

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C.
Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	VERTEX PRECISION ELECTRONICS, INC.
Applicant Address	NO. 188 Chung Yuan Rd., Chung-Li Industrial Park Chung-Li Taiwan, R.O.C.
FCC ID	UF6A1250BOXBZD01
Manufacturer's company	VERTEX PRECISION ELECTRONICS, INC.
Manufacturer Address	NO. 188 Chung Yuan Rd., Chung-Li Industrial Park Chung-Li Taiwan, R.O.C.

Product Name	A1250 AV-BOX
Brand Name	VIZUALOGIC
Model Name	07-0263-000 (A1250)
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.239
Test Freq. Range	88 ~ 108MHz
Received Date	June 23, 2006
Final Test Date	July 12, 2006
Submission Type	Original Equipment

Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.4-2003** and **47 CFR FCC Part 15 Subpart C**.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

NVLAP®

Lab Code: 200079-0

Table of Contents

1. CERTIFICATE OF COMPLIANCE	1
2. SUMMARY OF THE TEST RESULT	2
3. GENERAL INFORMATION	3
3.1. Product Details.....	3
3.2. Table for Carrier Frequencies	3
3.3. Table for Test Modes.....	3
3.4. Table for Testing Locations.....	4
3.5. Table for Supporting Units	4
3.6. Test Configurations	4
4. TEST RESULT	5
4.1. AC Power Line Conducted Emissions Measurement.....	5
4.2. Field Strength of Fundamental Emissions Measurement.....	8
4.3. 20dB Spectrum Bandwidth Measurement	11
4.4. Radiated Emissions Measurement.....	14
4.5. Band Edge Emissions Measurement	26
4.6. Antenna Requirements	28
5. LIST OF MEASURING EQUIPMENTS	29
6. TEST LOCATION.....	30
7. NVLAP CERTIFICATE OF ACCREDITATION	31
APPENDIX A. PHOTOGRAPHS OF EUT.....	A1 ~ A6
APPENDIX B. TEST PHOTOS.....	B1 ~ B3

History of This Test Report

Original Issue Date: July 18, 2006

Report No.: FR662302

- No additional attachment.
- Additional attachment were issued as following record:

1. CERTIFICATE OF COMPLIANCE

Product Name : A1250 AV-BOX
Brand Name : VIZUALOGIC
Model Name : 07-0263-000 (A1250)
Applicant : VERTEX PRECISION ELECTRONICS, INC.
Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.239

Sportun International as requested by the applicant to evaluate the EMC performance of the product sample received on June 23, 2006 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

A handwritten signature in blue ink that appears to read 'Jacky Luo (9.7.06)'.

Prepared By:

Jacky Luo / Specialist

A handwritten signature in blue ink that appears to read 'Carl Lee 19.7.06'.

Tested By:

Carl Lee / Engineer

A handwritten signature in blue ink that appears to read 'Wayne Hsu 19.7.06'.

Reviewed By:

Wayne Hsu

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C				
Part	Rule Section	Description of Test	Result	Under Limit
4.1	15.207	AC Power Line Conducted Emissions	-	-
4.2	15.239(b)	Field Strength of Fundamental Emissions	Complies	9.90 dB
4.3	15.239(a)	20dB Spectrum Bandwidth	Complies	-
4.4	15.239(c)	Radiated Emissions	Complies	5.55 dB
4.5	15.239(c)	Band Edge Emissions	-	-
4.6	15.203	Antenna Requirements	Complies	-

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.26dB	Confidence levels of 95%
Field Strength of Fundamental Emissions	±3.72dB	Confidence levels of 95%
20dB Spectrum Bandwidth	±6.25×10-7	Confidence levels of 95%
Radiated Emissions/ Band Edge Emissions	±3.72dB	Confidence levels of 95%

3. GENERAL INFORMATION

3.1. Product Details

The TX frequency is fixed to the 2 channels above and within 88-108MHz.

Items	Description
Modulation	FM
Frequency Range	88 ~ 108MHz
Channel Number	8
Channel Band Width (99%)	25.00 kHz
Max. Field Strength of Fundamental	38.10 dBuV/m at 3m
Antenna	External Fixed Antenna

3.2. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency
88 ~ 108MHz	1	88.5 MHz
	2	88.7 MHz
	3	88.9 MHz
	4	89.1 MHz
	5	89.3 MHz
	6	89.5 MHz
	7	89.7 MHz
	8	89.9 MHz

3.3. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Channel	Antenna
AC Power Line Conducted Emissions	-	-	-
Field Strength of Fundamental Emissions 20dB Spectrum Bandwidth	CTX	1/8	1
Radiated Emissions 9kHz~30MHz	CTX	8	1
Radiated Emissions 30MHz~10 th Harmonic	CTX	1/8	1
Band Edge Emissions	-	-	-

