-in shielding against static charges		
	PEEK enclosure material (resistant to		
	organic solvents, e.g., DGBE)		
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB		
Directivity	± 0.3 dB in HSL (rotation around probe		1
	axis)		
	± 0.5 dB in tissue material (rotation		3014
	normal to probe axis)		•
Dynamic Range	10 μW/g to 100 mW/g; Linearity: ± 0.2 dB		
	(noise: typically < 1 μW/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm)		
	Tip diameter: 2.5 mm (Body: 12 mm)		
	Typical distance from probe tip to dipole		
	centers: 1 mm		
		Fig 5.3	Photo of EX3DV4

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 11 of 31
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

Report No.: FA092105A

5.1.2 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

5.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.4 Photo of DAE

5.3 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90BL; DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB; DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability ±0.035 mm)
- > High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Fig 5.6 **Photo of DASY5**

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2

Page Number : 12 of 31 Report Issued Date: Oct. 22, 2010 Report Version : Rev. 02

5.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128 MB), RAM (DASY4: 64 MB, DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Report No.: FA092105A

Fig 5.7 Photo of Server for DASY4

Fig 5.8 Photo of Server for DASY5

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 13 of 31
Report Issued Date : Oct. 22, 2010

5.5 Phantom

<SAM Twin Phantom>

SAW TWIII FIIalitoiii>		
Shell Thickness	2 ± 0.2 mm;	-4
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	THE THE
Dimensions	Length: 1000 mm; Width: 500 mm;	
	Height: adjustable feet	<u> </u>
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
		-
		Fig 5.9 Photo of SAM Phantom
		1 19 313 1 11313 01 07 111 1 1141110

Report No.: FA092105A

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	Fig 5.10 Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Page Number

Report Version

: 14 of 31

: Rev. 02

Report Issued Date: Oct. 22, 2010

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2

5.6 Device Holder

<Device Holder for SAM Twin Phantom>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig 5.11 Device Holder

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 15 of 31
Report Issued Date : Oct. 22, 2010

Report No.: FA092105A

Report No.: FA092105A

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

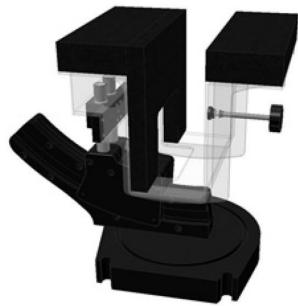


Fig 5.12 **Laptop Extension Kit**

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2

: 16 of 31 Page Number Report Issued Date: Oct. 22, 2010

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2}

Conversion factor
 Diode compression point
 Frequency
 ConvF_i
 dcp_i
 f

Device parameters: - Frequency f
- Crest factor cf

Media parameters : - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 17 of 31
Report Issued Date : Oct. 22, 2010

: Rev. 02

Report Version

The formula for each channel can be given as :

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$

Report No.: FA092105A

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

$$\text{E-field Probes}: E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes :
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Page Number

Report Version

: 18 of 31

: Rev. 02

Report Issued Date: Oct. 22, 2010

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2

5.8 Test Equipment List

Manustantona	Name of Emilian and	T (0.01 - 1	Onelal Namelan	Calib	Calibration		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date		
SPEAG	Dosimetric E-Field Probe	ET3DV6	1787	May 18, 2010	May 17, 2011		
SPEAG	Dosimetric E-Field Probe	ET3DV6	1788	Sep. 21, 2010	Sep. 20, 2011		
SPEAG	Dosimetric E-Field Probe	EX3DV4	3731	Jul. 16, 2010	Jul. 15, 2011		
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 22, 2010	Mar. 21, 2012		
SPEAG	900MHz System Validation Kit	D900V2	190	Jul. 21, 2009	Jul. 20, 2011		
SPEAG	1800MHz System Validation Kit	D1800V2	2d076	Jul. 20, 2009	Jul. 19, 2011		
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 23, 2010	Mar. 22, 2012		
SPEAG	2000MHz System Validation Kit	D2000V2	1010	Sep. 22, 2010	Sep. 21, 2012		
SPEAG	2300MHz System Validation Kit	D2300V2	1006	Sep. 24, 2009	Sep. 23, 2011		
SPEAG	2450MHz System Validation Kit	D2450V2	736	Jul. 20, 2009	Jul. 19, 2011		
SPEAG	2600MHz System Validation Kit	D2600V2	1008	Sep. 24, 2009	Sep. 23, 2011		
SPEAG	3500MHz System Validation Kit	D3500V2	1014	Sep. 17, 2009	Sep. 16, 2011		
SPEAG	5GHz System Validation Kit	D5GHzV2	1006	Jan. 21, 2010	Jan. 20, 2012		
SPEAG	Data Acquisition Electronics	DAE3	577	Aug. 18, 2010	Aug. 17, 2011		
SPEAG	Data Acquisition Electronics	DAE4	778	Sep. 20, 2010	Sep. 19, 2011		
SPEAG	Device Holder	N/A	N/A	NCR	NCR		
SPEAG	SAM Phantom	QD 000 P40 C	TP-1303	NCR	NCR		
SPEAG	SAM Phantom	QD 000 P40 C	TP-1383	NCR	NCR		
SPEAG	SAM Phantom	QD 000 P40 C	TP-1446	NCR	NCR		
SPEAG	SAM Phantom	QD 000 P40 C	TP-1478	NCR	NCR		
SPEAG	ELI4 Phantom	QD 0VA 001 BB	1026	NCR	NCR		
SPEAG	ELI4 Phantom	QD 0VA 001 BA	1029	NCR	NCR		
Agilent	PNA Series Network Analyzer	E8358A	US40260131	May 06, 2010	May 05, 2011		
Agilent	Wireless Communication Test Set	E5515C	MY48360820	Jan. 12, 2010	Jan. 11, 2012		
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Feb. 16, 2009	Feb. 15, 2011		
R&S	Universal Radio Communication Tester	CMU200	117995	Mar. 19, 2009	Mar. 18, 2011		
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR		
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR		
AR	Power Amplifier	5S1G4M2	0328767	NCR	NCR		
R&S	Spectrum Analyzer	FSP7	101131	Mar. 05, 2010	Mar. 04, 2011		

Table 5.1 Test Equipment List

Note: The calibration certificate of DASY can be referred to appendix C of this report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 19 of 31
Report Issued Date : Oct. 22, 2010

Report No.: FA092105A

6. <u>Tissue Simulating Liquids</u>

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2.

Report No.: FA092105A

Fig 6.1 Photo of Liquid Height for Head SAR

Fig 6.2 Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(ε _r)
For Head								
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
				For Body				
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7

Table 6.1 Recipes of Tissue Simulating Liquid

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2

Page Number : 20 of 31 Report Issued Date: Oct. 22, 2010

Report No.: FA092105A

The following table gives the targets for tissue simulating liquid.

Frequency (MHz)	Liquid Type	Conductivity (σ)	±5% Range	Permittivity (ε _r)	±5% Range
835	Head	0.90	0.86 ~ 0.95	41.5	39.4 ~ 43.6
900	Head	0.97	0.92 ~ 1.02	41.5	39.4 ~ 43.6
1800, 1900, 2000	Head	1.40	1.33 ~ 1.47	40.0	38.0 ~ 42.0
2450	Head	1.80	1.71 ~ 1.89	39.2	37.2 ~ 41.2
835	Body	0.97	0.92 ~ 1.02	55.2	52.4 ~ 58.0
900	Body	1.05	1.00 ~ 1.10	55.0	52.3 ~ 57.8
1800, 1900, 2000	Body	1.52	1.44 ~ 1.60	53.3	50.6 ~ 56.0
2450	Body	1.95	1.85 ~ 2.05	52.7	50.1 ~ 55.3

Table 6.2 Targets of Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

The following table shows the measuring results for simulating liquid.

Frequency (MHz)	Liquid Type	Temperature (°C)	Conductivity (σ)	Permittivity (ε _r)	Measurement Date
835	Body	21.5	0.993	54.7	Sep. 28, 2010
1900	Body	21.3	1.52	53.6	Sep. 28, 2010

Table 6.3 Measuring Results for Simulating Liquid

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 21 of 31
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

Table 7.1 Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 7.2.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 22 of 31
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

⁽b) κ is the coverage factor

CC SAR Test Report Report No.: FA092	105A
--------------------------------------	------

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Standard Uncertainty (1g)
Measurement System		-		-	
Probe Calibration	5.5	Normal	1	1	± 5.5 %
Axial Isotropy	4.7	Rectangular	√3	0.7	± 1.9 %
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	± 3.9 %
Boundary Effects	1.0	Rectangular	√3	1	± 0.6 %
Linearity	4.7	Rectangular	√3	1	± 2.7 %
System Detection Limits	1.0	Rectangular	√3	1	± 0.6 %
Readout Electronics	0.3	Normal	1	1	± 0.3 %
Response Time	0.8	Rectangular	√3	1	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	± 1.5 %
RF Ambient Noise	3.0	Rectangular	√3	1	± 1.7 %
RF Ambient Reflections	3.0	Rectangular	√3	1	± 1.7 %
Probe Positioner	0.4	Rectangular	√3	1	± 0.2 %
Probe Positioning	2.9	Rectangular	√3	1	± 1.7 %
Max. SAR Eval.	1.0	Rectangular	√3	1	± 0.6 %
Test Sample Related					
Device Positioning	2.9	Normal	1	1	± 2.9 %
Device Holder	3.6	Normal	1	1	± 3.6 %
Power Drift	5.0	Rectangular	√3	1	± 2.9 %
Phantom and Setup					
Phantom Uncertainty	4.0	Rectangular	√3	1	± 2.3 %
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	± 1.8 %
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	± 1.6 %
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	± 1.7 %
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	± 1.5 %
Combined Standard Uncertainty					
Coverage Factor for 95 %					K = 2
Expanded Uncertainty					± 21.4 %

Table 7.2 Uncertainty Budget of DASY for frequency range 300 MHz to 3 GHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 23 of 31
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

Report No.: FA092105A

8. SAR Measurement Evaluation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

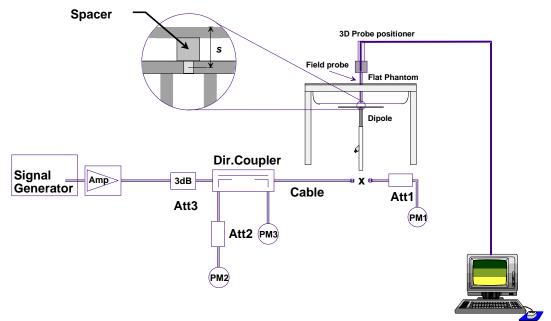


Fig 8.1 System Setup for System Evaluation

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 24 of 31
Report Issued Date : Oct. 22, 2010

- - 1. Signal Generator
 - 2. Amplifier
 - 3. Directional Coupler
 - 4. Power Meter
 - 5. Calibrated Dipole

The output power on dipole port must be calibrated to 20 dBm (100 mW) before dipole is connected.

