

RADIO FREQUENCY EXPOSURE

LIMIT

See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	Fixed Wireless Terminal
Frequency band (Operating)	<input checked="" type="checkbox"/> 850 MHz <input type="checkbox"/> 1900 MHz
Device category	<input type="checkbox"/> Portable (<20cm separation) <input checked="" type="checkbox"/> Mobile (>20cm separation) <input type="checkbox"/> Others
Exposure classification	<input checked="" type="checkbox"/> General Population/Uncontrolled exposure ($S=0.567\text{mW/cm}^2$)
Antenna diversity	<input checked="" type="checkbox"/> Single antenna <input type="checkbox"/> Multiple antennas <input type="checkbox"/> Tx diversity <input type="checkbox"/> Rx diversity <input type="checkbox"/> Tx/Rx diversity
Max. output power	850 MHz: 28.90 dBm (776.2 mW)
Antenna gain (Max)	-4.21 dBi (Numeric gain: 0.38)
Evaluation applied	<input checked="" type="checkbox"/> MPE Evaluation* <input type="checkbox"/> SAR Evaluation

Remark:

1. The maximum output power is 28.90dBm (776.2mW) at 850MHz (with 0.38 numeric antenna gain.)
2. MPE estimate is used to justify the compliance.
3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 0.567 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given $E = \frac{\sqrt{30 \times P \times G}}{d}$ & $S = \frac{E^2}{3770}$

Where **E** = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P (mW) = P (W) / 1000 \text{ and}$$

$$d (cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2} \quad \text{Equation 1}$$

Where *d* = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

Maximum Permissible Exposure

EUT output power = 776.2mW

Numeric Antenna gain = 0.38

Substituting the MPE safe distance using *d* = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where *P* = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

→ Power density = 0.0587 mW / cm²

(For mobile or fixed location transmitters, the maximum power density is 0.567 mW/cm² even if the calculation indicates that the power density would be larger.

RADIO FREQUENCY EXPOSURE

LIMIT

See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	Fixed Wireless Terminal
Frequency band (Operating)	<input type="checkbox"/> 850 MHz <input checked="" type="checkbox"/> 1900 MHz
Device category	<input type="checkbox"/> Portable (<20cm separation) <input checked="" type="checkbox"/> Mobile (>20cm separation) <input type="checkbox"/> Others
Exposure classification	<input checked="" type="checkbox"/> General Population/Uncontrolled exposure ($S=1.267\text{mW/cm}^2$)
Antenna diversity	<input checked="" type="checkbox"/> Single antenna <input type="checkbox"/> Multiple antennas <input type="checkbox"/> Tx diversity <input type="checkbox"/> Rx diversity <input type="checkbox"/> Tx/Rx diversity
Max. output power	1900 MHz: 23.60 dBm (229.1 mW)
Antenna gain (Max)	-4.67 dBi (Numeric gain: 0.34)
Evaluation applied	<input checked="" type="checkbox"/> MPE Evaluation* <input type="checkbox"/> SAR Evaluation

Remark:

1. The maximum output power is 23.60dBm (229.1mW) at 1900MHz (with 0.34 numeric antenna gain.)
2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.267 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given $E = \frac{\sqrt{30 \times P \times G}}{d}$ & $S = \frac{E^2}{3770}$

Where **E** = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P (mW) = P (W) / 1000 \text{ and}$$

$$d (cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2} \quad \text{Equation 1}$$

Where *d* = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

Maximum Permissible Exposure

EUT output power = 229.1mW

Numeric Antenna gain = 0.34

Substituting the MPE safe distance using *d* = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where *P* = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

\rightarrow Power density = 0.0155 mW / cm²

(For mobile or fixed location transmitters, the maximum power density is 1.267 mW/cm² even if the calculation indicates that the power density would be larger.