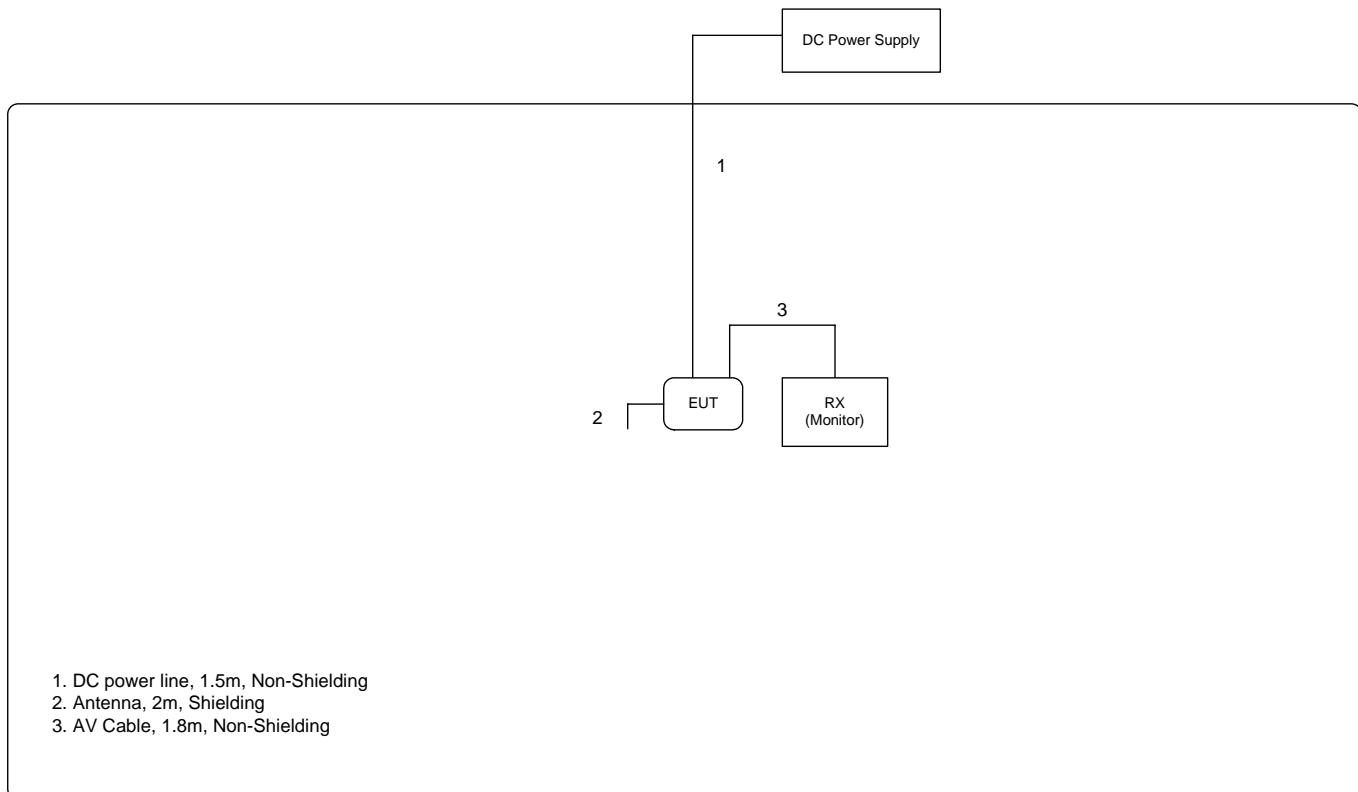
Note:

CTX=Continuously transmitting. During and after test, the EUT was programmed to max modulation.

3.4. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No.
03CH03-HY	SAC	Hwa Ya	101377	IC 4088	-
TH01-HY	OVEN Room	Hwa Ya	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).


Please refer section 6 for Test Site Address.

3.5. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
TV	JVC	TM-1400MP	-
RX (Monitor)	Provided by Manufacturer		
DC power supply	-	-	-

3.6. Test Configurations

3.6.1. Radiation Emissions Test Configuration

Note:

The antenna is a wire antenna and tied on the center of table. There is no significant difference between tied and extended wire antenna.

4. TEST RESULT

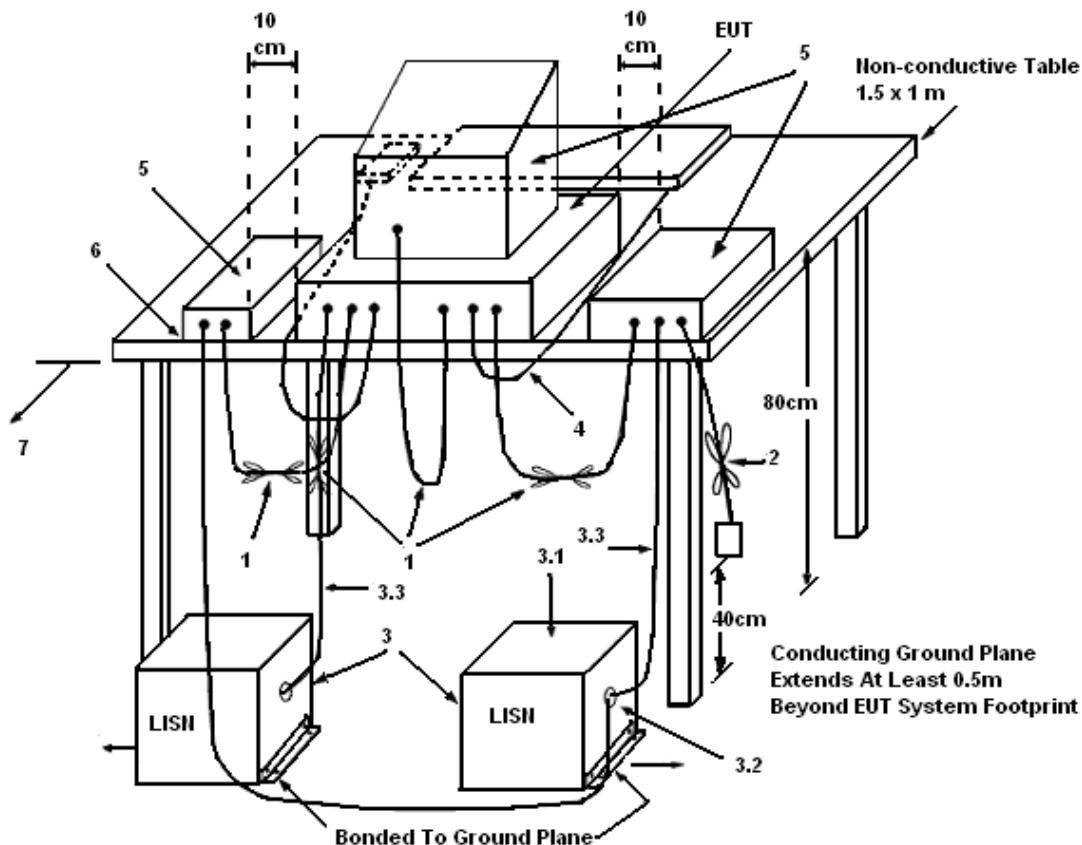
4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

1. Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
4. The frequency range from 150 KHz to 30 MHz was searched.
5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
2. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
 - 3.1 All other equipment powered from additional LISN(s).
 - 3.2 Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
 - 3.3 LISN at least 80cm from nearest part of EUT chassis.
4. Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
5. Non-EUT components of EUT system being tested.
6. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
7. Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

N/A

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Based on the comment FCC/TCBC, the AC powerline conducted emission is not required for battery powered device.

