

# TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: Blighter B422-SP Auxiliary Unit

To: FCC Part 90: 2009, Subpart F in accordance with  
RFI Test Plan RFI/REGE1/TP75565JD03

**Test Report Serial No:**  
RFI-RPT-RP76954JD03B

|                                                                                                              |                     |
|--------------------------------------------------------------------------------------------------------------|---------------------|
| <b>This Test Report Is Issued Under The Authority<br/>Of Brian Watson,<br/>COO Payments and Consultancy:</b> |                     |
| <b>Checked By:</b>                                                                                           | pp <i>R. Graham</i> |
| <b>Signature:</b>                                                                                            | <i>R. Graham</i>    |
| <b>Date of Issue:</b>                                                                                        | 16 April 2010       |

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of RFI Global Services Ltd. The results in this report apply only to the sample(s) tested.

This page has been left intentionally blank.

**Table of Contents**

|                                                             |    |
|-------------------------------------------------------------|----|
| 1. Customer Information .....                               | 4  |
| 2. Summary of Testing .....                                 | 5  |
| 3. Equipment Under Test (EUT) .....                         | 7  |
| 4. Operation and Monitoring of the EUT during Testing ..... | 10 |
| 5. Measurements, Examinations and Derived Results .....     | 11 |
| 6. Measurement Uncertainty .....                            | 24 |
| Appendix 1. Test Equipment Used.....                        | 25 |

## **1. Customer Information**

|                      |                                                                         |
|----------------------|-------------------------------------------------------------------------|
| <b>Company Name:</b> | Plextek Ltd                                                             |
| <b>Address:</b>      | London Road<br>Great Chesterford<br>Essex<br>CB10 1NY<br>United Kingdom |

## **2. Summary of Testing**

### **2.1. General Information**

|                                 |                                                                                                                                                        |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Specification Reference:</b> | 47CFR90                                                                                                                                                |
| <b>Specification Title:</b>     | Code of Federal Regulations Volume 47 (Telecommunications) 2009: Part 90: Public Safety Radio Pool                                                     |
| <b>Specification Reference:</b> | 47CFR2                                                                                                                                                 |
| <b>Specification Title:</b>     | Code of Federal Regulations Volume 47 (Telecommunications) 2009: Part 2: Frequency Allocations and Radio Treaty Matters; General Rules and Regulations |
| <b>Site Registration:</b>       | FCC: 209735                                                                                                                                            |
| <b>Location of Testing:</b>     | RFI Global Services Ltd, Wade Road, Basingstoke, Hampshire, RG24 8AH, England                                                                          |
| <b>Test Dates:</b>              | 01 March 2010 to 26 March 2010                                                                                                                         |

|                                 |                                                                       |
|---------------------------------|-----------------------------------------------------------------------|
| <b>RFI Test Plan Reference:</b> | RFI/REGE1/TP75565JD03 Date: 11 <sup>th</sup> January 2010             |
| <b>Description:</b>             | Test Plan from RFI Global Services Ltd for Blighter B400 Series Radar |

## **2.2. Summary of Test Results**

| <b>FCC Reference<br/>(47CFR )</b> | <b>Measurement</b>                                     | <b>Result</b> |
|-----------------------------------|--------------------------------------------------------|---------------|
| Part 2.1046                       | Transmitter RF Conducted Output Power                  | ✓             |
| Part 2.1049                       | Transmitter Occupied Bandwidth (Bandwidth Limitations) | ✓             |
| Part 2.1051 / Part 2.1057         | Spurious Emissions at Antenna Terminals                | ✓             |
| Part 2.1053 / Part 2.1057         | Field Strength of Spurious Radiation                   | ✓             |
| Part 2.1053                       | Transmitter Band Edge Radiated Emissions               | ✓             |

**Key to Results**

✓ = Complied    ✘ = Did not comply

## **2.3. Methods and Procedures**

|                   |                                                                              |
|-------------------|------------------------------------------------------------------------------|
| <b>Reference:</b> | ANSI/TIA-603-C-2004                                                          |
| <b>Title:</b>     | Land Mobile Communications Equipment, Measurements and performance Standards |
| <b>Reference:</b> | ANSI C63.10 (2009)                                                           |
| <b>Title:</b>     | American National Standard for Testing Unlicensed Wireless Devices           |

## **2.4. Deviations from the Test Specification**

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

### **3. Equipment Under Test (EUT)**

#### **3.1. Identification of Equipment Under Test (EUT)**

|                                 |                           |
|---------------------------------|---------------------------|
| <b>Description:</b>             | FMCW Radar – Aux Unit     |
| <b>Brand Name:</b>              | Blighter                  |
| <b>Model Name or Number:</b>    | B422-NBSP                 |
| <b>Serial Number:</b>           | 6B543                     |
| <b>Hardware Version Number:</b> | BoM / Rev – Aux 6BA41B/01 |
| <b>Software Version Number:</b> | Build 81                  |
| <b>FCC ID Number:</b>           | UFQB400SPNBAUX            |

#### **3.2. Description of EUT**

The equipment under test was the Auxiliary Unit of a multi-frequency ground surveillance radar system that can scan and detect moving vehicles and persons over a 180° area and can operate up to a range of 16 km.

The system comprises a main radar unit (Main Unit) and an Auxiliary radar unit (Aux Unit).

The Auxiliary Unit is directly connected to the Main Unit which contains full transmitter functionality together with a GPS receiver and optional Wireless LAN transceiver (WLAN).

The Auxiliary Unit contains additional PA, RF switching and gain functionality to overcome cable losses etc. The connections required between each of the Main and Auxiliary units are DC power and control, and the RF signals.

Both units are interconnected with various bespoke cables. Horn antennas are fitted to both radar units in the normal mode of operation and the complete assembly was mounted onto a tripod for test purposes. A personal computer (PC) is normally connected to the main radar unit by Ethernet or WLAN. The radar system can be configured and monitored from the PC.

The Client stated that power to the EUT is provided from a DC supply only.

The Client stated that an electronic test target was not required.

#### **3.3. Modifications Incorporated in the EUT**

No modifications were applied to the EUT during testing.