Report No.: FA092105A

: 25 of 31

: Rev. 02

Report Version

Fig 8.2 Photo of Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Measurement Date	Frequency (MHz)	Targeted SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	Deviation (%)
Sep. 28, 2010	835	9.82	9.42	-4.07
Sep. 28, 2010	1900	40.00	39.50	-1.25

Table 8.1 Target and Measurement SAR after Normalized

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456 Report Issued Date: Oct. 22, 2010

FAX: 886-3-328-4978 FCC ID: UGLGOBI2

Report No.: FA092105A

9. **DUT Testing Position**

This DUT was tested in two different positions. They are bottom of the DUT and Primary Landscape. In these positions, the surface of DUT is touching with phantom 0 cm gap. Please refer to Appendix E for the test setup photos.

Note: This device has only one screen orientation which is allowed for Primary Landscape only.

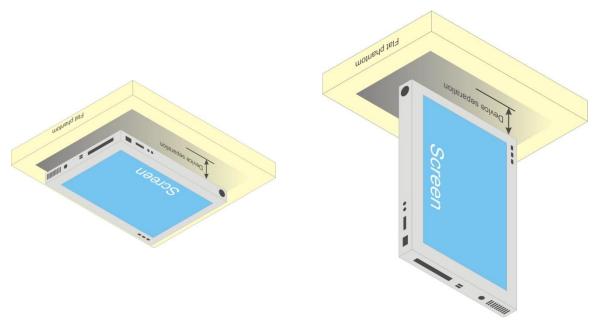


Fig 9.1 Illustration for Lap-touching Position

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 26 of 31
Report Issued Date : Oct. 22, 2010

10. Measurement Procedures

The measurement procedures are as follows:

- (a) Link DUT with base station emulator in highest power channel
- (b) Set base station emulator to allow DUT to radiate maximum output power
- (c) Measure output power through RF cable and power meter
- (d) Place the DUT in the positions described in the last section
- (e) Set scan area, grid size and other setting on the DASY software
- (f) Taking data for the middle channel on each testing position
- (g) Find out the largest SAR result on these testing positions of each band
- (h) Measure SAR results for other channels in worst SAR testing position if the SAR of the highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 27 of 31
Report Issued Date : Oct. 22, 2010

Report No.: FA092105A

10.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

10.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the DUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

10.4 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

10.5 Power Drift Monitoring

All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 28 of 31
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

11. SAR Test Results

11.1 Conducted Power (Unit: dBm)

Band	GSM850			GSM1900		
Channel	128	189	251	512	661	810
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8
GPRS 8 (1 Uplink)	31.64	31.57	31.41	29.05	29.26	29.27
GPRS 10 (2 Uplink)	31.59	31.53	31.38	28.94	29.13	29.24
EDGE 8 (1 Uplink)	27.18	27.09	26.93	25.54	25.73	25.83
EDGE 10 (2 Uplink)	27.14	27.08	26.91	25.49	25.69	25.82

Band	WCDMA Band V			WCDMA Band II		
Channel	4132	4182	4233	9262	9400	9538
Frequency (MHz)	826.4	836.4	846.6	1852.4	1880.0	1907.6
RMC 12.2K	24.64	24.56	24.46	24.47	25.04	24.21
HSDPA Subtest-1	24.53	24.35	24.14	24.36	24.97	24.01
HSDPA Subtest-2	24.13	24.21	24.03	24.21	24.90	23.82
HSDPA Subtest-3	23.79	23.66	23.41	23.87	24.42	23.45
HSDPA Subtest-4	23.56	23.58	23.36	23.86	24.41	23.37
HSUPA Subtest-1	24.23	24.04	24.18	24.35	24.31	23.23
HSUPA Subtest-2	22.48	22.04	22.24	22.76	22.81	22.42
HSUPA Subtest-3	22.69	22.53	22.58	23.42	23.68	22.97
HSUPA Subtest-4	22.81	22.48	22.42	22.84	23.64	22.43
HSUPA Subtest-5	24.48	23.78	24.19	24.33	24.21	23.17

Band	CDMA2000 BC0			CDMA2000 BC1		
Channel	1013	384	777	25	600	1175
Frequency (MHz)	824.70	836.52	848.31	1851.25	1880.00	1908.75
1xRTT RC1+SO55	24.28	24.32	24.21	24.11	24.55	23.68
1xRTT RC3+SO55	24.22	24.43	24.20	24.09	24.51	23.70
1xRTT RC3+SO32 (FCH)	24.22	24.23	24.16	24.09	24.59	23.65
1xRTT RC3+SO32 (SCH)	24.27	24.36	24.22	24.16	24.56	23.69
1xEVDO RTAP 153.6	24.17	24.23	24.14	23.97	24.45	23.51
1xEVDO RETAP 4096	23.80	23.99	23.94	23.74	24.17	23.38

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 29 of 31
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

11.2 Test Records for Body SAR Test

Plot No.	Band	Mode	Test Position	Separation Distance (cm)	Channel	SAR _{1g} (W/kg)
#01	GSM850	GPRS10	Bottom of the DUT	0	128	<mark>0.547</mark>
#02	GSM850	GPRS10	Primary Landscape	0	128	0.110
#03	GSM1900	GPRS10	Bottom of the DUT	0	810	<mark>0.708</mark>
#04	GSM1900	GPRS10	Primary Landscape	0	810	0.150
#11	WCDMA Band V	RMC12.2k	Bottom of the DUT	0	4132	<mark>0.479</mark>
#12	WCDMA Band V	RMC12.2k	Primary Landscape	0	4132	0.097
#05	WCDMA Band II	RMC12.2k	Bottom of the DUT	0	9400	<mark>1.35</mark>
#06	WCDMA Band II	RMC12.2k	Primary Landscape	0	9400	0.136
#13	WCDMA Band II	RMC12.2k	Bottom of the DUT	0	9262	1.03
#14	WCDMA Band II	RMC12.2k	Bottom of the DUT	0	9538	0.971
#21	CDMA2000 BC0	RTAP 153.6K	Bottom of the DUT	0	384	<mark>0.463</mark>
#22	CDMA2000 BC0	RTAP 153.6K	Primary Landscape	0	384	0.081
#07	CDMA2000 BC1	RTAP 153.6K	Bottom of the DUT	0	600	<mark>1.09</mark>
#08	CDMA2000 BC1	RTAP 153.6K	Primary Landscape	0	600	0.199
#09	CDMA2000 BC1	RTAP 153.6K	Bottom of the DUT	0	25	0.861
#10	CDMA2000 BC1	RTAP 153.6K	Bottom of the DUT	0	1175	0.655

Note:

- 1. For GPRS/EDGE body SAR testing, the DUT was set in GPRS multi-slot class 10 with 2 uplink slots due to maximum source-based time-averaged output power.
- 2. SAR for 1xRTT is not required because its power is less than 1/4 dB higher than EVDO.
- 2. Test Engineer: Andy He, Robert Liu, and A-Rod Chen

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : 30 of 31
Report Issued Date : Oct. 22, 2010

Report No.: FA092105A

12. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No.: FA092105A

- [2] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", June 2001
- [5] SPEAG DASY System Handbook
- [6] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007
- [7] FCC KDB 447498 D01 v04, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", November 2009
- [8] FCC KDB 447498 D02 v02, "SAR Measurement Procedures for USB Dongle Transmitters", November 2009
- [9] FCC KDB 616217 D01 v01r01, "SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens", November 2009
- [10] FCC KDB 616217 D03 v01, "SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers", November 2009
- [11] FCC KDB 648474 D01 v01r05, "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas", September 2008
- [12] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007
- [13] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008
- [14] FCC KDB 941225 D04 v01, "Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode", January 27 2010

 SPORTON INTERNATIONAL INC.
 Page Number
 : 31 of 31

 TEL: 886-3-327-3456
 Report Issued Date
 : Oct. 22, 2010

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID : UGLGOBI2

Appendix A. Plots of System Performance Check

The plots are shown as follows.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : A1 of A1
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2010/9/28

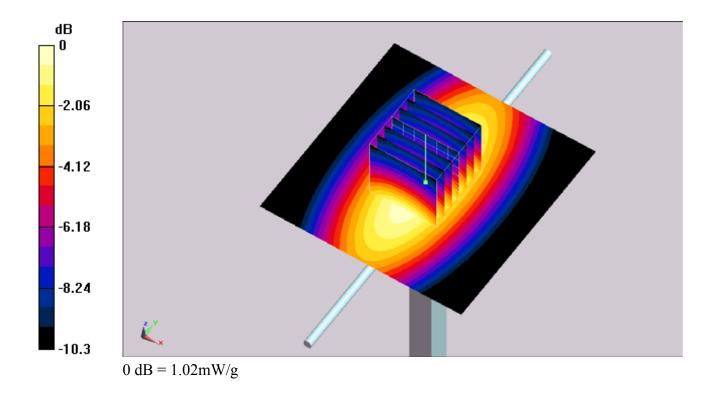
System Check_Body_835MHz_100928

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850_100928 Medium parameters used: f = 835 MHz; $\sigma = 0.993$ mho/m; $\varepsilon_r = 54.7$; $\rho = 1000$

 kg/m^3


Ambient Temperature: 22.5; Liquid Temperature: 21.5

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.12, 6.12, 6.12); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.02 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 33.3 V/m; Power Drift = -0.020 dB Peak SAR (extrapolated) = 1.35 W/kg SAR(1 g) = 0.942 mW/g; SAR(10 g) = 0.620 mW/g Maximum value of SAR (measured) = 1.02 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2010/9/28

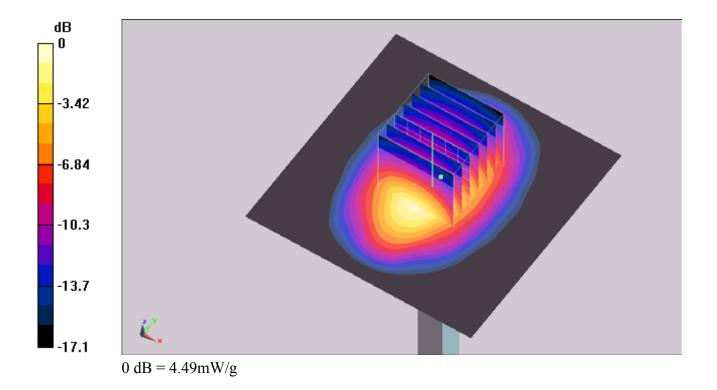
System Check_Body_1900MHz_100928

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900_100928 Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\varepsilon_r = 53.6$; $\rho = 1000$

 kg/m^3


Ambient Temperature: 22.4 ; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.47, 4.47, 4.47); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.6 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.7 V/m; Power Drift = 0.00098 dB Peak SAR (extrapolated) = 6.18 W/kg SAR(1 g) = 3.95 mW/g; SAR(10 g) = 2.13 mW/g Maximum value of SAR (measured) = 4.49 mW/g

