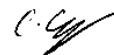


TEST REPORT FROM RFI GLOBAL SERVICES LTD


Test of: EB-3238

To: OET Bulletin 65 Supplement C: (2001-01)

IEEE 1528: 2003

Test Report Serial No:
RFI-SAR-RP87154JD03A V2.0
Version 2.0 Supersedes All Previous Versions

This Test Report Is Issued Under The Authority
Of Chris Guy, Head of Global Approvals:

(APPROVED SIGNATORY)

Checked By: Richelieu Quoi

(APPROVED SIGNATORY)

Issue Date:

31 May 2012

Test Dates:

16 April 2012

This report is issued in portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of RFI Global Services Ltd. The results in this report apply only to the sample(s) tested.

The Bluetooth® word mark and logos are owned by the *Bluetooth SIG, Inc.* and any use of such marks by RFI Global Services Ltd. is under license. Other trademarks and trade names are those of their respective owners.

This page has been left intentionally blank.

TABLE OF CONTENTS

1. Customer Information	4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods and Procedures	8
4. Deviations from the Test Specification.....	9
5. Operation and Configuration of the EUT during Testing	10
6. Summary of Test Results	12
7. Measurements, Examinations and Derived Results.....	13
8. Measurement Uncertainty	18
Appendix 1. Test Equipment Used.....	21
Appendix 2. Measurement Methods.....	24
Appendix 3. SAR Distribution Scans	26
Appendix 4. Photographs	37
Appendix 5. System Check	53
Appendix 6. Simulated Tissues	54
Appendix 7. DASY4 System Details	55

1. Customer Information

Company Name:	Panasonic Mobile Comms Dev of Europe Ltd
Address:	Panasonic House, Willoughby Road, Bracknell, Berkshire, RG12 8FP, United Kingdom

2. Equipment Under Test (EUT)

2.1. Identification of Equipment Under Test (EUT)

Description:	Dual Mode UMTS/GSM Mobile Phone with <i>Bluetooth</i>
Brand Name:	Softbank
Model Name or Number:	EB-3238 (Project Name: S21CS1)
Serial Number:	None Stated
IMEI Number:	004401221227172
Hardware Version Number:	Rev C
Software Version Number:	ACPU: B-S21CS1-007.01.001 CCPU: Cv4A000303
Hardware Revision of GSM Module:	Not Applicable
Software Revision of GSM Module:	Not Applicable
FCC ID Number:	UCE211049A
Country of Manufacture:	Japan
Date of Receipt:	16 April 2012

Note(s):

This sample was used to perform WWAN SAR evaluation only. The sample supports simultaneous transmission with the WWAN and *Bluetooth* antenna > 5 cm apart.

Description:	Dual Mode UMTS/GSM Mobile Phone with <i>Bluetooth</i>
Brand Name:	Softbank
Model Name or Number:	EB-3238 (Project Name: S21CS1)
Serial Number:	None Stated
IMEI Number:	004401221227180
Hardware Version Number:	Rev C
Software Version Number:	ACPU: B-S21CS1-007.01.001 CCPU: Cv4A000303
Hardware Revision of GSM Module:	Not Applicable
Software Revision of GSM Module:	Not Applicable
FCC ID Number:	UCE211049A
Country of Manufacture:	Japan
Date of Receipt:	16 April 2012

Note(s):

This Sample was used to perform WWAN conducted power measurements only. The build of the sample is identical to the sample used for SAR testing.

2.2. Description of EUT

The Equipment Under Test is a Mobile Phone with tri band GSM 2G EGSM900, DCS1800, PCS1900 and dual band 3G UMTS FDD I and VIII. The EUT has GPRS class 10, UMTS Release 5 HSDPA and *Bluetooth* capabilities.

2.3. Modifications Incorporated in the EUT

EUT (IMEI: 004401221227172) was setup for WWAN SAR test only.

EUT (IMEI: 004401221227180) was used for WWAN conducted power measurements only.