### **3.4. Additional Information Related to Testing**

| <b>Category of Equipment:</b>                                  | Radar                 |                      |                   |
|----------------------------------------------------------------|-----------------------|----------------------|-------------------|
| <b>Type of Radio Device:</b>                                   | Transceiver           |                      |                   |
| <b>Intended Operating Environment:</b>                         | Outdoor               |                      |                   |
| <b>Power Supply Requirement(s):</b>                            | Nominal               | 16.0 V               |                   |
|                                                                | Minimum               | 13.6 V               |                   |
|                                                                | Maximum               | 18.4 V               |                   |
| <b>Antenna Type:</b>                                           | Sectoral Horn         |                      |                   |
| <b>Antenna Gain:</b>                                           | 26 (dBi) On Boresight |                      |                   |
| <b>Modulation Type:</b>                                        | FM-CW                 |                      |                   |
| <b>Channel Bandwidth When Operating On A Single Frequency:</b> | 25.538MHz             |                      |                   |
| <b>Transmit Frequency Range:</b>                               | 16.2 GHz – 17.2 GHz   |                      |                   |
| <b>Transmit Channels Tested:</b>                               | Channel ID            | Test Frequency (MHz) | Azimuth Angle (°) |
|                                                                | Aux Unit Bottom       | 16310.750            | 2.9               |
|                                                                | Aux Unit Middle       | 16717.000            | 48.6              |
|                                                                | Aux Unit Top          | 17120.125            | 92.9              |
| <b>Receive Channels Tested:</b>                                | Channel ID            | Test Frequency (MHz) | Azimuth Angle (°) |
|                                                                | Aux Unit Bottom       | 16310.750            | 2.9               |
|                                                                | Aux Unit Middle       | 16717.000            | 48.6              |
|                                                                | Aux Unit Top          | 17120.125            | 92.9              |

### **3.5. Support Equipment**

The following support equipment was used to exercise the EUT during testing:

|                                 |                            |
|---------------------------------|----------------------------|
| <b>Description:</b>             | FMCW Radar – Main Unit     |
| <b>Brand Name:</b>              | Blighter                   |
| <b>Model Name or Number:</b>    | B422-NBSP                  |
| <b>Serial Number:</b>           | 6B501                      |
| <b>Hardware Version Number:</b> | BoM / Rev – Main 6BA39B/01 |
| <b>Software Version Number:</b> | Build 81                   |
| <b>FCC ID Number:</b>           | UFQB400SPNBMAIN            |

|                              |                                  |
|------------------------------|----------------------------------|
| <b>Description:</b>          | Bench Power Supply               |
| <b>Brand Name:</b>           | Thurlby-Thandar Instruments Ltd. |
| <b>Model Name or Number:</b> | CPX400                           |
| <b>Serial Number:</b>        | 220643                           |

|                              |                                                                      |
|------------------------------|----------------------------------------------------------------------|
| <b>Description:</b>          | Laptop PC running Windows XP and Plextek Blighter HMI Software V1.39 |
| <b>Brand Name:</b>           | Hewlett Packard                                                      |
| <b>Model Name or Number:</b> | KU357ET#ABU                                                          |
| <b>Serial Number:</b>        | CNU9118PRK                                                           |

## **4. Operation and Monitoring of the EUT during Testing**

### **4.1. Operating Modes**

The EUT was tested in the following operating mode(s):

- Transmitting at maximum power on the bottom, centre or top channels as required.

### **4.2. Configuration and Peripherals**

The EUT was tested in the following configuration(s):

- The EUT Aux Unit is dependent on the Main Unit to supply the RF and operational signals necessary for its operation, so the Aux Unit was tested connected to the Main unit.
- Radiated tests were performed with the horn antennas removed, two blanking plates fitted over the receiver ports and waveguide to coaxial adaptor plates fitted to the transmitter ports. Waveguides were fitted to each adaptor plate and the antenna ports were terminated into suitable loads. The EUT was mounted onto a tripod located in the centre of the anechoic chamber turntable. All earthing points on the EUT were bonded to the structure of the anechoic chamber. The centre of the radar units were positioned at 1.5 metres above the anechoic chamber floor in line with height of the test antennas.
- Conducted tests were performed with the horn antennas removed, two blanking plates containing radar absorbent material fitted over the receiver ports and waveguide to coaxial adaptor plates fitted to the transmitter ports. Waveguides were fitted to each adaptor plate and the test system was connected to the waveguides by coaxial cables.
- Power was provided by a bench power supply. The power supply was located outside the anechoic chamber during radiated tests. Power cables were routed through an access point in the anechoic chamber wall.
- LAN connection was through Ethernet cable to a laptop PC. A bespoke application on the laptop PC was used to configure the EUT during tests. The laptop PC was located outside the anechoic chamber during radiated tests. Ethernet cables were routed through an access point in the anechoic chamber wall.
- EUT range was set to Normal 8 km for all tests.
- 'Underlay' was set to Total Power for all tests.
- The compass was enabled for all tests apart from frequency stability tests.
- GPS receiver was enabled during all tests.
- Radar scan mode was disabled.
- The WLAN was enabled during all tests. The supplied antenna was fitted to the WLAN RF port on the Main Unit during tests.

## **5. Measurements, Examinations and Derived Results**

### **5.1. General Comments**

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to *Section 6 Measurement Uncertainties* for details.

## **5.2. Test Results**

### **5.2.1. Transmitter Conducted RF Power Output**

#### **Test Summary:**

|              |                                   |
|--------------|-----------------------------------|
| FCC Part:    | 47CFR2.1046                       |
| Test Method: | ANSI/TIA-603-C-2004 Section 2.2.1 |

#### **Environmental Conditions:**

|                        |    |
|------------------------|----|
| Temperature (°C):      | 20 |
| Relative Humidity (%): | 25 |

#### **Results:**

| Channel | Frequency (MHz) | Conducted RF Output Power (dBm) | Waveguide to coaxial adaptor plate loss (dB) | Total Conducted RF Power Output (dBm) |
|---------|-----------------|---------------------------------|----------------------------------------------|---------------------------------------|
| Bottom  | 16310.750       | 14.9                            | 16.0                                         | 30.9                                  |
| Centre  | 16717.000       | 15.7                            | 16.0                                         | 31.7                                  |
| Top     | 17120.125       | 16.3                            | 16.0                                         | 32.3                                  |

#### **Note(s):**

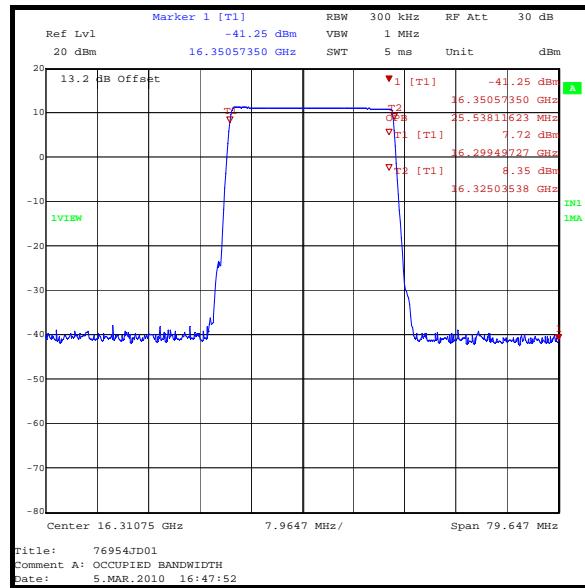
1. Conducted output power was measured using a calibrated RF power meter with thermal power sensor. The stated loss of 16 dB for the waveguide to coaxial adaptor plate and waveguide was added to the conducted power measurement and the result recorded in the above tables.
2. The transmitter was enabled until the power measurement stabilised. The power was recorded at this point.