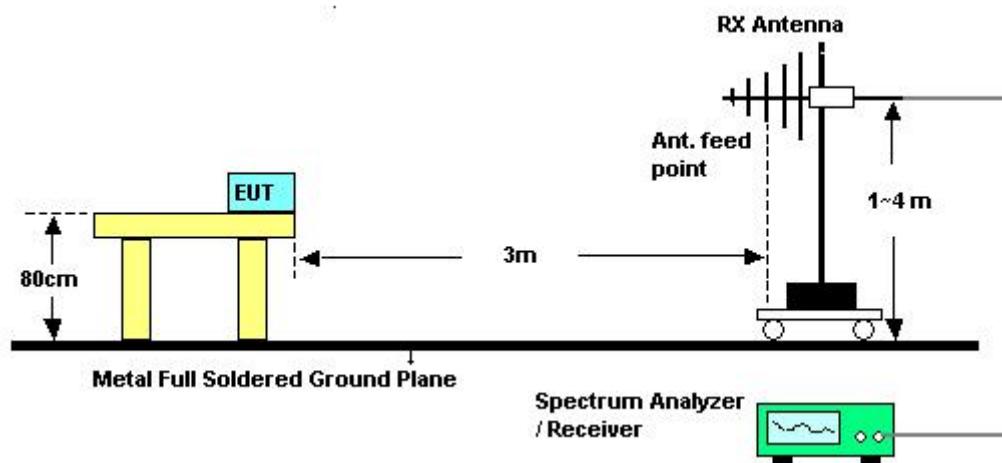
4.2. Field Strength of Fundamental Emissions Measurement

4.2.1. Limit

The field strength of fundamental emissions shall comply with the following table.

Frequency Band (MHz)	Fundamental Emissions Limit (dBuV/m) at 3m
88~108	48 (Average)
88~108	68 (Peak)

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments in this report. The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	Auto
Center Frequency	Fundamental Frequency
RB	120 KHz
Detector	Peak / Average

4.2.3. Test Procedures

1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. For Fundamental emissions, use the receiver to measure peak and average reading.
6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode. The support equipment, RX monitor with built-in DVD-ROM, is playing DVD during test and the audio signal was sent to EUT and was modulated to FM TX signal. The FM traces change with different signals and spectrum is set to max-hold. After the trace was stabilized, the measured trace is the max modulated trace.

4.2.7. Test Result of Field Strength of Fundamental Emissions

Temperature	26°C	Humidity	55%
Test Engineer	Kay	Configurations	Channel 1/8

Channel 1

	Freq	Level	Over	Limit	Read	Antenna	Cable	Preamp
			Line	Limit	Antenna	Level	Factor	Loss
			MHz	dBuV/m	dB	dBuV	dB/m	dB
1	88.510	38.89	-29.11	68.00	59.07	8.64	1.30	30.12 Peak
2	88.510	38.10	-9.90	48.00	58.28	8.64	1.30	30.12 Average

Channel 8

	Freq	Level	Over	Limit	Read	Antenna	Cable	Preamp
			Line	Limit	Antenna	Level	Factor	Loss
			MHz	dBuV/m	dB	dBuV	dB/m	dB
1	89.880	32.11	-35.89	68.00	52.43	8.50	1.30	30.12 Peak
2	89.880	32.07	-15.93	48.00	52.39	8.50	1.30	30.12 Average

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

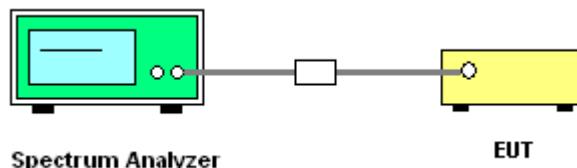
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.3. 20dB Spectrum Bandwidth Measurement

4.3.1. Limit

Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RB	10 kHz
VB	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.3.3. Test Procedures

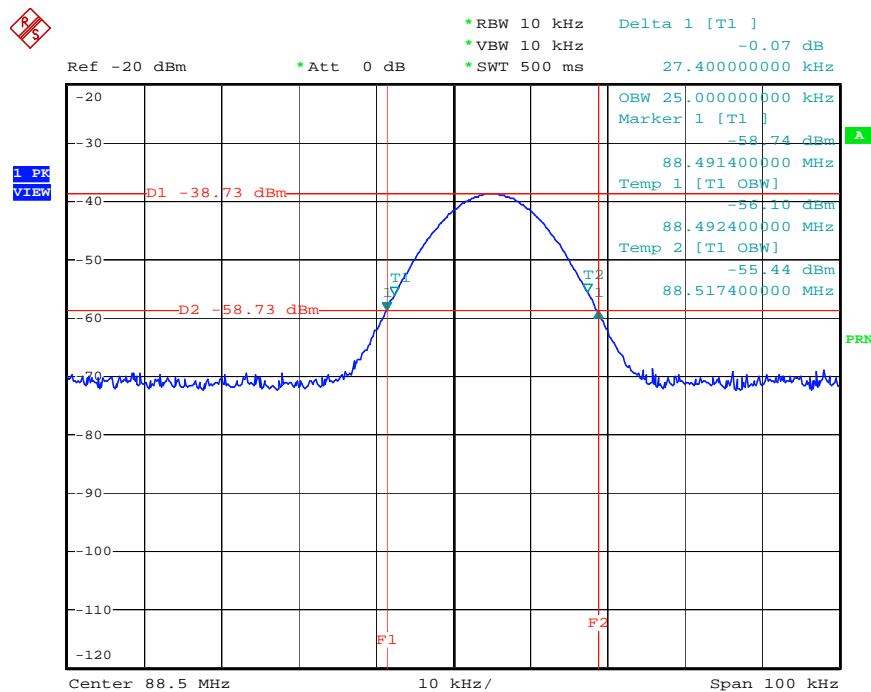
1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
2. The resolution bandwidth of 10 kHz and the video bandwidth of 10 kHz were used.
3. Measured the spectrum width with power higher than 20dB below carrier.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

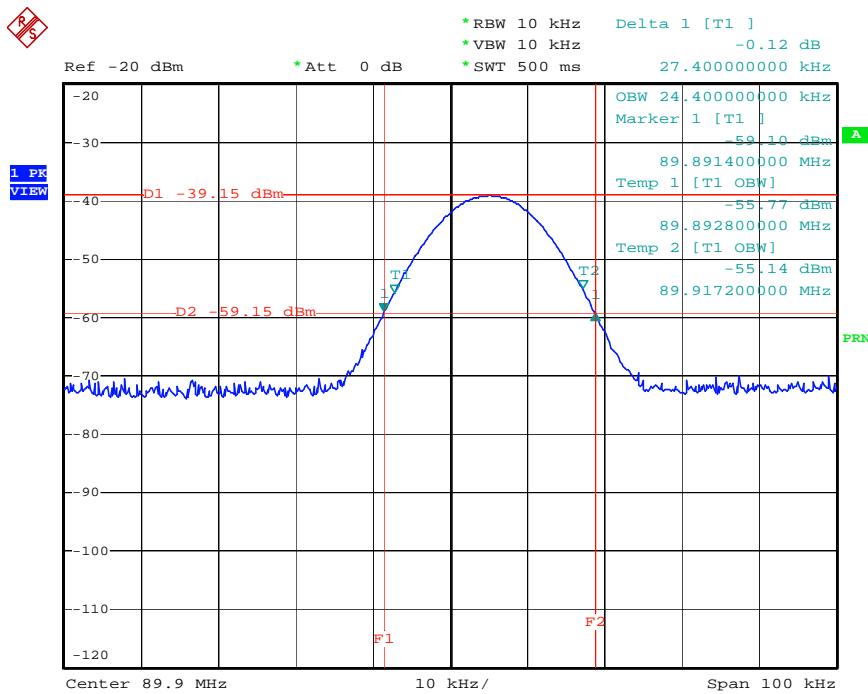
There is no deviation with the original standard.