2.4. Accessories

The following accessories were supplied with the EUT during testing:

Description:	Battery
Brand Name:	None Stated
Model Name or Number:	PMBAS1
Serial Number:	None Stated
Cable Length and Type:	Not applicable
Country of Manufacture:	None Stated
Connected to Port	3 pin contact

Description:	Personal Hands-Free
Brand Name:	SoftBank
Model Name or Number:	ZTCK01/ZTBBA1
Serial Number:	None Stated
Cable Length and Type:	~1.15m
Country of Manufacture:	None Stated
Connected to Port	AV Out Port Unique to Manufacturer

Description:	2GB Memory Card
Brand Name:	None Stated (Generic)
Model Name or Number:	None Stated
Serial Number:	None Stated
Cable Length and Type:	Not Applicable
Country of Manufacture:	None Stated
Connected to Port	Dedicated to Micro SD card slot.

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Wireless Communication Test Set
Brand Name:	Agilent
Model Name or Number:	8960 Series 10
Serial Number:	GB46311280
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port:	RF (Input / Output) Air Link

2.6. Additional Information Related to Testing			
Equipment Category	PCS1900		
Type of Unit	Portable Transceiver		
Intended Operating Environment:	Within GSM, UMTS and <i>Bluetooth</i> Coverage		
Transmitter Maximum Output Power Characteristics:	PCS1900	Communication Test Set was configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0.	
	<i>Bluetooth</i>	<2 dBm	
Transmitter Frequency Range:	PCS1900	(1850 to 1910) MHz	
Transmitter Frequency Allocation of EUT When Under Test:	Channel Number	Channel Description	Frequency (MHz)
	512	Low	1850.2
	660	Middle	1879.8
	810	High	1909.8
Modulation(s):	GMSK (GSM/ GPRS): 217 Hz		
Modulation Scheme (Crest Factor):	GMSK (GSM): 8.3 GMSK(GPRS1900): 4		
Antenna Type:	Internal integral		
Antenna Length:	Unknown		
Number of Antenna Positions:	2 fixed (WWAN and <i>Bluetooth</i>)		
Power Supply Requirement:	3.7V		
Battery Type(s):	Li-ion		

3. Test Specification, Methods and Procedures

3.1. Test Specification

Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.

3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

KDB 447498 D01 "Mobile Portable RF Exposure v04"

KDB 648474 D01 SAR Handsets Multi Xmitter and Ant v01r05"

KDB 941225 D03 " SAR Test Reduction GSM/GPRS/EDGE v01"

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

4. Deviations from the Test Specification

Test was performed as per KDB 447498 D01 "Mobile Portable RF Exposure v04", KDB 648474 D01 SAR Handsets Multi Xmter and Ant v01r05" and KDB 941225 D03 " SAR Test Reduction GSM/GPRS/EDGE v01" according to the handset procedures in IEEE Std 1528-2003 and OET Bulletin 65 Supplement C 01-01.

SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit, as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

Simultaneous transmission was not evaluated as the sum of the individual SAR for WWAN and *Bluetooth* were < 1.6 W/kg and the antenna-to-antenna separation distances were greater than 5 cm.

The samples used for SAR assessment were as per section 2 of this report.

GPRS class 10, uplink setup of 1-uplink and 2-uplink were all evaluated to find the setting with the highest power reference measurements. 2 -uplink was found to give the highest power reference measurement on the DASY4 system. All settings were performed with the device in a fixed position to ensure there were no positioning errors. The following values were measured relative to the uplink settings:

GPRS Mode	GPRS1900 Power (v/m)
1 uplink	20.13
2 uplink	22.82

5. Operation and Configuration of the EUT during Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

- PCS1900 Voice allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0.
- GPRS1900 Data allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0.
- GPRS1900 was tested using 2 Uplink allocated time slots with coding scheme CS1.

PCS1900 – UPLINK Power Table Settings used for Test Set

Power Control Level (PCL)	Nominal Power (dBm)
22 ... 29	Reserved
30	33
31	32
0	30
1	28
2	26
3	24
4	22
5	20
6	18
7	16
8	14
9	12
10	10
11	8
12	6
13	4
14	2
15	0
16 ... 21	Reserved

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

- Test performed with the EUT in a Standalone Battery Powered configuration.
- The applied configurations for body-worn orientations where the corresponding edge(s) is closest to the user with the most conservative exposure condition were all evaluated at 15 mm from the body as Personal Hotspot mode was not supported.

