

Test Report Serial Number:
Test Report Date:
Project Number:

45461653 R1.0 11 May 2021

1534

EMC Test Report - New Filing

Applicant:

Telcosat Inc. #116, 1919 - 27 Ave N.E. Calgary, AB, T2E 7E4 Canada

FCC ID:

UDIRPT700

Product Model Number / HVIN

RPT700

IC Registration Number

5842A-RPT700

Product Name / PMN

RPT700

In Accordance With:

FCC 47 CFR Part 27

Miscellaneous Wireless Communications Services

RSS-GEN, RSS-130 Issue 2

Equipment Operating in the Frequency Bands 617-652 MHz, 663-698 MHz, 698-756 MHz and 777-787 M

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8

Canada


Industry Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: CA3874

Table of Contents

1.0 DOCUMENT CONTROL	5
2.0 CLIENT AND DUT INFORMATION	6
3.0 SCOPE	7
4.0 TEST SUMMARY	8
5.0 NORMATIVE REFERENCES	10
6.0 FACILITIES AND ACCREDITATIONS	11
7.0 EQUIPMENT REQUIREMENTS	12
8.0 OCCUPIED BANDWIDTH	13
9.0 OUT-OF-BAND REJECTION	16
10.0 AGC THRESHOLD	23
11.0 ANTENNA PORT CONDUCTED POWER	24
12.0 INPUT / OUTPUT COMPARISON	
13.0 OUT-OF-BAND / BLOCK EMISSIONS, BAND EDGE	34
14.0 CONDUCTED SPURIOUS EMISSIONS	
15.0 PEAK-TO-AVERAGE POWER RATIO	48
16.0 RADIATED RX EMISSIONS	
17.0 POWER-LINE CONDUCTED EMISSIONS	58
18.0 FREQUENCY STABILITY	
APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT	
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	
END OF REPORT	
APPENDIX D – OCCUPIED BANDWIDTH MEASUREMENT PLOTS	
APPENDIX E – MEAN POWER MEASUREMENT PLOTS	
APPENDIX F – I/O COMPARISON MEASUREMENT PLOTS	
APPENDIX G – OOB EMISSIONS / BAND EDGE MEASUREMENT PLOTS	
APPENDIX H – CONDUCTED SPURIOUS MEASUREMENT PLOTS	
APPENDIX I – PEAK-TO-AVERAGE MEASUREMENT PLOTS	
APPENDIX J – POWER LINE CONDUCTED MEASUREMENT PLOTS	72
Table of Figures	
Figure A.1 – Test Setup – Conducted Measurements	64
Figure A.2 – Test Setup Radiated Measurements 30MHz – 1GHz	65
Figure A.3 – Test Setup Radiated Measurements 30MHz – 1GHz, Signal Substitution	66
Figure A.4 – Test Setup Radiated Measurements 1 – 18GHz,	
Figure A.6 – Test Setup Power – Frequency Stability	

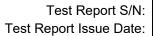
45461653 R2.0 11 May 2021

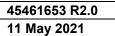
Table of Plots

Plot 9.1 – OOB Rejection, LTE B12 UL	17
Plot 9.2 – OOB Rejection, LTE B12 UL	
Plot 9.3 – OOB Rejection, LTE B13 UL	
Plot 9.4 – OOB Rejection, LTE B13 UL	
Plot 9.5 – OOB Rejection, LTE B12 & B13 DL Passband	
Plot 9.6 - OOB Rejection, LTE B12 & B13 DL Passband	22
Plot 16.1 – Radiated RX Emissions, 30 – 1000MHz, Horizontal	
Plot 16.2 – Radiated RX Emissions, 30 – 1000MHz, Vertical	52
Plot 16.3 – Radiated RX Emissions, 1 – 3 GHz, Horizontal	53
Plot 16.4 – Radiated RX Emissions, 1 – 3 GHz, Vertical	
Plot 16.5 – Radiated RX Emissions, 3 - 8 GHz, Horizontal	
Plot 16.6 – Radiated RX Emissions, 3 - 8 GHz, Vertical	

45461653 R2.0 11 May 2021

Table of Tables


Table 8.1 – Summary of Occupied Bandwidth Measurements, LTE B12 DL	
Table 8.2 – Summary of Occupied Bandwidth Measurements, LTE B12 UL	
Table 8.3 – Summary of Occupied Bandwidth Measurements, LTE B13 DL	15
Table 8.4 – Summary of Occupied Bandwidth Measurements, LTE B13 UL	
Table 9.1 – Summary of Out-Of-Band Rejection, LTE Band 12 UL	
Table 9.2 – Summary of Out-Of-Band Rejection, LTE Band 13 UL	20
Table 9.3 – Summary of Out-Of-Band Rejection, LTE Band 12 & 13 DL	
Table 10.1 – Summary AGC Threshold	23
Table 11.1 – Summary of Conducted Power Measurements, LTE Band 12 UL	26
Table 11.2 – Summary of Conducted Power Measurements, LTE Band 13 UL	
Table 11.3 – Summary of Conducted Power Measurements, LTE Band 12 & 13 DL	
Table 11.2 – Summary of Input / Output Comparison, LTE B12 UL	31
Table 12.2 – Summary of Input / Output Comparison, LTE B13 UL	
Table 12.3 – Summary of Input / Output Comparison, LTE B12 & 13 DL	
Table 13.1 – Summary of OOB Emissions, Band Edge, LTE Band 12 UL	
Table 13.2 – Summary of OOB Emissions, Band Edge, LTE Band 12 DL	
Table 13.3 – Summary of OOB Emissions, Band Edge, LTE Band 13 UL	
Table 13.4 – Summary of OOB Emissions, Band Edge, LTE Band 13 DL	
Table 14.1 – Summary of Conducted Spurious Emissions, B12 UL, 5MHz Channel Width	
Table 14.2 – Summary of Conducted Spurious Emissions, B12 UL, 10MHz Channel Width	
Table 14.3 – Summary of Conducted Spurious Emissions, B12 DL, 5MHz Channel Width	
Table 14.4 – Summary of Conducted Spurious Emissions, B12 DL, 10MHz Channel Width	
Table 14.5 – Summary of Conducted Spurious Emissions, B13 UL, 5MHz Channel Width	
Table 14.6 – Summary of Conducted Spurious Emissions, B13 UL, 10MHz Channel Width	
Table 14.7 – Summary of Conducted Spurious Emissions, B13 DL, 5MHz Channel Width	
Table 14.8 – Summary of Conducted Spurious Emissions, B13 DL, 10MHz Channel Width	
Table 14.9 – Summary of Conducted Spurious Emissions, §27.53(c)(3)	
Table 15.1 – Summary of PAPR Measurements	49
Table 16.1 – Summary of Radiated RX Emissions Measurements	
Table 17.1 – Summary of Power-Line Conducted Emissions	
Table 18.1 – Summary of Frequency Stability Measurement, LTE B12 UL	
Table 18.2 – Summary of Frequency Stability Measurement, LTE B13 UL	
Table 18.3 – Summary of Frequency Stability Measurement, LTE B12 & B13 DL	
Table A.1 – Setup – Conducted Measurements	
Table A.2 – Radiated Emissions Measurement Equipment	
Table A.3 – Setup – Conducted Emissions Equipment List	
Table A.4 – Setup – Frequency Stability	68



45461653 R2.0 11 May 2021

1.0 DOCUMENT CONTROL

	Revision History						
San	nples Tested By:	Art Voss, P.Eng.	Date(s) of Evaluation:		15 Mar - 10 April, 2021		
Rep	ort Prepared By:	Art Voss, P.Eng.	Re	port Reviewed By:	Ben Hewson		
Report	ort Passerintian of Revision		Revised	Revised	Revision Date		
Revision	Desc	Description of Revision		Ву	Revision Date		
0.1	Draft Release		n/a	Art Voss	14 April 2021		
0.2	Finalized Data		n/a	Art Voss	16 April 2021		
1.0	Initial Release		n/a	Art Voss	24 April 2021		
2.0	Revised DUT	Info, Highlighted Max Power	2, 11	Art Voss	11 May 2021		

2.0 CLIENT AND DUT INFORMATION

	Client Information			
Applicant Name (FCC)	Telcosat Inc.			
	#116, 1919 - 27 Ave N.E.			
Applicant Address (FCC)	Calgary, AB, T2E 7E4			
	Canada			
Applicant Name (ISED)	Telcosat Inc.			
	#116, 1919 - 27 Ave N.E.			
Applicant Address (ISED)	Calgary, AB, T2E 7E4			
	Canada			
	DUT Information			
Davina Identificate)	FCC ID: UDIRPT700			
Device Identifier(s):	IC ID: 5842A-RPT700			
Device Type:	LTE Industrial Repeater / Zone Enhancer			
Device Model(s) / HVIN:	RPT700			
Device Marketing Name / PMN:	-			
Firmware Version ID Number / FVIN:	-			
Host Marketing Name / HMN:	-			
Test Sample Serial No.:	T/A Sample - Identical Prototype			
Equipment Class (FCC):	B2I - Part 20 Industrial Booster (CMRS) Part 27			
Equipment Class (ISED):	Amplifier and/or Band Translator			
Transmit Frequency Range:	699-716MHz, 729-746MHz, 746-756MHz, 777-787MHz			
Test Channels:	n/a			
Manuf. Max. Rated Output Power:	26dBm, 400mW			
Manuf. Max. Rated BW/Data Rate:	n/a			
Antenna Type and Gain:	14dBd			
Modulation:	n/a			
Mode:	n/a			
Emission Designator:	See Section 8.0			
DUT Power Source:	120VAC			
DUT Dimensions [HxWxD] (mm)	H x W x D: 450mm x 406mm x 305			
Deviation(s) from standard/procedure:	None			
Modification of DUT:	None			

45461653 R2.0 11 May 2021

3.0 SCOPE

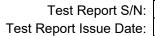
Preface:

This Certification Report was prepared on behalf of:

Telcosat Inc.

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

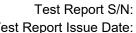
Device:


The PRT700 is an Industrial (Non-Consumer) LTE Signal Booster / Zone Enhancer. The RPT700 operates in the LTE Bands 12 and 13 Downlink and Uplink. The RPT700 must be professionally installed.

Requirement:

This *Equipment* is required to be evaluated to FCC 47 CFR §27 and ISED RSS-130. As a Signal Booster / Zone Enhancer, it must also be evaluated to FCC KDB 935210 D05 (Industrial) and ISED RSS-131. As per FCC 47 CFR §2.1091 an RF Exposure (MPE) evaluation is required for this *Equipment* and the results of the RF Exposure (SAR) evaluation appear in this report.

Application:


This is an application for a new certification.

4.0 TEST SUMMARY

	TEST SUMMARY							
Section	Description of Test	Procedure Reference	Applicable Rule Part(s) FCC	Applicable Rule Part(s) ISED	Test Date	Result		
8.0	Occupied Bandwidth	ANSI C63.26-2015	§2.1049	RSS-Gen	10 Apr 2021	Pass		
9.0	Out-Of-Band Rejection	ANSI C63.26-2015 FCC KDB 935210 D05 (3.3) ISED RSS-131 (5.2.1)	n/a	n/a	10 Apr 2021	Pass		
10.0	AGC Threshold	ANSI C63.26-2015 FCC KDB 935210 D05 (3.2) ISED RSS-131 (5.2)	n/a	n/a	16 Mar 2021	Pass		
11.0	Mean Output Pow er	ANSI C63.26-2015 FCC KDB 935210 D05 (3.5) ISED RSS-131 (5.2.3)	§27.50(b)(2) §27.50(c)(3)	RSS-130 (4.6.3) SRSP-518 (5.1.21)	26 Mar 2021	Pass		
12.0	I / O Comparison	ANSI C63.26-2015 FCC KDB 935210 D05 (3.4) ISED RSS-131 (5.2.2)	n/a	n/a	26 Mar 2021	Pass		
13.0	Out-Of-Band Emissions Band Edge	ANSI C63.26-2015 FCC KDB 935210 D05 (3.6)	§27.50(c) §27.50(g)	RSS-130 (4.7)	26 Mar 2021	Pass		
14.0	Conducted Spurious Emissions	ANSI C63.26-2015 FCC KDB 935210 D05 (3.6)	§27.50(c) §27.50(g)	RSS-130 (4.7)	26 Mar 2021	Pass		
15.0	Peak-To-Average Power Ration PAPR	ANSI C63.26-2015		RSS-130 (4.6)	29 Mar 2021	Pass		
16.0	Radiated Rx Spurious Emissions	ANSI C63.4: 2014	§2.1053	RSS-Gen	31 Mar 2021	Pass		
17.0	Pow er Line Conducted Emissions	ANSI C63.4: 2014	§2.1053	RSS-Gen	1 Apr 2021	Pass		
18.0	Frequency Stability	ANSI C63.26-2015	§2.1055	RSS-Gen	30 Mar 2021	Pass		

	Test Station Day Log							
Date	Ambient Temp	Relative Humidity	Barometric Pressure	Test Station	Tests Performed			
	(°C)	(%)	(kPa)		Section(s)			
15 Mar 2021	22.8	16	102.0	EMC	9			
16 Mar 2021	20.7	17	102.4	EMC	9, 10, 11			
17 Mar 2021	19.9	17	102.2	EMC	12, 14			
22 Mar 2021	22.4	16	101.3	EMC	14			
23 Mar 2021	20.2	17	103.1	EMC	14			
24 Mar 2021	22.0	16	100.8	EMC	8, 11, 12, 13, 14,			
25 Mar 2021	22.0	16	101.0	EMC	9			
26 Mar 2021	20.8	17	101.8	EMC	9, 11, 12, 13, 14			
29 Mar 2021	22.8	20	102.1	EMC	8, 15			
30 Mar 2021	22.2	19	102.6	TC	18			
31 Mar 2021	4.0	61	103.0	OATS	16			
1 Apr 2021	22.2	16	101.0	LISN	17			
10 Apr 2021	21.9	17	102.4	EMC	8, 9			

EMC - EMC Test Bench

OATS - Open Area Test Site

LISN - LISN Test Area

IMM - Immunity Test Area

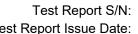
SAC - Semi-Anechoic Chamber

TC - Temperature Chamber

ESD - ESD Test Bench

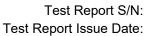
RI - Radiated Immunity Chamber

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner w hatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.


when Yours

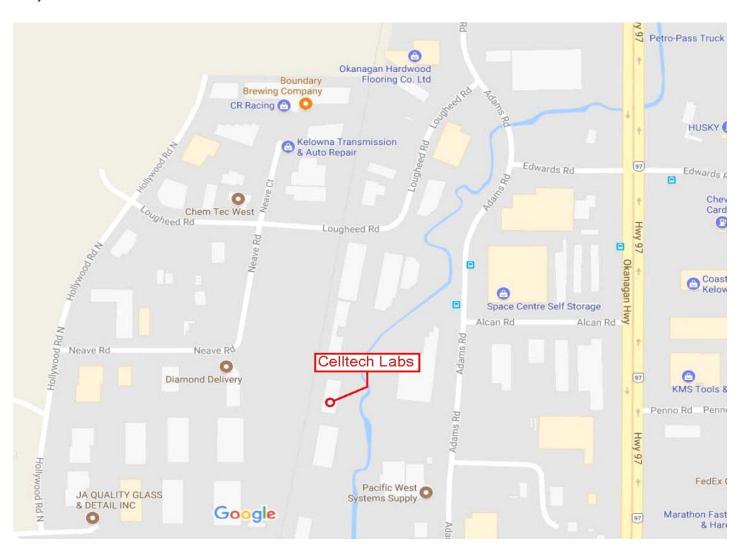
Art Voss, P.Eng. **Technical Manager** Celltech Labs Inc.

