

# TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: P-03D

To: OET Bulletin 65 Supplement C: (2001-01)

Test Report Serial No:  
RFI/SAR/RP83567JD04A V2.0

Version 2.0 supersedes all previous versions

This Test Report Is Issued Under The  
Authority Of Chris Guy, Head of Global  
Approvals:



(APPROVED SIGNATORY)

Checked By: Richelieu Quoi



(APPROVED SIGNATORY)

Issue Date:

21 October 2011

Test Dates:

22 September to 20 October 2011

This report is issued in portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of RFI Global Services Ltd. The results in this report apply only to the sample(s) tested.

This page has been left intentionally blank.

## TABLE OF CONTENTS

|                                                                |     |
|----------------------------------------------------------------|-----|
| 1. Customer Information .....                                  | 4   |
| 2. Equipment Under Test (EUT) .....                            | 5   |
| 3. Test Specification, Methods and Procedures .....            | 8   |
| 4. Deviations from the Test Specification.....                 | 9   |
| 5. Operation and Configuration of the EUT during Testing ..... | 10  |
| 6. Summary of Test Results.....                                | 12  |
| 7. Measurements, Examinations and Derived Results .....        | 13  |
| 8. Measurement Uncertainty .....                               | 22  |
| Appendix 1. Test Equipment Used.....                           | 25  |
| Appendix 2. Measurement Methods.....                           | 28  |
| Appendix 3. SAR Distribution Scans .....                       | 30  |
| Appendix 4. Photographs .....                                  | 73  |
| Appendix 5. Validation of System .....                         | 130 |
| Appendix 6. Simulated Tissues .....                            | 131 |
| Appendix 7. DASY4 System Details .....                         | 132 |

## 1. Customer Information

|                      |                                                                                            |
|----------------------|--------------------------------------------------------------------------------------------|
| <b>Company Name:</b> | Panasonic Mobile Comms Dev of Europe Ltd                                                   |
| <b>Address:</b>      | Panasonic House<br>Willoughby Road<br>Bracknell<br>Berkshire<br>RG12 8FP<br>United Kingdom |

## 2. Equipment Under Test (EUT)

### 2.1. Identification of Equipment Under Test (EUT)

|                                         |                                      |
|-----------------------------------------|--------------------------------------|
| <b>Description:</b>                     | Mobile Handset                       |
| <b>Brand Name:</b>                      | NTT Docomo                           |
| <b>Model Name or Number:</b>            | P-03D                                |
| <b>Serial Number:</b>                   | None Stated (Sample C4)              |
| <b>IMEI Number:</b>                     | 357979040014452                      |
| <b>Hardware Version Number:</b>         | Rev C                                |
| <b>Software Version Number:</b>         | ACPU: 01.05.001<br>CCPU: 18.10.18.02 |
| <b>Hardware Revision of GSM Module:</b> | Not Applicable                       |
| <b>Software Revision of GSM Module:</b> | Not Applicable                       |
| <b>FCC ID Number:</b>                   | UCE111045A                           |
| <b>Country of Manufacture:</b>          | Japan                                |
| <b>Date of Receipt:</b>                 | 20 September 2011                    |

#### Note(s):

This sample was used to perform WWAN 3G SAR evaluation only.

|                                         |                                      |
|-----------------------------------------|--------------------------------------|
| <b>Description:</b>                     | Mobile Handset                       |
| <b>Brand Name:</b>                      | NTT Docomo                           |
| <b>Model Name or Number:</b>            | P-03D                                |
| <b>Serial Number:</b>                   | None Stated (Sample C5)              |
| <b>IMEI Number:</b>                     | 357979040014486                      |
| <b>Hardware Version Number:</b>         | Rev C                                |
| <b>Software Version Number:</b>         | ACPU: 01.05.001<br>CCPU: 18.10.18.02 |
| <b>Hardware Revision of GSM Module:</b> | Not Applicable                       |
| <b>Software Revision of GSM Module:</b> | Not Applicable                       |
| <b>FCC ID Number:</b>                   | UCE111045A                           |
| <b>Country of Manufacture:</b>          | Japan                                |
| <b>Date of Receipt:</b>                 | 20 September 2011                    |

#### Note(s):

This Sample was used to perform WWAN 3G conducted power measurements only. The build of the sample is identical to the sample used for SAR testing.

#### Description of EUT

The equipment under test is a single mode mobile handset operating in the UMTS FDD 850 with HSDPA support and RFID 13.56 bands.

### 2.2. Modifications Incorporated in the EUT

EUT (IMEI: 357979040014452) was setup for WWAN 3G SAR test only

EUT (IMEI: 357979040014486) was used for WWAN 3G conducted power measurements only

### 2.3. Accessories

The following accessories were supplied with the EUT during testing:

|                                |                 |
|--------------------------------|-----------------|
| <b>Description:</b>            | Battery         |
| <b>Brand Name:</b>             | NTT             |
| <b>Model Name or Number:</b>   | P23             |
| <b>Serial Number:</b>          | None Stated     |
| <b>Cable Length and Type:</b>  | Not Applicable  |
| <b>Country of Manufacture:</b> | None Stated     |
| <b>Connected to Port</b>       | 3 point contact |

|                                |                                    |
|--------------------------------|------------------------------------|
| <b>Description:</b>            | Personal Hands-Free                |
| <b>Brand Name:</b>             | NTT Docomo                         |
| <b>Model Name or Number:</b>   | Earphone set 01 (stereo) EB-M70090 |
| <b>Serial Number:</b>          | None Stated                        |
| <b>Cable Length and Type:</b>  | ~1.8m / multi-core                 |
| <b>Country of Manufacture:</b> | None Stated                        |
| <b>Connected to Port</b>       | AV Out Port Unique to Manufacturer |

|                                |                              |
|--------------------------------|------------------------------|
| <b>Description:</b>            | Micro-SD Memory Card         |
| <b>Brand Name:</b>             | Generic                      |
| <b>Model Name or Number:</b>   | None Stated                  |
| <b>Serial Number:</b>          | None Stated                  |
| <b>Cable Length and Type:</b>  | Not applicable               |
| <b>Country of Manufacture:</b> | None Stated                  |
| <b>Connected to Port</b>       | Dedicated micro-SD card port |