Head Configuration

- The handset was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- With the ear-piece touching the phantom the centre line of the EUT was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- For the cheek position the EUT was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- The device was keyed to operate continuously in the transmit mode for the duration of the test.
- The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Body Configuration

- The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- For the touch-safe position the EUT was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- For position(s) greater than 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- The device was keyed to operate continuously in the transmit mode for the duration of the test.
- The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

6. Summary of Test Results

Test Name	Specification Reference	Result
Specific Absorption Rate-PCS 1900 Head Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-GPRS 1900 Body-Worn Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-PCS 1900 Body-Worn Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied

SAR Individual Transmitter Evaluation

device, mode	Frequency, (MHz)	P _x (mW)	P _{REF} (mW)	single SAR, W/kg	Remarks
WWAN, GSM	1900	851	60/f	0.638	Routine Evaluation
BT, Bluetooth	2400	~ 2	12	:=0	{P _{BT} ≤ 2P _{REF} } {d _{WWAN, BT} > 5cm}

SAR Simultaneous Transmitter Evaluation

(x,y)	D(x,y) cm	L(x,y) cm	SPLSR _{xy}	Sim-Tx SAR	Remarks
(WWAN _{GSM} , BT)	>5	N/A	N/A	N/A	{no stand-alone SAR for BT}

Note(s):

1. Simultaneous transmission evaluation was not required as the output power for *Bluetooth* was < (60/f) and the Sum of all antenna < 1.6w/kg.
2. *Bluetooth* transmitter thresholds output power “P_{Ref} = 12 mW as listed in KDB 648474.
3. P_x: power level measured by RFI.
4. Single SAR value was measured by RFI.
5. The “Antenna-to-Antenna distance and Antenna-to-User distance were provided by the customer.

6.1. Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

7.2. Test Results

7.2.1. Specific Absorption Rate - PCS 1900 Head Configuration 1g

Test Summary:

Tissue Volume:	1g
Maximum Level (W/kg):	0.638

Environmental Conditions:

Temperature Variation in Lab (°C):	23.0 to 23.0
Temperature Variation in Liquid (°C):	22.7 to 22.7

Results:

EUT Position	Phantom Configuration	Channel Number	GSM Tx Avg. Burst Power (dBm)	MPR (dB)	Measured Level (W/kg)	Note	Modulation
Touch	Left	660	20.0	N/A	0.481	1	GMSK
Tilt	Left	660	20.0	N/A	0.261	1	GMSK
Touch	Right	660	20.0	N/A	0.638	1	GMSK
Tilt	Right	660	20.0	N/A	0.183	1	GMSK

Note(s):

1. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit, as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

7.2.2. Specific Absorption Rate - GPRS 1900 Body-Worn Configuration 1g
Test Summary:

Tissue Volume:	1g
Maximum Level (W/kg):	0.306

Environmental Conditions:

Temperature Variation in Lab (°C):	24.0 to 24.0
Temperature Variation in Liquid (°C):	23.7 to 23.7

Results:

EUT Position	Phantom Configuration	Channel Number	Uplink Measured Burst Avg. Power (dBm)	MPR (dB)	Measured Level (W/kg)	Note	Modulation
Front of EUT Facing Phantom	Flat (SAM)	660	20.9	N/A	0.212	1, 2, 3	GMSK
Rear of EUT Facing Phantom	Flat (SAM)	660	20.9	N/A	0.306	1, 2, 3	GMSK
Rear of EUT Facing Phantom With PHF	Flat (SAM)	660	20.9	N/A	0.234	1, 2, 3	GMSK

Note(s):

1. SAR measurements were performed using 2 uplink timeslots
2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
3. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit, as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

7.2.3. Specific Absorption Rate - PCS 1900 Body-Worn Configuration 1g**Test Summary:**

Tissue Volume:	1g
Maximum Level (W/kg):	0.242

Environmental Conditions:

Temperature Variation in Lab (°C):	24.0 to 24.0
Temperature Variation in Liquid (°C):	23.7 to 23.7

Results:

EUT Position	Phantom Configuration	Channel Number	Uplink Measured Burst Avg. Power (dBm)	MPR (dB)	Measured Level (W/kg)	Note	Modulation
Rear of EUT Facing Phantom	Flat (SAM)	660	20.0	N/A	0.242	1, 2, 3	GMSK

Note(s):

1. Worst case configuration from GPRS is used on PCS body.
2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
3. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit, as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