24 April 2021


Date

5.0 NORMATIVE REFERENCES

		Normative References
ISO/IEC	C 17025:2017	General requirements for the competence of testing and calibration laboratories
ANSI C	63.10-2013	American National Standard of Procedures for Compliance Testing of
		Unlicensed Wireless Devices
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 2:	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 27:	Miscellaneous Wireless Communications Services
FCC		Knowledge Data Base
	KDB	935210 D05
		Measurement Guidance for Industrial and Non-Consumer Signal Booster,
		Repeater and Amplifier Devices
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-Gen Issue 5:	General Requirements and Information for the Certification of Radiocommunication Equipment
	March	
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-130 Issue 2:	Mobile EaEquipment Operating in the Frequency Bands 617-652 MHz, 663-698 MHz,
	February 2019	698-756 MHz and 777-787 MHz
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-131 Issue 3:	Mobile EaEquipment Operating in the Frequency Bands 617-652 MHz, 663-698 MHz,
Janu	uary 2017, May 2017	698-756 MHz and 777-787 MHz
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	SRSP-218 Issue 2	Technical Requirements in the Bands 617-652 MHz, 663-698 MHz,
	February 2019	698-756 MHz and 777-787 MHz
I		



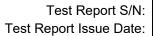
6.0 FACILITIES AND ACCREDITATIONS

Facility and Accreditation:

The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Innovation, Science and Economic Development Canada under Test Site File Number ISED 3874A-1. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

45461653 R2.0 11 May 2021

7.0 EQUIPMENT REQUIREMENTS


In accordance with FCC KDB 935210 D05, the following is the requirement for the signal generator (SG) used during the evaluation:

2.2 Signal generator

Several of the technical requirements are expressed such that one or more input signals are required when collecting the data necessary to demonstrate compliance (e.g., intermodulation tests). Thus, the capability to generate a minimum of two separate signal paths may be required (two independent signal generators or one signal generator with separately-controlled dual outputs). The signal generator(s) must have the following minimum capabilities:

- a) Tuning range that completely encompasses the operational frequency ranges of the amplifier/booster (e.g., 100 kHz to 3 GHz),
- b) Nominal output power range of -103 dBm to +20 dBm,
- c) Ability to replicate CMRS signal types GSM, CDMA, W-CDMA (LTE is optional) with a pseudo-random symbol pattern,
- d) Ability to replicate PLMRS signal types (e.g., P25 Phase 1, P25 Phase 2, TETRA),
- e) Ability to generate CW tones and band-limited AWGN.

A Keysight AT/N5182B-503;Q was used throughout this investigation and meets these requirements.

8.0 OCCUPIED BANDWIDTH

Test Procedure						
Normative	FCC 47 CFR §2.1049, RSS-Gen (6.7)					
References	ANSI C63.26 (5.4.4)					
Requirement / Limits						
	§ 2.1049 Measurements required: Occupied Bandwidth.					
47 CFR §2.1049	The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured					
	6.7 Occupied bandwidth (or 99% emission bandwidth) and x dB bandwidth					
RSS-Gen (6.7)	The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.					
General Procedure						
C63.26 (5.4.4)	5.4.4 Occupied bandwidth—Power bandwidth (99%) measurement procedure					
	The OBW is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.					
	The following procedure shall be used for measuring (99%) power bandwidth:					
	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of 1.5 × OBW is sufficient).					
	b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be ≥ 3 × RBW.					
	c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. d) Set the trace mode to max-hold.					
	e) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.					
Test Setup	Appendix A - Figure A.1					

Measurement Procedure

The SG was configured for a single 5MHz BW signal and an aggregated 10MHz channel at the Pre-AGC level. The SG frequency was set to the low, mid and high channels of each UL and DL channels. The DUT was connected to the SA via a 30dB attenuator and the SA was configured as described above using the 99% Occupied Bandwidth function. The output power of the DUT was set to the manufacturer's highest output power setting at the nominal transmit frequency. The 99% Occupied Bandwidth was measured and recorded.

45461653 R2.0 11 May 2021

Table 8.1 – Summary of Occupied Bandwidth Measurements, LTE B12 DL

See Appendix D for Measurement Plots

Occupied Bandwidth Measurement Results						
Channel	LTE	Nominal	Measured			
Frequency	Band	Channel	Occupied	Emission		
rrequency	Danu	BW	Bandwidth	Designator		
(MHz)		(MHz)	(MHz)	Designator		
731.5			4.48	4M48D1D		
737.5		5	4.48	4M48D1D		
743.5	12 DL		4.50	4M50D1D		
734	12 DL		9.44	9M44D1D		
737.5		10	9.48	9M48D1D		
741			9.44	9M44D1D		
				Complies		

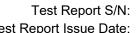
Table 8.2 – Summary of Occupied Bandwidth Measurements, LTE B12 UL

See Appendix D for Measurement Plots

Occupied Bandwidth Measurement Results					
Channel	L'	TE	Nominal	Measured	
Frequency	D.	and	Channel	Occupied	Emission
riequency	"	anu	BW	Bandwidth	Designator
(MHz)			(MHz)	(MHz)	Designator
701.5		12 UL		4.52	4M52D1D
707.5			5	4.60	4M60D1D
713.5	12			4.56	4M56D1D
704] 12			9.48	9M48D1D
707.5			10	9.52	9M52D1D
711				9.52	9M52D1D
					Complies

45461653 R2.0 11 May 2021

Table 8.3 – Summary of Occupied Bandwidth Measurements, LTE B13 DL

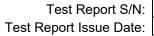

See Appendix D for Measurement Plots

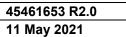
Occupied Bandwidth Measurement Results							
Channel	Ľ	TE	Nominal	Measured			
Frequency	Band		Rand		Channel	Occupied	Emission
rrequency	D.	anu	BW	Bandwidth	Designator		
(MHz)			(MHz)	(MHz)	Designator		
748.5				4.50	4M50D1D		
751	13	DL	5	4.48	4M48D1D		
753.5	13			4.48	4M48D1D		
751			10	9.44	9M44D1D		
					Complies		

Table 8.4 – Summary of Occupied Bandwidth Measurements, LTE B13 UL

See Appendix D for Measurement Plots

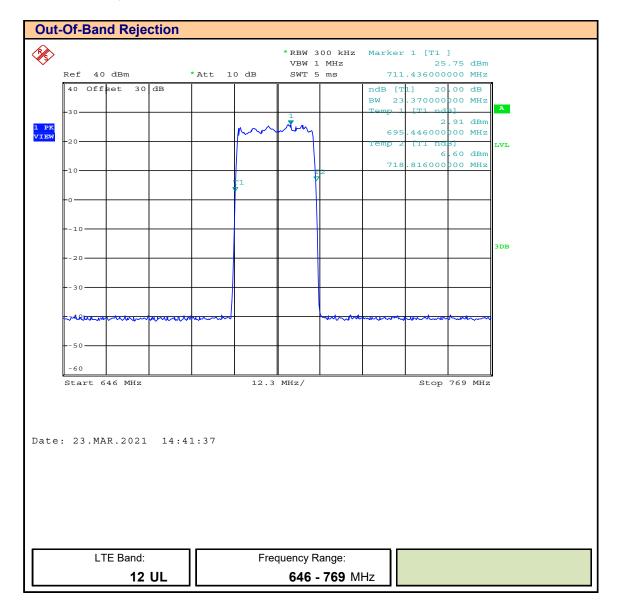
Occupied E	Occupied Bandwidth Measurement Results											
Channel	LTE		Nominal	Measured								
Frequency	Band		Channel	Occupied	Emission							
Frequency			BW	Bandwidth	Dosignator							
(MHz)			(MHz)	(MHz)	Designator							
779.5				4.52	4M52D1D							
782	13	UL	5	4.56	4M56D1D							
785.4	13	UL		4.56	4M56D1D							
782			10	9.52	9M52D1D							
					Complies							

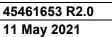

9.0 OUT-OF-BAND REJECTION


Test Procedure	
Normative	FCC KDB 935210 D02 (3.3), RSS-131 (5.2.1)
References	ANSI C63.26 As Applicable
Requirement / Limits	
	3.3 Out-of-Band Rejection
	A signal booster shall reject amplification of other signals outside of its passband.
RSS-131 (5.2.1)	5.2.1 Out-of-band rejection
	The gain-versus-frequency response and the 20 dB bandwidth of the zone enhancer shall be reported. The zone enhancer shall reject amplification of other signals outside the passband of the zone enhancer.
General Procedure	
FCC KDB 935210 D05	Adjust the internal gain control of the EUT (if so equipped) to the maximum gain for which equipment certification is sought.
(3.3)	a) Connect a signal generator to the input of the EUT.
	b) Configure a swept CW signal with the following parameters:
	1) Frequency range = ± 250 % of the passband,
	2) Level = a sufficient level to affirm that the out-of-band rejection is > 20 dB above the noise floor and will not engage the AGC during the entire sweep.
	3) Dwell time = approximately 10 ms.
	4) Number of points = SPAN/(RBW/2).
	c) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
	d) Set the span of the spectrum analyzer to the same as the frequency range of the signal generator.
	e) Set the resolution bandwidth (RBW) of the spectrum analyzer to be 1 % to 5 % of the EUT passband, and the video bandwidth (VBW) shall be set to \geq 3 × RBW.
	f) Set the detector to Peak Max-Hold and wait for the spectrum analyzer's spectral display to
	g) Place a marker to the peak of the frequency response and record this frequency as f₀. h) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the −20 dB down amplitude, to determine the 20 dB bandwidth.
	i) Capture the frequency response of the EUT.
	j) Repeat for all frequency bands applicable for use by the EUT.

Appendix A - Figure A.1 **Test Setup**

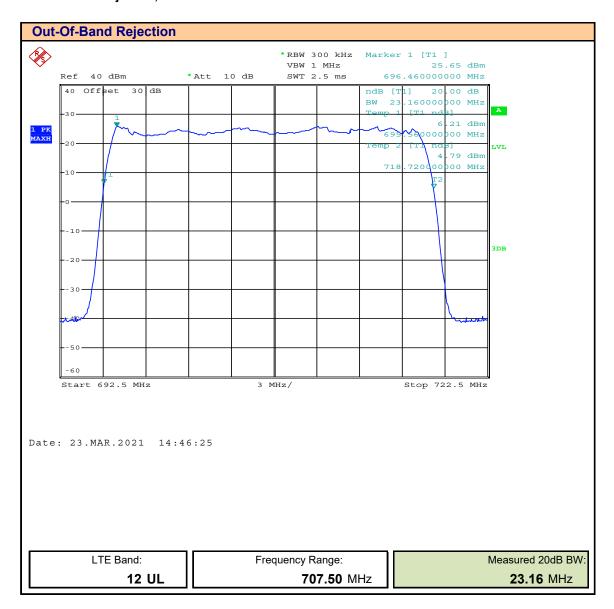
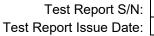
Measurement Procedure

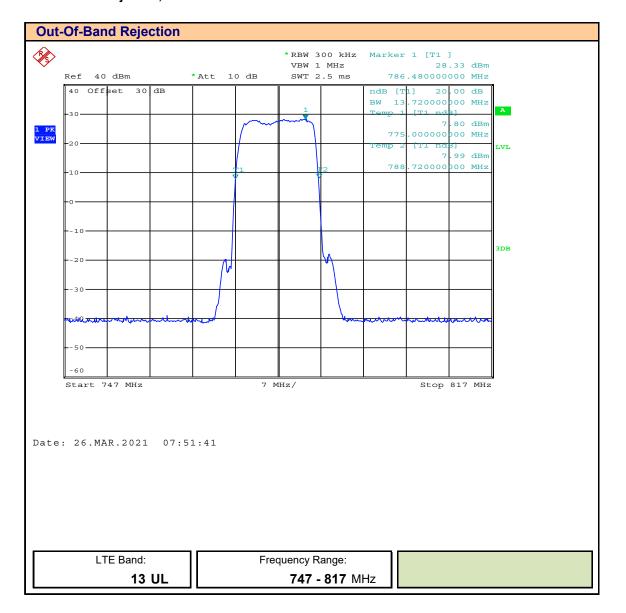

The SG and SA were configured as indicated above and the output of the DUT was connected to the SA via a 30dB attenuator. The OOB rejection was evaluated on the LTE Bands 12 and 13 UL channels. Since the LTE Bands 12 and 13 DL channels are adjacent, the OOB rejection was evaluated on the entire Pass Band. The SA 20dB BW function was employed to determine the 20dB BW.



Plot 9.1 - OOB Rejection, LTE B12 UL

Plot 9.2 - OOB Rejection, LTE B12 UL

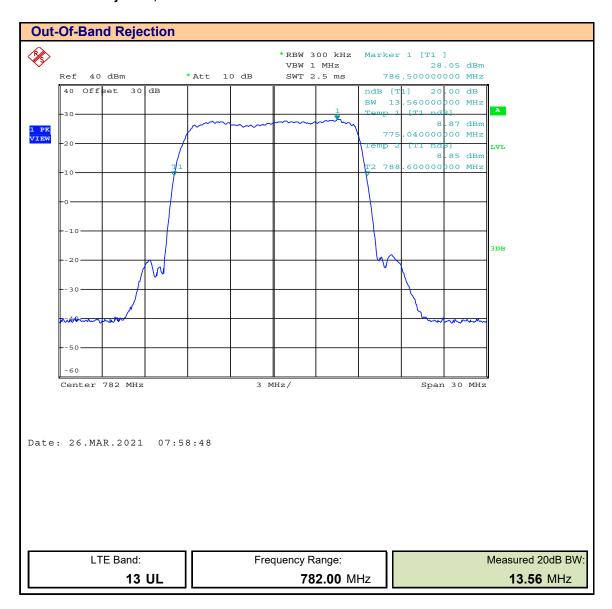
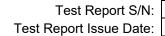



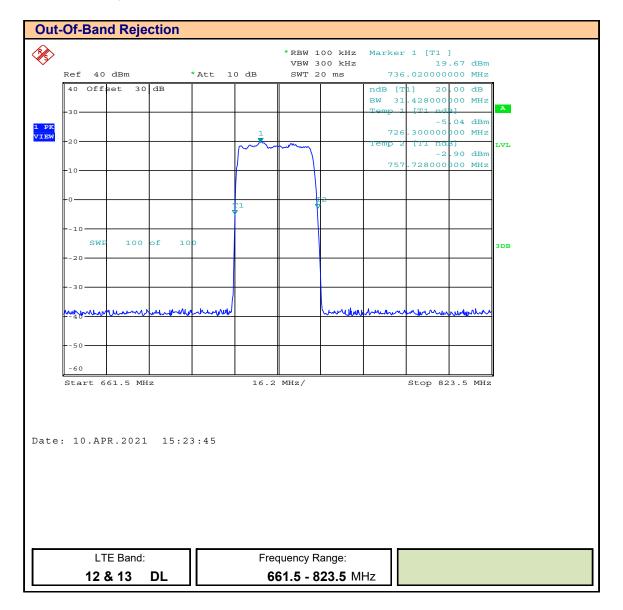

Table 9.1 - Summary of Out-Of-Band Rejection, LTE Band 12 UL

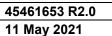
OOB Rejection	Resu	Its	
Measurement	Measured		
Frequency	_D ,	and	20dB
Range	50	anu	Bandwidth
(MHz)			(MHz)
707.5	12	UL	23.2
			Complies