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2

Page Number : B1 of B1 Report Issued Date: Oct. 22, 2010

Report No.: FA092105A

Report Version : Rev. 02

#01 GSM850 GPRS10 Bottom 0cm Ch128

DUT: 092105

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:4

Medium: MSL_850_100928 Medium parameters used : f = 824.2 MHz; $\sigma = 0.983$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$

 kg/m^3

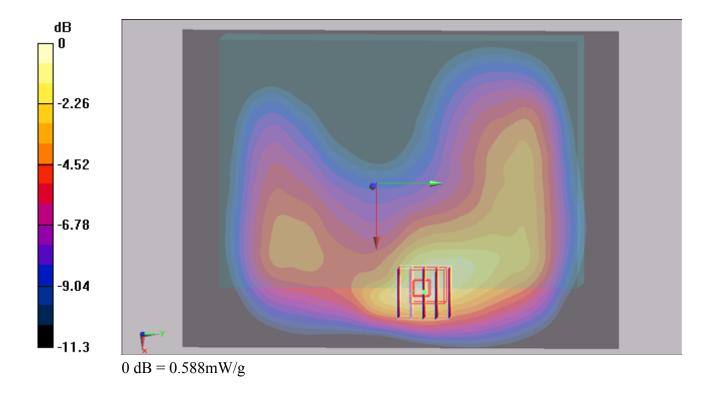
Ambient Temperature: 22.5; Liquid Temperature: 21.5

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.12, 6.12, 6.12); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch128/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.553 mW/g


Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.08 V/m; Power Drift = -0.121 dB

Peak SAR (extrapolated) = 0.818 W/kg

SAR(1 g) = 0.547 mW/g; SAR(10 g) = 0.359 mW/g

Maximum value of SAR (measured) = 0.588 mW/g

#01 GSM850_GPRS10_Bottom_0cm_Ch128_2D

DUT: 092105

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:4

Medium: MSL_850_100928 Medium parameters used: f = 824.2 MHz; $\sigma = 0.983$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.5; Liquid Temperature: 21.5

DASY5 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.12, 6.12, 6.12); Calibrated: 2010/5/18

- Sensor-Surface: 4mm (Mechanical Surface Detection)

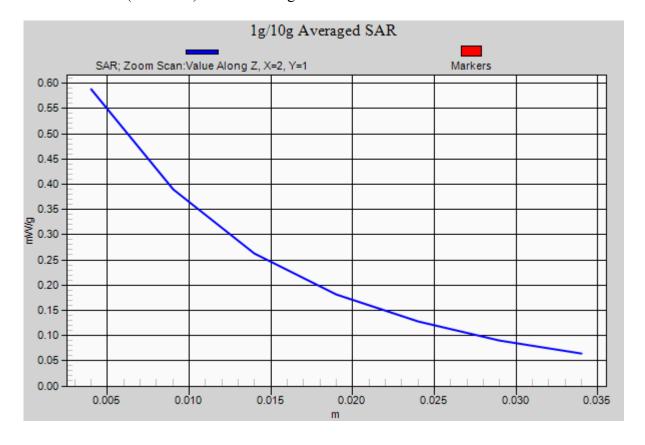
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18

- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029

- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch128/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.553 mW/g


Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.08 V/m; Power Drift = -0.121 dB

Peak SAR (extrapolated) = 0.818 W/kg

SAR(1 g) = 0.547 mW/g; SAR(10 g) = 0.359 mW/g

Maximum value of SAR (measured) = 0.588 mW/g

#02 GSM850_GPRS10_Primary Landscape_0cm_Ch128

DUT: 092105

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:4

Medium: MSL_850_100928 Medium parameters used : f = 824.2 MHz; σ = 0.983 mho/m; ϵ_r = 54.8; ρ = 1000

 kg/m^3

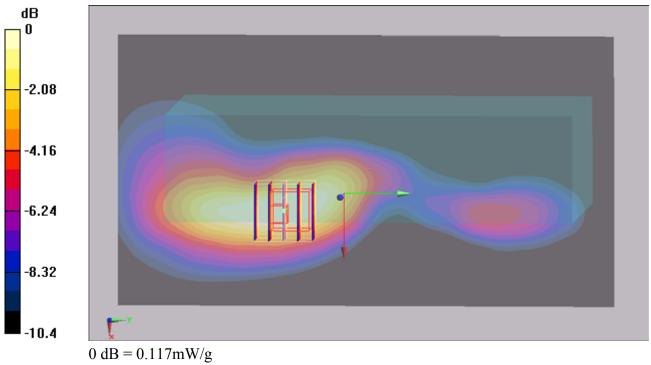
Ambient Temperature: 22.5; Liquid Temperature: 21.5

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.12, 6.12, 6.12); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch128/Area Scan (81x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.125 mW/g


Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.84 V/m; Power Drift = -0.104 dB

Peak SAR (extrapolated) = 0.176 W/kg

SAR(1 g) = 0.110 mW/g; SAR(10 g) = 0.072 mW/g

Maximum value of SAR (measured) = 0.117 mW/g

#03 GSM1900_GPRS10_Bottom_0cm_Ch810

DUT: 092105

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:4

Medium: MSL_1900_100928 Medium parameters used: f = 1910 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.6$; $\rho = 1000$

 kg/m^3

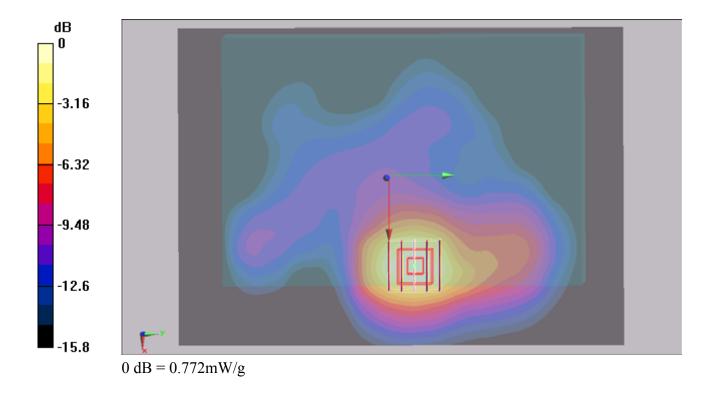
Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.47, 4.47, 4.47); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch810/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.844 mW/g


Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.18 V/m; Power Drift = -0.175 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.708 mW/g; SAR(10 g) = 0.427 mW/g

Maximum value of SAR (measured) = 0.772 mW/g

#03 GSM1900_GPRS10_Bottom_0cm_Ch810_2D

DUT: 092105

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:4

Medium: MSL_1900_100928 Medium parameters used: f = 1910 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.6$; $\rho = 1000$

 kg/m^3

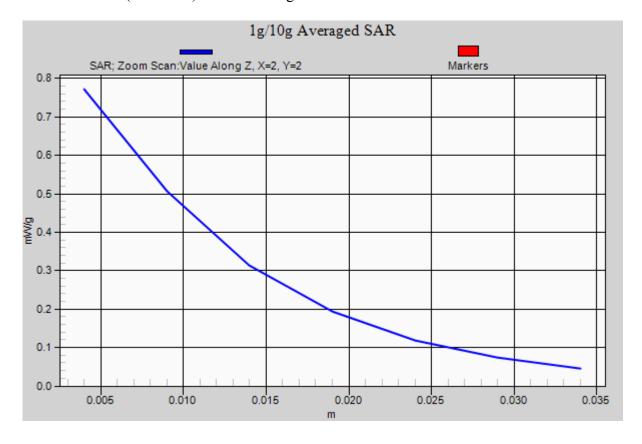
Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.47, 4.47, 4.47); Calibrated: 2010/5/18

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch810/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.844 mW/g


Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.18 V/m; Power Drift = -0.175 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.708 mW/g; SAR(10 g) = 0.427 mW/g

Maximum value of SAR (measured) = 0.772 mW/g

#04 GSM1900 GPRS10 Primary Landscape 0cm Ch810

DUT: 092105

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:4

Medium: MSL_1900_100928 Medium parameters used: f = 1910 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 53.6$; $\rho = 1000$

 kg/m^3

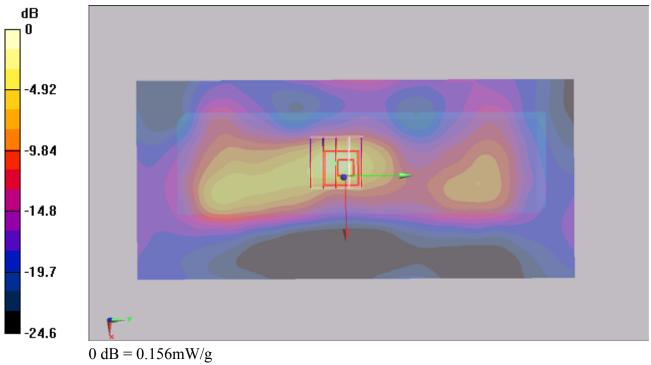
Ambient Temperature: 22.5; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.47, 4.47, 4.47); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch810/Area Scan (61x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.101 mW/g


Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.9 V/m; Power Drift = 0.111 dB

Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.150 mW/g; SAR(10 g) = 0.065 mW/g

Maximum value of SAR (measured) = 0.156 mW/g

#21 CDMA2000 BC0_RTAP 153.6K_Bottom_0cm_Ch384

DUT: 092105

Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium: MSL_850_100928 Medium parameters used: f = 837 MHz; $\sigma = 0.996$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$

 kg/m^3

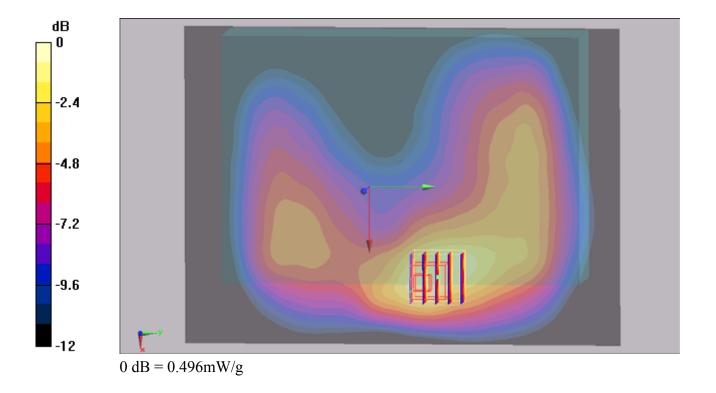
Ambient Temperature: 22.5; Liquid Temperature: 21.5