7.2.4. Conducted Average Power Measurement 2G: PCS1900

Channel Number	Frequency (MHZ)	GSM TX Power before Test (dBm)	GSM TX busrt Avg. power (dBm)	Note
512	1850.2	29.2	20.2	Conducted, GMSK
660	1879.8	29.0	20.0	Conducted, GMSK
810	1909.8	29.3	20.3	Conducted, GMSK

GPRS - Measured Average Power Without consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	GPRS TX Power before Test (dBm) 1Uplink	GPRS TX Power before Test (dBm) 2Uplink	Note
512	1850.2	29.2	27.1	Conducted, GMSK
660	1879.8	29.0	26.9	Conducted, GMSK
810	1909.8	29.3	27.1	Conducted, GMSK

GPRS - Calculated Average Power with consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	GPRS TX Power before Test (dBm) 1Uplink	GPRS TX Power before Test (dBm) 2Uplink	Note
512	1850.2	20.2	21.1	Conducted, GMSK
660	1879.8	20.0	20.9	Conducted, GMSK
810	1909.8	20.3	21.1	Conducted, GMSK

Note:

Scale factor for uplink time slot:

- 1 Uplink: time slot ratio = 8:1 => $10 \log(8/1) = 9.00 \text{ dB}$
- 2 Uplink: time slot ratio = 8:2 => $10 \log(8/2) = 6.02 \text{ dB}$

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document “approximately” is interpreted as meaning “effectively” or “for most practical purposes”.

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate- PCS 1900 Head Configuration 1g	95%	20.18
Specific Absorption Rate- PCS/ GPRS 1900 Body Configuration 1g	95%	19.44

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

8.1. Specific Absorption Rate-PCS 1900 Head Configuration 1g

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i (10 ³)	Standard Uncertainty		v _i or v _{eff}
							+ u (%)	- u (%)	
B	Probe calibration	5.500	5.500	normal (k=1)	1.0000	1.0000	5.500	5.500	∞
B	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
B	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
B	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
B	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
B	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Probe Positioning with Regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
B	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
A	Test Sample Positioning	3.800	3.800	normal (k=1)	1.0000	1.0000	3.800	3.800	10
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
A	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
A	Liquid Permittivity (measured value)	4.880	4.880	normal (k=1)	1.0000	0.6000	2.928	2.928	5
	Combined standard uncertainty			t-distribution			10.30	10.30	>200
	Expanded uncertainty			k = 1.96			20.18	20.18	>200

8.2. Specific Absorption Rate-PCS / GPRS 1900 Body Configuration 1g

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i (10 ³)	Standard Uncertainty		v _i or v _{eff}
							+ u (%)	- u (%)	
B	Probe calibration	5.500	5.500	normal (k=1)	1.0000	1.0000	5.500	5.500	∞
B	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
B	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
B	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
B	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
B	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
B	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
A	Test Sample Positioning	2.500	2.500	normal (k=1)	1.0000	1.0000	2.500	2.500	10
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
A	Liquid Conductivity (measured value)	4.940	4.940	normal (k=1)	1.0000	0.6400	3.162	3.162	5
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
A	Liquid Permittivity (measured value)	4.980	4.980	normal (k=1)	1.0000	0.6000	2.988	2.988	5
	Combined standard uncertainty			t-distribution			9.92	9.92	>200
	Expanded uncertainty			k = 1.96			19.44	19.44	>200

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223-30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1328	Handset Positioner	Schmid & Partner Engineering AG	Modification	SD 000 H01 DA	-	-
A1182	Handset Positioner	Schmid & Partner Engineering AG	V3.0	None	-	-
A1184	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	394	26 Jan 2012	12
A1237	1900 MHz Dipole Kit	Schmid & Partner Engineering AG	D1900V2	540	08 Feb 2011	24
A1238	SAM Phantom	Schmid & Partner Engineering AG	SAM b	001	Calibrated before use	-
A2077	Probe	Schmid & Partner Engineering AG	ET3 DV4	3814	22 Sep 2011	12
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-
A1566	SAM Phantom	Schmid & Partner Engineering AG	SAM a	002	Calibrated before use	-
A1990	Digital Camera	Samsung	E515	A23WC90 8A05431K	-	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
A1531	Antenna	AARONIA AG	7025	02458	-	-
C1042	Network Analyzer Cable	Agilent	8120-4779	349	-	-
C1145	Cable	Rosenberger MICRO-COAX	FA147A F003003030	41843-1	Calibrated as part of system	-
C1146	Cable	Rosenberger MICRO-COAX	FA147A F030003030	41752-1	Calibrated as part of system	-
G0528	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	None	Calibrated before use	-
G087	PSU	Thurlby Thandar	CPX200	100701	Calibrated before use	-