**5.2.2. Transmitter Occupied Bandwidth****Test Summary:**

|                     |                                                                                                                |
|---------------------|----------------------------------------------------------------------------------------------------------------|
| <b>FCC Part:</b>    | 47CFR2.1049                                                                                                    |
| <b>Test Method:</b> | Occupied bandwidth was measured using the occupied bandwidth function of a Rohde & Schwarz ESIB Test Receiver. |

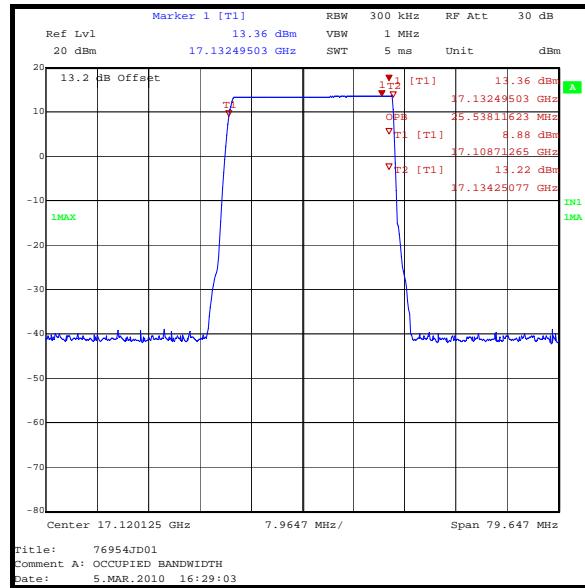
**Environmental Conditions:**

|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 20 |
| <b>Relative Humidity (%):</b> | 24 |


**Results:**

| Channel | Frequency (GHz) | RBW (kHz) | VBW (kHz) | Occupied Bandwidth (MHz) |
|---------|-----------------|-----------|-----------|--------------------------|
| Bottom  | 16310.750       | 300       | 1000      | 25.538                   |
| Centre  | 16717.000       | 300       | 1000      | 25.538                   |
| Top     | 17120.125       | 300       | 1000      | 25.538                   |

**Note(s):**


1. The test was performed as a conducted measurement at the antenna port.
2. The measurement equipment was configured to measure 99% of the power bandwidth.
3. Measurement bandwidths were set automatically by the test receiver.

## Transmitter Occupied Bandwidth (continued)



Bottom channel

Centre channel



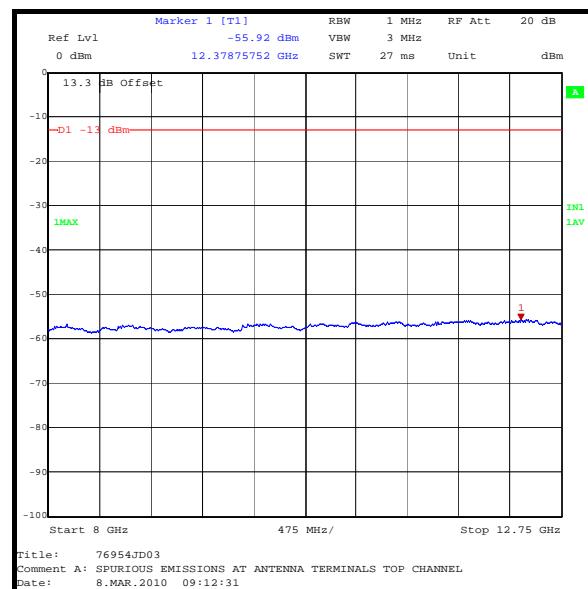
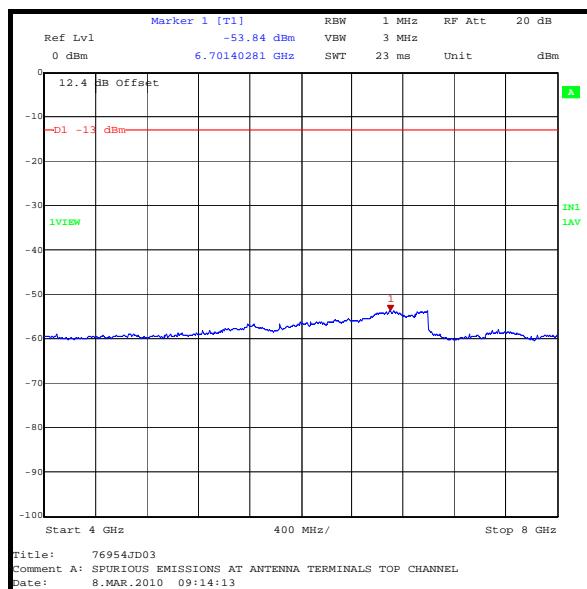
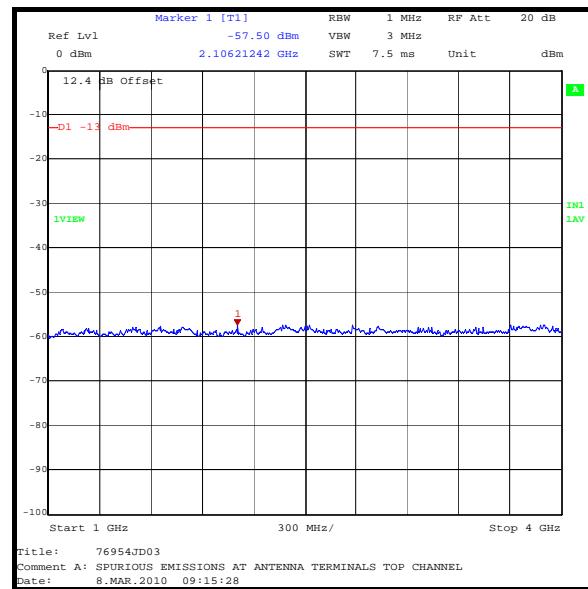
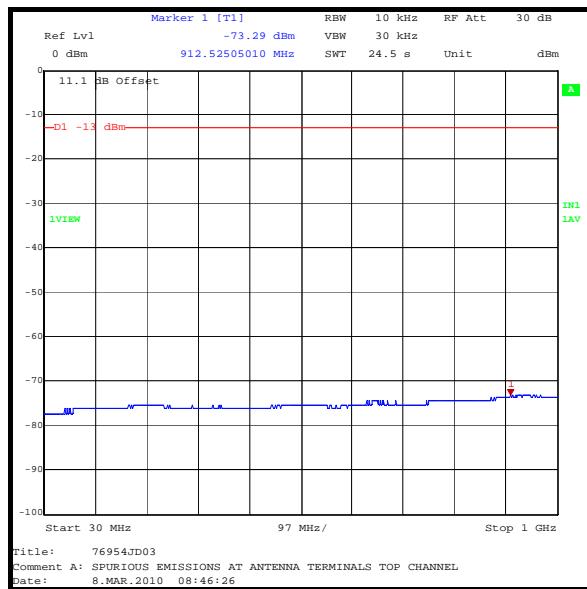
Top channel