### 2.4. Support Equipment

The following support equipment was used to exercise the EUT during testing:

|                               |                                 |
|-------------------------------|---------------------------------|
| <b>Description:</b>           | Wireless Communication Test Set |
| <b>Brand Name:</b>            | Rohde & Schwarz                 |
| <b>Model Name or Number:</b>  | CMU200                          |
| <b>Serial Number:</b>         | 112218                          |
| <b>Cable Length and Type:</b> | ~4.0m Utiflex Cable             |
| <b>Connected to Port:</b>     | RF (Input / Output) Air Link    |

## 2.5. Additional Information Related to Testing

|                                                                 |                                                       |                                                                                                         |                        |
|-----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------|
| <b>Equipment Category</b>                                       | UMTS FDD V / RFID                                     |                                                                                                         |                        |
| <b>Type of Unit</b>                                             | Portable Transceiver                                  |                                                                                                         |                        |
| <b>Intended Operating Environment:</b>                          | Within UMTS FDD V Coverage                            |                                                                                                         |                        |
| <b>Transmitter Maximum Output Power Characteristics:</b>        | UMTS Band V                                           | Communication Test Set was configured to allow the EUT to transmit at a maximum power of up to 23.5dBm. |                        |
| <b>Transmitter Frequency Range:</b>                             | UMTS Band V                                           | (826 to 847) MHz                                                                                        |                        |
| <b>Transmitter Frequency Allocation of EUT When Under Test:</b> | <b>Channel Number</b>                                 | <b>Channel Description</b>                                                                              | <b>Frequency (MHz)</b> |
|                                                                 | 4132                                                  | Low                                                                                                     | 826.4                  |
|                                                                 | 4183                                                  | Middle                                                                                                  | 836.6                  |
|                                                                 | 4233                                                  | High                                                                                                    | 846.6                  |
| <b>Modulation(s):</b>                                           | QPSK (UMTS/HSPA):0 Hz                                 |                                                                                                         |                        |
| <b>Modulation Scheme (Crest Factor):</b>                        | QPSK (UMTS FDD/HSPA):1                                |                                                                                                         |                        |
| <b>Antenna Type:</b>                                            | Internal                                              |                                                                                                         |                        |
| <b>Antenna Length:</b>                                          | Unknown                                               |                                                                                                         |                        |
| <b>Number of Antenna Positions:</b>                             | 1 fixed<br>With TV extendable and retractable antenna |                                                                                                         |                        |
| <b>Power Supply Requirement:</b>                                | 3.7V                                                  |                                                                                                         |                        |
| <b>Battery Type(s):</b>                                         | Li-ion                                                |                                                                                                         |                        |

### 3. Test Specification, Methods and Procedures

#### 3.1. Test Specification

|                         |                                                                                                                                                                                                  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Reference:</b>       | OET Bulletin 65 Supplement C: (2001-01)                                                                                                                                                          |
| <b>Title:</b>           | Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.                                                                                          |
| <b>Purpose of Test:</b> | To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above. |

#### 3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

KDB 447498 D01 "Mobile Portable RF Exposure v04"

KDB 941225 D01 "SAR test for 3G v02"

The version of DASY system used by RFI for SAR measurements is v4.7.

The SAR probe for the DASY v4.4 and higher has a validity of +/- 100 MHz from the spot frequency at which the system is calibrated.

The SAR system uses the 900 MHz conversion factor which is valid from 800 MHz to 1000 MHz for the system validation performed at 900 MHz.

The 900 MHz validation is applicable for the 850 band as this is within 50 MHz of the 850 MHz spot frequency.

#### 3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

#### 4. Deviations from the Test Specification

Test was performed as per "KDB 447498 D01 Mobile Portable RF Exposure v04", KDB 941225 D01 "SAR test for 3G v02" and according to the handset procedures in IEEE Std 1528-2003, OET Bulletin 65 Supplement C 01-01 and the specific FCC test procedures.

SAR test was performed in the middle channel only for WWAN as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

## 5. Operation and Configuration of the EUT during Testing

### 5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

- UMTS Band V 12.2kbps with test loop mode 1 and TPC bits configured to all "1's" and Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 23.0dBm.
- UMTS FDD V - RMC 12.2kbps + HSDPA With Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1 and Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 22.6dBm.
- +UMTS FDD V - RMC 12.2kbps + HSUPA With Test loop mode 1 and TPC bits configured to all "1's", Sub-test 5, AG gain = 21 and Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 23.5dBm.

## 5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

- Test performed with the EUT in a Standalone Battery Powered configuration.
- The applied configurations for body-worn orientations where the corresponding edge(s) is closest to the user with the most conservative exposure condition were all evaluated at 15 mm from the body.