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.12, 6.12, 6.12); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch384/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.412 mW/g


Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.84 V/m; Power Drift = -0.182 dB

Peak SAR (extrapolated) = 0.707 W/kg

SAR(1 g) = 0.463 mW/g; SAR(10 g) = 0.283 mW/g

Maximum value of SAR (measured) = 0.496 mW/g

#21 CDMA2000 BC0_RTAP 153.6K_Bottom_0cm_Ch384_2D

DUT: 092105

Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium: MSL_850_100928 Medium parameters used: f = 837 MHz; $\sigma = 0.996$ mho/m; $\varepsilon_r = 54.7$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.5; Liquid Temperature: 21.5

DASY5 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.12, 6.12, 6.12); Calibrated: 2010/5/18

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 2010/8/18

- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029

- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch384/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.412 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.84 V/m; Power Drift = -0.182 dB

Peak SAR (extrapolated) = 0.707 W/kg

SAR(1 g) = 0.463 mW/g; SAR(10 g) = 0.283 mW/gMaximum value of SAR (measured) = 0.496 mW/g

> 1g/10g Averaged SAR SAR; Zoom Scan: Value Along Z, X=1, Y=0 Markers 0.50 0.45 0.40 0.35 0.30 ® € 0.25 0.20 0.15 0.10 0.05 0.00 -0.005 0.010 0.015 0.025 0.030 0.020 0.035

#22 CDMA2000 BC0 RTAP 153.6K Primary Landscape 0cm Ch384

DUT: 092105

Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium: MSL_850_100928 Medium parameters used: f = 837 MHz; $\sigma = 0.996$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$

 kg/m^3

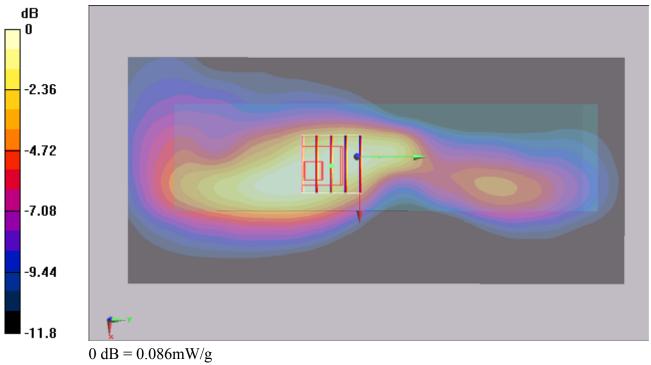
Ambient Temperature: 22.4; Liquid Temperature: 21.5

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.12, 6.12, 6.12); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch384/Area Scan (61x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.094 mW/g


Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.99 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 0.130 W/kg

SAR(1 g) = 0.081 mW/g; SAR(10 g) = 0.056 mW/g

Maximum value of SAR (measured) = 0.086 mW/g

#07 CDMA2000 BC1_RTAP 153.6K_Bottom_0cm_Ch600

DUT: 092105

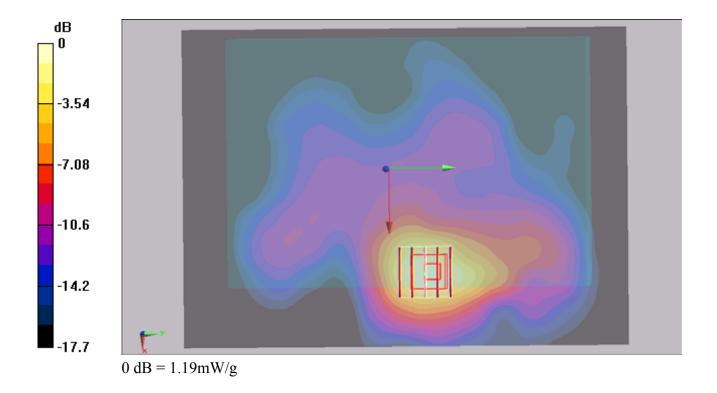
Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900_100928 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:


- Probe: ET3DV6 SN1787; ConvF(4.47, 4.47, 4.47); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch600/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.22 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.56 V/m; Power Drift = 0.135 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.662 mW/gMaximum value of SAR (measured) = 1.19 mW/g

#07 CDMA2000 BC1_RTAP 153.6K_Bottom_0cm_Ch600_2D

DUT: 092105

Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900_100928 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$

 kg/m^3

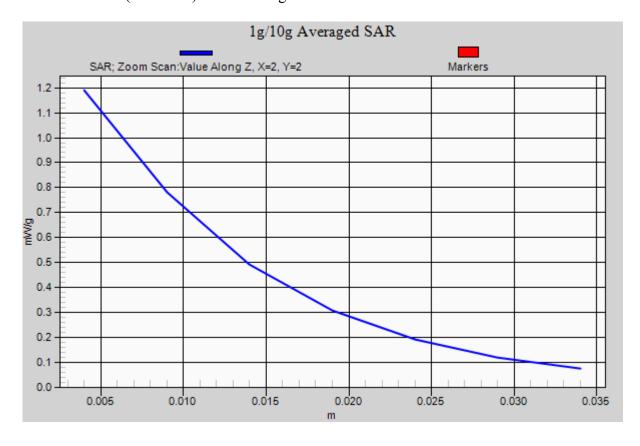
Ambient Temperature: 22.4 ; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.47, 4.47, 4.47); Calibrated: 2010/5/18

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch600/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.22 mW/g


Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.56 V/m; Power Drift = 0.135 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.662 mW/g

Maximum value of SAR (measured) = 1.19 mW/g

#08 CDMA2000 BC1_RTAP 153.6K_Primary Landscape_0cm_Ch600

DUT: 092105

Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900_100928 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$

 kg/m^3

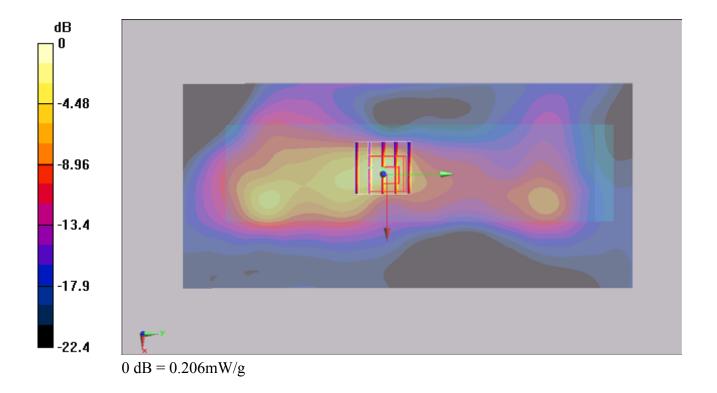
Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.47, 4.47, 4.47); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch600/Area Scan (61x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.152 mW/g


Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.4 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 0.408 W/kg

SAR(1 g) = 0.199 mW/g; SAR(10 g) = 0.092 mW/g

Maximum value of SAR (measured) = 0.206 mW/g

#11 WCDMA V_RMC12.2k_Bottom_0cm_Ch4132

DUT: 092105

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL_850_100928 Medium parameters used : f = 826.4 MHz; $\sigma = 0.985$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$

 kg/m^3

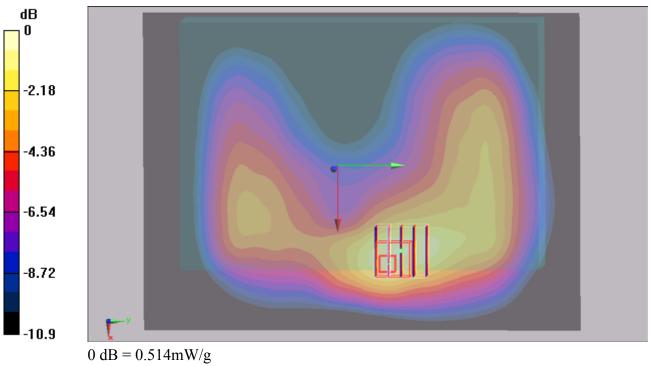
Ambient Temperature: 22.5; Liquid Temperature: 21.5

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.12, 6.12, 6.12); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch4132/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.443 mW/g


Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.86 V/m; Power Drift = -0.111 dB

Peak SAR (extrapolated) = 0.741 W/kg

SAR(1 g) = 0.479 mW/g; SAR(10 g) = 0.308 mW/g

Maximum value of SAR (measured) = 0.514 mW/g

#11 WCDMA V_RMC12.2k_Bottom_0cm_Ch4132_2D

DUT: 092105

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL_850_100928 Medium parameters used: f = 826.4 MHz; $\sigma = 0.985$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.5; Liquid Temperature: 21.5

DASY5 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.12, 6.12, 6.12); Calibrated: 2010/5/18

- Sensor-Surface: 4mm (Mechanical Surface Detection)

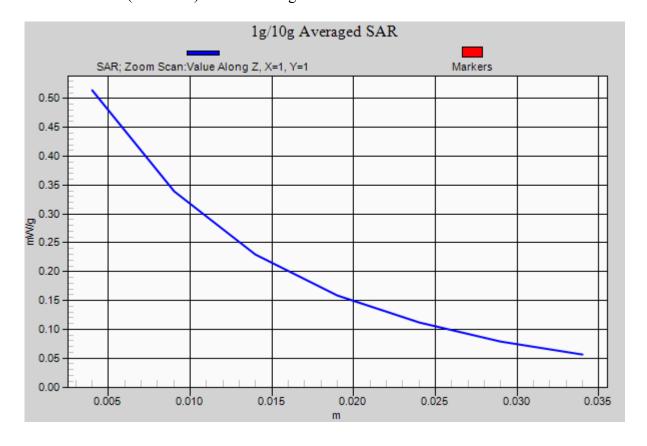
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18

- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029

- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch4132/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.443 mW/g


Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.86 V/m; Power Drift = -0.111 dB