4.3.6. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of 20dB Spectrum Bandwidth

Temperature	26°C	Humidity	58%
Test Engineer	Vic	Configurations	Channel 1/8


Frequency	20dB BW (kHz)	99% OBW (kHz)	Frequency range (MHz) $f_L > 88\text{MHz}$	Frequency range (MHz) $f_H < 108\text{MHz}$	Test Result
88.5 MHz	27.40	25.00	88.4914	-	Complies
89.9 MHz	27.40	24.40	-	89.9188	Complies

20 dB/99% Bandwidth Plot on 88.5 MHz

Date: 29.JUN.2006 22:35:13

20 dB/99% Bandwidth Plot on 89.9 MHz

Date: 29.JUN.2006 22:32:15

Note:

During test, the EUT was programmed to max modulation (max input load) so the measured bandwidth is the max bandwidth. The support equipment, RX monitor with built-in DVD-ROM, is playing DVD during test and the audio signal was sent to EUT and was modulated to FM TX signal. The FM traces change with different signals and spectrum is set to max-hold. After the trace was stabilized, the measured trace is the max modulated trace.

4.4. Radiated Emissions Measurement

4.4.1. Limit

The field strength of any emissions which appear outside of this band shall not exceed the general radiated emissions limits in Section 15.209(a)

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

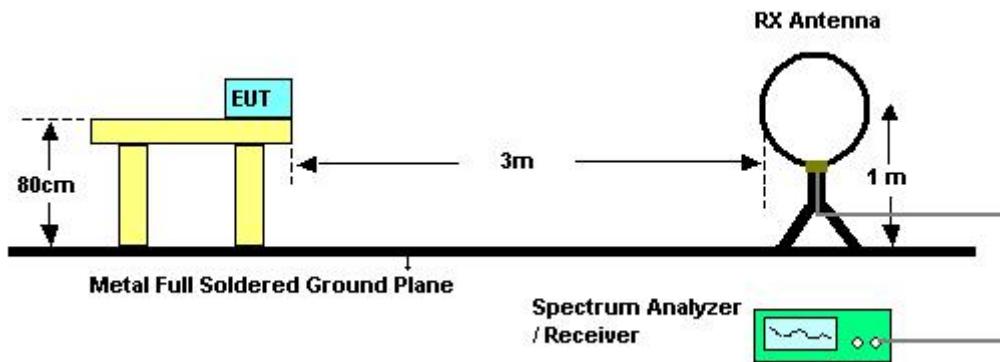
4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments in this report. The following table is the setting of spectrum analyzer and receiver.

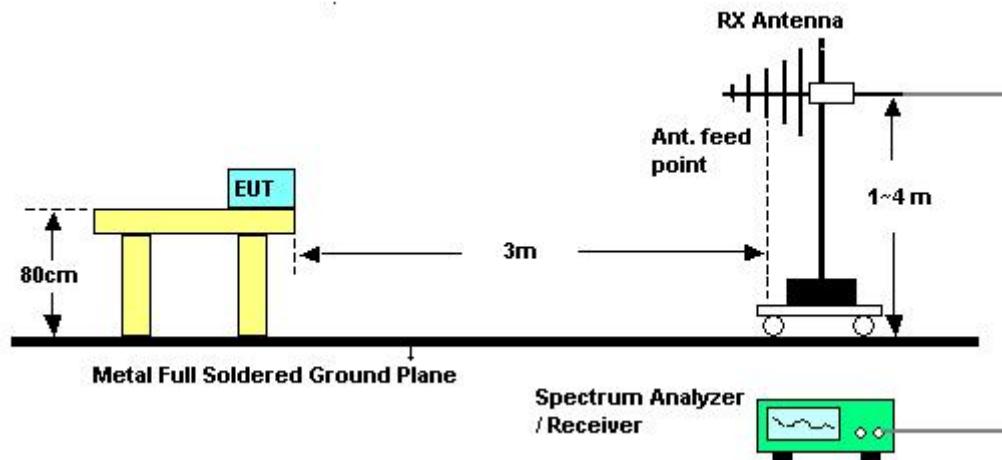
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.4.3. Test Procedures


1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical

polarization.


4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.4.4. Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode. The support equipment, RX monitor with built-in DVD-ROM, is playing DVD during test and the audio signal was sent to EUT and was modulated to FM TX signal. The FM traces change with different signals and spectrum is set to max-hold. After the trace was stabilized, the measured trace is the max modulated trace.