**5.2.3. Transmitter Spurious Emissions at Antenna Terminals****Test Summary:**

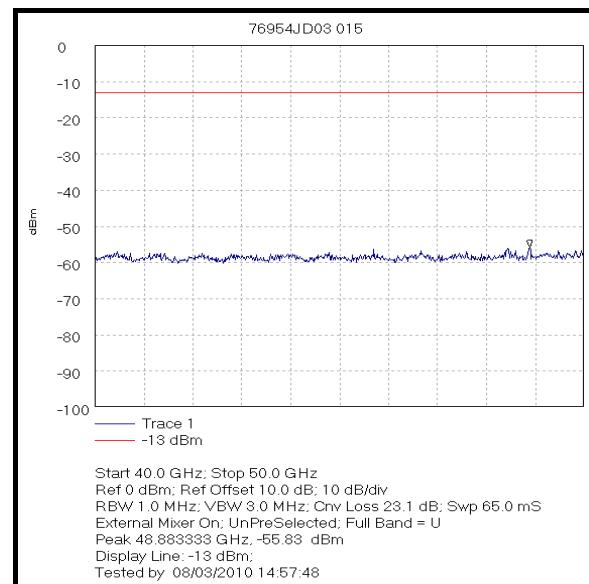
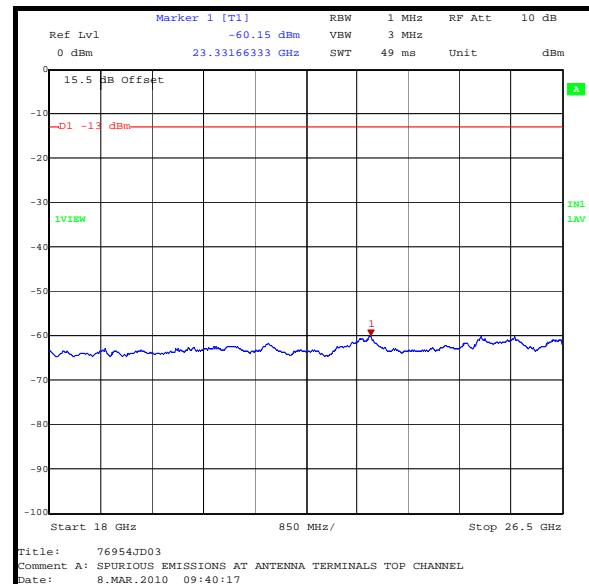
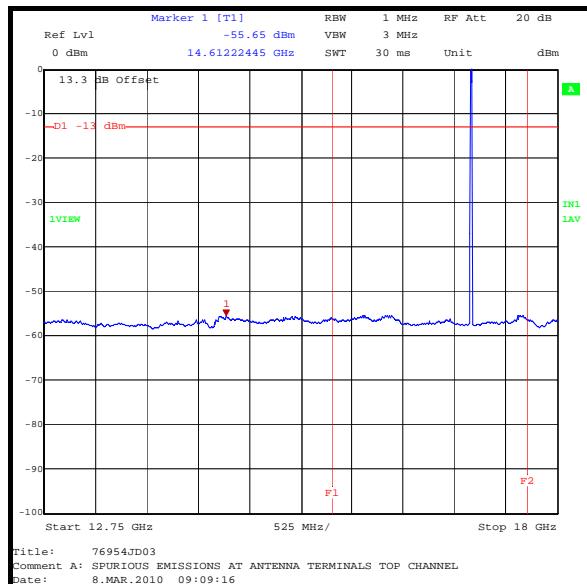
|                     |                                    |
|---------------------|------------------------------------|
| <b>FCC Part:</b>    | 47CFR2.1053 and 47CFR2.1057        |
| <b>Test Method:</b> | ANSI/TIA-603-C-2004 Section 2.2.13 |