### Head Configuration

- The handset was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- With the ear-piece touching the phantom the centre line of the handset was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- For the cheek position the handset was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- The device was keyed to operate continuously in the transmit mode for the duration of the test.
- The location of the maximum spatial SAR distribution (hot spot) was determined relative to the handset and its antenna.
- The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

### Body Configuration

- The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- For the touch-safe position the handset was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- For position(s) greater than 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- The device was keyed to operate continuously in the transmit mode for the duration of the test.
- The location of the maximum spatial SAR distribution (hot spot) was determined relative to the handset and its antenna.
- The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery

## 6. Summary of Test Results

| Test Name                                                        | Specification Reference                 | Result   |
|------------------------------------------------------------------|-----------------------------------------|----------|
| Specific Absorption Rate- UMTS FDD V Head Configuration 1g       | OET Bulletin 65 Supplement C: (2001-01) | Complied |
| Specific Absorption Rate-UMTS FDD V Body Configuration 1g        | OET Bulletin 65 Supplement C: (2001-01) | Complied |
| Specific Absorption Rate-UMTS FDD V + HSPA Body Configuration 1g | OET Bulletin 65 Supplement C: (2001-01) | Complied |

### SAR Individual Transmitter Evaluation

| device, mode     | Frequency, (MHz) | P <sub>x</sub> (mW) | P <sub>REF</sub> (mW) | single SAR, W/kg | Remarks                                                                 |
|------------------|------------------|---------------------|-----------------------|------------------|-------------------------------------------------------------------------|
| WWAN,<br>UMTS    | 850              | 224                 | 60/f                  | 0.499            | Routine Evaluation                                                      |
| BT,<br>Bluetooth | N/A              | N/A                 | N/A                   | N/A              | {P <sub>BT</sub> ≤ 2P <sub>REF</sub> }<br>{d <sub>WWAN, BT</sub> > 5cm} |

### SAR Simultaneous Transmitter Evaluation

| (x,y)                          | D(x,y) cm | L(x,y) cm | SPLSR <sub>xy</sub> | Sim-Tx SAR | Remarks                                                 |
|--------------------------------|-----------|-----------|---------------------|------------|---------------------------------------------------------|
| (WWAN <sub>UMTS</sub> , BT)    | N/A       | N/A       | N/A                 | N/A        | {no stand-alone SAR for BT}                             |
| (WWAN <sub>UMTS</sub> , Wi-Fi) | N/A       | N/A       | N/A                 | N/A        | {D(x,y) > 5 } &<br>{Σ <sub>WWAN, WLAN</sub> < 1.6 W/kg} |

Note: Simultaneous transmission was not evaluated, as the EUT does not support this feature.

### 6.1. Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

## 7. Measurements, Examinations and Derived Results

### 7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

## 7.2. Test Results

### 7.2.1. Specific Absorption Rate - FDD V Head Configuration 1g

#### Test Summary:

**Tissue Volume:** 1g

**Maximum Level (W/kg):** 0.499

#### Environmental Conditions:

**Temperature Variation in Lab (°C):** 23.0 to 23.0

**Temperature Variation in Liquid (°C):** 23.0 to 23.0

#### Results:

| EUT Position                                     | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|--------------------------------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Touch With Slide Closed and Antenna Retracted    | Left                  | 4183           | 0.130        | 1.600        | 1.470         | 1, 2    | Complied |
| Touch With Slide Closed and Antenna Extended     | Left                  | 4183           | 0.125        | 1.600        | 1.475         | 1, 2    | Complied |
| Touch With Slide Open Up and Antenna Retracted   | Left                  | 4183           | 0.392        | 1.600        | 1.208         | 1, 2    | Complied |
| Touch With Slide Open Up and Antenna Extended    | Left                  | 4183           | 0.389        | 1.600        | 1.211         | 1, 2    | Complied |
| Touch With Slide Open Down and Antenna Retracted | Left                  | 4183           | 0.017        | 1.600        | 1.583         | 1, 2    | Complied |
| Touch With Slide Open Down and Antenna Extended  | Left                  | 4183           | 0.028        | 1.600        | 1.573         | 1, 2    | Complied |
| Tilt With Slide Closed and Antenna Retracted     | Left                  | 4183           | 0.121        | 1.600        | 1.479         | 1, 2    | Complied |
| Tilt With Slide Closed and Antenna Extended      | Left                  | 4183           | 0.120        | 1.600        | 1.480         | 1, 2    | Complied |

## Specific Absorption Rate - FDD V Head Configuration 1g (Continued)

| EUT Position                                     | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|--------------------------------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Tilt With Slide Open Up and Antenna Retracted    | Left                  | 4183           | 0.248        | 1.600        | 1.352         | 1, 2    | Complied |
| Tilt With Slide Open Up and Antenna Extended     | Left                  | 4183           | 0.208        | 1.600        | 1.392         | 1, 2    | Complied |
| Tilt With Slide Open Down and Antenna Retracted  | Left                  | 4183           | 0.012        | 1.600        | 1.588         | 1, 2    | Complied |
| Tilt With Slide Open Down and Antenna Extended   | Left                  | 4183           | 0.027        | 1.600        | 1.573         | 1, 2    | Complied |
| Touch With Slide Closed and Antenna Retracted    | Right                 | 4183           | 0.175        | 1.600        | 1.425         | 1, 2    | Complied |
| Touch With Slide Closed and Antenna Extended     | Right                 | 4183           | 0.151        | 1.600        | 1.449         | 1, 2    | Complied |
| Touch With Slide Open Up and Antenna Retracted   | Right                 | 4183           | 0.499        | 1.600        | 1.101         | 1, 2    | Complied |
| Touch With Slide Open Up and Antenna Extended    | Right                 | 4183           | 0.487        | 1.600        | 1.113         | 1, 2    | Complied |
| Touch With Slide Open Down and Antenna Retracted | Right                 | 4183           | 0.011        | 1.600        | 1.589         | 1, 2    | Complied |
| Touch With Slide Open Down and Antenna Extended  | Right                 | 4183           | 0.020        | 1.600        | 1.580         | 1, 2    | Complied |
| Tilt With Slide Closed and Antenna Retracted     | Right                 | 4183           | 0.139        | 1.600        | 1.461         | 1, 2    | Complied |