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	27 Sept 2011	12
M1047	Robot Arm	Staubli	RX908 L	F00/SD8 9A1/A/01	Calibrated before use	-
M1159	Signal Generator	Agilent Technologies	E8241A	US42110332	Internal Checked 14 Apr 2012	4
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1044	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/019	26 May 2011	12
M265	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/017	26 May 2011	12
M263	Dual Channel Power Meter	Rohde & Schwarz	NRVD	826558/004	25 May 2011	12
M509	Thermometer	Testo 110 Immersion Probe & Thermometer	Testo 110	03100047	25 May 2011	12
M1270	Digital Thermometer	RS	N/A	N/A	Internal Checked 13 May 2011	12
S256	SAR Lab	RFI	Site 56	N/A	Calibrated before use	-

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

The following information is justification to why the listed dipoles calibration period has been extended. This address FCC KDB 450824 D02

Cal Date	Dipole Calibration History									
	Dipole SN: 540, Frequency 1900 MHz									
	Head Parameters					Body Parameters				
	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	Imaginary (Ω)	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	Imaginary (Ω)
08-Feb-11	40.30	21.00	-27.60	50.50	4.20	40.70	21.60	-23.10	45.60	5.00
26-Jun-09	40.30	21.10	-30.00	48.50	2.70	40.90	21.50	-24.30	44.90	2.80
11-Jun-07	36.10	19.30	-25.40	51.90	5.10	38.00	20.70	-25.30	47.70	4.80
14-Jun-05	38.1	19.90	-25.40	51.90	5.20	39.10	20.70	-24.00	48.10	5.90
04-Jun-03	41.20	21.20	-28.50	50.30	3.80	Dipole calibrated for Head only				
Standard Deviation	2.08	0.85	2.00	1.40	1.03	1.38	0.49	0.91	1.56	1.31
Mean Value	39.20	20.50	27.38			39.68	21.13	24.18		
Relative standard deviation %	5.30%	4.15%	7.31%			3.47%	2.33%	3.75%		

Note:

1. The dipole history shows that the measured SAR relative standard deviation was all less than 10% for the calibration period. The return loss relative standard deviation was all less than 10 %. And the real and imaginary impedance standard deviation is within 5 (Ω).

ASSET-A1237 - Checked by K.S
21/02/2011

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Certificate No: D1900V2-540_Feb11

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 540

Calibration procedure(s)
QA CAL-05.v8
Calibration procedure for dipole validation kits

Calibration date: February 08, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:	Name	Function	Signature
	Dimce Iliev	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: February 8, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.43 mW / g
SAR normalized	normalized to 1W	21.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.6 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.5 \Omega + 4.2 j\Omega$
Return Loss	- 27.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$45.6 \Omega + 5.0 j\Omega$
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.195 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 26, 2001

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 15:18:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

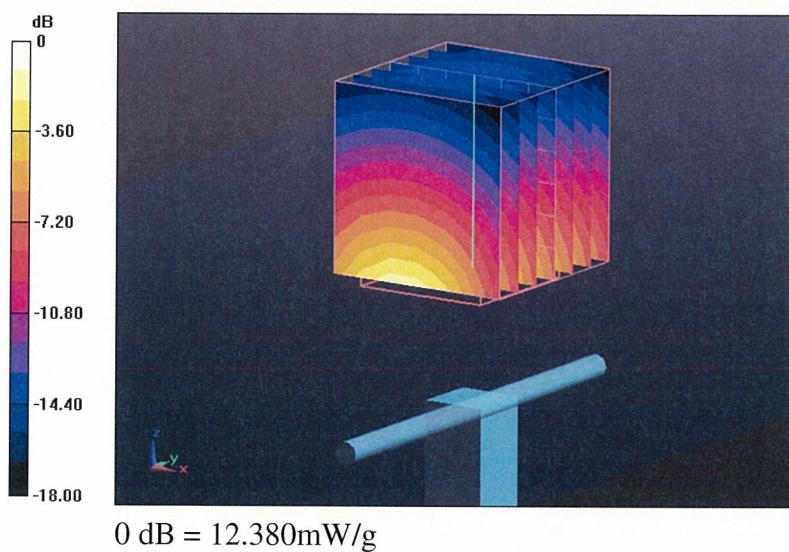
Medium parameters used: $f = 1900$ MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