Plot 9.3 - OOB Rejection, LTE B13 UL

Plot 9.4 - OOB Rejection, LTE B13 UL


Table 9.2 - Summary of Out-Of-Band Rejection, LTE Band 13 UL


OOB Rejection	OOB Rejection Results											
Measurement	Measured											
Frequency	D.	and	20dB									
Range	D 0	anu	Bandwidth									
(MHz)			(MHz)									
782	13	UL	13.6									
	-		Complies									

Plot 9.5 - OOB Rejection, LTE B12 & B13 DL Passband

Plot 9.6 - OOB Rejection, LTE B12 & B13 DL Passband

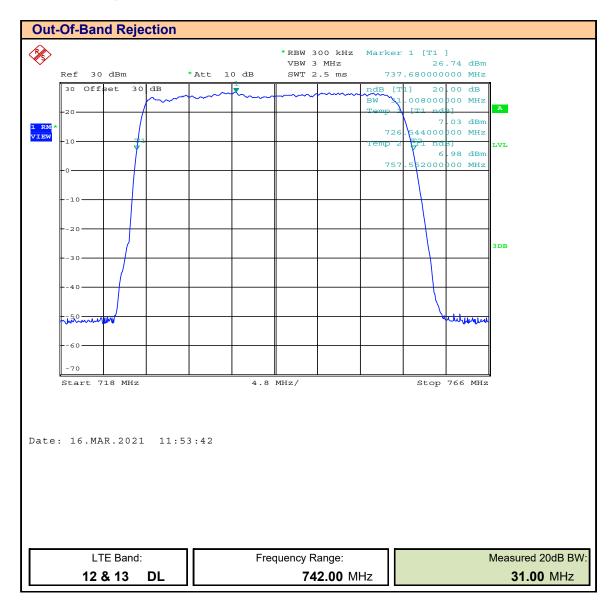
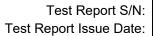



Table 9.3 - Summary of Out-Of-Band Rejection, LTE Band 12 & 13 DL

OOB Rejection	Results									
Measurement	Measurement LTE									
Frequency	Band	,	20dB							
Range	Danc	ı	Bandwidth							
(MHz)			(MHz)							
742	12 & 13	DL	31.0							
			Complies							

10.0 AGC THRESHOLD

Table 10.1 - Summary AGC Threshold

AGC Th	resh	old Results					
LTE		Channel	Nominal	AGC	Pre-AGC (1)	Post-AGC (2)	
Ban	d	Frequency	Channel BW	Threshold [P _{AGC}]	Threshold	Threshold	
		(MHz)	(MHz)	(dBm)	(dBm)	(dBm)	
12	UL	700.5	5	-72.77	-72.97	-69.58	
12	OL	700.5	10	-72.60	-72.80	-69.40	
13	UL	737	5	-66.53	-66.73	-63.22	
13	OL	737	10	-66.36	-66.56	-63.30	
12/13	DL	782	5	-67.05	-67.35	-63.72	
12/13	DL	702	10	-67.26	-67.56	-63.90	
				Result:	Com	plies	

 $Pre-AGC = P_{AGC} - 0dB \le P_{AGC} \le P_{AGC} - 0.5dB$

Post-AGC = P_{AGC} + 3dB

Test Report Issue Date:

45461653 R2.0 11 May 2021

11.0 ANTENNA PORT CONDUCTED POWER

Test Procedure	
Normative	FCC KDB 935210 D02 (3.5), RSS-131 (5.2.3), FCC §27.50, RSS-130, SRSP-518
References	ANSI C63.26 As Applicable
Requirement / Limit	s
FCC §27.50(b)(2)	§27.50 Power limits and duty cycle.
	(b) The following power and antenna height limits apply to transmitters operating in the 746-758 MHz, 775-788 MHz and 805-806 MHz bands:
	(2) Fixed and base stations transmitting a signal in the 746-757 MHz and 776-787 MHz bands with an emission bandwidth of 1 MHz or less must not exceed an ERP of 1000 watts and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 1000 watts ERP in accordance with Table 1 of this section.
FCC §27.50(c)(3)	§27.50 Power limits and duty cycle.
	(c) The following power and antenna height requirements apply to stations transmitting in the 600 MHz band and the 698 - 746 MHz band:
	(3) Fixed and base stations transmitting a signal with an emission bandwidth greater than 1 MHz must not exceed an ERP of 1000 watts/MHz and an antenna height of 305 m HAAT,
RSS-131 (5.2.3)	5.2.3 Mean output power and zone enhancer gain
	The zone enhancer gain shall not exceed the nominal gain by more than 1.0 dB. Outside of the 20 dB bandwidth, the gain shall not exceed the gain at the 20 dB point.
RSS-130 (4.6.3)	4.6 Transmitter output power and effective radiated power (e.r.p.)
	4.6.3 Frequency bands 698-756 MHz and 777-787 MHz
	For base and fixed equipment other than fixed subscriber equipment, refer to SRSP-518 for the e.i.r.p. limits.
SRSP-518 (5.1.21)	5.1 Radiated power and antenna height limits for fixed and base stations
	21. For fixed and base stations transmitting in accordance with section 4, the maximum permissible equivalent isotropically radiated power (e.i.r.p.) is 1640 watts and 1640 watts/MHz for a channel bandwidth less than or equal to 1 MHz and greater than 1 MHz, respectively. These e.i.r.p. limits apply for stations with an antenna height above average terrain (HAAT) ² up to 305 metres.
	apply for stations with an affectina height above average terrain (FIAAT) up to 505 metres.

45461653 R2.0 11 May 2021

General Procedure

FCC KDB 935210 D05 3.5 Mean output power and amplifier/booster gain

3.5.1 General

(3.5)

- a) Adjust the internal gain control of the EUT to the maximum gain for which the equipment certification is being sought. Any EUT attenuation settings shall be set to their minimum value.
- b) Input power levels (uplink and downlink) should be set to maximum input ratings while confirming that the device is not capable of operating in saturation (non-linear mode) at the rated input levels, including during the performance of the input/output power measurements.

3.5.2 Measuring the EUT mean input and output power

- a) Connect a signal generator to the input of the EUT.
- b) Configure to generate the AWGN (broadband) test signal.
- c) The frequency of the signal generator shall be set to the frequency f₀ as determined from 3.3.
- d) Connect a spectrum analyzer or power meter to the output of the EUT using appropriate attenuation as necessary.
- e) Set the signal generator output power to a level that produces an EUT output level that is just below the AGC threshold (see 3.2), but not more than 0.5 dB below.
- f) Measure and record the output power of the EUT; use 3.5.3 or 3.5.4 for power measurement.
- g) Remove the EUT from the measurement setup. Using the same signal generator settings, repeat the power measurement at the signal generator port, which was used as the input signal to the EUT, and record as the input power. EUT gain may be calculated as described in 3.5.5.
- h) Repeat steps f) and g) with input signal amplitude set to 3 dB above the AGC threshold level.
- i) Repeat steps e) to h) with the narrowband test signal.
- j) Repeat steps e) to i) for all frequency bands authorized for use by the EUT.

3.5.3 Power measurement Method 1: using a spectrum or signal analyzer

Guidance for performing input/output power measurements using a spectrum or signal analyzer is provided in KDB Publication 971168

Test Setup

Appendix A - Figure A.1

Measurement Procedure

The SG and SA were configured as indicated above and the output of the DUT was connected to the SA via a 30dB attenuator. The DUT Gain was set to its maximum. The power of both the DUT and SG were measured using the procedures of FCC KDB 971168 5.2.2 and ANSI C63.26 5.2.4.4.1 (RMS power averaged over 100 traces using the SA channel power function). The output power of the DUT and the SG were measured and recorded.

45461653 R2.0

Table 11.1 - Summary of Conducted Power Measurements, LTE Band 12 UL

See Appendix E for Measurement Plots

Conducted	Power Me	asurement	Results (FC	(C)									
Channel	LTE	Nominal	SG	Measured	Measured	DUT						DUT	
Chamilei	LIE	Channel	30	SG	DUT	Antenna	0 * 0	0.50	Limit	Limit	Margin	Gain	
Eroguenav	Band	BW Mode	Power	Power	Gain	e.r.p.	e.r.p.	Lilling	Lilliit	Wargin	Gaili		
Frequency	Danu	[BW _{Ch}]	woue	[P _{sg}]	[P _{DUT}]	[G _A]						[G _{DUT}]	
(MHz)		(MHz)		(dBm)	(dBm)	[dBd]	(dBm)	(W)	(W)	(dBm)	(dB)	(dB)	
700.5		5	Pre-AGC	-72.97	22.59		36.59	4.56			23.4	95.6	
700.5	12 UL		Post-AGC	-69.58	22.64	14.00	36.64	4.61	1000.0	60.0	23.4	92.2	
703	12 UL	10	Pre-AGC	-72.80	23.15	14.00	37.15	5.19	1000.0	00.0	22.9	96.0	
703		10	Post-AGC	-69.40	23.28		37.28	5.35			22.7	92.7	
												Complies	

e.r.p. (dBm) = $P_{DUT} + G_A$ Margin = Limit - e.r.p. in dB $G_{DUT} = P_{DUT} - P_{SG}$

Jonauctea	Power Me	asurement	Results (ISI	בט)				_					
Channel	LTE	Nominal	SG	Measured	Measured	DUT						DUT	
Chamilei	LIE	Channel	30	SG	DUT	Antenna			Limit	Limit	Morain	Coin	
Eroguenev	Dand	BW	Mode	Power	Power	Gain	e.r.p.	e.r.p.	Limit	Lillit	Margin	Gain	
Frequency	Band	[BW _{Ch}]	wode	[P _{sg}]	[P _{DUT}]	[G _A]						[G _{DUT}]	
(MHz)		(MHz)		(dBm)	(dBm)	[dBd]	(dBm/MHz)	(W/MHz)	(W/MHz)	(dBm/MHz)	(dB)	(dB)	
700.5		5	5	Pre-AGC	-72.97	22.59		29.89	0.97			32.2	95.6
700.5	10 111	5	Post-AGC	-69.58	22.64	14.00	29.94	0.99	1640.0	62.1	32.2	92.2	
703	12 UL	10	Pre-AGC	-72.80	23.15	14.00	30.45	1.11	1640.0		31.7	96.0	
103		10	Post-AGC	-69.40	23.28		30.58	1.14			31.5	92.7	
											Com	plies	

e.r.p. (dBm/MHz) = $P_{DUT} + G_A - BW_{Corr}$

 $BW_{Corr} = 10Log(BW_{Ch}/BW_{Req})$ where Required Bandwidth (BW_{Req}) = 1MHz, = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

 BW_{Corr} = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

Margin = Limit - e.r.p. in dB

45461653 R2.0

Table 11.2 - Summary of Conducted Power Measurements, LTE Band 13 UL

See Appendix E for Measurement Plots

Conducted	Power Me	asurement	Results (FC	C)								
Channel	LTE	Nominal	SG	Measured	Measured	DUT						DUT
Chamilei	LIE	Channel	30	SG	DUT	Antenna			Limit	Limit	Margin	Gain
Frequency	Band	BW Mode	Mode	Power	Power	Gain	e.r.p.	e.r.p.	Lilling		Wargin	Gain
Frequency	Dallu		wode	[P _{sG}]	[P _{DUT}]	[G _A]						[G _{DUT}]
(MHz)		(MHz)		(dBm)	(dBm)	[dBd]	(dBm)	(W)	(W)	(dBm)	(dB)	(dB)
		5	Pre-AGC	-66.73	24.51	14.00	38.51	7.10		60.0	21.5	91.2
782	13 UL		Post-AGC	-63.22	25.26		39.26	8.43	1000.0		20.7	88.5
702	13 OL		Pre-AGC	-66.56	24.83	14.00	38.83	7.64	1000.0		21.2	91.4
			Post-AGC	-63.30	25.93		39.93	9.84			20.1	89.2
											Com	plies

e.r.p. (dBm) = $P_{DUT} + G_A$ Margin = Limit - e.r.p. in dB $G_{DUT} = P_{DUT} - P_{SG}$

Channel	LTE	Nominal Channel	SG	Measured SG	Measured DUT	DUT Antenna						DUT
Frequency	Band	BW	Mode	Power	Power	Gain	e.r.p.	e.r.p.	Limit	Limit	Margin	Gain
Trequency Band	[BW _{Ch}]	iii.ouc	[P _{sg}]	[P _{DUT}]	[G _A]						[G _{DUT}]	
(MHz)		(MHz)		(dBm)	(dBm)	[dBd]	(dBm/MHz)	(W/MHz)	(W/MHz)	(dBm/MHz)	(dB)	(dB)
(111112)		5	Pre-AGC	-66.73	24.51		31.81	1.52		62.1	30.3	91.2
702	13 UL	5	Post-AGC	-63.22	25.26	14.00	32.56	1.80	1640.0		29.5	88.5
782 1	13 UL	10	Pre-AGC	-66.56	24.83	14.00	32.13	1.63	1640.0	02.1	30.0	91.4
		10	Post-AGC	-63.30	25.93		33.23	2.10	1		28.9	89.2

e.r.p. (dBm/MHz) = $P_{DUT} + G_A - BW_{Corr}$

 $BW_{Corr} = 10Log(BW_{Ch}/BW_{Req})$ where Required Bandwidth (BW_{Req}) = 1MHz, = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

BW_{Corr} = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

Margin = Limit - e.r.p. in dB

45461653 R2.0

Table 11.3 - Summary of Conducted Power Measurements, LTE Band 12 & 13 DL

See Appendix E for Measurement Plots

Conducted	Power Results	(FCC)																			
Channel LTE	LTC	Nominal	SG	Measured	Measured	DUT						DUT									
Chamilei	LIE	Channel		SG	DUT	Antenna	e.r.p.	e.r.p.	Limit	Limit	Margin	Gain									
E	Band	BW	Mode	Power	Power	Gain					Wargiii	Gaiii									
Frequency	Band	[BW _{Ch}]	wode	[P _{sg}]	[P _{DUT}]	[G _A]						[G _{DUT}]									
(MHz)		(MHz)		(dBm)	(dBm)	[dBd]	(dBm)	(W)	(W)	(dBm)	(dB)	(dB)									
737		5	Pre-AGC	-67.35	24.81		38.81	7.60			21.2	92.2									
737	10 0 10 DI	10 9 10 DI	12 & 13 DI	12 & 13 DI	12 & 13 DL	12 & 13 DI	12 & 13 DI	12 & 13 DI	12 & 13 DI	12 & 13 DI	5	Post-AGC	-63.72	25.09	14.00	39.09	8.11	1000.0	60.0	20.9	88.8
734.52	12 & 13 DL	10	Pre-AGC	-67.56	25.06	14.00	39.06	8.05	1000.0	00.0	20.9	92.6									
134.32		10	Post-AGC	-63.90	25.55	25.55	39.55	9.02			20.5	89.5									
											Com	plies									

e.r.p. (dBm) = $P_{DUT} + G_A$ Margin = Limit - e.r.p. in dB $G_{DUT} = P_{DUT} - P_{SG}$