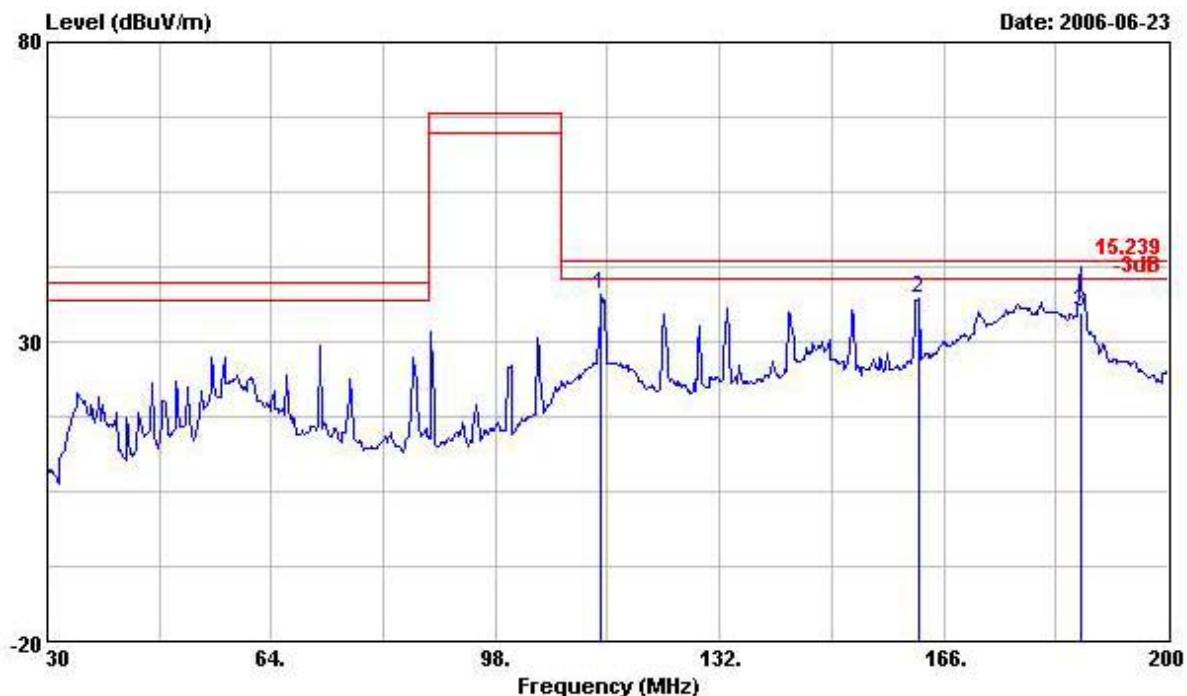
4.4.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	26°C	Humidity	55%
Test Engineer	Kay		

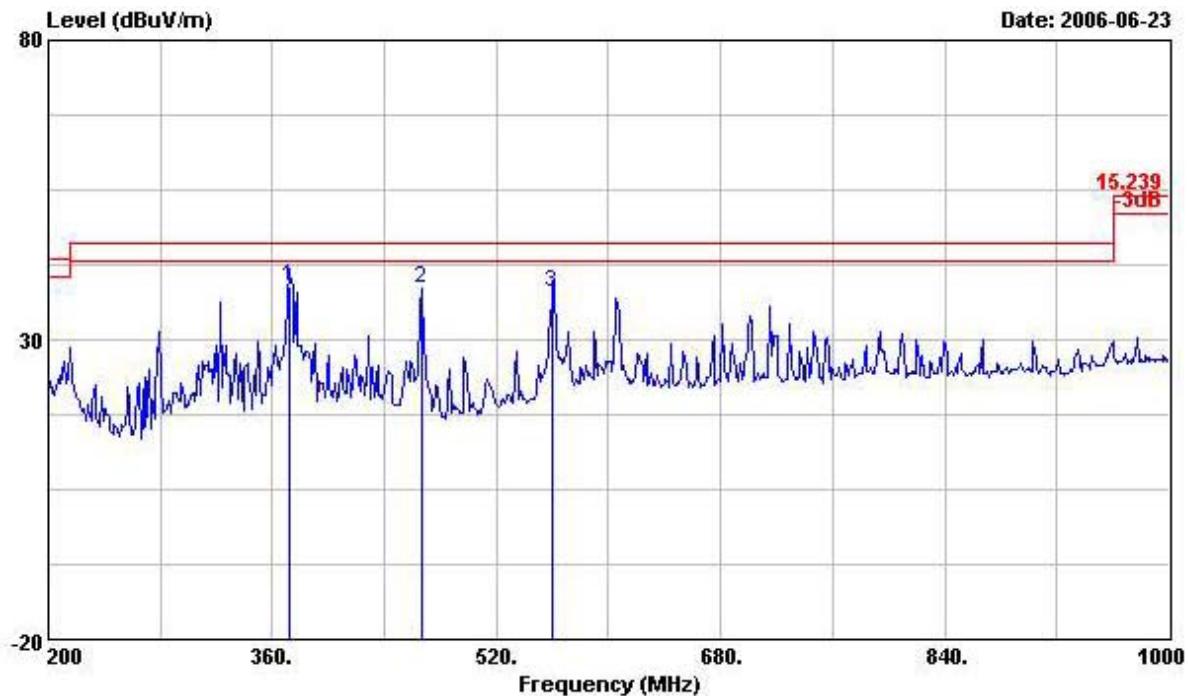
Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark
-	-	-	-	See Note

Note:

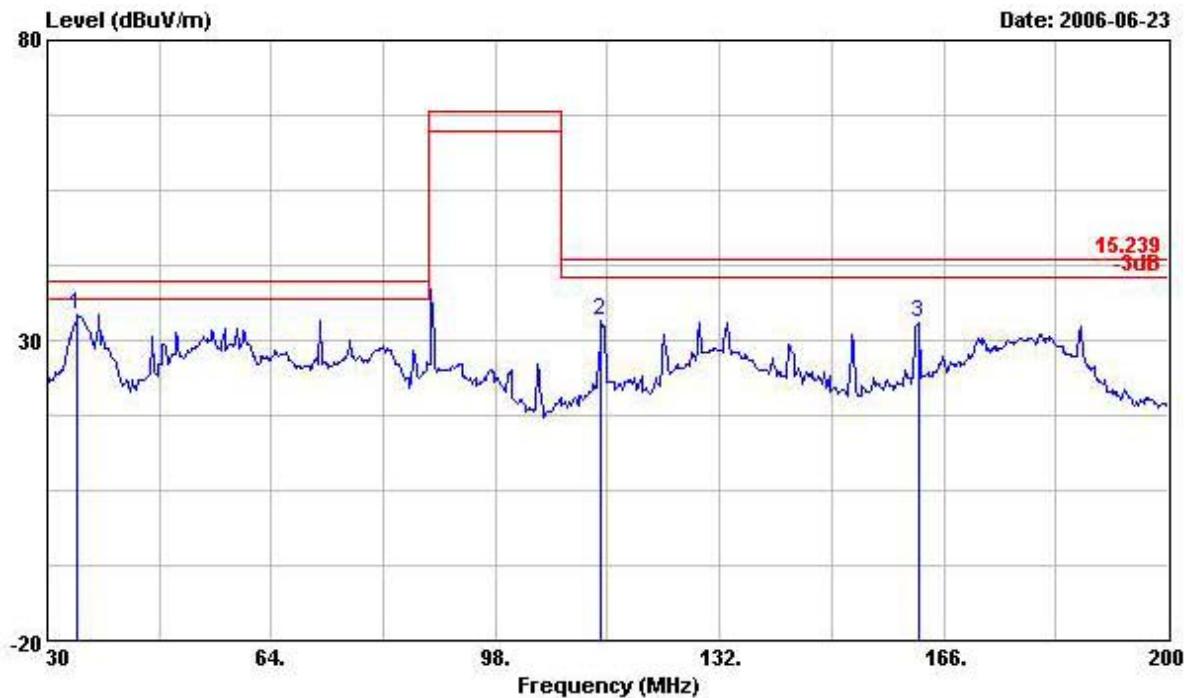
The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