Peak SAR (extrapolated) = 0.741 W/kg

SAR(1 g) = 0.479 mW/g; SAR(10 g) = 0.308 mW/g

Maximum value of SAR (measured) = 0.514 mW/g

#12 WCDMA V_RMC12.2k_Primary Landscape_0cm_Ch4132

DUT: 092105

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL_850_100928 Medium parameters used : f = 826.4 MHz; $\sigma = 0.985$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$

 kg/m^3

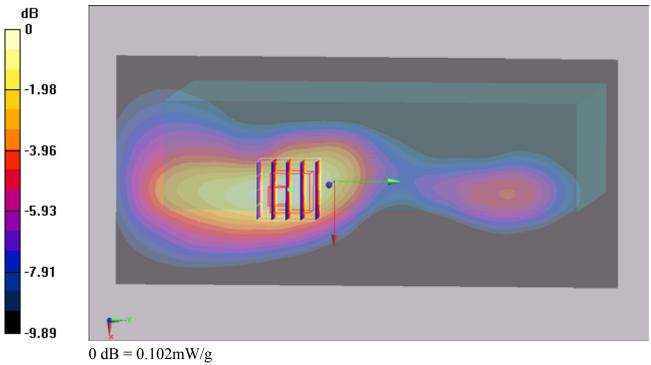
Ambient Temperature: 22.5; Liquid Temperature: 21.5

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.12, 6.12, 6.12); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch4132/Area Scan (61x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.104 mW/g


Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.55 V/m; Power Drift = -0.166 dB

Peak SAR (extrapolated) = 0.150 W/kg

SAR(1 g) = 0.097 mW/g; SAR(10 g) = 0.064 mW/g

Maximum value of SAR (measured) = 0.102 mW/g

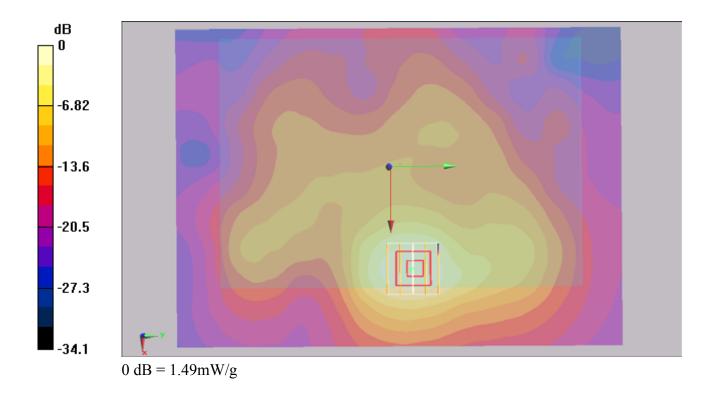
#05 WCDMA II_RMC12.2k_Bottom_0cm_Ch9400

DUT: 092105

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900_100928 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$

 kg/m^3


Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.47, 4.47, 4.47); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch9400/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.57 mW/g

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.18 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 1.98 W/kg SAR(1 g) = 1.35 mW/g; SAR(10 g) = 0.819 mW/g Maximum value of SAR (measured) = 1.49 mW/g

#05 WCDMA II_RMC12.2k_Bottom_0cm_Ch9400_2D

DUT: 092105

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900_100928 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$

 kg/m^3

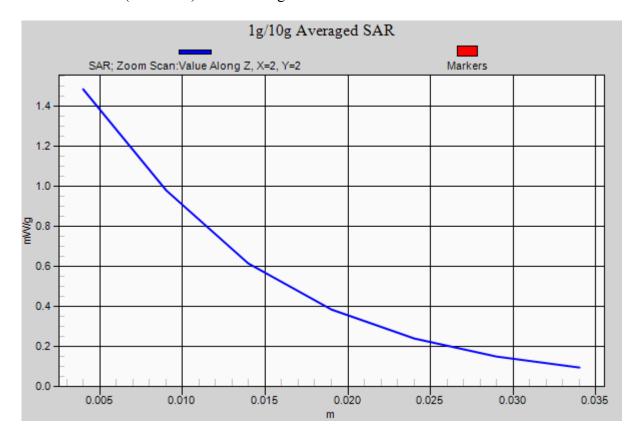
Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.47, 4.47, 4.47); Calibrated: 2010/5/18

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch9400/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.57 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.18 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.98 W/kg

SAR(1 g) = 1.35 mW/g; SAR(10 g) = 0.819 mW/g

Maximum value of SAR (measured) = 1.49 mW/g

#06 WCDMA II RMC12.2k Primary Landscape 0cm Ch9400

DUT: 092105

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900_100928 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.47, 4.47, 4.47); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch9400/Area Scan (51x111x1): Measurement grid: dx=25mm, dy=25mm

Maximum value of SAR (interpolated) = 0.112 mW/g

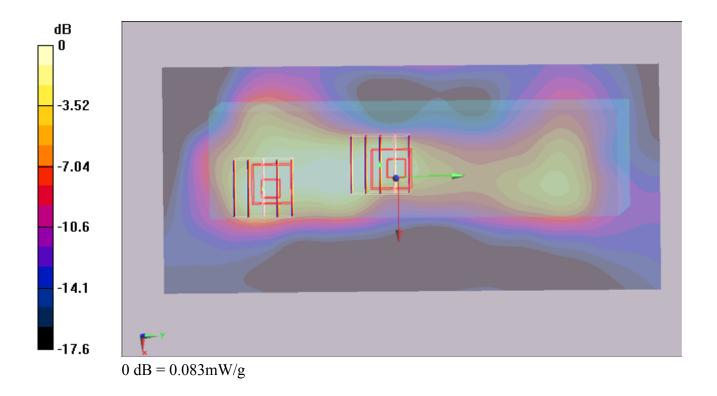
Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.122 dB

Peak SAR (extrapolated) = 0.235 W/kg

SAR(1 g) = 0.136 mW/g; SAR(10 g) = 0.062 mW/g

Maximum value of SAR (measured) = 0.162 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.122 dB

Peak SAR (extrapolated) = 0.123 W/kg

SAR(1 g) = 0.078 mW/g; SAR(10 g) = 0.044 mW/g

Maximum value of SAR (measured) = 0.083 mW/g

FCC SAR Test Report

Appendix C. DASY Calibration Certificate

The DASY calibration certificates are shown as follows.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : C1 of C1
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

Report No.: FA092105A

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Certificate No: D835V2-499_Mar10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE D835V2 - SN: 499 Object QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: March 22, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A US37292783 06-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205_Jun09) Jun-10 DAE4 SN: 601 02-Mar-10 (No. DAE4-601_Mar10) Mar-11 ID# Secondary Standards Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Calibrated by: Dimce fliev Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 22, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-499_Mar10

Page 1 of 9

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-499_Mar10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	Avenue	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 mW / g
SAR normalized	normalized to 1W	9.72 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.71 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 mW / g
SAR normalized	normalized to 1W	6.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.31 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.53 mW / g
SAR normalized	normalized to 1W	10.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.82 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.66 mW / g
SAR normalized	normalized to 1W	6.64 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.49 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω - 3.2 jΩ	
Return Loss	- 28.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω - 5.9 jΩ	
Return Loss	- 24.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,391 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 10, 2003	

DASY5 Validation Report for Head TSL

Date/Time: 22.03.2010 10:17:58

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ mho/m}$; $\varepsilon_r = 42.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009

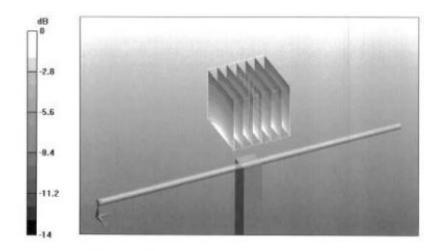
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.5 V/m; Power Drift = 0.00691 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.58 mW/g


Maximum value of SAR (measured) = 2.84 mW/g

0 dB = 2.84 mW/g

Certificate No: D835V2-499_Mar10

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 22.03.2010 14:07:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ mho/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

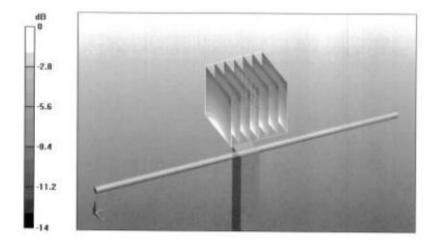
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009

Sensor-Surface: 3mm (Mechanical Surface Detection)

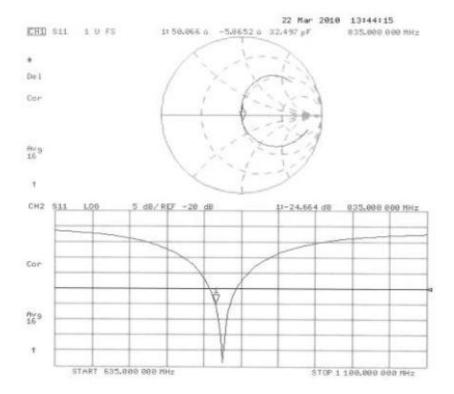
Electronics: DAE4 Sn601; Calibrated: 02.03.2010


Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.6 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 3.73 W/kg SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.66 mW/g


Maximum value of SAR (measured) = 2.94 mW/g

0 dB = 2.94 mW/g

Certificate No: D835V2-499_Mar10

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Certificate No: D1900V2-5d041 Mar10