**Specific Absorption Rate - FDD V Head Configuration 1g (Continued)**

| EUT Position                                    | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|-------------------------------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Tilt With Slide Closed and Antenna Extended     | Right                 | 4183           | 0.124        | 1.600        | 1.476         | 1, 2    | Complied |
| Tilt With Slide Open Up and Antenna Retracted   | Right                 | 4183           | 0.257        | 1.600        | 1.343         | 1, 2    | Complied |
| Tilt With Slide Open Up and Antenna Extended    | Right                 | 4183           | 0.225        | 1.600        | 1.375         | 1, 2    | Complied |
| Tilt With Slide Open Down and Antenna Retracted | Right                 | 4183           | 0.011        | 1.600        | 1.589         | 1, 2    | Complied |
| Tilt With Slide Open Down and Antenna Extended  | Right                 | 4183           | 0.020        | 1.600        | 1.580         | 1, 2    | Complied |

**Note(s):**

1. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
2. 12.2 kbps RMC with TPC bits configured to all "1's".

**7.2.2. Specific Absorption Rate - UMTS-FDD V Body Configuration 1g****Test Summary:**

|                              |       |
|------------------------------|-------|
| <b>Tissue Volume:</b>        | 1g    |
| <b>Maximum Level (W/kg):</b> | 0.452 |

**Environmental Conditions:**

|                                              |              |
|----------------------------------------------|--------------|
| <b>Temperature Variation in Lab (°C):</b>    | 23.0 to 23.0 |
| <b>Temperature Variation in Liquid (°C):</b> | 22.0 to 22.0 |

**Results:**

| EUT Position                                                                 | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|------------------------------------------------------------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Front of EUT<br>Slide Closed<br>Antenna<br>Retracted<br>Facing<br>Phantom    | Flat (SAM)            | 4183           | 0.161        | 1.600        | 1.439         | 1, 2, 3 | Complied |
| Front of EUT<br>Slide Closed<br>Antenna<br>Extended<br>Facing<br>Phantom     | Flat (SAM)            | 4183           | 0.115        | 1.600        | 1.485         | 1, 2, 3 | Complied |
| Front of EUT<br>Slide Open Up<br>Antenna<br>Retracted<br>Facing<br>Phantom   | Flat (SAM)            | 4183           | 0.419        | 1.600        | 1.181         | 1, 2, 3 | Complied |
| Front of EUT<br>Slide Open Up<br>Antenna<br>Extended<br>Facing<br>Phantom    | Flat (SAM)            | 4183           | 0.308        | 1.600        | 1.292         | 1, 2, 3 | Complied |
| Front of EUT<br>Slide Open<br>Down Antenna<br>Retracted<br>Facing<br>Phantom | Flat (SAM)            | 4183           | 0.005        | 1.600        | 1.595         | 1, 2, 3 | Complied |
| Front of EUT<br>Slide Open<br>Down Antenna<br>Extended<br>Facing<br>Phantom  | Flat (SAM)            | 4183           | 0.011        | 1.600        | 1.589         | 1, 2, 3 | Complied |
| Rear of EUT<br>Slide Closed<br>Antenna<br>Retracted<br>Facing<br>Phantom     | Flat (SAM)            | 4183           | 0.359        | 1.600        | 1.241         | 1, 2, 3 | Complied |

## Specific Absorption Rate - UMTS-FDD V Body Configuration 1g (Continued)

| EUT Position                                                                          | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|---------------------------------------------------------------------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Rear of EUT<br>Slide Closed<br>Antenna<br>Extended<br>Facing<br>Phantom               | Flat (SAM)            | 4183           | 0.298        | 1.600        | 1.302         | 1, 2, 3 | Complied |
| Rear of EUT<br>Slide Open Up<br>Antenna<br>Retracted<br>Facing<br>Phantom             | Flat (SAM)            | 4183           | 0.439        | 1.600        | 1.161         | 1, 2, 3 | Complied |
| Rear of EUT<br>Slide Open Up<br>Antenna<br>Extended<br>Facing<br>Phantom              | Flat (SAM)            | 4183           | 0.315        | 1.600        | 1.285         | 1, 2, 3 | Complied |
| Rear of EUT<br>Slide Open<br>Down Antenna<br>Retracted<br>Facing<br>Phantom           | Flat (SAM)            | 4183           | 0.196        | 1.600        | 1.404         | 1, 2, 3 | Complied |
| Rear of EUT<br>Slide Open<br>Down Antenna<br>Extended<br>Facing<br>Phantom            | Flat (SAM)            | 4183           | 0.213        | 1.600        | 1.387         | 1, 2, 3 | Complied |
| Rear of EUT<br>Slide Open Up<br>Antenna<br>Retracted<br>Facing<br>Phantom With<br>PHF | Flat (SAM)            | 4183           | 0.452        | 1.600        | 1.148         | 1, 2, 3 | Complied |

## Note(s):

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
3. 12.2 kbps RMC with TPC bits configured to all "1's".