Conducted	r ewer (IOLD)	Naminal		Magaurad	Measured	DUT	l l					DUT																								
Channel	LTE	Nominal	SG	Measured		_						וטט																								
		Channel		SG	DUT	Antenna	e.r.p.	e.r.p.	Limit	Limit	Margin	Gain																								
Frequency	Band	BW	Mode	Power	Power	Gain	о . р.	о . р.				J																								
riequency	Ballu	[BW _{Ch}]	Wiode	[P _{sg}]	[P _{DUT}]	[G _A]						[G _{DUT}]																								
(MHz)		(MHz)		(dBm)	(dBm)	[dBd]	(dBm/MHz)	(W/MHz)	(W/MHz)	(dBm/MHz)	(dB)	(dB)																								
		5	Pre-AGC	-67.35	24.81		32.11	1.63			30.0	92.2																								
782	13 DL	DL 5	5	ס	ວ	ð	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	Post-AGC	-63.72	25.09	14.00	32.39	1.73	1640.0	62.1	29.7	88.8
102	13 DL		Pre-AGC	-67.56	25.06	14.00	32.36	1.72	1040.0	02.1	29.7	92.6																								
			Post-AGC -63.90 25.55		32.85	1.93			29.3	89.5																										
											Com	plies																								

e.r.p. (dBm/MHz) = $P_{DUT} + G_A - BW_{Corr}$

 $BW_{Corr} = 10Log(BW_{Ch}/BW_{Req})$ where Required Bandwidth (BW_{Req}) = 1MHz, = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

BW_{Corr} = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

Margin = Limit - e.r.p. in dB

12.0 INPUT / OUTPUT COMPARISON

Test Procedure	
Normative	FCC KDB 935210 D02 (3.4), RSS-131 (5.2.2)
References	ANSI C63.26 As Applicable
Requirement / Limit	
FCC KDB 935210 D05	3.4 Input-versus-output signal comparison
(3.4)	A 26 dB bandwidth measurement shall be performed on the input signal and the output signal; alternatively, the 99% OBW can be measured and used.
RSS-131 (5.2.2)	5.2.2 Input-versus-output spectrum
	The spectral growth of the 26 dB bandwidth of the output signal shall be less than 5% of the input signal spectrum.
General Procedure	
FCC KDB 935210 D05	3.4 Input-versus-output signal comparison
(3.4)	a) Connect a signal generator to the input of the EUT.
	b) Configure the signal generator to transmit the AWGN signal.
	c) Configure the signal amplitude to be just below the AGC threshold level (see 3.2), but not more than 0.5 dB below.
	d) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
	e) Set the spectrum analyzer center frequency to the center frequency of the operational band under test. The span range of the spectrum analyzer shall be between $2 \times to 5 \times the$ emission bandwidth (EBW) or alternatively, the OBW.
	f) The nominal RBW shall be in the range of 1 % to 5 % of the anticipated OBW, and the VBW shall be \geq 3 × RBW.
	g) Set the reference level of the instrument as required to preclude the signal from exceeding the maximum spectrum analyzer input mixer level for linear operation. In general, the peak of the spectral envelope must be more than [10 log (OBW / RBW)] below the reference level. Steps f) and g) may require iteration to enable adjustments within the specified tolerances.
	h) The noise floor of the spectrum analyzer at the selected RBW shall be at least 36 dB below the reference level.
	i) Set spectrum analyzer detection function to positive peak.
	j) Set the trace mode to max hold.
	k) Determine the reference value: Allow the trace to stabilize. Set the spectrum analyzer marker to the highest amplitude level of the displayed trace (this is the reference value) and record the associated frequency.

45461653 R2.0 11 May 2021

General Procedure (Continued) FCC KDB 935210 D05 (3.4) I) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the -26 dB down amplitude. The 26 dB EBW (alternatively OBW) is the positive frequency difference between the two markers. If the spectral envelope crosses the -26 dB down amplitude at multiple points, the lowest or highest frequency shall be selected as the frequencies that are the furthest removed from the center frequency at which the spectral envelope crosses the -26 dB down amplitude point. m) Repeat steps e) to I) with the input signal connected directly to the spectrum analyzer (i.e., input signal measurement). n) Compare the spectral plot of the input signal (determined from step m) to the output signal (determined from step I) to affirm that they are similar (in passband and rolloff characteristic features and relative spectral locations), and include plot(s) and descriptions in test report.

o) Repeat the procedure [steps e) to n)] with the input signal amplitude set to 3 dB above the AGC threshold.

- p) Repeat steps e) to o) with the signal generator set to the narrowband signal.
- q) Repeat steps e) to p) for all frequency bands authorized for use by the EUT.

Test Setup Appendix A - Figure A.1

Measurement Procedure

The SG and SA were configured as indicated above and the output of the DUT was connected to the SA via a 30dB attenuator. The DUT Gain was set to its maximum. The bandwidth of both the DUT and SG were measured using the procedures of FCC KDB 971168 4.2 and ANSI C63.26 5.4.3. Where applicable, the SA XdB function was used. The bandwidth of the DUT and the SG were measured and recorded. Where the 26dB BW of the SG could not be ascertained, the 6dB and 20dB BW of both the SG and DUT were measured for comparison.

45461653 R2.0

Table 11.2 - Summary of Input / Output Comparison, LTE B12 UL

See Appendix F for Measurement Plots

Channel	LTE	Nominal	SG	Measured	Measured	DUT						DUT
Citatillei	LIL	Channel	30	SG	DUT	Antenna	0 " "	0.55	Limit	Limit	Margin	Gain
Eroguenev	Pand	BW	Mode	Power	Power	Gain	e.r.p.	e.r.p.	Lilling	Lillin	Wargiii	Gaili
Frequency	Band	[BW _{Ch}] [P _{SG}] [P _{DUT}] [G _A]					[G _{DUT}]					
(MHz)		(MHz)		(dBm)	(dBm)	[dBd]	(dBm)	(W)	(W)	(dBm)	(dB)	(dB)
700.5		5	Pre-AGC	-72.97	22.59	14.00	36.59	4.56			23.4	95.6
700.5	12 UL 5	5	Post-AGC	-69.58	22.64		36.64	4.61	1000.0	60.0	23.4	92.2
703	12 UL	10	Pre-AGC	-72.80	23.15		37.15	5.19	1000.0	00.0	22.9	96.0
703	703	10	Post-AGC	-69.40	23.28		37.28	5.35			22.7	92.7
											Com	plies

e.r.p. (dBm) = $P_{DUT} + G_A$ Margin = Limit - e.r.p. in dB $G_{DUT} = P_{DUT} - P_{SG}$

Channel	LTE	Nominal Channel	SG	Measured SG	Measured DUT	DUT Antenna						DUT
Frequency	Band	BW	Mode	Power	Power	Gain	e.r.p.	e.r.p.	Limit	Limit	Margin	Gain
rrequericy		[BW _{Ch}]	Mode	[P _{sg}]	[P _{DUT}]	[G _A]						[G _{DUT}]
(MHz)		(MHz)		(dBm)	(dBm)	[dBd]	(dBm/MHz)	(W/MHz)	(W/MHz)	(dBm/MHz)	(dB)	(dB)
700.5		E	Pre-AGC	-72.97	22.59		29.89	0.97			32.2	95.6
700.5	10 111	5 Post-/	Post-AGC	-69.58	22.64	14.00	29.94	0.99	1640.0	62.1	32.2	92.2
702	12 UL –		Pre-AGC	-72.80	23.15		30.45	1.11	1040.0	02.1	31.7	96.0
703			Post-AGC	-69.40	23.28		30.58	1.14	٦		31.5	92.7

e.r.p. $(dBm/MHz) = P_{DUT} + G_A - BW_{Corr}$

 $BW_{Corr} = 10Log(BW_{Ch}/BW_{Req})$ where Required Bandwidth (BW_{Req}) = 1MHz, = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

BW_{Corr} = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

Margin = Limit - e.r.p. in dB

45461653 R2.0

Table 12.2 - Summary of Input / Output Comparison, LTE B13 UL

See Appendix F for Measurement Plots

Conducted	Power Me	asurement	Results (FC	C)								
Channel	LTE	Nominal	SG	Measured	Measured	DUT						DUT
Chamilei	LIL	Channel	36	SG	DUT	Antenna	0 * 0	0.55	Limit	Limit	Margin	Gain
Frequency	Band	BW	Mode	Power	Power	Gain	e.r.p.	e.r.p.	Lilling	Lillin	Wargin	Gaiii
rrequericy	Danu	[BW _{ch}]	Wiode	[P _{sg}]	[P _{DUT}]	$[G_A]$						[G _{DUT}]
(MHz)		(MHz)		(dBm)	(dBm)	[dBd]	(dBm)	(W)	(W)	(dBm)	(dB)	(dB)
		5	Pre-AGC	-66.73	24.51		38.51	7.10		60.0	21.5	91.2
782	13 UL	3	Post-AGC	-63.22	25.26	14.00	39.26	8.43	1000.0		20.7	88.5
102	IJ UL	10	Pre-AGC	-66.56	24.83	14.00	38.83	7.64	1000.0	00.0	21.2	91.4
		10	Post-AGC	-63.30	25.93		39.93	9.84			20.1	89.2
											Com	plies

e.r.p. (dBm) = $P_{DUT} + G_A$ Margin = Limit - e.r.p. in dB $G_{DUT} = P_{DUT} - P_{SG}$

		Nominal		Measured	Measured	DUT						DUT
Channel	LTE	Channel	SG	SG	DUT	Antenna			,			
	D I	BW		Power	Power	Gain	e.r.p.	e.r.p.	Limit	Limit	Margin	Gain
Frequency	Band	[BW _{Ch}]	Mode	[P _{sg}]	[P _{DUT}]	$[G_A]$						[G _{DUT}]
(MHz)		(MHz)		(dBm)	(dBm)	[dBd]	(dBm/MHz)	(W/MHz)	(W/MHz)	(dBm/MHz)	(dB)	(dB)
	,	5	Pre-AGC	-66.73	24.51		31.81	1.52			30.3	91.2
782	13 UL	5	Post-AGC	-63.22	25.26	14.00	32.56	1.80	1640.0	62.1	29.5	88.5
702	13 UL	10	Pre-AGC	-66.56	24.83	14.00	32.13	1.63	1040.0	02.1	30.0	91.4
			Post-AGC	-63.30	25.93		33.23	2.10			28.9	89.2
											Com	plies

e.r.p. $(dBm/MHz) = P_{DUT} + G_A - BW_{Corr}$

 $BW_{Corr} = 10Log(BW_{Ch}/BW_{Reg})$ where Required Bandwidth $(BW_{Reg}) = 1MHz$, = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

BW_{Corr} = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

Margin = Limit - e.r.p. in dB

45461653 R2.0

Table 12.3 - Summary of Input / Output Comparison, LTE B12 & 13 DL

See Appendix F for Measurement Plots

Conducted	Power Results	(FCC)																								
Channel	LTE	Nominal	SG	Measured	Measured	DUT						DUT														
Chamilei	LIE	Channel	30	SG	DUT	Antenna	0 * 0	0 * 0	Limit	Limit	Margin	Gain														
E	Band	BW	Mode	Power	Power	Gain	e.r.p.	e.r.p.	Lillin	Lillie	Wargin	Gaill														
Frequency	Dallu	[BW _{Ch}]	Wiode	[P _{sg}]	[P _{DUT}]	[G _A]						[G _{DUT}]														
(MHz)		(MHz)		(dBm)	(dBm)	[dBd]	(dBm)	(W)	(W)	(dBm)	(dB)	(dB)														
737		5	Pre-AGC	-67.35	24.81		38.81	7.60			21.2	92.2														
737	12 & 13 DL	5	5	5	3	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	Post-AGC -63.72 25.09 14.00 39.09 8.11	8.11	1000.0	60.0	20.9	88.8
734.52	12 & 13 DL	10	Pre-AGC	-67.56	25.06	14.00	39.06	8.05	1000.0	00.0	20.9	92.6														
134.52	4.52	10	Post-AGC	-63.90	25.55		39.55	9.02			20.5	89.5														
											Com	plies														

e.r.p. (dBm) = $P_{DUT} + G_A$ Margin = Limit - e.r.p. in dB $G_{DUT} = P_{DUT} - P_{SG}$


Channel	LTE		Nominal Channel	SG	Measured SG	Measured DUT	DUT Antenna	0 * 0	0 * 0	Limit	Limit	Margin	DUT Gain																								
Frequency	Band		BW	Mode	Power	Power	Gain	e.r.p.	e.r.p.	Lillit	Lillit	Margin																									
. roquonoy	24.14		[BW _{Ch}]	ouo	[P _{sg}]	[P _{DUT}]	[G _A]						[G _{DUT}]																								
(MHz)			(MHz)		(dBm)	(dBm)	[dBd]	(dBm/MHz)	(W/MHz)	(W/MHz)	(dBm/MHz)	(dB)	(dB)																								
				Pre-AGC	-67.35	24.81		32.11 1.63	1.63			30.0	92.2																								
782	12	DI	5	5	D	J	5	5	5	5	5	5	5	5	Post-A	5	5	5	5	5	5	5	5	5	5	5	5	Post-AGC	-63.72	25.09	14.00	32.39	1.73	1640.0	62.1	29.7	88.8
702	13 DL -	13 DL	13 DL	13 DL	13 DL -	13 DL -	13 DL	13 DL	13 DL -	13 DL	13 DL —	13 DL				Pre-AGC	-67.56	25.06	14.00	32.36	1.72	1040.0	02.1	29.7	92.6												
		10	10	Post-AGC	-63.90	25.55		32.85	1.93			29.3	89.5																								
												•	plies																								

e.r.p. (dBm/MHz) = $P_{DUT} + G_A - BW_{Corr}$

 $BW_{Corr} = 10Log(BW_{Ch}/BW_{Req})$ where Required Bandwidth (BW_{Req}) = 1MHz, = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

BW_{Corr} = 6.7 for 5MHz Channel BW, = 10 for 10MHz Channel BW

Margin = Limit - e.r.p. in dB

Test Procedure	
Normative	FCC KDB 935210 D02 (3.6), FCC §27.53, RSS-130
References	ANSI C63.26 As Applicable
Requirement / Limi	ts
FCC §27.53(c)	§27.53 Emission limits.
	(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
	(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
	(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
FCC §27.53(g)	(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.
RSS-130 (4.7)	4.7 Transmitter unwanted emissions
	4.7.1 General unwanted emissions limits
	The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 log10 p (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.
General Procedure	
FCC KDB 935210 D08 (3.6)	3.6 Measuring out-of-band/out-of-block (including intermodulation) emissions and spurious emissions 3.6.1 General
	Spurious emissions shall be measured using a single test signal sequentially tuned to the low, middle, and high channels or frequencies within each authorized frequency band of operation.
	Out-of-band/out-of-block emissions (including intermodulation products) shall be measured under each of the following two stimulus conditions:
	a) two adjacent test signals sequentially tuned to the lower and upper frequency band/block edges;
	b) a single test signal, sequentially tuned to the lowest and highest frequencies or channels within the frequency band/block under examination.