Accreditation No.: SCS 108

Power sensor HP 8481A US37292783 06-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205_Jun09) Jun-10 DAE4 SN: 601 02-Mar-10 (No. DAE4-601_Mar10) Mar-11 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205_Jun09) Jun-10 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11 Reference Probe ES3DV3 SN: 3205 31-Mar-09 (No. 217-01029) In house check: Oct-11		ERTIFICATE		
Calibration procedure for dipole validation kits March 23, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards December 10	Object	D1900V2 - SN: 5	d041	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards Cover meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Oct-10 Nover ensure PP 8481A US37292783 06-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Interest Probe ES3DV3 SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Neterence Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205_Jun09) Jun-10 DAE4 SN: 601 02-Mar-10 (No. DAE4-601_Mar10) Mar-11 Secondary Standards ID # Check Date (in house) Scheduled Check Name Function Signature Plimote litev Laboratory Technician	Calibration procedure(s)		dure for dipole validation kits	
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards Oct-10	Calibration date:	March 23, 2010		
Calibration Equipment used (M&TE critical for calibration) Calibration Equipment used (M&TE critical for calibration)				
Cal Date (Certificate No.) Scheduled Calibration	All calibrations have been conduc	cted in the closed laborator	ry facility: environment temperature (22 ± 3)°	C and humidity < 70%.
Oct-10	Calibration Equipment used (M&?	TE critical for calibration)		
Oct-10				
Description	Primary Standards	ID#	Cal Date (Cortificate No.)	School and Calibration
ype-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 efference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205_Jun09) Jun-10 AE4 SN: 601 02-Mar-10 (No. DAE4-601_Mar10) Mar-11 econdary Standards ID # Check Date (in house) Scheduled Check ower sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check Oct-11 F generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check Oct-11 etwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check Oct-10 Name Function Signature Olimce Illiev Laboratory Technician				
### SN: 3205	ower meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
AE4 SN: 601 02-Mar-10 (No. DAE4-601_Mar10) Mar-11 accordary Standards ID # Chock Date (in house) Scheduled Check over sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check Oct-01 100005 4-Aug-99 (in house check Oct-09) In house check Oct-01 atwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check Oct-10 Name Function Signature Dimoe Illev Laboratory Technician	ower meter EPM-442A ower sensor HP 8481A	GB37480704 US37292783	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Oct-10 Oct-10
acondary Standards ID # Chock Date (in house) Scheduled Check over sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check Oct-01 100005 4-Aug-99 (in house check Oct-09) In house check Oct-01 100005 18-Oct-01 (in house check Oct-09) In house check Oct-01 100005 18-Oct-01 (in house check Oct-09) In house check Oct-11 100005 18-Oct-01 (in house check Oct-09) In house check Oct-11 100005 18-Oct-01 (in house check Oct-09) 100005 18-Oct-01 (in house check Oct-09) 100006 18-Oct-01 (in house check Oct-09) 10000	ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ope-N mismatch combination	GB37480704 US37292783 SN: 5086 (209)	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Oct-10 Oct-10 Mar-10
WY41092317 18-Oct-02 (in house check Oct-09) In house check Oct-01 100005 4-Aug-99 (in house check Oct-09) In house check Oct-01 In	ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ope-N mismatch combination eference Probe ES3DV3	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-10 Oct-10 Mar-10 Mar-10
WY41092317 18-Oct-02 (in house check Oct-09) In house check Oct-01 Figenerator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check Oct-01 US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check Oct-10 Name Function Signature Dimce Illev Laboratory Technician	ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Figenerator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 (in ho	ower meter EPM-442A ower sensor HP 8481A deference 20 dB Attenuator ype-N mismatch combination deference Probe ES3DV3 AE4	GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11
Name Function Signature Dimoe Illev Laboratory Technician	ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards	GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11
alibrated by: Direct Illev Laboratory Technician D. Tullu	ower meter EPM-442A ower sensor HP 8481A deference 20 dB Attenuator ype-N mismatch combination deference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A	GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check
alibrated by: Dimce Illev Laboratory Technician D. Tüller	Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Power sensor HP 8481A RE generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
AND THE RESIDENCE OF THE PARTY	ower meter EPM-442A ower sensor HP 8481A deference 20 dB Attenuator ype-N mismatch combination deference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
AND THE PROPERTY OF THE PROPER	ower meter EPM-442A cover sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature
	Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature

Certificate No: D1900V2-5d041_Mar10

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters; The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d041 Mar10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm with Space	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.9 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.4 mW / g
SAR normalized	normalized to 1W	41.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.57 mW / g
SAR normalized	normalized to 1W	22.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.1 mW/g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω + 5.9 jΩ	
Return Loss	- 24.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.3 Ω + 5.7 jΩ	
Return Loss	- 23.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 04, 2003	

DASY5 Validation Report for Head TSL

Date/Time: 23.03.2010 12:03:30

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009

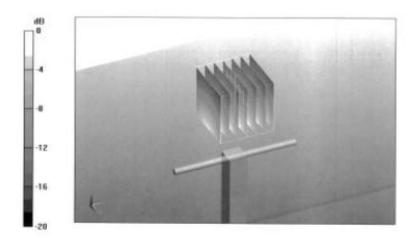
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

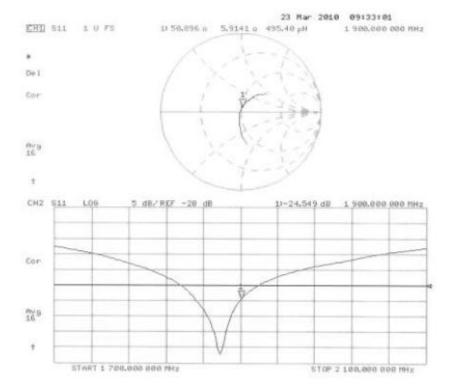
Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.8 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/g


Maximum value of SAR (measured) = 12.7 mW/g

0 dB = 12.7 mW/g

Certificate No: D1900V2-5d041_Mar10

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 17.03.2010 12:43:32

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.58 \text{ mho/m}$; $\epsilon_r = 55$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

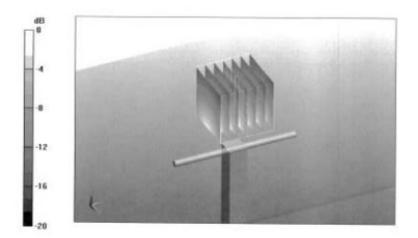
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 26.06,2009

Sensor-Surface: 3mm (Mechanical Surface Detection)

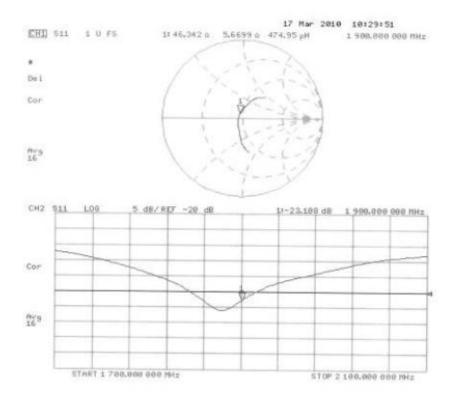
Electronics: DAE4 Sn601; Calibrated: 02.03.2010


Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.1 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.57 mW/g


Maximum value of SAR (measured) = 13.1 mW/g

0 dB = 13.1 mW/g

Certificate No: D1900V2-5d041_Mar10

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8084 Zurich, Switzerland

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suizee d'étalonnage Servizie svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden) Certificate No. DAE3-577_Aug10

	ERTIFICATE	THE RESIDENCE	THE REAL PROPERTY.
Object	DAE3 - SD 000 D	03 AA - SN: 577	
Calibration procedure(s)	QA CAL-06.v22 Calibration proces	dure for the data acquisition e	lectronics (DAE)
Calibration date:	August 18, 2010		Allowership
The measurements and the unce	rtainties with confidence pro	nal standards, which realize the physical shability are given on the following page	s and are part of the certificate.
		facility: environment temperature (22 ±	ay G and humidity < rons.
Calibration Equipment used (M&)	(E critical for calibration)		
	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	ID# SN: 0810278	Cal Date (Certificate No.) 1-Oct-09 (No: 9065)	Scheduled Calibration Oct-10
Keithley Multimeter Type 2001		1-Oct-09 (No: 9065) Check Date (in house)	
Primary Standards Keithley Multimoter Type 2001 Secondary Standards Celibrator Box V1.1	SN: 0810278	1-Oct-09 (No: 9065)	Dai-10
Keithley Multimeter Type 2001 Secondary Standards	SN: 0810278 ID # SE UMS 006 AB 1004	1-Oct-09 (No: 9055) Check Date (in house) 07-Jun-10 (in house check)	Oct-10 Scheduled Check In house check: Jun-11
Keithley Multimeter Type 2001 Secondary Standards Celibrator Box V1.1	SN: 0810278 ID # SE UMS 006 AB 1004 Name	1-Out-09 (No: 9065) Check Date (in house) 07-Jun-10 (in house check) Function	Dos-10 Scheduled Check
Keithley Multimeter Type 2001 Secondary Standards Celibrator Box V1.1	SN: 0810278 ID # SE UMS 006 AB 1004	1-Oct-09 (No: 9055) Check Date (in house) 07-Jun-10 (in house check)	Oct-10 Scheduled Check In house check: Jun-11
Keithley Multimeter Type 2001 Secondary Standards	SN: 0810278 ID # SE UMS 006 AB 1004 Name	1-Out-09 (No: 9065) Check Date (in house) 07-Jun-10 (in house check) Function	Oct-10 Scheduled Check In house check: Jun-11

Certificate No: DAE3-577_Aug10

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatures to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Aug10

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 8.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	×	Y	Z
High Range	404.410 ± 0.1% (k=2)	403.875 ± 0.1% (k=2)	404.306 ± 0.1% (k=2)
Low Range	3.93523 ± 0.7% (k=2)	3.93747 ± 0.7% (k=2)	3.95959 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	237.0°±1°
TOTAL PROPERTY AND THE PROPERTY OF THE PROPERT	

Certificate No: DAE3-577_Aug10

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200002.4	1.01	0.00
Channel X + Input	20001.90	2.00	0.01
Channel X - Input	-19995.45	3.95	-0.02
Channel Y + Input	200000,9	0.34	0.00
Channel Y + Input	20000.24	0.44	0.00
Channel Y - Input	-19999.83	-0.63	0.00
Channel Z + Input	200009.4	-0.37	-0.00
Channel Z + Input	20001.26	1.66	0.01
Channel Z - Input	-19997.92	1.18	-0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.5	1.47	0.07
Channel X + Input	199.54	-0.56	-0.28
Channel X - Input	-200.29	-0.19	0.10
Channel Y + Input	2000.4	0.46	0.02
Channel Y + Input	199.57	-0.43	-0.22
Channel Y - Input	-200.89	-0.99	0.50
Channel Z + Input	2000.3	0.15	0.01
Channel Z + Input	198.91	-1.19	-0.60
Channel Z - Input	-201.38	-1.18	0.59

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	15.30	13,68
	- 200	-12,48	-14.07
Channel Y	200	-6.90	-6.73
	- 200	6.05	5.52
Channel Z	200	-1.44	-1.60
	- 200	-0.02	0.09

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		2.26	0.76
Channel Y	200	3.71		4.37
Channel Z	200	0.70	0.09	-

Certificate No: DAE3-577_Aug10

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15971	16472
Channel Y	15862	15889
Channel Z	16210	16756

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MQ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.16	-1.80	3.19	0.66
Channel Y	-0.57	-1.98	1.29	0.46
Channel Z	-0.97	-1.74	-0.35	0.30

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Voc)	-0.01	-8	-9

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Accreditation No.: SCS 108

Certificate No: ET3-1787_May10

CALIBRATION CERTIFICATE ET3DV6 - SN:1787 Object QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes May 18, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Apr-11 Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) 30-Mar-10 (No. 217-01160) Mar-11 Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013 Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 Secondary Standards Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Calibrated by: Jeton Kastrati Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: May 22, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1787_May10

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1787_May10

Probe ET3DV6

SN:1787

Manufactured: May 28, 2003 Last calibrated: May 26, 2009 Recalibrated: May 18, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1787_May10