**7.2.3. Specific Absorption Rate - UMTS-FDD V + HSPA Body Configuration 1g****Test Summary:**

|                              |       |
|------------------------------|-------|
| <b>Tissue Volume:</b>        | 1g    |
| <b>Maximum Level (W/kg):</b> | 0.254 |

**Environmental Conditions:**

|                                              |              |
|----------------------------------------------|--------------|
| <b>Temperature Variation in Lab (°C):</b>    | 23.0 to 23.0 |
| <b>Temperature Variation in Liquid (°C):</b> | 22.0 to 22.0 |

**Results:**

| EUT Position                                                        | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|---------------------------------------------------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Rear of EUT<br>Slide Open Up<br>Antenna Retracted<br>Facing Phantom | Flat (SAM)            | 4183           | 0.254        | 1.600        | 1.346         | 1, 2, 3 | Complied |
| Rear of EUT<br>Slide Open Up<br>Antenna Retracted<br>Facing Phantom | Flat (SAM)            | 4183           | 0.242        | 1.600        | 1.358         | 1, 2, 4 | Complied |

**Note(s):**

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
3. RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's" with HSDPA enabled.
4. FRC configured to HS-DPCCH Sub-test 1 and H-Set 1 and QPSK settings with HSPA enabled.

#### 7.2.4. Conducted Average Power Measurement

##### Conducted Average Power Measurement 3G

| Modes             |         | HSDPA       |             |             |             | HSPA        |             |             |             |             | WCDMA                |
|-------------------|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------------|
| Sets              |         | 1           | 2           | 3           | 4           | 1           | 2           | 3           | 4           | 5           | Voice / RMC 12.2kbps |
| Band              | Channel | Power [dBm]          |
| 850               | 4132    | 22.5        | 22.5        | 22.6        | 22.6        | 22.6        | 21.6        | 22.6        | 20.5        | 23.5        | 23.0                 |
|                   | 4357    |             |             |             |             |             |             |             |             |             |                      |
|                   | 4183    | 22.4        | 22.4        | 22.4        | 22.5        | 22.5        | 21.4        | 22.3        | 20.2        | 23.3        | 22.8                 |
|                   | 4408    |             |             |             |             |             |             |             |             |             |                      |
|                   | 4233    | 22.2        | 22.3        | 22.2        | 22.3        | 22.3        | 21.3        | 22.2        | 20.1        | 23.1        | 22.8                 |
|                   | 4458    |             |             |             |             |             |             |             |             |             |                      |
| Bc                |         | 2           | 12          | 15          | 15          | 11          | 6           | 15          | 2           | 15          |                      |
| Bd                |         | 15          | 15          | 8           | 4           | 15          | 15          | 9           | 15          | 15          |                      |
| ΔACK, ΔNACK, ΔCQI |         | 8           | 8           | 8           | 8           | 8           | 8           | 8           | 8           | 8           |                      |
| AGV               |         | -           | -           | -           | -           | 20          | 12          | 15          | 17          | 21          |                      |

Prior to commencement of SAR testing the module power levels were measured in both HSPA and 3G RMC 12.2kbps modes and compared to ensure the correct mode of operation had been established.

The following tables taken from FCC 3G SAR procedures (KDB 941225 D01 SAR test for 3G devices v02) below were applied using an communications test set which supports 3G / HSDPA release 5 / HSPA release 6.

The 3G UMTS FDD V Release 5 HSDPA and Release 6 HSPA conducted power measurements were performed at manufacturer test facility supervised by the RFI test engineer using a fully calibrated ROHDE & SHWARZ TS 8950W Test System. The ROHDE & SHWARZ TS 8950W Test System is calibrated on regular schedule of 12 months.

**Sub-test 1 Setup for Release 5 HSDPA**

| Sub-test | $\beta_c$            | $\beta_d$            | $B_d (SF)$ | $\beta_c / \beta_d$  | $\beta_{hs}^{(1)}$ | SM (dB) <sup>(2)</sup> |
|----------|----------------------|----------------------|------------|----------------------|--------------------|------------------------|
| 1        | 2/15                 | 15/15                | 64         | 2/15                 | 4/15               | 0.0                    |
| 2        | 12/15 <sup>(3)</sup> | 15/15 <sup>(3)</sup> | 64         | 12/15 <sup>(3)</sup> | 24/15              | 1.0                    |
| 3        | 15/15                | 8/15                 | 64         | 15/8                 | 30/15              | 1.5                    |
| 4        | 15/15                | 4/15                 | 64         | 15/4                 | 30/15              | 1.5                    |

Note 1:  $\Delta_{ACK}, \Delta_{NACK}$  and  $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2: CM = 1 for  $\beta_c / \beta_d = 12/15, B_{hs}/\beta_c = 24/15$

Note 3: For subtest 2 the  $\beta_c / \beta_d$  ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 11/15$  and  $\beta_d = 15/15$