45461653 R2.0 11 May 2021

General Procedure (Continued)

3.6.2 Out-of-band/out-of-block emissions conducted measurements

- a) Connect a signal generator to the input of the EUT.
- b) Set the signal generator to produce two AWGN signals as previously described (e.g., 4.1 MHz OBW). Set the signal generator amplitudes so that the power from each into the EUT is equivalent.
- c) Set the center frequencies such that the AWGN signals occupy adjacent channels, as defined by industry standards such as 3GPP or 3GPP2, at the upper edge of the frequency band or block under test.
- d) Set the composite power levels such that the input signal is just below the AGC threshold (see 3.2), but not more than 0.5 dB below. The composite power can be measured using the procedures provided in KDB Publication 971168 [R8], but it will be necessary to expand the power integration bandwidth so as to include both of the transmit channels.
- e) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation as necessary.
- f) Set the RBW = reference bandwidth in the applicable rule section for the supported frequency band (typically 1 % of the EBW or 100 kHz or 1 MHz)
- g) Set the VBW = $3 \times RBW$.
- h) Set the detector to power averaging (rms) detector.
- i) Set the Sweep time = auto-couple.
- j) Set the spectrum analyzer start frequency to the upper block edge frequency, and the stop frequency to the upper block edge frequency plus 300 kHz or 3 MHz, for frequencies below and above 1 GHz, respectively.
- k) Trace average at least 100 traces in power averaging (rms) mode.
- I) Use the marker function to find the maximum power level.
- m) Capture the spectrum analyzer trace of the power level for inclusion in the test report.
- n) Repeat steps k) to m) with the composite input power level set to 3 dB above the AGC threshold.
- o) Reset the frequencies of the input signals to the lower edge of the frequency block or band under test.
- p) Reset the spectrum analyzer start frequency to the lower block edge frequency minus 300 kHz or 3 MHz, for frequencies below and above 1 GHz, respectively, and the stop frequency to the lower band or block edge frequency.
- q) Repeat steps k) to n).
- r) Repeat steps a) to q) with the signal generator configured for a single test signal tuned as close as possible to the block edges.
- s) Repeat steps a) to r) with the narrowband test signal.
- t) Repeat steps a) to s) for all authorized frequency bands or blocks used by the EUT.

Test Setup

Appendix A - Figure A.1

Measurement Procedure

The SG and SA were configured as indicated above and the output of the DUT was connected to the SA via a 30dB attenuator. The DUT Gain was set to its maximum. The SG was configured for a single channel and two aggregated channels set to the low and high frequencies in each UL and DL block. The amplitude of the SG was configured for both Pre-ACG and Post-AGC. The Band / Block edges were investigated and recorded.

45461653 R2.0 11 May 2021

Table 13.1 – Summary of OOB Emissions, Band Edge, LTE Band 12 UL

See Appendix G for Measurement Plots

Summary o	f Out-Of-Band	Emissions					
Channel	LTE	SG	Nominal	Band	Measured	Emission	
Frequency	Band	Mode	Channel BW	Edge	OOB Emission	Limit	Margin
(MHz)			(MHz)		(dBm)	(dB)	(dB)
701.5		Pre-AGC		Lower	-26.94		13.9
701.5		Post-AGC	5	LOWEI	-18.99		6.0
713.5		Pre-AGC		Upper	-20.37	-13.0	7.4
713.5	12 UL	Post-AGC			-21.18		8.2
704	12 OL	Pre-AGC		Lower	-21.73		8.7
704		Post-AGC	10	Lowei	-21.52		8.5
711		Pre-AGC	10	Upper	-22.44		9.4
711		Post-AGC		Oppei	-25.03		12.0
						Com	plies

Margin = Emission Limit - Measure OOB Emission

Table 13.2 - Summary of OOB Emissions, Band Edge, LTE Band 12 DL

See Appendix G for Measurement Plots

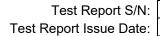
Channel Frequency	LTE Band	SG Mode	Nominal Channel BW	Band Edge	Measured OOB Emission	Emission Limit	Margin
(MHz)			(MHz)		(dBm)	(dB)	(dB)
731.5		Pre-AGC		Lower	-33.70		20.7
731.5		Post-AGC	5	Lowei	-35.68		22.7
743.5		Pre-AGC		Upper	-34.82	-13.0	21.8
743.5	12 DL	Post-AGC			-37.95		25.0
734	12 DL	Pre-AGC		Lower	-34.23		21.2
734		Post-AGC	10	Lower	-34.73		21.7
7/1		Pre-AGC	10	Unnor	-32.95		20.0
741		Post-AGC	1	Upper	-33.63		20.6

Margin = Emission Limit - Measure OOB Emission

45461653 R2.0 11 May 2021

Table 13.3 – Summary of OOB Emissions, Band Edge, LTE Band 13 UL

See Appendix G for Measurement Plots


Channel	LTE	SG	Nominal	Band	Measured	Emission	
Frequency	Band	Mode	Channel BW	Edge	OOB Emission	Limit	Margin
(MHz)			(MHz)		(dBm)	(dB)	(dB)
779.5	. 13 UL	Pre-AGC		Lower	-19.26	-13.0	6.3
779.5		Post-AGC	5		-17.83		4.8
784.5		Pre-AGC		Upper	-17.18		4.2
704.5		Post-AGC			-17.18		4.2
782	13 UL	Pre-AGC		Lower	-20.82		7.8
702		Post-AGC	10	Lower	-20.06		7.1
782	•	Pre-AGC	10	Llanor	-18.83		5.8
102		Post-AGC		Upper	-18.20		5.2
						Com	plies

Margin = Emission Limit - Measure OOB Emission

Table 13.4 - Summary of OOB Emissions, Band Edge, LTE Band 13 DL

See Appendix G for Measurement Plots

Channel	LTE	SG	Nominal	Band	Measured	Emission	
Frequency	Band	Mode	Channel BW	Edge	OOB Emission	Limit	Margin
(MHz)			(MHz)		(dBm)	(dB)	(dB)
748.5		Pre-AGC		Lower	-31.87		18.9
748.5	. 13 DL	Post-AGC	5		-33.94		20.9
753.5		Pre-AGC		Upper	-38.92	-13.0	25.9
733.3		Post-AGC			-41.32		28.3
751	13 DL	Pre-AGC		Lower	-35.86		22.9
731		Post-AGC	10	Lowei	-36.08		23.1
751		Pre-AGC] 10	Upper	-35.08		22.1
751		Post-AGC	1	Opper	-36.06		23.1

14.0 CONDUCTED SPURIOUS EMISSIONS

Test Procedure	
Normative	FCC KDB 935210 D02 (3.6), FCC §27.53, RSS-130
References	ANSI C63.26 As Applicable
Requirement / Limi	ts
FCC §27.53(c)	§27.53 Emission limits.
	(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
	(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
	(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
	(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
FCC §27.53(g)	(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.
RSS-130 (4.7)	4.7 Transmitter unwanted emissions
	4.7.1 General unwanted emissions limits
	The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 log10 p (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.
	4.7.2 Additional unwanted emissions limits
	In addition to the limit outlined in section 4.7.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:
	a) The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
	(i) 76 + 10 log10 p (watts), dB, for base and fixed equipment
General Procedure	
FCC KDB 935210 D0	3.6 Measuring out-of-band/out-of-block (including intermodulation) emissions and spurious
(3.6)	emissions 3.6.1 General
(3.6)	Spurious emissions shall be measured using a single test signal sequentially tuned to the low, middle, and high channels or frequencies within each authorized frequency band of operation.

45461653 R2.0

General Procedure (Continued)

3.6.2 Out-of-band/out-of-block emissions conducted measurements

- a) Connect a signal generator to the input of the EUT.
- b) Set the signal generator to produce two AWGN signals as previously described (e.g., 4.1 MHz OBW). Set the signal generator amplitudes so that the power from each into the EUT is equivalent.
- c) Set the center frequencies such that the AWGN signals occupy adjacent channels, as defined by industry standards such as 3GPP or 3GPP2, at the upper edge of the frequency band or block under test.
- d) Set the composite power levels such that the input signal is just below the AGC threshold (see 3.2), but not more than 0.5 dB below. The composite power can be measured using the procedures provided in KDB Publication 971168 [R8], but it will be necessary to expand the power integration bandwidth so as to include both of the transmit channels.
- e) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation as necessary.
- f) Set the RBW = reference bandwidth in the applicable rule section for the supported frequency band (typically 1 % of the EBW or 100 kHz or 1 MHz)
- g) Set the VBW = $3 \times RBW$.
- h) Set the Sweep time = auto-couple.
- i) Set the spectrum analyzer start frequency to the lowest RF signal generated in the equipment, The number of measurement points in each sweep must be ≥ (2 × span/RBW), which may require that the measurement range defined by the start and stop frequencies be subdivided, depending on the available number of measurement points provided by the spectrum analyzer.4without going below 9 kHz, and the stop frequency to the lower band/block edge frequency minus 100 kHz or 1 MHz, as specified in the applicable rule part.
- j) Select the power averaging (rms) detector function.
- k) Trace average at least 10 traces in power averaging (rms) mode.
- I) Use the peak marker function to identify the highest amplitude level over each measured frequency range. Record the frequency and amplitude and capture a plot for inclusion in the test report.
- m) Reset the spectrum analyzer start frequency to the upper band/block edge frequency plus 100 kHz or 1 MHz, as specified in the applicable rule part, and the spectrum analyzer stop frequency to 10 × the highest frequency of the fundamental emission (see Section 2.1057). The number of measurement points in each sweep must be ≥ (2 × span/RBW), which may require that the measurement range defined by the start and stop frequencies be subdivided, depending on the available number of measurement points provided by the spectrum analyzer.
- n) Trace average at least 10 traces in power averaging (rms) mode.
- o) Use the peak marker function to identify the highest amplitude level over each of the measured frequency ranges. Record the frequency and amplitude and capture a plot for inclusion in the test report; also provide tabular data, if required.
- p) Repeat steps i) to o) with the input test signals firstly tuned to a middle band/block frequency/channel, and then tuned to a high band/block frequency/channel.
- q) Repeat steps c) to p) with the narrowband test signal.
- r) Repeat steps b) to q) for all authorized frequency bands/blocks used by the EUT.

Test Setup Appendix A - Figure A.1

Measurement Procedure

The SG and SA were configured as indicated above and the output of the DUT was connected to the SA via a 30dB attenuator. The DUT Gain was set to its maximum. The SG was configured for a single channel and two aggregated channels set to the low, mid and high frequencies in each UL and DL block. The SA was configured for 8001 Points. The spurious emission were investigated to the 10th harmonic and recorded.

45461653 R2.0 11 May 2021

Table 14.1 – Summary of Conducted Spurious Emissions, B12 UL, 5MHz Channel Width

See Appendix H for Measurement Plots

Channel	LTE	Test	Nominal	Emission	Measured	Emission	
Frequency	Band	Frequency Range	Channel BW	Frequency	Emission	Limit	Margin
(MHz)			(MHz)		(dBm)	(dB)	(dB)
		30 - 430 MHz		321.30 MHz	-47.36		34.4
		430 - 698.9 MHz		697.32 MHz	-21.88		8.9
701.5	716.1 - 1000 MHz		716.31 MHz	-23.24		10.2	
	1 - 3 GHz		1.40 GHz	-42.63		29.6	
	3 - 7 GHz		3.63 GHz	-42.52		29.5	
		7 - 8 GHz		7.14 GHz	-43.38	-13.0	30.4
		1.4 GHz		1.40 GHz	-42.26		29.3
		30 - 430 MHz		302.80 MHz	-47.48		34.5
		430 - 698.9 MHz		697.02 MHz	-21.53		8.5
		716.1 - 1000 MHz	5	716.20 MHz	-23.58		10.6
707.5	12 UL	1 - 3 GHz		1.41 GHz	-42.62		29.6
		3 - 7 GHz		3.12 GHz	-42.34		29.3
		7 - 8 GHz		7.90 GHz	-43.38		30.4
		1.4 GHz		1.41 GHz	-41.90		28.9
		30 - 430 MHz		149.40 MHz	-47.05		34.1
		430 - 698.9 MHz		697.40 MHz	-23.46		10.5
		716.1 - 1000 MHz		716.10 MHz	-21.10		8.1
713.5		1 - 3 GHz		1.42 GHz	-42.30		29.3
		3 - 7 GHz		3.64 GHz	-42.39		29.4
		7 - 8 GHz		7.04 GHz	-43.02		30.0
		1.4 GHz		1.43 GHz	-42.54		29.5

45461653 R2.0 11 May 2021

Table 14.2 – Summary of Conducted Spurious Emissions, B12 UL, 10MHz Channel Width

See Appendix H for Measurement Plots

Channel	LTE	Test	Nominal	Emission	Measured	Emission	
Frequency	Band	Frequency Range	Channel BW	Frequency	Emission	Limit	Margin
(MHz)			(MHz)		(dBm)	(dB)	(dB)
		30 - 430 MHz		374.90 MHz	-47.20		34.2
		430 - 698.9 MHz		697.56 MHz	-21.22		8.2
		716.1 - 1000 MHz		716.42 MHz	-22.48		9.5
704	1 - 3 GHz		1.41 GHz	-42.39		29.4	
	3 - 7 GHz		3.60 GHz	-42.16		29.2	
		7 - 8 GHz	10	7.02 GHz	-42.70		29.7
		1.4 GHz		1.40 GHz	-42.24		29.2
		30 - 430 MHz		320.40 MHz	-47.46		34.5
		430 - 698.9 MHz		697.40 MHz	-21.76		8.8
		716.1 - 1000 MHz		716.24 MHz	-19.34		6.3
707.5	12 UL	1 - 3 GHz		1.42 GHz	-41.73	-13.0	28.7
		3 - 7 GHz		3.60 GHz	-42.40		29.4
		7 - 8 GHz		7.01 GHz	-43.22		30.2
		1.4 GHz		1.41 GHz	-41.89		28.9
		30 - 430 MHz		313.15 MHz	-46.91		33.9
		430 - 698.9 MHz		697.45 MHz	-21.77		8.8
		716.1 - 1000 MHz		716.42 MHz	-19.25		6.3
711		1 - 3 GHz		1.42 GHz	-42.78		29.8
		3 - 7 GHz		3.61 GHz	-42.50		29.5
		7 - 8 GHz		7.07 GHz	-43.00	1	30.0
		1.4 GHz		1.42 GHz	-42.63		29.6
						Com	plies