DASY/EASY - Parameters of Probe: ET3DV6 SN:1787

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.60	1.79	2.10	± 10.1%
DCP (mV) ^B	92.4	95.5	91.0	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1787 May10

A The uncertainties of NormX,Y,Z do not affect the E-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

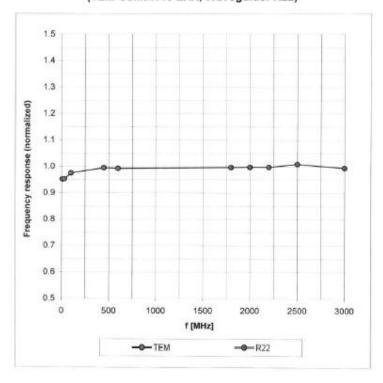
DASY/EASY - Parameters of Probe: ET3DV6 SN:1787

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	41.5 ± 5%	$0.90 \pm 5\%$	6.56	6.56	6.56	0.52	1.96 ± 11.0%
835	± 50 / ± 100	$41.9 \pm 5\%$	$0.89 \pm 5\%$	6.21	6.21	6.21	0.42	2.23 ± 11.0%
1750	$\pm 50 / \pm 100$	40.1 ± 5%	$1.37 \pm 5\%$	5.36	5.36	5.36	0.49	1.18 ± 11.0%
1900	±50/±100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	5.09	5.09	5.09	0.66	2.20 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.50	4.50	4.50	0.99	1.63 ± 11.0%

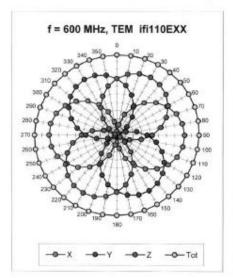
^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

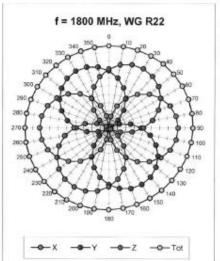
DASY/EASY - Parameters of Probe: ET3DV6 SN:1787

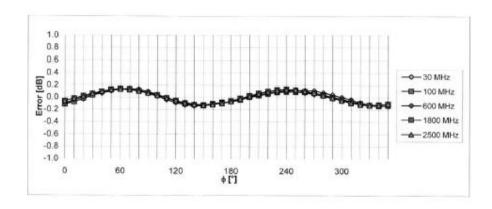

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
750	$\pm 50 / \pm 100$	$55.5 \pm 5\%$	0.96 ± 5%	6.22	6.22	6.22	0.48	2.20 ± 11.0%
835	$\pm 50 / \pm 100$	$55.2 \pm 5\%$	$0.97 \pm 5\%$	6.12	6,12	6.12	0.39	2.45 ± 11.0%
1750	\pm 50 / \pm 100	$53.4 \pm 5\%$	$1.49 \pm 5\%$	4.72	4.72	4.72	0.63	2.90 ± 11.0%
1900	± 50 / ± 100	$53.3 \pm 5\%$	1.52 ± 5%	4.47	4.47	4.47	0.88	2.39 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.03	4.03	4.03	0.99	1.35 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

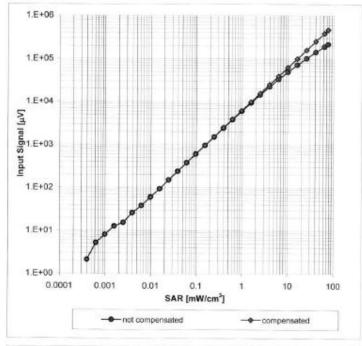

Frequency Response of E-Field

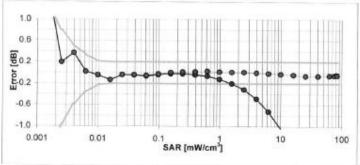

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

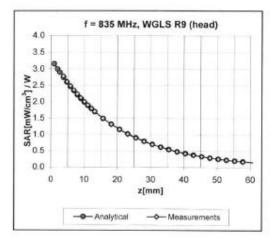


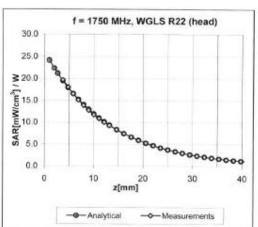

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1787_May10

Dynamic Range f(SAR_{head})

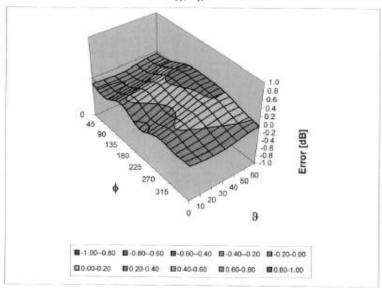
(Waveguide R22, f = 1800 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1787_May10


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

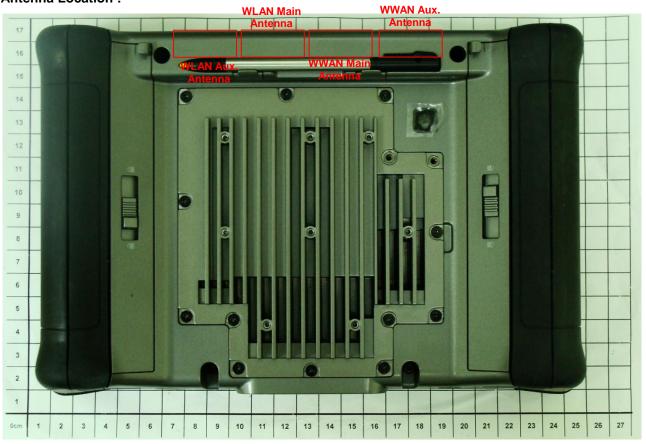
Certificate No: ET3-1787 May10

Page 10 of 11

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Appendix D. Product Photos



TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : D1 of D2
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

FCC SAR Test Report

Antenna Location:

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : D2 of D2
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

Appendix E. Test Setup Photos

Primary Landscape

Bottom of the DUT

Report No.: FA092105A

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2

Page Number : E1 of E1 Report Issued Date: Oct. 22, 2010

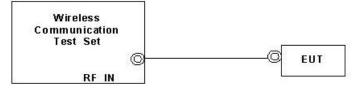
Report Version : Rev. 02

Appendix F. FCC 3G SAR Measurement Procedures

Conducted Output Power:

The EUT was tested according to the requirements of the FCC 3G procedures and the TS 34.121. The EUT'S WCDMA and HSPA function is Release 6 version supporting HSDPA Category 8, and HSUPA Category 5. A detailed analysis of the output power for all WCDMA, HSPDA, and HSPA (HSUPA & HSDPA) modes is provided in the tables below. According to the FCC 3G procedures, handsets with both HSDPA and HSUPA should be tested according to Release 6 HSPA test procedures, and the EUT does not support VOIP function over the HSPA function. Device was tested according to procedure KDB941225 - section Release 6 HSPA Data Devices as documented/evaluated in the following table. Power values for HSPA are less than ¼ dB higher than the basic 12.2 kbps RMC configurations in WCDMA.

	WCDMA SAR Te	est mode -	Conduct	ed Power			
		Ce	II band (8	50)	PC:	S band (19	900)
Mode	Setup	CH4132	CH4182	CH4233	CH9262	CH9400	CH9538
Wiode	Setup	826.4	836.4	846.6	1852.4	1880.0	1907.6
		(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
WCDMA	RMC 12.2Kbps	24.64	24.56	24.46	24.47	25.04	24.21
	Subtest 1	24.53	24.35	24.14	24.36	24.97	24.01
HSDPA	Subtest 2	24.13	24.21	24.03	24.21	24.90	23.82
ПЭДРА	Subtest 3	23.79	23.66	23.41	23.87	24.42	23.45
	Subtest 4	23.56	23.58	23.36	23.86	24.41	23.37
	Subtest 1	24.23	24.04	24.18	24.35	24.31	23.23
	Subtest 2	22.48	22.04	22.24	22.76	22.81	22.42
HSUPA	Subtest 3	22.69	22.53	22.58	23.42	23.68	22.97
	Subtest 4	22.81	22.48	22.42	22.84	23.64	22.43
	Subtest 5	24.48	23.78	24.19	24.33	24.21	23.17


SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : F1 of F7
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

FCC SAR Test Report

WCDMA Setup Configuration:

- a. The EUT was connected to Base Station referred to the drawing of Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting
 - i. Data rates: Varied from RMC 12.2Kbps
 - ii. RMC Test Loop = Loop Mode 1
 - iii. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Setup Configuration

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : F2 of F7
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

HSDPA Setup Configuration:

a. The EUT was connected to Base Station referred to the drawing of Setup Configuration.

Report No.: FA092105A

- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set DeltaACK, DeltaNACK and DeltaCQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βς	β _d	β _d (SF)	βc/βd	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{hs} = 30/15 * β_c , and Δ_{CQI} = 24/15 with β_{hs} = 24/15 * β_c .

Note 3: CM = 1 for β_0/β_d =12/15, $\beta_h s/\beta_c$ =24/15. For all other combinations of DPDCH, DPCCH and HSDPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Setup Configuration

 SPORTON INTERNATIONAL INC.
 Page Number
 : F3 of F7

 TEL: 886-3-327-3456
 Report Issued Date
 : Oct. 22, 2010

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID: UGLGOBI2

FCC SAR Test Report

HSPA (HSUPA & HSPDA) Setup Configuration:

- a. The EUT was connected to Base Station referred to the drawing of Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No.: FA092105A

- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- v. Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.
 Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

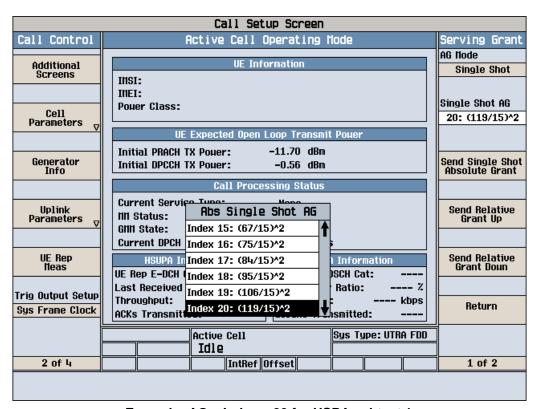
Sub- test	βε	β _d	β _d (SF)	βc/βd	βнs (Note1)	βec	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: CM = 1 for β_c/β_d =12/15, $\beta_h s/\beta_c$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

Note: For details settings in the Agilent 8960 test equipment, please refer to the user guide "HSUPA Measurement Guide with 8960 V7.5.0 Release 7 (2007-06) Ver.: v.02.18"