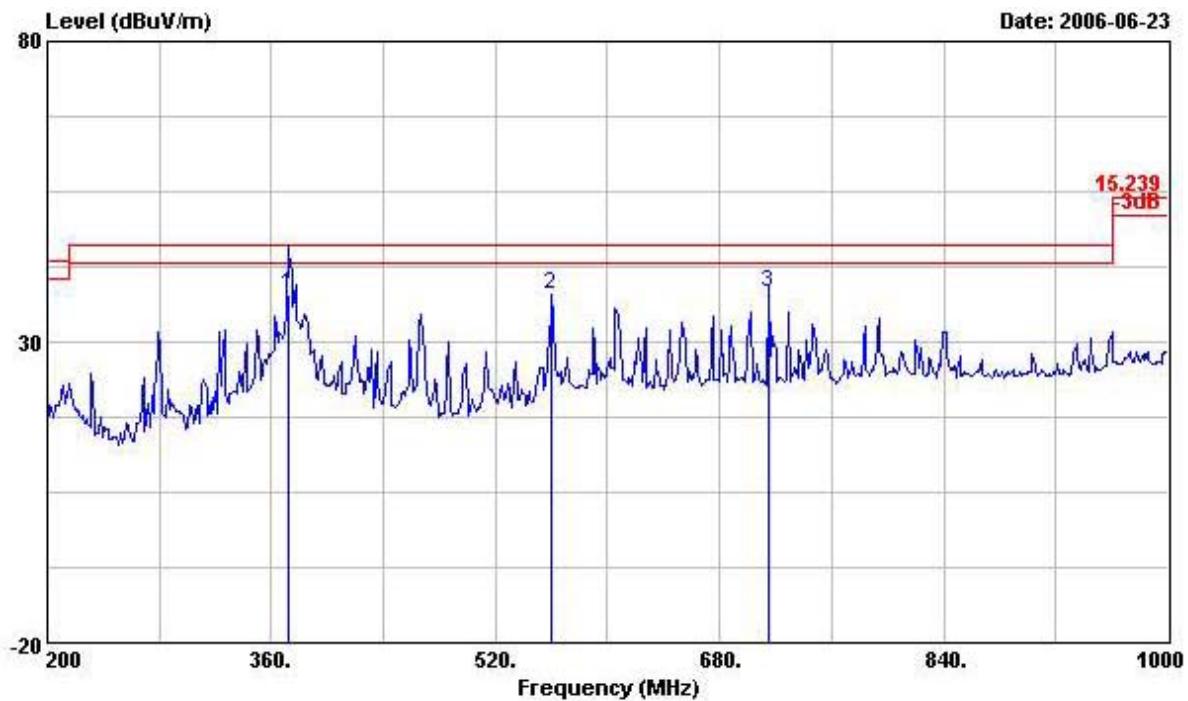

Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


4.4.8. Results for Radiated Emissions (30MHz~10th Harmonic)

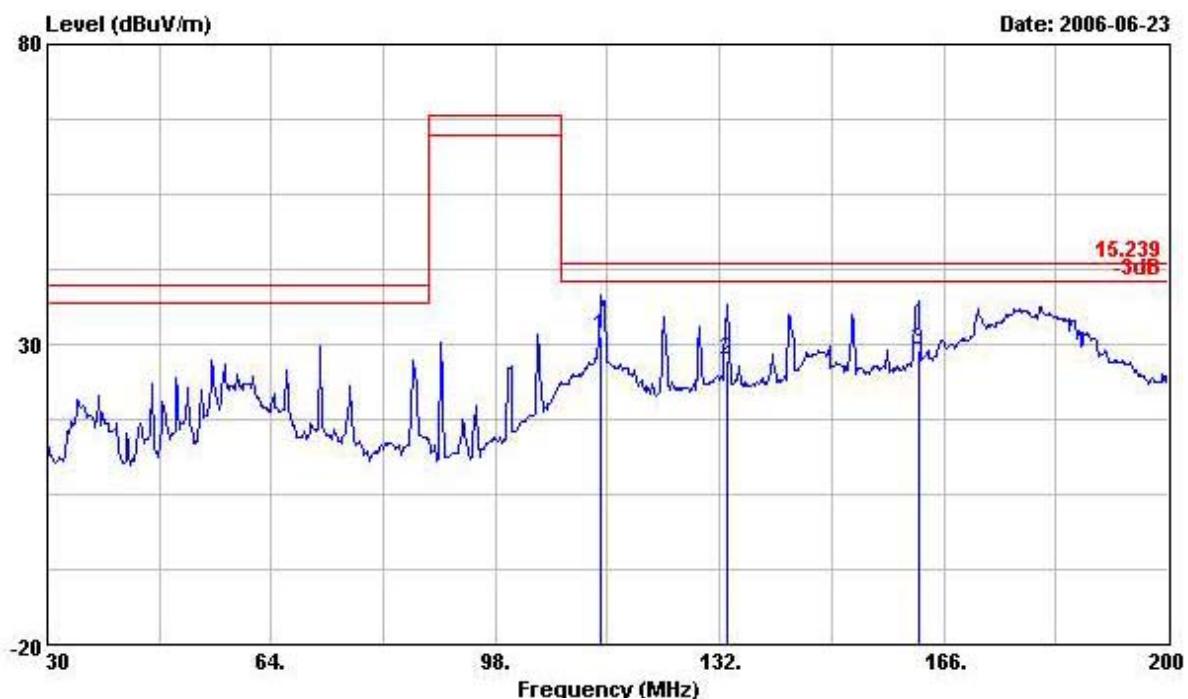
Temperature	26°C	Humidity	55%
Test Engineer	Kay	Configurations	Channel 1