45461653 R2.0 11 May 2021

Table 14.3 – Summary of Conducted Spurious Emissions, B12 DL, 5MHz Channel Width

See Appendix H for Measurement Plots

Channel	LTE	Test	Nominal	Emission	Measured	Emission	
Frequency	Band	Frequency Range	Channel BW	Frequency	Emission	Limit	Margin
(MHz)			(MHz)		(dBm)	(dB)	(dB)
		30 - 430 MHz		204.60 MHz	-47.17		34.2
		430 - 728.9 MHz		728.86 MHz	-25.65		12.7
		746.1 - 1000 MHz		749.59 MHz	-23.25		10.3
731.5	5	1 - 3 GHz		1.46 GHz	-42.21		29.2
731.5	3 - 7 GHz		3.14 GHz	-42.58		29.6	
		7 - 8 GHz		7.17 GHz	-43.07		30.1
		1.46 GHz		1.46 GHz	-41.35	-13.0	28.4
		2.19 GHz	5	2.19 GHz	-45.77		32.8
		30 - 430 MHz		318.20 MHz	-46.93		33.9
		430 - 728.9 MHz		728.08 MHz	-25.82		12.8
		746.1 - 1000 MHz		754.35 MHz	-24.44		11.4
737.5	12 DL	1 - 3 GHz		1.48 GHz	-41.81		28.8
131.3	IZ DL	3 - 7 GHz		3.13 GHz	-42.49		29.5
		7 - 8 GHz		7.12 GHz	-43.36		30.4
		1.48 GHz		1.48 GHz	-41.66		28.7
		2.12 GHz		2.12 GHz	-44.81		31.8
		30 - 430 MHz		103.65 MHz	-46.34		33.3
		430 - 728.9 MHz		727.70 MHz	-25.86		12.9
		746.1 - 1000 MHz		749.43 MHz	-23.17		10.2
743.5		1 - 3 GHz		1.49 GHz	-41.15		28.2
143.3		3 - 7 GHz		3.60 GHz	-42.18		29.2
		7 - 8 GHz		7.04 GHz	-43.41		30.4
		1.49 GHz		1.49 GHz	-41.54	7	28.5
		2.35 GHz		2.23 GHz	-43.90		30.9
			Com	aliaa			

45461653 R2.0 11 May 2021

Table 14.4 – Summary of Conducted Spurious Emissions, B12 DL, 10MHz Channel Width

See Appendix H for Measurement Plots

Channel	LTE	Test	Nominal	Emission	Measured	Emission	
Frequency	Band	Frequency Range	Channel BW	Frequency	Emission	Limit	Margin
(MHz)			(MHz)		(dBm)	(dB)	(dB)
		30 - 430 MHz		30.00 MHz	-48.83		35.8
		430 - 728.9 MHz		727.80 MHz	-25.24		12.2
	70.4	746.1 - 1000 MHz		749.60 MHz	-24.98		12.0
734		1 - 3 GHz		1.47 GHz	-42.13		29.1
734	3 - 7 GHz		3.11 GHz	-36.26		23.3	
		7 - 8 GHz	10	7.37 GHz	-73.63		60.6
		1.47 GHz		1.47 GHz	-40.70		27.7
		2.2 GHz		2.20 GHz	-44.96		32.0
		30 - 430 MHz		263.40 MHz	-48.13		35.1
		430 - 728.9 MHz		728.26 MHz	-25.09		12.1
		746.1 - 1000 MHz		749.24 MHz	-23.08		10.1
737.5	12 DL	1 - 3 GHz		1.48 GHz	-41.73	-13.0	28.7
737.5	12 DL	3 - 7 GHz		3.60 GHz	-42.59		29.6
		7 - 8 GHz		7.04 GHz	-43.61		30.6
		1.48 GHz		1.48 GHz	-40.68		27.7
		2.21 GHz		2.21 GHz	-44.11		31.1
		30 - 430 MHz		252.40 MHz	-47.85		34.9
		430 - 728.9 MHz		727.82 MHz	-25.76		12.8
		746.1 - 1000 MHz		746.10 MHz	-26.44		13.4
741		1 - 3 GHz		1.48 GHz	-41.01		28.0
741		3 - 7 GHz		3.14 GHz	-42.71		29.7
		7 - 8 GHz		7.86 GHz	-43.68		30.7
		1.49 GHz		1.48 GHz	-40.05	7	27.1
		2.23 GHz		2.23 GHz	-42.80		29.8

45461653 R2.0 11 May 2021

Table 14.5 – Summary of Conducted Spurious Emissions, B13 UL, 5MHz Channel Width

See Appendix H for Measurement Plots

Channel	LTE	Test	Nominal	Emission	Measured	Emission	
Frequency	Band	Frequency Range	Channel BW	Frequency	Emission	Limit	Margin
(MHz)			(MHz)		(dBm)	(dB)	(dB)
		30 - 430 MHz		86.10 MHz	-45.49		32.5
		430 - 776.9 MHz		776.47 MHz	-21.43		8.4
	770 F	787.1 - 1000 MHz		787.15 MHz	-21.90		8.9
779.5		1 - 3 GHz		2.34 GHz	-37.89		24.9
779.5	3 - 7 GHz		3.11 GHz	-36.26		23.3	
		7 - 8 GHz		7.37 GHz	-37.63		24.6
		1.56 GHz		1.56 GHz	-38.10		25.1
		2.34 GHz		2.34 GHz	-38.75		25.8
		30 - 430 MHz	5	105.95 MHz	-45.24		32.2
		430 - 776.9 MHz		776.77 MHz	-24.30		11.3
		787.1 - 1000 MHz		787.20 MHz	-21.05		8.1
782	13 UL	1 - 3 GHz		2.34 GHz	-37.29	-13.0	24.3
102	13 UL	3 - 7 GHz		3.11 GHz	-35.94		22.9
		7 - 8 GHz		7.02 GHz	-37.70		24.7
		1.56 GHz		1.56 GHz	-37.85		24.9
		2.35 GHz		2.35 GHz	-37.86		24.9
		30 - 430 MHz		299.60 MHz	-45.44		32.4
		430 - 776.9 MHz		776.55 MHz	-26.04		13.0
		787.1 - 1000 MHz		787.18 MHz	-18.62		5.6
784.5		1 - 3 GHz		2.35 GHz	-35.81		22.8
784.5		3 - 7 GHz		3.15 GHz	-36.23		23.2
		7 - 8 GHz		7.15 GHz	-38.10		25.1
		1.57 GHz		1.57 GHz	-36.95	7	24.0
		2.35 GHz		2.35 GHz	-36.12		23.1
						Com	plies

45461653 R2.0 11 May 2021

Table 14.6 – Summary of Conducted Spurious Emissions, B13 UL, 10MHz Channel Width

See Appendix H for Measurement Plots

Summary o	f Out-Of-B	and Emissions (1	0MHz Cha	nnel Width)					
Channel	LTE	Test	Nominal	Emission	Measured	Emission			
Frequency	Band	Frequency Range	Channel BW	Frequency	Emission	Limit	Margin		
(MHz)			(MHz)		(dBm)	(dB)	(dB)		
		30 - 430 MHz	10	281.45 MHz	-45.56		32.6		
		430 - 776.9 MHz		776.29 MHz	-21.62	-13.0	8.6		
		787.1 - 1000 MHz		787.37 MHz	-19.96		7.0		
782	13 UL	1 - 3 GHz		2.35 GHz	-37.28		24.3		
702	13 UL	3 - 7 GHz	10	3.08 GHz	-35.98		23.0		
		7 - 8 GHz		7.16 GHz	-37.86		24.9		
		1.56 GHz		1.56 GHz	-37.94		24.9		
		2.35 GHz		2.35 GHz	-36.90		23.9		

45461653 R2.0 11 May 2021

Table 14.7 - Summary of Conducted Spurious Emissions, B13 DL, 5MHz Channel Width

See Appendix H for Measurement Plots

Channel	LTE	Test	Nominal	Emission	Measured	Emission	
Frequency	Band	Frequency Range	Channel BW	Frequency	Emission	Limit	Margin
(MHz)			(MHz)		(dBm)	(dB)	(dB)
		30 - 430 MHz		321.00 MHz	-47.36		34.4
		430 - 745.9 MHz		731.60 MHz	-23.15		10.2
748.5	756.1 - 1000 MHz		756.10 MHz	-30.43		17.4	
	1 - 3 GHz		1.50 GHz	-43.92		30.9	
	3 - 7 GHz		3.63 GHz	-42.52		29.5	
		7 - 8 GHz	5	7.15 GHz	-43.38		30.4
		1.50 GHz		1.50 GHz	-42.45		29.5
		2.24 GHz		2.24 GHz	-43.92		30.9
		30 - 430 MHz		302.70 MHz	-47.48		34.5
		430 - 745.9 MHz		737.00 MHz	-22.79		9.8
		756.1 - 1000 MHz		756.10 MHz	-30.44		17.4
751	13 DL	1 - 3 GHz		1.50 GHz	-40.85	-13.0	27.9
751	13 DL	3 - 7 GHz	5	3.12 GHz	-42.36		29.4
		7 - 8 GHz		7.90 GHz	-43.38		30.4
		1.5 GHz		1.50 GHz	-41.16		28.2
		2.35 GHz		2.24 GHz	-41.99		29.0
		30 - 430 MHz		30.00 MHz	-48.83		35.8
		430 - 745.9 MHz		736.20 MHz	-23.29	1	10.3
		756.1 - 1000 MHz		756.16 MHz	-27.73		14.7
753.5		1 - 3 GHz		1.50 GHz	-41.06		28.1
133.3		3 - 7 GHz		3.64 GHz	-42.39		29.4
		7 - 8 GHz		7.04 GHz	-43.02		30.0
		1.51 GHz		1.51 GHz	-41.06		28.1
		2.26 GHz		2.26 GHz	-41.98		29.0

45461653 R2.0 11 May 2021

Table 14.8 – Summary of Conducted Spurious Emissions, B13 DL, 10MHz Channel Width

See Appendix H for Measurement Plots


Summary o	f Out-Of-B	and Emissions (1	0MHz Cha	nnel Width)					
Channel	LTE	Test	Nominal	Emission	Measured	Emission			
Frequency	Band	Frequency Range	Channel BW	Frequency	Emission	Limit	Margin		
(MHz)			(MHz)		(dBm)	(dB)	(dB)		
		30 - 430 MHz	10	252.40 MHz	-47.85	-13.0	34.9		
		430 - 745.9 MHz		735.50 MHz	-22.27		9.3		
		756.1 - 1000 MHz		756.10 MHz	-27.46		14.5		
751	13 DL	1 - 3 GHz		2.25 GHz	-40.30		27.3		
731	13 DL	3 - 7 GHz	10	3.60 GHz	-42.59		29.6		
		7 - 8 GHz		7.04 GHz	-43.61		30.6		
		1.50 GHz		1.50 GHz	-40.69		27.7		
		2.25 GHz		2.25 GHz	-40.84		27.8		

Margin = Emission Limit - Measure Emission

Table 14.9 – Summary of Conducted Spurious Emissions, §27.53(c)(3)

See Appendix H for Measurement Plots

Summary o	f Out-Of-B	and Emissions (5	MHz Chan	nel Width)			
Channel	LTE	Test	Nominal	Emission	Measured	Emission	
Frequency	Band	Frequency Range	Channel BW	Frequency	Emission	Limit	Margin
(MHz)			(MHz)		(dBm)	(dB)	(dB)
754	40 DI	700 775 144		707 04 MILE	10.10		3.5
751	13 DL	763-775 MHz	5	767.94 MHz	-49.48	46.0	ა.ა
782	13 UL	763-775 MHz 793-806 MHz	5	767.94 MHz 798.39 MHz	-49.48 -49.52	-46.0	3.5

15.0 PEAK-TO-AVERAGE POWER RATIO

Test Procedure	
Normative	RSS-130
References	ANSI C63.26 (5.2.3.4)
Requirement / Lim	its
	4.6 Transmitter output power and effective radiated power (e.r.p.)
	4.6.1 General
RSS-130 4.6	The transmitter output power shall be measured in terms of average power. In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.
General Procedure	
C63.26 (5.2.3.4)	5.2.3.4 Measurement of peak power in a broadband noise-like signal using CCDF
	a) Set resolution/Measurement bandwidth ≥ OBW or specified reference bandwidth.
	b) Set the number of counts to a value that stabilizes the measured CCDF curve.
	c) Set the measurement interval as follows:
	1) For continuous transmissions, set to the greater of [10 × (number of points in sweep) × (transmission symbol period)] or 1 ms.
	d) Record the maximum PAPR level associated with a probability of 0.1%.
Test Setup	Appendix A - Figure A.1

Measurement Procedure

The SG was configured for a single 5MHz BW signal and an aggregated 10MHz channel at the Pre-AGC level. The SG frequency was set to the mid channels of each UL and DL channels. The DUT was connected to the SA via a 30dB attenuator and the SA was configured as described above using the CCDF function. The output power of the DUT was set to the manufacturer's highest output power setting at the nominal transmit frequency. 0.1% PAPR was measured and recorded.

Note: To demonstrate compliance to RSS-130 (4.6), the Peak-To-Average Power Ratio (PAPR) was evaluated on this equipment. It should be noted that since this equipment does not generate a carrier or modulated signal of any sort, the PAPR is dominated by the signal the equipment was presented.

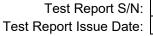
45461653 R2.0 11 May 2021

Table 15.1 – Summary of PAPR Measurements

See Appendix I for Measurement Plots

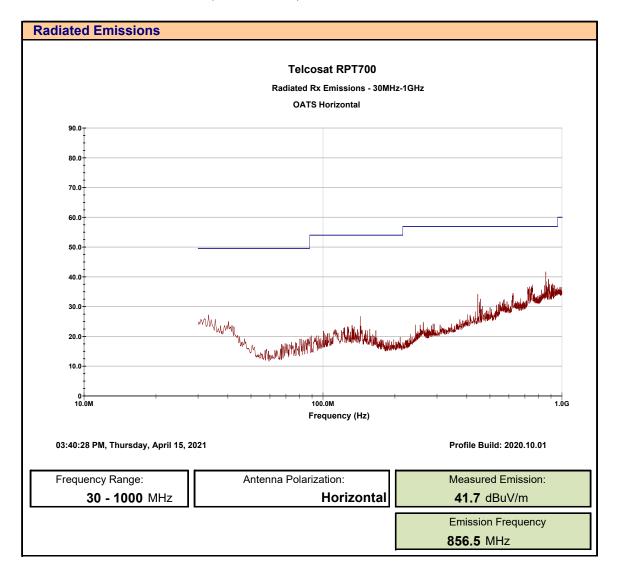
Summary o	Summary of Out-Of-Band Emissions								
Channel	LTE		SG	Nominal	Measured	PAPR			
Frequency	Band		Mode	Channel BW	PAPR Emission	Limit	Margin		
(MHz)				(MHz)	(dBm)	(dB)	(dB)		
707.5	40	12 UL		5	7.96		5.0		
707.5	12			10	9.28		3.7		
737.5	12	DL		5	8.60		4.4		
737.5	12	DL	Pre-AGC	10	10.28	13.0	2.7		
782	13	UL	FIE-AGC	5	7.88	13.0	5.1		
702	13	UL		10	9.76] [3.2		
751	13	DL		5	8.88		4.1		
/51	13	DL		10	10.28		2.7		
		Com	plies						

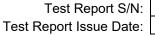
Margin = PAPR Limit - Measure PAPR Emission