**Sub-test 5 Setup for Release 6 HSPA**

| Sub-test | $\beta_c$            | $\beta_d$            | $B_d (SF)$ | $\beta_c/\beta_d$    | $\beta_{hs}^{(1)}$ | $B_{oc}$ | $B_{od}$                                             | $B_{od} (SF)$ | $B_{od} (codes)$ | CM <sup>(2)</sup> (dB) | MPR (dB) | AG <sup>(4)</sup> Index | E-TFCI |
|----------|----------------------|----------------------|------------|----------------------|--------------------|----------|------------------------------------------------------|---------------|------------------|------------------------|----------|-------------------------|--------|
| 1        | 11/15 <sup>(3)</sup> | 15/15 <sup>(3)</sup> | 64         | 11/15 <sup>(3)</sup> | 22/15              | 209/225  | 1039/225                                             | 4             | 1                | 1.0                    | 0.0      | 20                      | 75     |
| 2        | 6/15                 | 15/15                | 64         | 6/15                 | 12/15              | 12/15    | 94/75                                                | 4             | 1                | 3.0                    | 2.0      | 12                      | 67     |
| 3        | 15/15                | 9/15                 | 64         | 15/9                 | 30/15              | 31/15    | B <sub>al1</sub> : 47/15<br>B <sub>al2</sub> : 47/15 | 4             | 1                | 2.0                    | 1.0      | 15                      | 92     |
| 4        | 2/15                 | 15/15                | 64         | 2/15                 | 2/15               | 2/15     | 56/75                                                | 4             | 1                | 3.0                    | 2.0      | 17                      | 71     |
| 5        | 15/15 <sup>(4)</sup> | 15/15 <sup>(4)</sup> | 64         | 15/15 <sup>(4)</sup> | 24/15              | 24/15    | 134/15                                               | 4             | 1                | 1.0                    | 0.0      | 21                      | 81     |

Note 1:  $\Delta_{ACK}, \Delta_{NACK}$  and  $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2: CM = 1 for  $\beta_c / \beta_d = 12/15, B_{hs}/\beta_c = 24/15$ . For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH AND E-DPCCH for the MPR is based on the relative CM difference.

Note 3: For subtest 1 the  $\beta_c / \beta_d$  ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 10/15$  and  $\beta_d = 15/15$ .

Note 4: For subtest 5 the  $\beta_c / \beta_d$  ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 14/15$  and  $\beta_d = 15/15$ .

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6:  $B_{od}$  can not be set directly; it is set by Absolute Grant Value.

## 8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

| Test Name                                                         | Confidence Level | Calculated Uncertainty |
|-------------------------------------------------------------------|------------------|------------------------|
| Specific Absorption Rate- UMTS FDD V Head Configuration 1g        | 95%              | 19.38                  |
| Specific Absorption Rate- UMTS FDD V / HSPA Body Configuration 1g | 95%              | 19.51                  |

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

### 8.1. Specific Absorption Rate- UMTS FDD V Head Configuration 1g

| Type | Source of uncertainty                                  | + Value | - Value | Probability Distribution | Divisor | c <sub>i</sub> (10g) | Standard Uncertainty |         | v <sub>i</sub> or v <sub>eff</sub> |
|------|--------------------------------------------------------|---------|---------|--------------------------|---------|----------------------|----------------------|---------|------------------------------------|
|      |                                                        |         |         |                          |         |                      | + u (%)              | - u (%) |                                    |
| B    | Probe calibration                                      | 5.500   | 5.500   | normal (k=1)             | 1.0000  | 1.0000               | 5.500                | 5.500   | ∞                                  |
| B    | Axial Isotropy                                         | 0.250   | 0.250   | normal (k=1)             | 1.0000  | 1.0000               | 0.250                | 0.250   | ∞                                  |
| B    | Hemispherical Isotropy                                 | 1.300   | 1.300   | normal (k=1)             | 1.0000  | 1.0000               | 1.300                | 1.300   | ∞                                  |
| B    | Spatial Resolution                                     | 0.500   | 0.500   | Rectangular              | 1.7321  | 1.0000               | 0.289                | 0.289   | ∞                                  |
| B    | Boundary Effect                                        | 0.769   | 0.769   | Rectangular              | 1.7321  | 1.0000               | 0.444                | 0.444   | ∞                                  |
| B    | Linearity                                              | 0.600   | 0.600   | Rectangular              | 1.7321  | 1.0000               | 0.346                | 0.346   | ∞                                  |
| B    | Detection Limits                                       | 0.200   | 0.200   | Rectangular              | 1.7321  | 1.0000               | 0.115                | 0.115   | ∞                                  |
| B    | Readout Electronics                                    | 0.160   | 0.160   | normal (k=1)             | 1.0000  | 1.0000               | 0.160                | 0.160   | ∞                                  |
| B    | Response Time                                          | 0.000   | 0.000   | Rectangular              | 1.7321  | 1.0000               | 0.000                | 0.000   | ∞                                  |
| B    | Integration Time                                       | 1.730   | 1.730   | Rectangular              | 1.7321  | 1.0000               | 0.999                | 0.999   | ∞                                  |
| B    | RF Ambient conditions                                  | 3.000   | 3.000   | Rectangular              | 1.7321  | 1.0000               | 1.732                | 1.732   | ∞                                  |
| B    | Probe Positioner Mechanical Restrictions               | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000               | 2.309                | 2.309   | ∞                                  |
| B    | Probe Positioning with regard to Phantom Shell         | 2.850   | 2.850   | Rectangular              | 1.7321  | 1.0000               | 1.645                | 1.645   | ∞                                  |
| B    | Extrapolation and integration / Maximum SAR evaluation | 5.080   | 5.080   | Rectangular              | 1.7321  | 1.0000               | 2.933                | 2.933   | ∞                                  |
| A    | Test Sample Positioning                                | 2.400   | 2.400   | normal (k=1)             | 1.0000  | 1.0000               | 2.400                | 2.400   | 10                                 |
| A    | Device Holder uncertainty                              | 0.154   | 0.154   | normal (k=1)             | 1.0000  | 1.0000               | 0.154                | 0.154   | 10                                 |
| B    | Phantom Uncertainty                                    | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000               | 2.309                | 2.309   | ∞                                  |
| B    | Drift of output power                                  | 5.000   | 5.000   | Rectangular              | 1.7321  | 1.0000               | 2.887                | 2.887   | ∞                                  |
| B    | Liquid Conductivity (target value)                     | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6400               | 1.848                | 1.848   | ∞                                  |
| A    | Liquid Conductivity (measured value)                   | 4.920   | 4.920   | normal (k=1)             | 1.0000  | 0.6400               | 3.149                | 3.149   | 5                                  |
| B    | Liquid Permittivity (target value)                     | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6000               | 1.732                | 1.732   | ∞                                  |
| A    | Liquid Permittivity (measured value)                   | 4.970   | 4.970   | normal (k=1)             | 1.0000  | 0.6000               | 2.982                | 2.982   | 5                                  |
|      | Combined standard uncertainty                          |         |         | t-distribution           |         |                      | 9.89                 | 9.89    | >200                               |
|      | Expanded uncertainty                                   |         |         | k = 1.96                 |         |                      | 19.38                | 19.38   | >200                               |