**Environmental Conditions:**

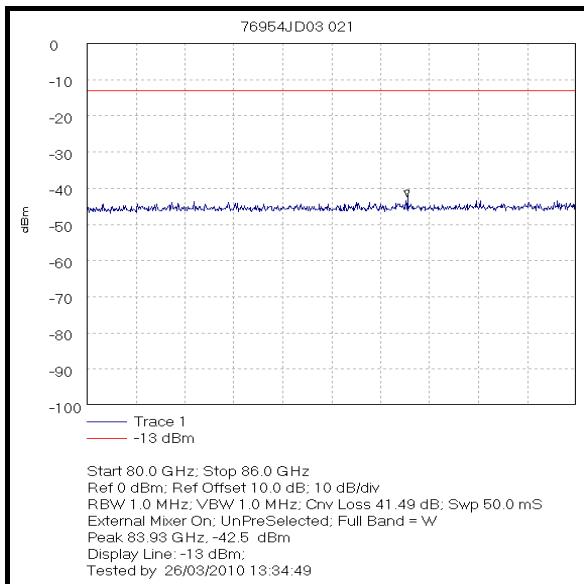
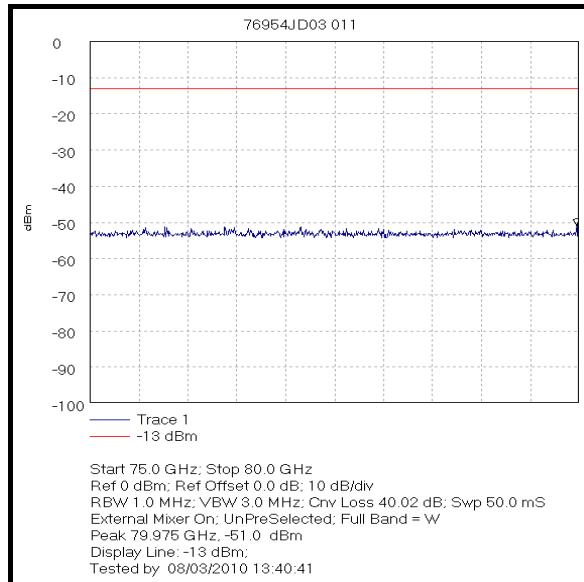
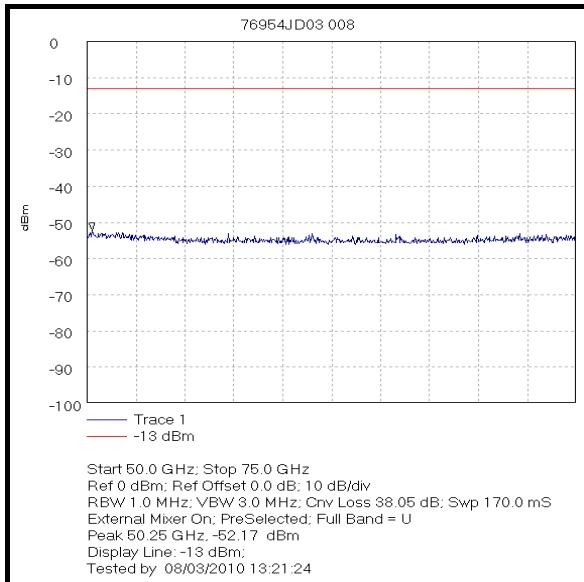
|                                         |          |
|-----------------------------------------|----------|
| <b>Temperature Variation (°C):</b>      | 19 to 22 |
| <b>Relative Humidity Variation (%):</b> | 26 to 30 |





**Results:**

| Frequency (MHz) | Peak Emission Level (dBm) | Limit (dBm) | Margin (dB) | Result   |
|-----------------|---------------------------|-------------|-------------|----------|
| 83930.000       | -42.5                     | -13.0       | 29.5        | Complied |




**Note(s):**

1. Waveguide to coaxial adaptor plates were fitted on transmitter antenna ports. The antenna port under test was connected to the measurement equipment using suitable cables, attenuators and waveguides where required. The main unit antenna port was terminated into a suitable load.
2. GPS, compass and WLAN were enabled during the test.
3. Pre-scans were performed with the EUT transmitting at maximum power on the highest frequency.
4. The emissions shown on the 12.75 GHz to 18 GHz pre-scan plots at approximately 17 GHz is the carrier frequency of the EUT radar transmitter. Frequency lines on the 12.75 GHz to 18 GHz plots indicate the lower and upper band edges at 15.7 GHz and 17.3 GHz.
5. Measurements were performed from 30 MHz to 86 GHz.
6. No emissions were observed above the level of the test system noise floor, therefore the highest noise floor levels were recorded in the above tables.




## Transmitter Spurious Emissions at Antenna Terminals (continued)



## Transmitter Spurious Emissions at Antenna Terminals (continued)



*Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.*

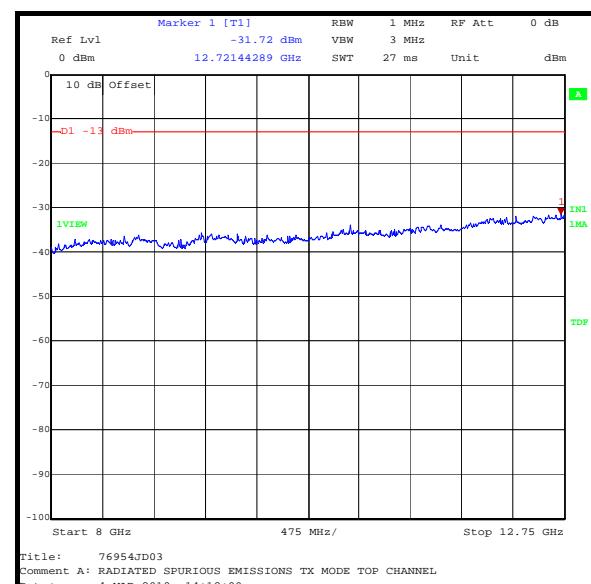
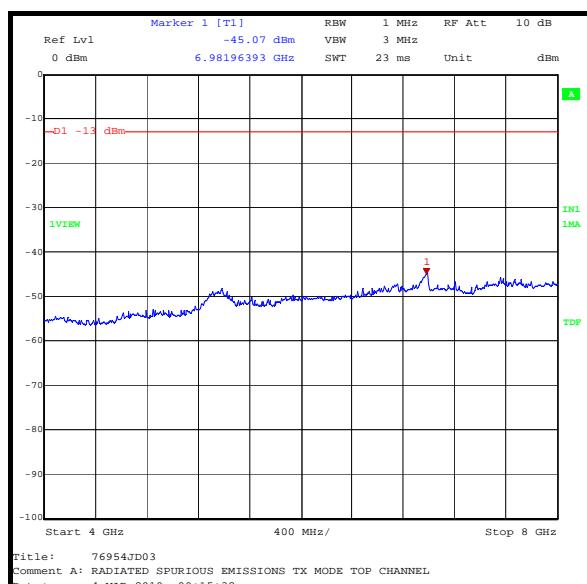
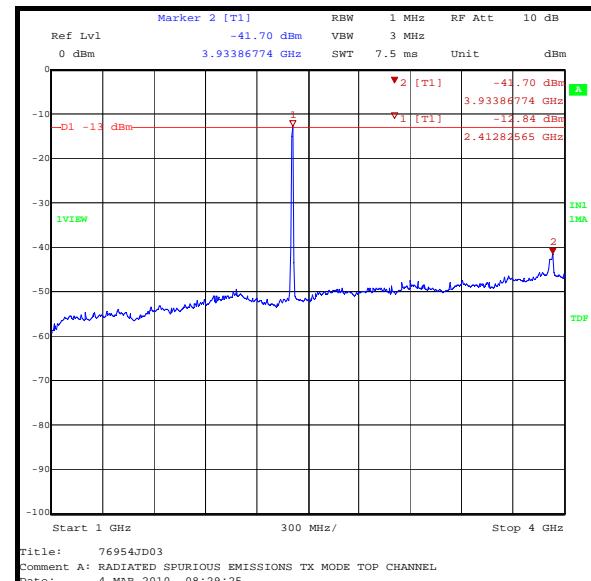
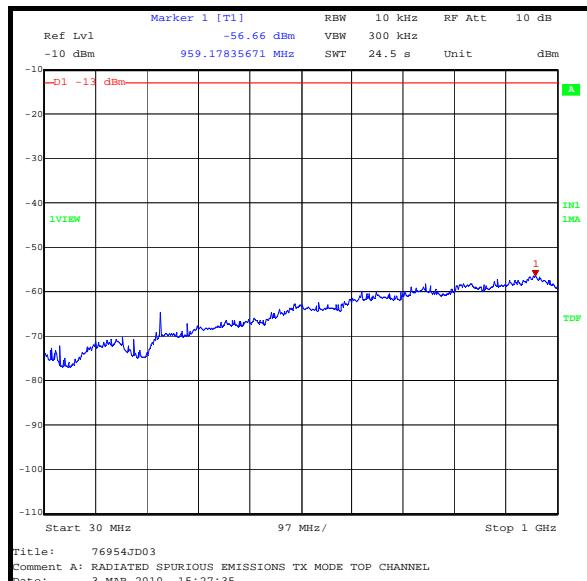
**Transmitter Spurious Emissions at Antenna Terminals (continued)**