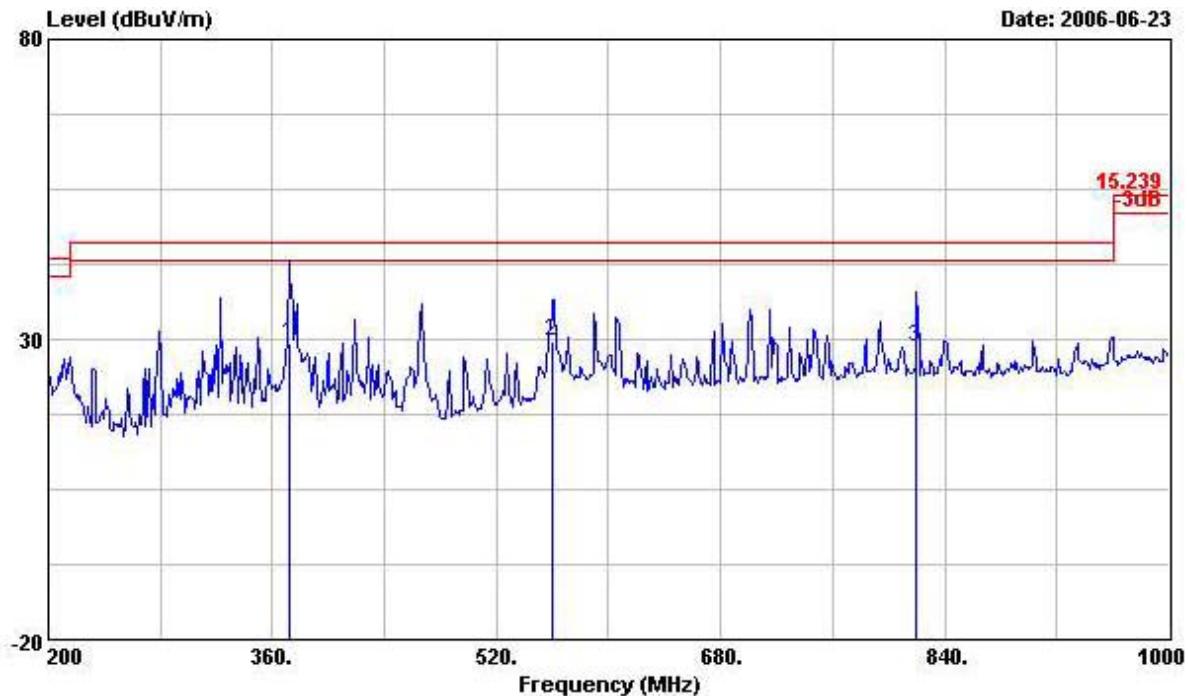

Horizontal


Freq	Level	Over Limit		Read		Antenna Level	Cable Preamp		Remark
		Limit	Line	Antenna	Level		Loss Factor	Factor	
MHz	dB _{UV} /m	dB	dB _{UV} /m	dB _{UV}	dB/m	dB	dB	dB	
1.0	113.980	37.95	-5.55	43.50	55.44	11.01	1.56	30.06	Peak
2.0	162.260	37.12	-6.38	43.50	52.68	12.84	1.82	30.22	Peak
3.0	186.740	34.89	-8.61	43.50	47.99	14.73	2.33	30.16	QP

Freq	Level	Over	Limit	Read	Antenna	Cable	Preamp	Remark
		Limit	Line	Antenna	Level Factor	Loss Factor	dB	
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	
1 0	372.000	38.74	-7.26	46.00	49.61	15.96	3.33	30.16 Peak
2 0	467.200	38.57	-7.43	46.00	48.80	16.26	3.73	30.22 Peak
3 0	560.000	37.83	-8.17	46.00	45.00	18.63	4.26	30.07 Peak

Vertical


Freq	Level	Over Limit		Read	Antenna	Cable	Preamp	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV/m					
1	34.590	34.19	-5.81	40.00	51.76	11.98	0.47	30.02	Peak	
2	113.980	33.31	-10.19	43.50	50.80	11.01	1.56	30.06	Peak	
3	162.260	32.81	-10.69	43.50	48.37	12.84	1.82	30.22	Peak	

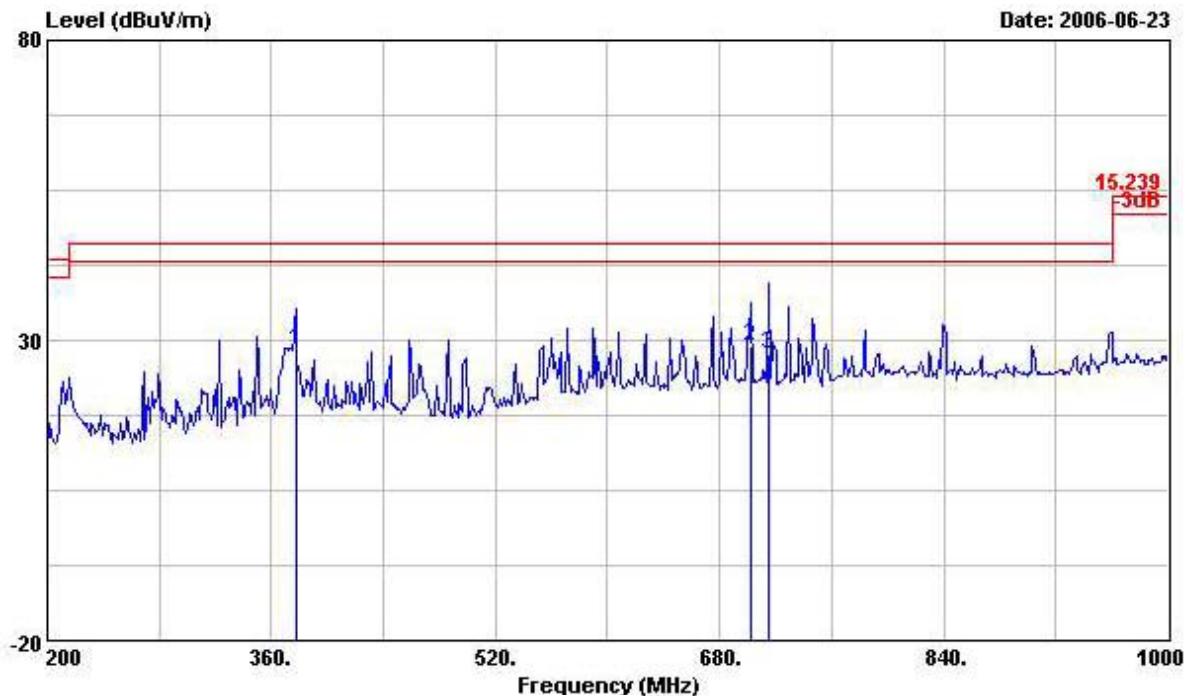

Freq	Level	Over	Limit	Read	Antenna	Cable	Preamp	Remark
		Limit	Line	Antenna	Level Factor	dB/m	dB	
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	
1 0	372.000	38.02	-7.98	46.00	48.89	15.96	3.33	30.16 QP
2 0	560.000	37.77	-8.23	46.00	44.94	18.63	4.26	30.07 Peak
3 0	714.400	38.13	-7.87	46.00	42.34	20.88	4.68	29.77 Peak