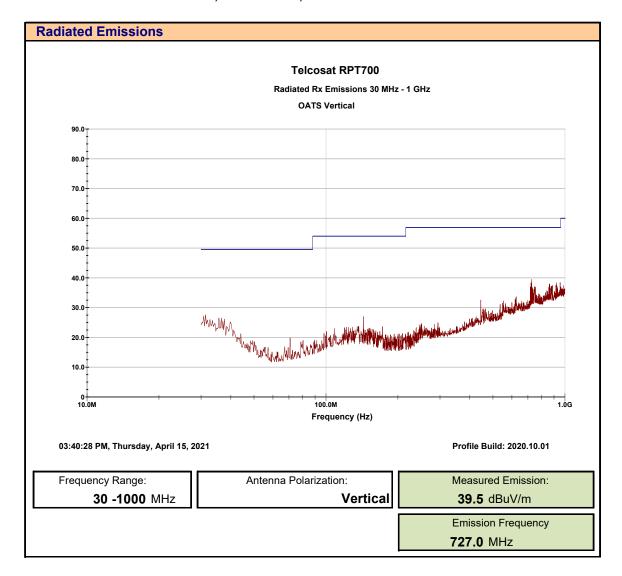

45461653 R2.0 11 May 2021

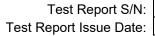
16.0 RADIATED RX EMISSIONS

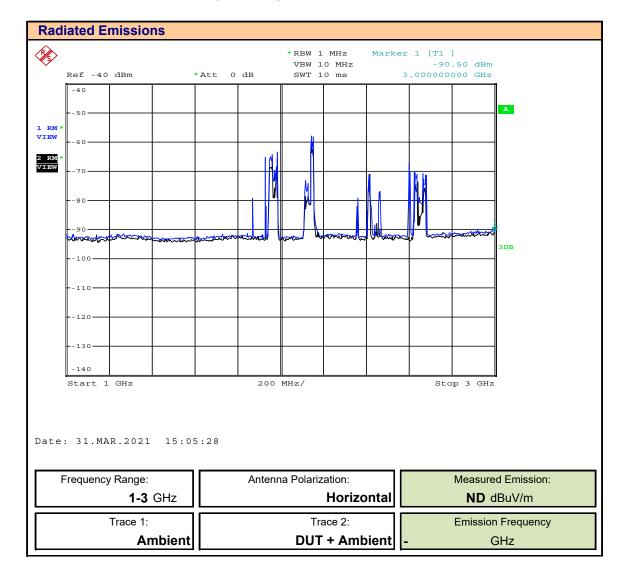
Test Procedure	Test Procedure							
Normative Reference	FCC 47 CFR §15.109, ICES-003(6.2)							
Normative Reference	ANSI C63.4-2014	ANSI C63.4-2014						
Limits	Limits							
47 CFR §15.109	(b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 10 meters, shall not exceed the following:							
	30-88MHz: 39.1dBuV/m	30-88MHz: 49.6dBuV/m @ 3m						
	88-216MHz: 43.5dBuV/m	88-216MHz: 54.0dBuV/m @ 3m						
	216-960MHz: 46.4dBuV/m	216-960MHz: 56.9dBuV/m @ 3m						
	> 960MHz: 49.5dBuV/m	> 960MHz: 60.0dBuV/m @ 3m						
ICES-003(6.2.1)	6.2.1 - Radiated Emissions Limit	s Below 1 GHz						
		ditions for Class A operation defined in Section 2.2 shall I limits set out in Table 4 determined at a distance of 10						
	30-88MHz: 39.1dBuV/m	30-88MHz: 49.6dBuV/m @ 3m						
	88-216MHz: 43.5dBuV/m	88-216MHz: 54.0dBuV/m @ 3m						
	216-960MHz: 46.4dBuV/m 216-960MHz: 56.9dBuV/m @ 3m							
	> 960MHz: 49.5dBuV/m	> 960MHz: 60.0dBuV/m @ 3m						
Test Setup	Appendix A	Figure A.1						

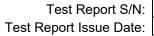

Measurement Procedure

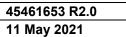

The DUT was set up as per ANSI C63.4:2014. Emissions were scanned between 30MHz and 1000MHz. The turntable was rotated 360 degrees and the antenna was elevated to 4m to optimize the measured emissions.


Plot 16.1 - Radiated RX Emissions, 30 - 1000MHz, Horizontal

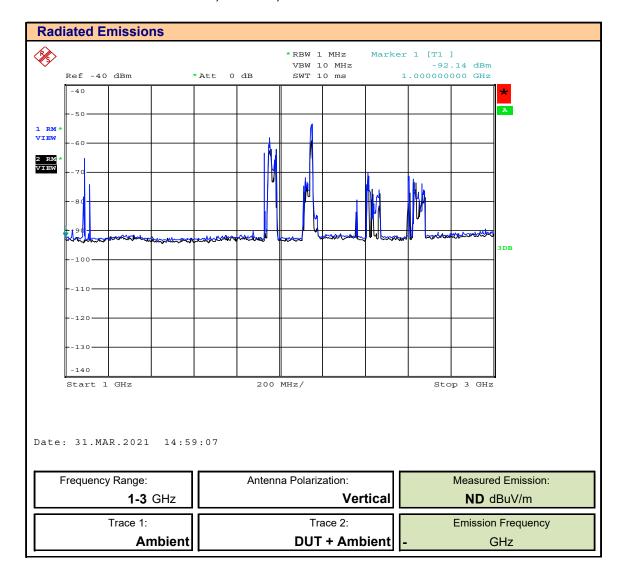


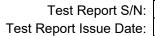

Plot 16.2 - Radiated RX Emissions, 30 - 1000MHz, Vertical

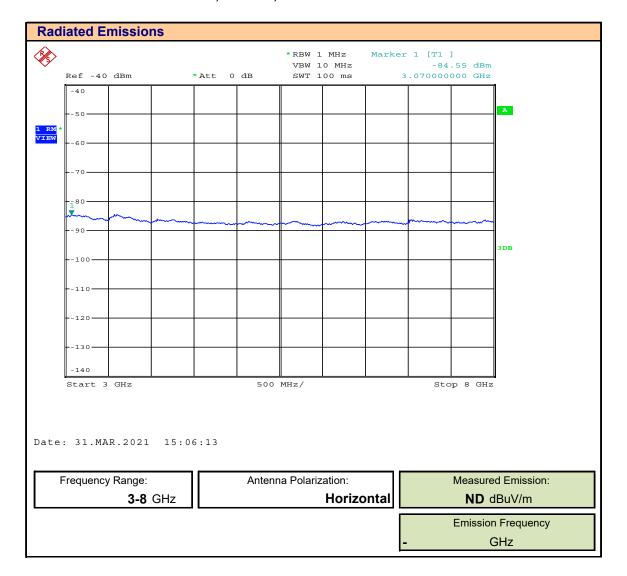


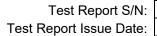


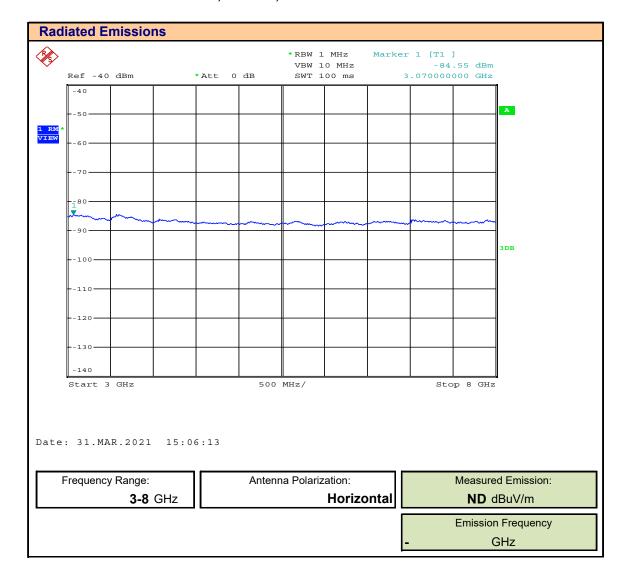
Plot 16.3 - Radiated RX Emissions, 1 - 3 GHz, Horizontal






Plot 16.4 - Radiated RX Emissions, 1 - 3 GHz, Vertical




Plot 16.5 - Radiated RX Emissions, 3 - 8 GHz, Horizontal

Plot 16.6 - Radiated RX Emissions, 3 - 8 GHz, Vertical

45461653 R2.0 11 May 2021

Table 16.1 – Summary of Radiated RX Emissions Measurements

§15	§15.109, ICES-003 (6.2)									
	Emission	Antenna	Measured	Cable	Antenna	Corrected	Limit			
	Frequency	Polarization	Emission	Loss	Correction	Emission	@3m	Margin		
	riequelicy	Polarization	[E _{Meas}]	[L _c]	[ACF]	[E _{Corr}]	[Limit]	[Margin]		
	(MHz)		(dBuV)	(dB)	(dB)	(W)	(dBuV/m)	(dB)		
*	856.5 MHz	Horizontal	41.66			41.66	56.9	15.2		
*	727.0 MHz	Vertical	39.45			39.45	56.9	17.5		
-	GHz	Horizontal	ND			-	60.0	-		
-	GHz	Vertical	ND			-	60.0	-		
**	3-18 GHz	Horizontal	ND			-	60.0	-		
**	3-18 GHz	Vertical	ND			-	60.0	-		
	Results: Complies									

^{*} Measurement Compensated for Cable Loss and Antenna Correction Factor $E_{Corr} = E_{Meas} + L_{C} + AFC$ Margin = Limit - E_{Corr}

^{**} Emissions Shown are Noise Floor ND = None Detected

45461653 R2.0 11 May 2021

17.0 POWER-LINE CONDUCTED EMISSIONS

Test Procedure	
Normative Reference	FCC 47 CFR §15.107, ICES-003(6.1)
Normative Reference	ANSI C63.4-2014
Limits	
47 CFR §15.107	(b) For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms LISN. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges. 0.15 - 0.5 MHz: 79 dBuV Quasi Peak, 66 dBuV Average 0.5 - 30.0 MHz: 73 dBuV Quasi Peak, 60 dBuV Average
ICES-003(6.1)	6.1 - AC Power Line Conducted Emissions Limits
	Class A: ITE that meets the conditions for Class A operation defined in Section 2.2 shall comply with the Class A conducted limits set out below in Table 1.
	0.15 - 0.5 MHz: 79 dBuV Quasi Peak, 66 dBuV Average 0.5 - 30.0 MHz: 73 dBuV Quasi Peak, 60 dBuV Average
Test Setup	Appendix A Figure A.1

Measurement Procedure

The device was connected to the LISN as shown in Appendix A. The input power supply was connected to a 120VAC, 1PH power source. The AC Line Conducted emissions were measured from 150kHz to 30MHz on both Lines L1 and L2 while the DUT was set to maximum output power.

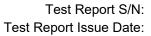

45461653 R2.0 11 May 2021

Table 17.1 – Summary of Power-Line Conducted Emissions

See Appendix J for Measurement Plots

	Emission	LISN	Measurement	DUT	Measured	Cable	Antenna	Corrected	Limit	
	Frequency	Port	Detector	Mode	Emission [E _{Meas}] (dBuV)	Loss [L _c] (dB)	Correction [ACF]	Emission [E _{corr}] (W)	@3m [Limit] (dBuV/m)	Margin [Margin] (dB)
*	3.77 MHz	L1			47.64	(ub)	(ub)	47.64	(ubu viiii)	25.4
*	3.78 MHz	L2		LTE B12 UL	40.34			40.34		32.7
*	3.49 MHz	L1	0	1.TE D40.111	47.64			47.64	70.0	25.4
*	3.51 MHz	L2	Quasi-Peak	LTE B13 UL	40.44			40.44	73.0	32.6
*	3.79 MHz	L1		LTE B12 & B13 DL	45.54			45.54		27.5
*	3.79 MHz	L2		LIE B12 & B13 DL	37.14			37.14		35.9
*	3.85 MHz	L1		LTC D40111	41.14			41.14		18.9
*	3.78 MHz	L2		LTE B12 UL	33.84			33.84		26.2
*	3.77 MHz	L1	A.,	LTE D42 LII	39.34			39.34	60.0	20.7
*	3.50 MHz	L2	Average	LTE B13 UL	33.34			33.34	60.0	26.7
*	3.96 MHz	L1		LTE B12 9 B12 DI	39.14			39.14		20.9
*	3.76 MHz	L2		LTE B12 & B13 DL	30.54			30.54		29.5
Results:							Comp	lies		

^{*} Measurement Compensated for Cable Loss and Antenna Correction Factor $E_{Corr} = E_{Meas} + L_{C} + AFC$ $Margin = Limit - E_{Corr}$

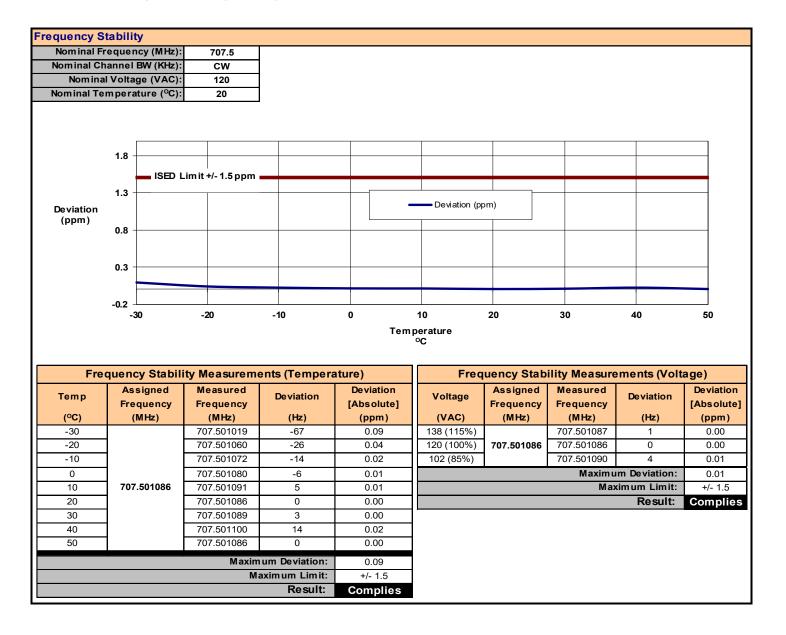
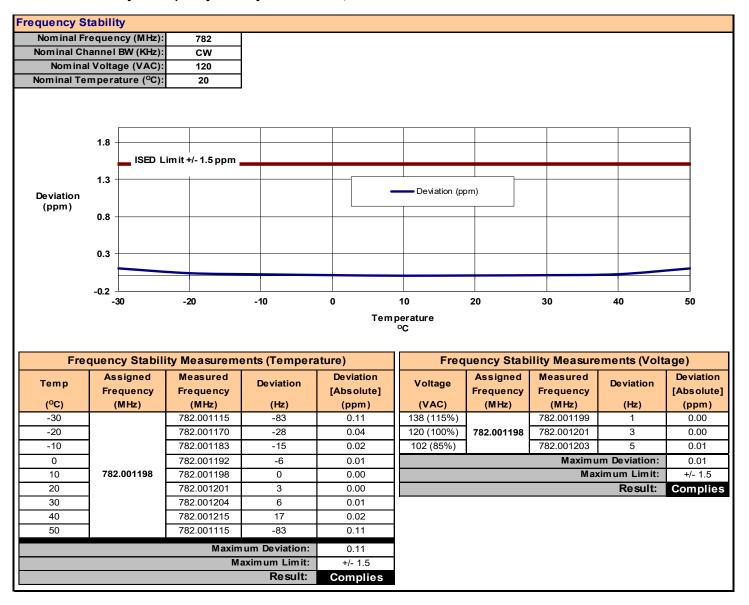
18.0 FREQUENCY STABILITY