**5.2.4. Field Strength of Spurious Radiation Out of Band****Test Summary:**

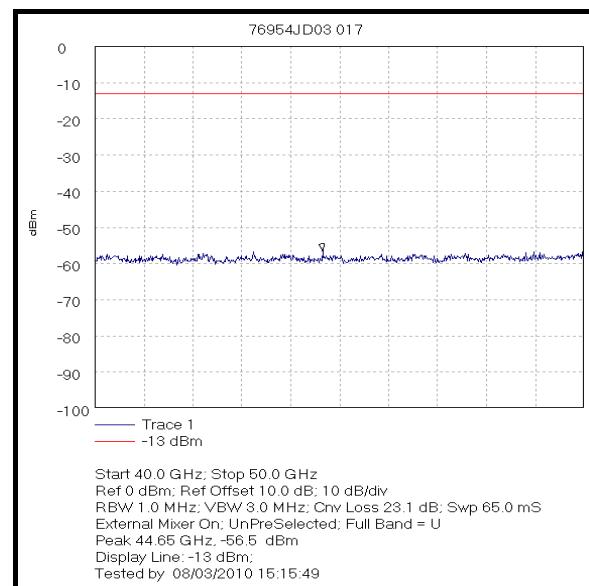
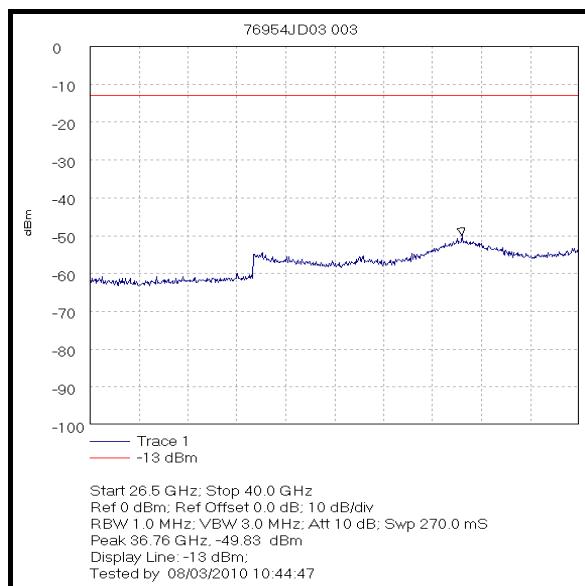
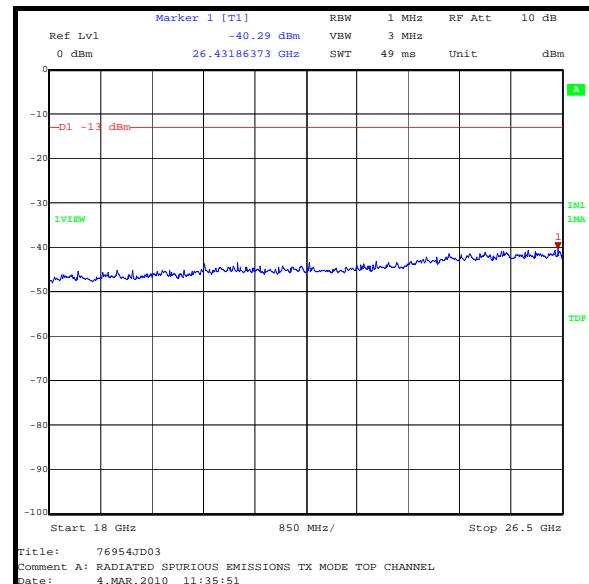
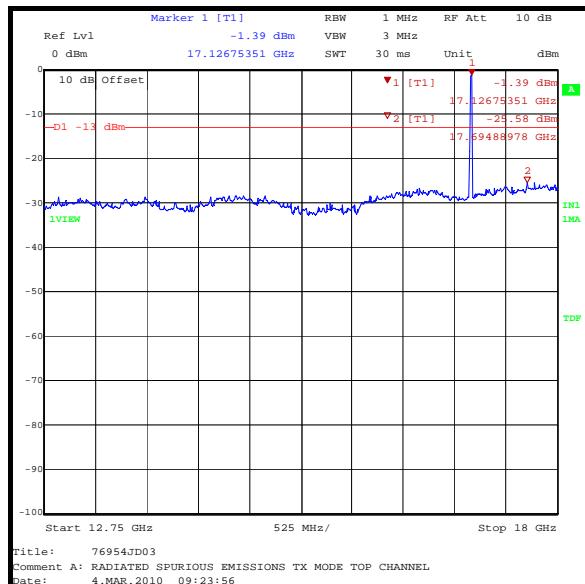
|                     |                                                               |
|---------------------|---------------------------------------------------------------|
| <b>FCC Part:</b>    | 47CFR2.1053 and 47CFR2.1057                                   |
| <b>Test Method:</b> | ANSI/TIA-603-C-2004 Section 2.2.12, ANSI C63.10 Section 6.6.4 |