## 8.2. Specific Absorption Rate- UMTS FDD V / HSPA Body Configuration 1g

| Type | Source of uncertainty                                 | + Value | - Value | Probability Distribution | Divisor | c <sub>i</sub> (10g) | Standard Uncertainty |         | v <sub>i</sub> or v <sub>eff</sub> |
|------|-------------------------------------------------------|---------|---------|--------------------------|---------|----------------------|----------------------|---------|------------------------------------|
|      |                                                       |         |         |                          |         |                      | + u (%)              | - u (%) |                                    |
| B    | Probe calibration                                     | 5.500   | 5.500   | normal (k=1)             | 1.0000  | 1.0000               | 5.500                | 5.500   | ∞                                  |
| B    | Axial Isotropy                                        | 0.250   | 0.250   | normal (k=1)             | 1.0000  | 1.0000               | 0.250                | 0.250   | ∞                                  |
| B    | Hemispherical Isotropy                                | 1.300   | 1.300   | normal (k=1)             | 1.0000  | 1.0000               | 1.300                | 1.300   | ∞                                  |
| B    | Spatial Resolution                                    | 0.500   | 0.500   | Rectangular              | 1.7321  | 1.0000               | 0.289                | 0.289   | ∞                                  |
| B    | Boundary Effect                                       | 0.769   | 0.769   | Rectangular              | 1.7321  | 1.0000               | 0.444                | 0.444   | ∞                                  |
| B    | Linearity                                             | 0.600   | 0.600   | Rectangular              | 1.7321  | 1.0000               | 0.346                | 0.346   | ∞                                  |
| B    | Detection Limits                                      | 0.200   | 0.200   | Rectangular              | 1.7321  | 1.0000               | 0.115                | 0.115   | ∞                                  |
| B    | Readout Electronics                                   | 0.160   | 0.160   | normal (k=1)             | 1.0000  | 1.0000               | 0.160                | 0.160   | ∞                                  |
| B    | Response Time                                         | 0.000   | 0.000   | Rectangular              | 1.7321  | 1.0000               | 0.000                | 0.000   | ∞                                  |
| B    | Integration Time                                      | 1.730   | 1.730   | Rectangular              | 1.7321  | 1.0000               | 0.999                | 0.999   | ∞                                  |
| B    | RF Ambient conditions                                 | 3.000   | 3.000   | Rectangular              | 1.7321  | 1.0000               | 1.732                | 1.732   | ∞                                  |
| B    | Probe Positioner Mechanical Restrictions              | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000               | 2.309                | 2.309   | ∞                                  |
| B    | Probe Positioning with regard to Phantom Shell        | 2.850   | 2.850   | Rectangular              | 1.7321  | 1.0000               | 1.645                | 1.645   | ∞                                  |
| B    | Extrapolation and integration /Maximum SAR evaluation | 5.080   | 5.080   | Rectangular              | 1.7321  | 1.0000               | 2.933                | 2.933   | ∞                                  |
| A    | Test Sample Positioning                               | 2.900   | 2.900   | normal (k=1)             | 1.0000  | 1.0000               | 2.900                | 2.900   | 10                                 |
| A    | Device Holder uncertainty                             | 0.154   | 0.154   | normal (k=1)             | 1.0000  | 1.0000               | 0.154                | 0.154   | 10                                 |
| B    | Phantom Uncertainty                                   | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000               | 2.309                | 2.309   | ∞                                  |
| B    | Drift of output power                                 | 5.000   | 5.000   | Rectangular              | 1.7321  | 1.0000               | 2.887                | 2.887   | ∞                                  |
| B    | Liquid Conductivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6400               | 1.848                | 1.848   | ∞                                  |
| A    | Liquid Conductivity (measured value)                  | 4.690   | 4.690   | normal (k=1)             | 1.0000  | 0.6400               | 3.002                | 3.002   | 5                                  |
| B    | Liquid Permittivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6000               | 1.732                | 1.732   | ∞                                  |
| A    | Liquid Permittivity (measured value)                  | 4.860   | 4.860   | normal (k=1)             | 1.0000  | 0.6000               | 2.916                | 2.916   | 5                                  |
|      | Combined standard uncertainty                         |         |         | t-distribution           |         |                      | 9.96                 | 9.96    | >250                               |
|      | Expanded uncertainty                                  |         |         | k = 1.96                 |         |                      | 19.51                | 19.51   | >250                               |