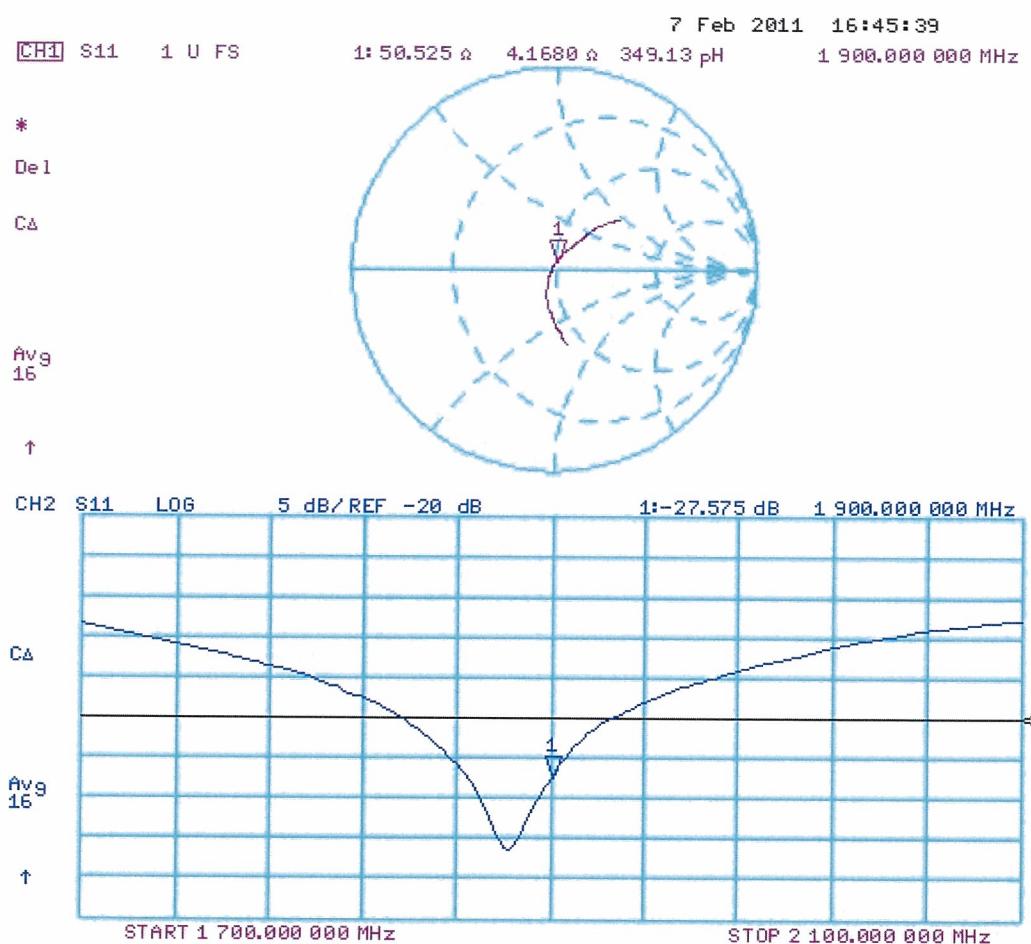
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)


Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.936 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 18.544 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/g

Maximum value of SAR (measured) = 12.384 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.02.2011 12:04:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