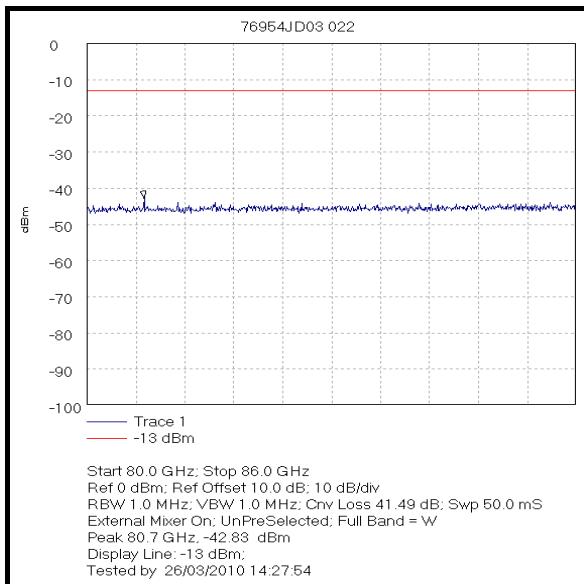
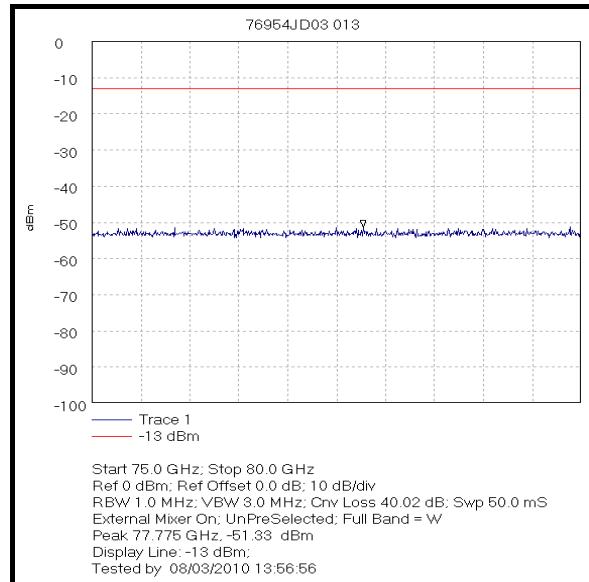
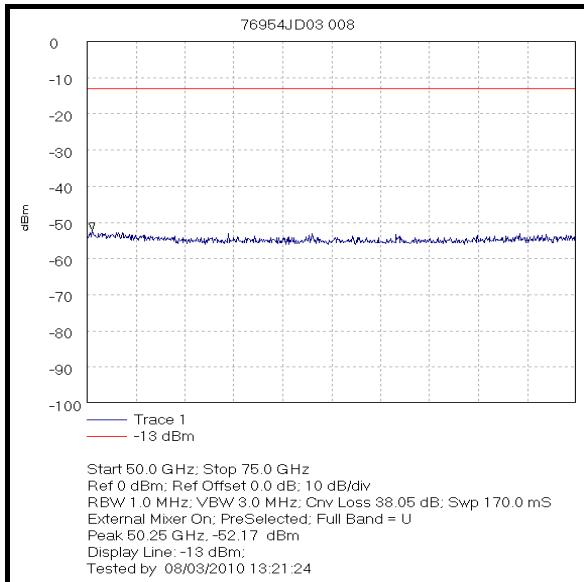
**Environmental Conditions:**

|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 24 |
| <b>Relative Humidity (%):</b> | 20 |





**Results:**

| Frequency (MHz) | Peak Emission Level (dBm) | Limit (dBm) | Margin (dB) | Result   |
|-----------------|---------------------------|-------------|-------------|----------|
| 3916.667        | -43.0                     | -13.0       | 30.0        | Complied |





**Note(s):**




1. Waveguide to coaxial adaptor plates were fitted on transmitter antenna ports. Both transmitter antenna ports were terminated with suitable loads in accordance with Section 4.4 of the Test Plan.
2. GPS, compass and WLAN were enabled during the test.
3. Pre-scans were performed with the EUT transmitting at maximum power on the highest frequency.
4. The emissions shown on the 1 GHz to 4 GHz pre-scan plots at approximately 2.412 GHz is the WLAN transmitter.
5. The emissions shown on the 12.75 GHz to 18 GHz pre-scan plots at approximately 17 GHz is the carrier frequency of the EUT radar transmitter.
6. All emissions were >20 dB below the limit or below the level of the measurement system noise floor. The highest level emissions noted during the pre-scans on the top channel were recorded in the above tables. Bottom and centre channels were checked and showed similar emissions and levels.

### Field Strength of Spurious Radiation Out of Band (continued)



## Field Strength of Spurious Radiation Out of Band (continued)



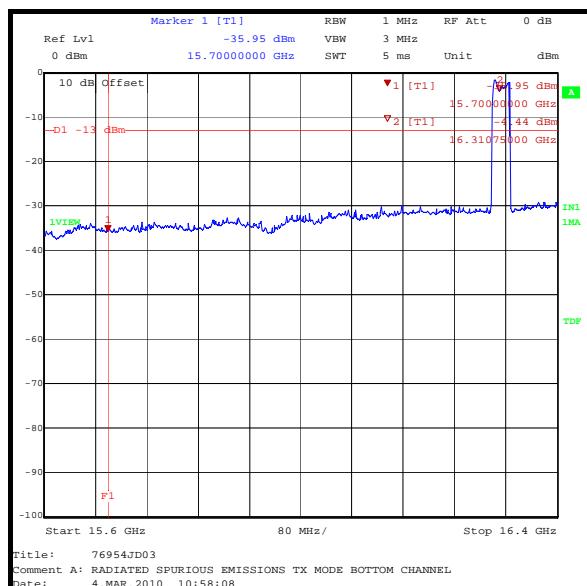
**Field Strength of Spurious Radiation Out of Band (continued)**

### 5.2.5. Transmitter Field Strength of Spurious Radiation at Band Edges

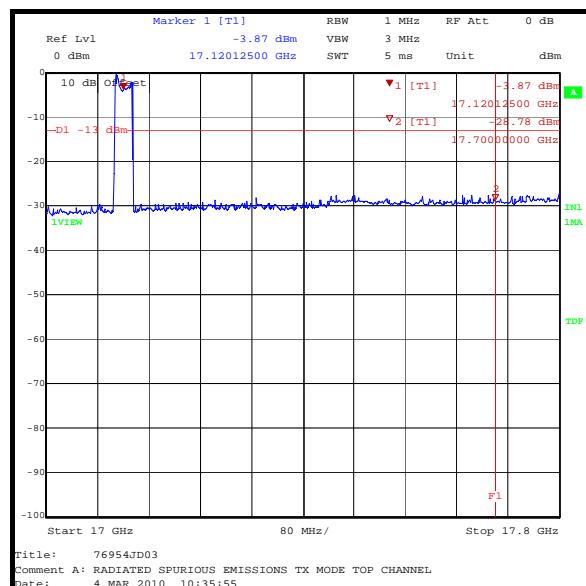
#### Test Summary:

|              |                                                                  |
|--------------|------------------------------------------------------------------|
| FCC Part:    | 47CFR2.1053                                                      |
| Test Method: | ANSI/TIA-603-C-2004 Section 2.2.12 and ANSI C63.10 Section 6.6.4 |