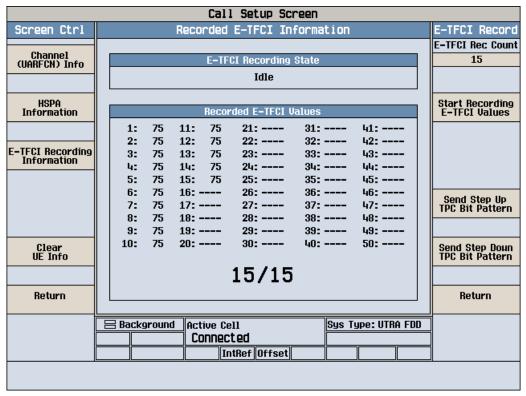
 SPORTON INTERNATIONAL INC.
 Page Number
 : F4 of F7


 TEL: 886-3-327-3456
 Report Issued Date
 : Oct. 22, 2010

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID: UGLGOBI2

Call Setup Screen Call Control Active Cell Operating Mode Call Parms Cell Pouer **UE Information** Channel (UARFCN) Info -86.00 IHSI: dBm/3.84 HHz THET: Channel Type Pouer Class: Cell Parameters 12.2k + HSPA UE Expected Open Loop Transmit Power -11.70 dBm Paging Service Initial PRACH TX Pouer: Generator Info Initial DPCCH TX Pouer: -0.56 dBm **RB Test flode** Uplink Parameters Value PRACH Preambles Uplink Parameters HSPA Parameters PRACH Ramping Cycles(MMAX) 000000000001 Available Subchannels (Bit Mask) Uplink DPCH Scrambling Code UE Rep Neas 34.121 Preset Call Configs Uplink DPCH Bc/Bd Control Manual Manual Uplink DPCH Bc 11 Manual Uplink DPCH Bd 15 Close Henu Channel (UARFCN) Parms Maximum Uplink Transmit Pouer Level 21 dBm Active Cell Sys Type: UTRA FDD Idle 2 of 4 IntRef Offset 1 of 3


Example for HSPA Subtest 1, and other subtests following table, C11.1.3 (Gain Factors (β_c = 11 and β_d = 15))

Example: AG – Index = 20 for HSPA subtest 1

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : F5 of F7
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

Example: Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : F6 of F7
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

FCC SAR Test Report

Reference:

- 941225 D01 SAR test for 3G devices v02, SAR Measurement Procedures for 3G Devices CDMA 2000/Ev-Do/WCDMA/HSDPA/HSPA Oct. 2007 Laboratory Division Office of Engineering and **Technology Federal Communications Commission**
- TS 34.121 Universal Mobile Telecommunications System (UMTS); Terminal Conformance [2.] Specification, Radio Transmission and Reception (FDD)
- [3.] HSUPA Measurement Guide with 8960 V7.5.0 Release 7 (2007-06) Ver.: v.02.18

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2

Page Number : F7 of F7 Report Issued Date: Oct. 22, 2010

Report No.: FA092105A

Report Version : Rev. 02

Appendix G. FCC 3G SAR Measurement Procedures

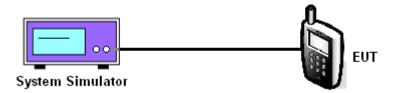
Conducted Output Power:

The EUT was tested according to the requirements of the FCC 3G procedures and the 3.1.2.3.4.

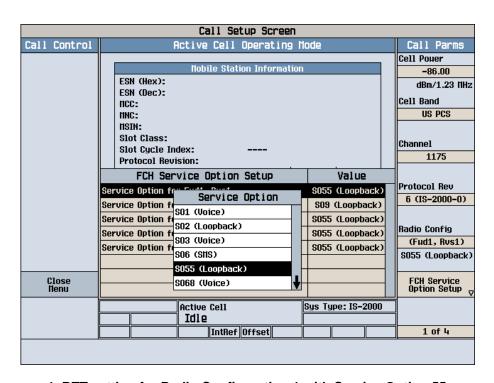
A detailed analysis of the output power verification is provided as the table below:

Function Type	Reverse Traffic Channel	Test Mode	Radio Configuration					Low Ch	Mid. Ch	High Ch
			Forward Traffic Channel (Fwd)	Reverse Traffic Channel (Rvs)	Service Option	Data Rates (kbps)	Power Control	1013	384	777
CDMA2000 Cellular	FCH	1	1	1	55	Full	All Up	24.28	24.32	24.21
		3	3	3	55	Full	All Up	24.22	24.43	24.20
		3	3	3	32	Full	All Up	24.22	24.23	24.16
	FCH+SCH	3	3	3	32	FCH:Full,SCH 9.6	All Up	24.27	24.36	24.22
	EVDO Rev.0*	Subtype:0				RTAP 153.6	All Up	24.17	24.23	24.14
	EVDO Rev.A*	Subtype:0				RETAP 4096	All Up	23.80	23.99	23.94

Function Type	Reverse Traffic Channel	Test Mode	Radio Configuration					Low Ch	Mid. Ch	High Ch
			Forward Traffic Channel (Fwd)	Traffic	Service Option	Data Rates (kbps)	Power Control	25	600	1175
CDMA2000 PCS	FCH	1	1	1	55	Full	All Up	24.11	24.55	23.68
		3	3	3	55	Full	All Up	24.09	24.51	23.70
		3	3	3	32	Full	All Up	24.09	24.59	23.65
	FCH+SCH	3	3	3	32	FCH:Full,SCH 9.6	All Up	24.16	24.56	23.69
	EVDO Rev.0*	Subtype:0				RTAP 153.6	All Up	23.97	24.45	23.51
	EVDO Rev.A*	Subtype:0				RETAP 4096	All Up	23.74	24.17	23.38


SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : G1 of G6
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02


Report No. : FA092105A

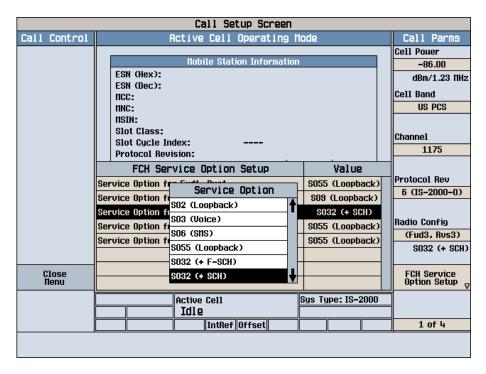
CDMA2000 Setup Configuration:

Setup Configuration

- 1. The EUT was connected to System Simulator, Agilent 8960. Refer to the drawing of Setup Configuration.
- 2. The RF path losses were compensated into the measurements.
- 3. A call was established between EUT and System Simulator with following setting:
 - a. For 1xRTT, set the Radio Configuration and the Service Option
 - b. For 1xEV-DO, set the Protocol Release and Data Rate
 - c. Set the Power Control to All Up Bits
- 4. The transmitted maximum output power was recorded.

1xRTT setting for Radio Configuration 1 with Service Option 55

SPORTON INTERNATIONAL INC.

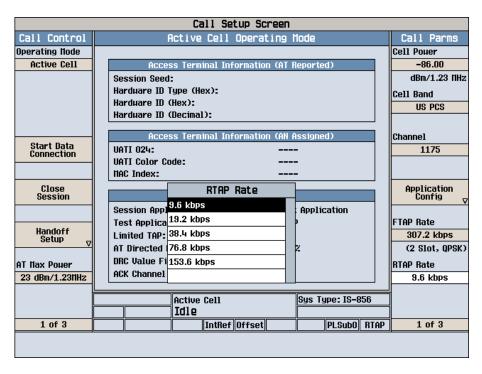

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : G2 of G6
Report Issued Date : Oct. 22, 2010

: Rev. 02

Report Version

Call Setup Screen Call Control Active Cell Operating Mode Call Parms Mobile Station Information -86.00 ESN (Hex): dBm/1.23 MHz ESN (Dec): Cell Band ncc: US PCS HNC: MSIN: Slot Class: Channel Slot Cucle Index: 1175 Protocol Revision: FCH Service Option Setup Value Protocol Rev Service Option fo S055 (Loopback) Service Option 6 (IS-2000-0) Service Option fo 909 (Loopback) SO1 (Voice) Service Option f S055 (Loopback) SO2 (Loopback) Radio Config Service Option f S055 (Loopback) SO3 (Voice) (Fud3, Rvs3) 9055 (Loopback) Service Option f S06 (SNS) S055 (Loopback) 8055 (Loopback) FCH Service Option Setup Close Henu S032 (+ F-SCH) Sys Type: IS-2000 Active Cell Idle IntRef Offset 1 of 4


1xRTT setting for Radio Configuration 3 with Service Option 55


1xRTT setting for Radio Configuration 3 with Service Option 32

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : G3 of G6
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

1xEV-DO setting for Protocol Release (Rev.0 or Rev.A)

1xEV-DO setting for RTAP data rate (153.6 kbps)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : G4 of G6
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

Call Setup Screen Call Control Active Cell Operating Mode Call Parms Operating Mode Access Terminal Information (AT Reported) Active Cell -86.00 Session Seed: dBm/1.23 MHz Hardware ID Type (Hex): Cell Band Harduare ID (Hex): Hardware ID (Decimal): US PCS Terminal Information (AN Assigned) UATI 024: Channel Start Data Connection UATI Color Code: 1175 MAC Index: Application Configuration Close Session Application Config R-Data Packet Size Session Appl **Application** Enhanced Te 128 AT Directed 256 F-Traffic Format DRC Value Fi ACK Channel Handoff Setup 4 (1024,2,128) ACK Channel 768 (307.2k, QPSK) Reverse Data 1024 Capacity AT Max Pouer R-Data Pkt Size Expected Enl 1536 kbps 23 dBm/1.23ffHz 128 bits Active Cell Sys Type: IS-856 Idle 1 of 3 IntRef Offset PLSub0 RETAP 1 of 3

1xEV-DO setting for RETAP data rate (4096 kbps)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : G5 of G6
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02

FCC SAR Test Report

Reference:

- [1] SAR Measurement Procedures for 3G Devices CDMA 2000/Ev-Do/WCDMA/HSDPA, June 2006 Laboratory Division Office of Engineering and Technology Federal Communications Commission
- [2] 3.1.2.3.4 Maximum RF Output Power 3GPP2 C.S0033-0 Version 2.0, Date: 12 December 2003 Recommended Minimum Performance Standards for cdma2000 High Rate Packet Data Access Terminal

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UGLGOBI2 Page Number : G6 of G6
Report Issued Date : Oct. 22, 2010
Report Version : Rev. 02