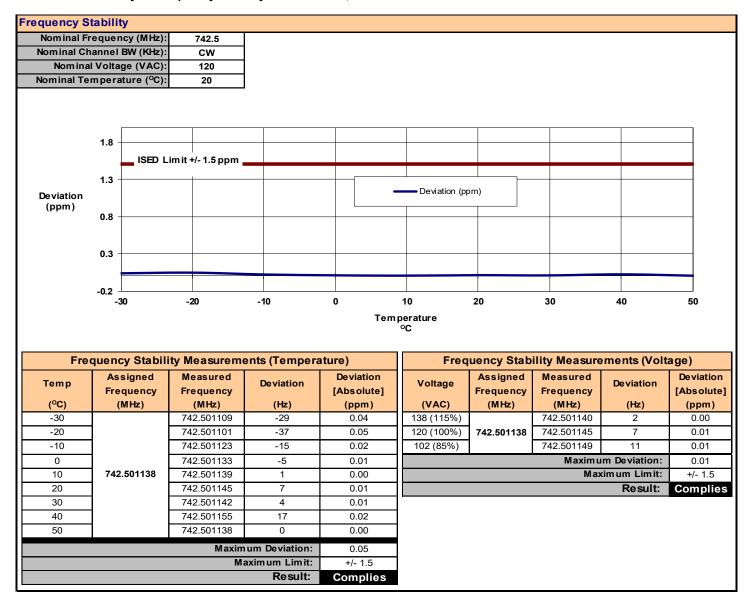
Test Conditions						
Normative Reference	FCC 47 CFR §2.1055, §25.202(d), RSS-Gen, RSS-170 (5.2)					
Limits						
47 CFR §27.54	§27.54 Frequency stability.					
	The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.					
RSS-130	4.5 Transmitter frequency stability					
	The frequency stability shall be sufficient to ensure that the occupied bandwidth remains within each frequency block range when tested at the temperature and supply voltage variations specified in RSS-Gen.					
RSS-131	5.2.4 Frequency stability Industrial zone enhancers shall comply with the frequency stability given in the RSS that applies to the equipment with which the zone enhancer is to be used. In cases where the frequency stability limit is not given in the applicable RSS, the equipment shall comply with a frequency stability of ± 1.5 ppm.					
Measurement Proce	dure					
47 CFR §2.1055	Frequency Stability (a) The frequency stability shall be measured with variation of ambient temperature as follows: (1) From -30° to +50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.					
	 (b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. (d) The frequency stability shall be measured with variation of primary supply voltage as follows: 					
	(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment. The DUT was connected to a variable AC transformer (Variac) and adjusted to 85%, 100% and 115% of nominal input voltage. The SG was configured for a CW signal centered on each of the DUT's passbands. Frequency stability was evaluated as indicated above on each of the passbands.					
Test Setup	Appendix A Figure A.4					

Note: This equipment does not perform signal processing on the DUT inputs. It should be understood that the frequency stability measurements are predominantly influenced by the stability of the Signal Generator. The Frequency Deviation base on the Mean of the measured data.

45461653 R2.0

Table 18.1 – Summary of Frequency Stability Measurement, LTE B12 UL


Table 18.2 – Summary of Frequency Stability Measurement, LTE B13 UL

45461653 R2.0

Table 18.3 – Summary of Frequency Stability Measurement, LTE B12 & B13 DL

45461653 R2.0 11 May 2021

APPENDIX A - TEST SETUP DRAWINGS AND EQUIPMENT

Table A.1 - Setup - Conducted Measurements

Equipment List							
Asset Number	Manufacturer	Model Number	Serial Number	Description			
00241	R&S	FSU40	100500	Spectrum Analyzer			
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable			
Rented Equipment							
1235462	Keysight	AT/N518B-503Q	MY59100337	Vector Signal Generator			

NCR: No Calibration Required COU: Calibrate On Use

Figure A.1 – Test Setup – Conducted Measurements

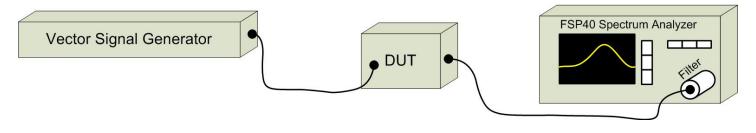


Table A.2 - Radiated Emissions Measurement Equipment

Equipm	Equipment List							
Asset Number	Manufacturer	Model Number	Serial Number	Description				
00050	Chase	CBL-6111A	1607	Bilog Antenna				
00034	ETS	3115	6267	Double Ridged Guide Horn				
00035	ETS	3115	6276	Double Ridged Guide Horn				
00085	EMCO	6502	9203-2724	Loop Antenna				
00161	Waveline Inc.	889		Standard Gain Horn 18-26GHz				
00162	Waveline Inc.	889		Standard Gain Horn 18-26GHz				
00165	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz				
00166	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz				
00333	HP	85685A	3010A01095	RF Preselector				
00049	HP	85650A	2043A00162	Quasi-peak Adapter				
00051	HP	8566B	2747A05510	Spectrum Analyzer				
00241	R&S	FSU40	100500	Spectrum Analyzer				
00265	Miteq	JS32-00104000-58-5P	1939850	Microwave L/N Amplifier				
00071	EMCO	2090	9912-1484	Multi-Device Controller				
00072	EMCO	2075	0001-2277	Mini-mast				
00073	EMCO	2080	0002-1002	Turn Table				
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable				
00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable				
00275	TMS	LMR400	n/a	25m Cable				
00278	TILE	34G3	n/a	TILE Test Software				

Figure A.2 – Test Setup Radiated Measurements 30MHz – 1GHz

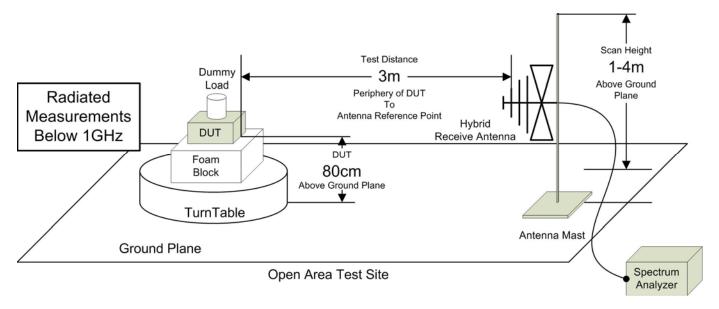


Figure A.3 - Test Setup Radiated Measurements 30MHz - 1GHz, Signal Substitution

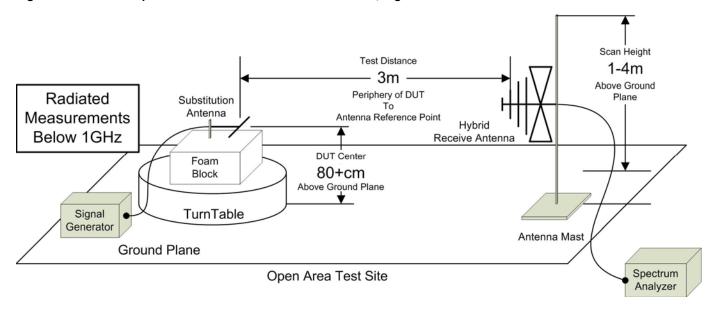
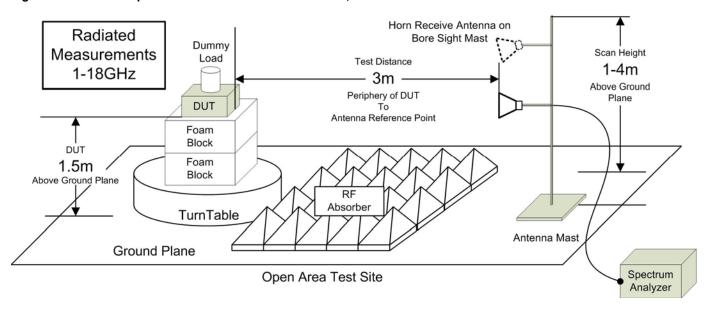



Figure A.4 - Test Setup Radiated Measurements 1 - 18GHz,

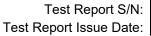
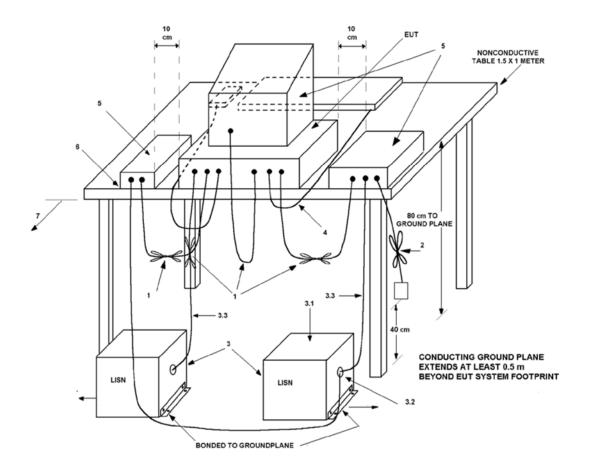



Table A.3 - Setup - Conducted Emissions Equipment List

Equipment List							
Asset Number	Manufacturer	Model Number	Serial Number	Description			
00333	HP	85685A	3010A01095	RF Preselector			
00049	HP	85650A	2043A00162	Quasi-peak Adapter			
00051	HP	8566B	2747A05510	Spectrum Analyzer			
00223	HP	8901A	3749A07154	Modulation Analyzer			
00257	Com-Power	LI-215A	191934	LISN			
00276	TMS	LMR400	n/a	4m Cable			

Figure A.5 – Test Setup Power-Line Conducted Emissions Measurements

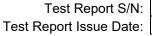
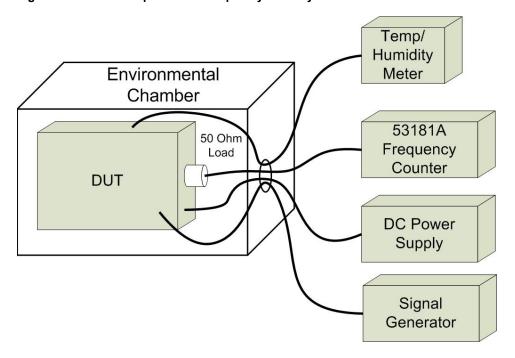



Table A.4 - Setup - Frequency Stability

Equipm	Equipment List							
Asset Number	Manufacturer	Model Number	Serial Number	Description				
00005	HP	8648D	3847A00611	Signal Generator				
00003	HP	53181A	3736A05175	Frequency Counter				
00081	ESPEC	ECT-2	0510154-B	Environmental Chamber				
00234	VWR	61161-378	140320430	Temp/Humidity Meter				

Figure A.6 - Test Setup Power - Frequency Stability

APPENDIX B - EQUIPMENT LIST AND CALIBRATION

Equipment List							
Asset Number	Manufacturer	Model Number	Serial Number	Description	Last Calibrated	Calibration Interval	Calibration Due
00050	Chase	CBL-6111A	1607	Bilog Antenna	3 Jan 2019	Triennial	3 Jan 2022
00034	ETS	3115	6267	Double Ridged Guide Horn	26 Nov 2018	Triennial	26 Nov 2021
00333	HP	85685A	3010A01095	RF Preselector	23 Jun 2020	Triennial	30 Jun 2023
00049	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2020	Triennial	23 Jun 2023
00051	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2020	Triennial	23 Jun 2023
00241	R&S	FSU40	100500	Spectrum Analyzer	15 May 2018	Triennial	15 May 2021
00005	HP	8648D	3847A00611	Signal Generator	23 Jun 2020	Triennial	23 Jun 2023
00003	HP	53181A	3736A05175	Frequency Counter	23 Jun 2020	Triennial	23 Jun 2023
00257	Com-Power	LI-215A	191934	LISN	5 May 2018	Triennial	5 May 2021
00250	Circuit Test	DMR-1800	TE182	Digital Multi-Meter - DVM	23 Jun 2020	Triennial	23 Jun 2023
00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n/a
00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
00081	ESPEC	ECT-2	0510154-B	Environmental Chamber	NCR	n/a	CNR
00234	WR	61161-378	140320430	Temp/Humidity Meter	New	Triennial	New
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	COU
00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	COU	n/a	COU
00264	Koaxis	KP10-7.00M-TD	264	7m Armoured Cable	COU	n/a	COU
00275	TMS	LMR400	n/a	25m Cable	COU	n/a	COU
00276	TMS	LMR400	n/a	4m Cable	COU	n/a	COU
00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCR
Rented I	Equipment						
1235462	Keysight	AT/N518B-503Q	MY59100337	Vector Signal Generator		Bi-Annual	29 Jul 2022

NCR: No Calibration Required

COU: Calibrate On Use

APPENDIX C - MEASUREMENT INSTRUMENT UNCERTAINTY

CISPR 16-4 Measurement Uncertainty (U _{LAB})		
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2		
Radiated Emissions 30MHz - 200MHz		
	$U_{LAB} = 5.14dB$ $U_{CISPR} = 6.3dB$	
Radiated Emissions 200MHz - 1000MHz		
	$U_{LAB} = 5.90 dB$ $U_{CISPR} = 6.3 dB$	
Radiated Emissions 1GHz - 6GHz		
	$U_{LAB} = 4.80dB$ $U_{CISPR} = 5.2dB$	
Radiated Emissions 6GHz - 18GHz		
	$U_{LAB} = 5.1 dB$ $U_{CISPR} = 5.5 dB$	
Power Line Conducted Emissions 9kHz to 150kHz		
	$U_{LAB} = 2.96dB$ $U_{CISPR} = 3.8dB$	
Power Line Conducted Emissions 150kHz to 30MHz		
	$U_{LAB} = 3.12dB$ $U_{CISPR} = 3.4dB$	
If the calculated uncertainty U_{lab} is less than U_{CISPR} then:		
1	Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit	
2	2 Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit	
If the calculated uncertainty U_{lab} is greater than U_{CISPR} then :		
3	Compliance is deemed to occur if NO measured disturbance, increased by $(U_{lab} - U_{CISPR})$, exceeds the disturbance limit	
4	Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit	

Other Measurement Uncertainties (U _{LAB})		
RF Conducted Emissions 9kHz - 40GHz		
U _{LAB} = 1.0dB	U _{CISPR} = n/a	
Frequency/Bandwidth 9kHz - 40GHz		
U _{LAB} = 0.1ppm	U _{CISPR} = n/a	
Temperature		
U _{LAB} = 1 ^o C	U _{CISPR} = n/a	

45461653 R2.0 11 May 2021

END OF REPORT

45461653 R2.0

APPENDIX D - OCCUPIED BANDWIDTH MEASUREMENT PLOTS **APPENDIX E - MEAN POWER MEASUREMENT PLOTS** APPENDIX F - I/O COMPARISON MEASUREMENT PLOTS APPENDIX G - OOB EMISSIONS / BAND EDGE MEASUREMENT PLOTS APPENDIX H - CONDUCTED SPURIOUS MEASUREMENT PLOTS APPENDIX I - PEAK-TO-AVERAGE MEASUREMENT PLOTS APPENDIX J - POWER LINE CONDUCTED MEASUREMENT PLOTS