#### Environmental Conditions:


|                        |    |
|------------------------|----|
| Temperature (°C):      | 24 |
| Relative Humidity (%): | 20 |

#### Results:


| Frequency (MHz) | Peak Emission Level (dBm) | Limit (dBm) | Margin (dB) | Result   |
|-----------------|---------------------------|-------------|-------------|----------|
| 15700.0         | -36.0                     | -13.0       | 23.0        | Complied |
| 17300.0         | -28.8                     | -13.0       | 15.8        | Complied |

#### Note(s):

1. Waveguide to coaxial adaptor plates were fitted on transmitter antenna ports. Both transmitter antenna ports were terminated with suitable loads in accordance with Section 4.4 of the Test Plan.
2. GPS, compass and WLAN were enabled during the test.
3. Pre-scans were performed with the EUT transmitting at maximum power on the highest frequency.
4. The frequency lines and marker placed on the upper band edge plots have been incorrectly placed at 17.7 GHz. It can be seen from the plots that the noise floor level at the correct upper band edge frequency of 17.3 GHz is comparable to the noise floor level at 17.7 GHz and compliant.



Lower band edge / Bottom operating frequency



Upper band edge / Top operating frequency

## **6. Measurement Uncertainty**

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

| Measurement Type             | Range                | Confidence Level (%) | Calculated Uncertainty |
|------------------------------|----------------------|----------------------|------------------------|
| Radiated Spurious Emissions  | 30 MHz to 1000 MHz   | 95%                  | ±5.26 dB               |
| Radiated Spurious Emissions  | 1 GHz to 86 GHz      | 95%                  | ±2.94 dB               |
| Conducted Spurious Emissions | 30 MHz to 1000 MHz   | 95%                  | ±2.62 dB               |
| Conducted Spurious Emissions | 1 GHz to 86 GHz      | 95%                  | ±2.62 dB               |
| RF Power Output              | 16.2 GHz to 17.2 GHz | 95%                  | ±2.94 dB               |
| Occupied Bandwidth           | 16.2 GHz to 17.2 GHz | 95%                  | ±0.12%                 |
| Frequency Stability          | 16.2 GHz to 17.2 GHz | 95%                  | ±11.37 ppm             |

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

## Appendix 1. Test Equipment Used

| RFI No. | Instrument             | Manufacturer               | Type No.      | Serial No. | Date Last Calibrated  | Cal. Interval (Months) |
|---------|------------------------|----------------------------|---------------|------------|-----------------------|------------------------|
| A1033   | Harmonic Mixer         | Hewlett Packard            | 11970W        | 2521A01380 | 09 Jun 2009           | 12                     |
| A1242   | Waveguide Horn Antenna | Dorado International corp. | 12-GH-12-2    | 0002       | Verified before use*  | -                      |
| A1245   | Waveguide Horn Antenna | Dorado International corp. | GH-10-25      | 200010     | Verified before use*  | -                      |
| A1391   | Attenuator             | Huber + Suhner AG          | 757987        | 6810.17.B  | Calibrated before use | -                      |
| A1393   | Attenuator             | Huber + Suhner AG          | 757456        | 6820.17.B  | Calibrated before use | -                      |
| A1534   | Pre Amplifier          | Hewlett Packard            | 8449B OPT H02 | 3008A00405 | Calibrated before use | -                      |
| A1738   | Attenuator             | Atlantic Microwave         | BBS40-10      | R1379      | Calibrated before use | -                      |
| A1818   | Antenna                | EMCO                       | 3115          | 00075692   | 27 Nov 2009           | 12                     |
| A1916   | Waveguide Horn Antenna | Flann Microwave Ltd        | 25240-25      | 166399     | Verified before use*  | -                      |
| A203    | Waveguide Horn Antenna | Flann Microwave Ltd        | 22240-20      | 343        | Verified before use*  | -                      |
| A288    | Antenna                | Chase                      | CBL6111A      | 1589       | 16 Mar 2010           | 12                     |
| A390    | Attenuator             | Huber + Suhner AG          | 6830.17.B     | None       | Calibrated before use | -                      |
| A436    | Waveguide Horn Antenna | Flann Microwave Ltd        | 20240-20      | 330        | Verified before use*  | -                      |
| G085    | Signal Generator       | Hewlett Packard            | 83650L        | 3614A00104 | 27 Oct 2008           | 24                     |
| K0002   | 3m RSE Chamber         | Rainford EMC               | N/A           | N/A        | 01 Sep 2009           | 12                     |
| M1124   | Spectrum Analyser      | Rohde & Schwarz            | ESIB26        | 100046K    | 09 Mar 2009           | 13                     |
| M1249   | Thermometer            | Fluke                      | 52II          | 88800049   | 01 Jul 2009           | 12                     |
| M1253   | Spectrum Analyser      | Hewlett Packard            | 8564E         | 3442A00262 | 26 Jan 2010           | 12                     |
| M1267   | Power Sensor           | Rohde & Schwarz            | NRV-Z52       | 100155     | 14 May 2009           | 12                     |
| M1273   | Test Receiver          | Rhode & Schwarz            | ESIB 26       | 100275     | 01 Apr 2009           | 12                     |
| M1346   | Digital Multimeter     | Fluke                      | 73III         | 90770264   | 19 Jun 2009           | 12                     |
| M194    | Harmonic Mixer         | Hewlett Packard            | 11970V        | 2521A01005 | 30 Jun 2009           | 12                     |
| M199    | Power Meter            | Rohde & Schwarz            | NRVS          | 827023/075 | 14 May 2009           | 12                     |

Note that assets A288 and M1124 indicate they went out of calibration during testing. It shall be noted however that these assets were in calibration for the tests for which they were used.

\* The physical dimensions of the horn aperture have been verified.

**NB** In accordance with UKAS requirements all the measurement equipment is on a calibration schedule.