Temperature	26°C	Humidity	55%
Test Engineer	Kay	Configurations	Channel 8

Horizontal



Freq	Level	Over Limit	Line Limit	Read		Antenna Level	Cable Factor	Preamp Factor	Remark
				MHz	dBuV/m				
1	113.980	31.30	-12.20	43.50	48.79	11.01	1.56	30.06	QP
2	133.020	27.44	-16.06	43.50	43.29	12.41	1.80	30.07	QP
3	162.260	28.98	-14.52	43.50	44.55	12.84	1.82	30.22	QP



Freq	Level	Over	Limit	Read	Antenna	Cable	Preamp	Remark
		Limit	Line	Antenna	Level Factor	Cable Loss	Preamp Factor	
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB
1	372.000	29.50	-16.50	46.00	40.37	15.96	3.33	30.16 QP
2	560.000	29.74	-16.26	46.00	36.91	18.63	4.26	30.07 QP
3	820.000	28.83	-17.17	46.00	31.37	21.86	5.35	29.75 QP

Vertical

Freq	Level	Over Limit		Read	Antenna	Cable	Preamp	Loss	Factor	Remark
		Line	Limit							
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m					
1 0	34.590	31.48	-8.52	40.00	49.05	11.98	0.47	30.02	Peak	
2	113.980	31.40	-12.10	43.50	48.89	11.01	1.56	30.06	Peak	
3	162.260	31.74	-11.76	43.50	47.30	12.84	1.82	30.22	Peak	

Freq	Level	Over Limit	Read		Antenna Factor	Cable Loss	Preamp Factor	Remark
			Line	dBuV				
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	377.600	28.36	-17.64	46.00	39.05	16.14	3.34	30.16 QP
2	701.600	29.12	-16.88	46.00	33.54	20.72	4.62	29.76 QP
3	714.400	27.69	-18.31	46.00	31.90	20.88	4.68	29.77 QP

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.5. Band Edge Emissions Measurement

4.5.1. Limit

Band edge emissions outside of the frequency bands shown in below table.

Outside Frequency Band Edge	Limit (dBuV/m) at 3m
Below 88MHz	40.0 (QP)
Above 108MHz	43.5 (QP)

4.5.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the receiver.

Receiver Parameter	Setting
Center Frequency	Fundamental Frequency
RB	120 KHz
Detector	QP or Peak

4.5.3. Test Procedures

The test procedure is the same as section 4.2.3; only the frequency range investigated is limited to 2MHz around band edges.

4.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.2.4

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Test Result of Band Edge and Fundamental Emissions

Temperature	26°C	Humidity	55%
Test Engineer	Kay		

Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = $20 \log (\text{specific distance} / \text{test distance})$ (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

4.6. Antenna Requirements

4.6.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.6.2. Antenna Connector Construction

Please refer to section 3.1 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 15, 2006	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	CPA9231A	3565	9 kHz - 2 GHz	Jan. 18, 2006	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	May 29, 2006	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100004/040	9 kHz - 40 GHz	Sep. 30, 2005	Radiation (03CH03-HY)
Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30 MHz - 200 MHz	Jul. 22, 2005	Radiation (03CH03-HY)
Log Antenna	SCHWARZBECK	VUSLP 9111	221	200 MHz - 1 GHz	Jul. 22, 2005	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6903	1GHz ~ 18GHz	Mar. 15, 2006	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Dec. 02, 2005	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec. 02, 2005	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 - 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Nov. 26, 2005	Conducted (TH01-HY)
Power Meter	R&S	NRVS	100444	DC ~ 40GHz	Jun. 10, 2006	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z55	100049	DC ~ 40GHz	Jul. 06, 2006	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jun. 10, 2006	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Dec. 28, 2005	Conducted (TH01-HY)
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2005	Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 30, 2005	Conducted (TH01-HY)
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Dec. 30, 2005	Conducted (TH01-HY)
Oscilloscope	Tektronix	TDS1012	CO38515	100MHz / 1GS/s	Jun. 20, 2006	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Dec. 30, 2005	Conducted (TH01-HY)
Data Generator	Tektronix	DG2030	063-2920-50	0.1Hz~400MHz	Jun. 16, 2006	Conducted (TH01-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	NCR	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is one year.

NCR: Non-Calibration required

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	MITEQ	AMF-6F-260400	923364	26.5 GHz - 40 GHz	Jan. 24, 2006*	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 24, 2005*	Radiation (03CH03-HY)
AC power source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Apr. 21, 2005*	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

6. TEST LOCATION

SHIJR	ADD : 6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255
HWA YA	ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL : 886-3-327-3456 FAX : 886-3-318-0055
LINKOU	ADD : No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C TEL : 886-2-2601-1640 FAX : 886-2-2601-1695
DUNGHU	ADD : No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. TEL : 886-2-2631-4739 FAX : 886-2-2631-9740
JUNGHE	ADD : 7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. TEL : 886-2-8227-2020 FAX : 886-2-8227-2626
NEIHU	ADD : 4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C. TEL : 886-2-2794-8886 FAX : 886-2-2794-9777
JHUBEI	ADD : No.8, Lane 728, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C. TEL : 886-3-656-9065 FAX : 886-3-656-9085

7. NVLAP CERTIFICATE OF ACCREDITATION

United States Department of Commerce
National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:1999

NVLAP LAB CODE: 200079-0

Sportun International, Inc. Hwa Ya EMC Laboratory

Tao Yuan Hsien 333
TAIWAN


*is recognized by the National Voluntary Laboratory Accreditation Program for conformance with criteria set forth in
NIST Handbook 150:2001 and all requirements of ISO/IEC 17025:1999.
Accreditation is granted for specific services, listed on the Scope of Accreditation, for:*

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

2006-01-01 through 2006-12-31

Effective dates

For the National Institute of Standards and Technology

NVLAP-01C (REV. 2005-05-19)