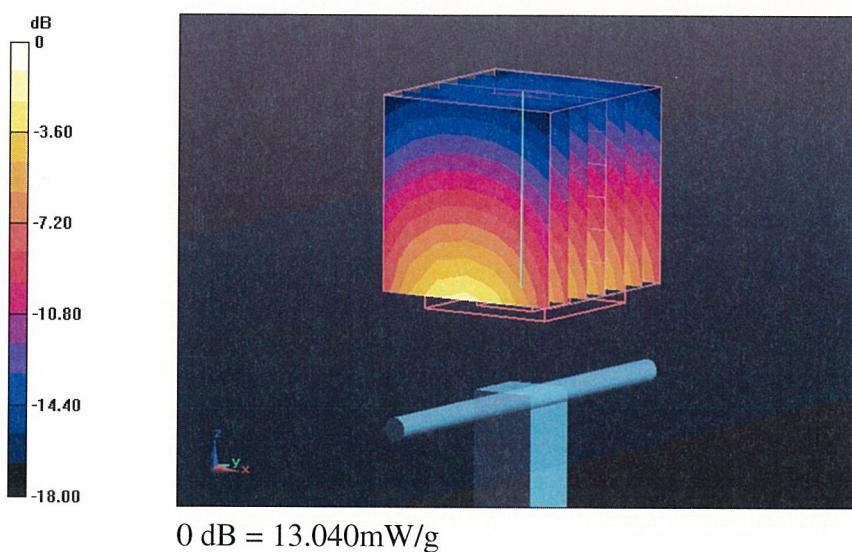
Medium parameters used: $f = 1900$ MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

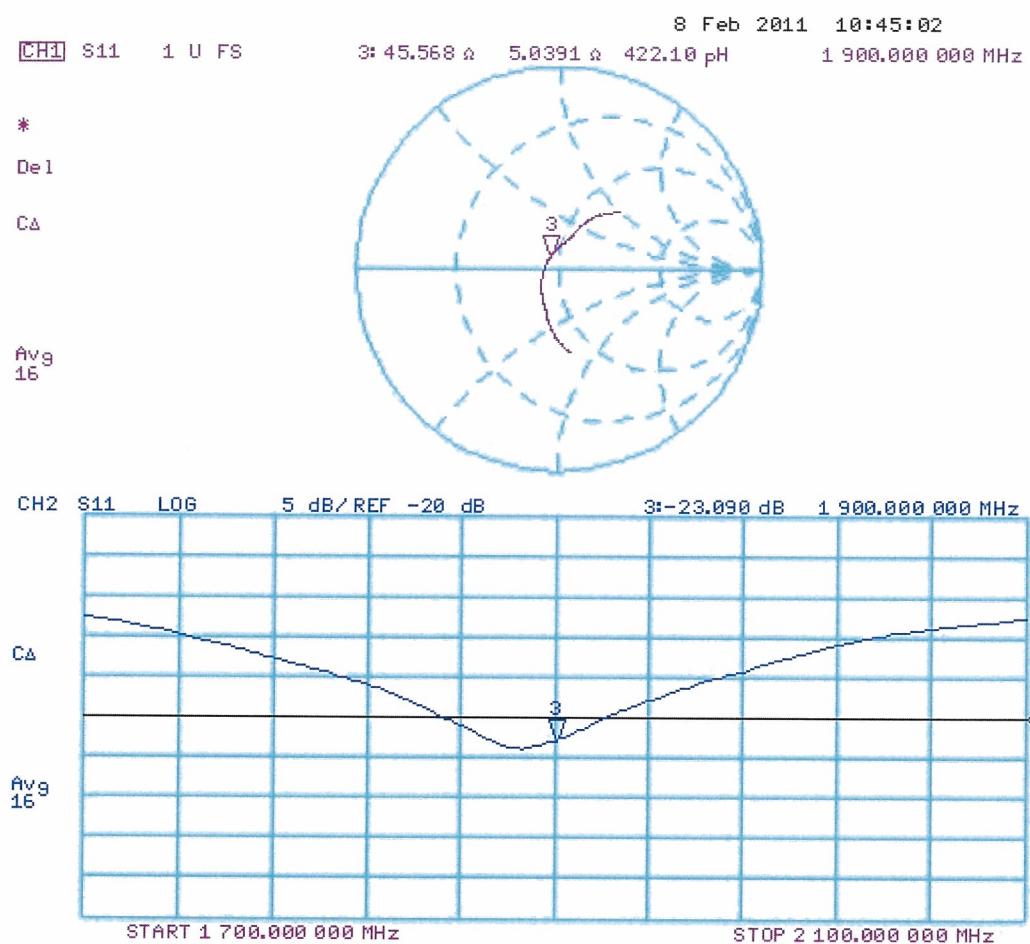
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)


Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.899 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 17.597 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.43 mW/g

Maximum value of SAR (measured) = 13.038 mW/g

Impedance Measurement Plot for Body TSL