### Appendix 1. Test Equipment Used

| RFI No. | Instrument                   | Manufacturer                    | Type No.          | Serial No.       | Date Last Calibrated         | Cal. Interval (Months) |
|---------|------------------------------|---------------------------------|-------------------|------------------|------------------------------|------------------------|
| A034    | Narda 20W Termination        | Narda                           | 374BNM            | 8706             | Calibrated as part of system | -                      |
| A1097   | SMA Directional Coupler      | MiDISCO                         | MDC6223-30        | None             | Calibrated as part of system | -                      |
| A1137   | 3dB Attenuator               | Narda                           | 779               | 04690            | Calibrated as part of system | -                      |
| A1174   | Dielectric Probe Kit         | Agilent Technologies            | 85070C            | Us99360072       | Calibrated before use        | -                      |
| A1328   | Handset Positioner           | Schmid & Partner Engineering AG | Modification      | SD 000 H01 DA    | -                            | -                      |
| A1182   | Handset Positioner           | Schmid & Partner Engineering AG | V3.0              | None             | -                            | -                      |
| A1234   | Data Acquisition Electronics | Schmid & Partner Engineering AG | DAE3              | 450              | 09 Feb 2011                  | 12                     |
| A1235   | 900 MHz Dipole Kit           | Schmid & Partner Engineering AG | D900V2            | 124              | 09 Feb 2011                  | 24                     |
| A1238   | SAM Phantom                  | Schmid & Partner Engineering AG | SAM b             | 001              | Calibrated before use        | -                      |
| L1036   | Probe                        | Schmid & Partner Engineering AG | ET3 DV6           | 1611             | 12 May 2011                  | 12                     |
| A1497   | Amplifier                    | Mini-Circuits                   | zhl-42w (sma)     | e020105          | Calibrated as part of system | -                      |
| A1566   | SAM Phantom                  | Schmid & Partner Engineering AG | SAM a             | 002              | Calibrated before use        | -                      |
| A1990   | Digital Camera               | Samsung                         | E515              | A23WC90 8A05431K | -                            | -                      |
| A215    | 20 dB Attenuator             | Narda                           | 766-20            | 9402             | Calibrated as part of system | -                      |
| A1531   | Antenna                      | AARONIA AG                      | 7025              | 02458            | -                            | -                      |
| C1042   | Network Analyzer Cable       | Agilent                         | 8120-4779         | 349              | -                            | -                      |
| C1145   | Cable                        | Rosenberger MICRO-COAX          | FA147A F003003030 | 41843-1          | Calibrated as part of system | -                      |
| C1146   | Cable                        | Rosenberger MICRO-COAX          | FA147A F030003030 | 41752-1          | Calibrated as part of system | -                      |
| G0528   | Robot Power Supply           | Schmid & Partner Engineering AG | DASY4             | None             | Calibrated before use        | -                      |
| G087    | PSU                          | Thurlby Thandar                 | CPX200            | 100701           | Calibrated before use        | -                      |

| RFI No. | Instrument               | Manufacturer                            | Type No.  | Serial No.       | Date Last Calibrated            | Cal. Interval (Months) |
|---------|--------------------------|-----------------------------------------|-----------|------------------|---------------------------------|------------------------|
| M1015   | Network Analyser         | Agilent Technologies                    | 8753ES    | US39172406       | 27 Sept 2010*                   | 12                     |
| M1047   | Robot Arm                | Staubli                                 | RX908 L   | F00/SD8 9A1/A/01 | Calibrated before use           | -                      |
| M1159   | Signal Generator         | Agilent Technologies                    | E8241A    | US42110332       | Internal Checked 15 August 2011 | 4                      |
| M1071   | Spectrum Analyzer        | Agilent                                 | HP8590E   | 3647U00514       | (Monitoring use only)           | -                      |
| M1044   | Diode Power Sensor       | Rohde & Schwarz                         | NRV-Z1    | 893350/019       | 26 May 2011                     | 12                     |
| M265    | Diode Power Sensor       | Rohde & Schwarz                         | NRV-Z1    | 893350/017       | 26 May 2011                     | 12                     |
| M263    | Dual Channel Power Meter | Rohde & Schwarz                         | NRVD      | 826558/004       | 25 May 2011                     | 12                     |
| M509    | Thermometer              | Testo 110 Immersion Probe & Thermometer | Testo 110 | 03100047         | 25 May 2011                     | 12                     |
| M1270   | Digital Thermometer      | RS                                      | N/A       | N/A              | Internal Checked 13 May 2011    | 12                     |
| S256    | SAR Lab                  | RFI                                     | Site 56   | N/A              | Calibrated before use           | -                      |
| -       | Test System              | Rohde & Schwarz                         | TS8950W   | **               | June 2011                       | 12                     |

## Note:

\*The RFI asset M1015 was in calibration at the time the equipment was used for testing.

\*\* Test System consists of a number of equipment items and the respective serial numbers are available on request.

### **A.1.1. Calibration Certificates**

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

Asset: A1235 Checked by *DK*  
21/02/2011

Calibration Laboratory of  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



**S** Schweizerischer Kalibrierdienst  
**C** Service suisse d'étalonnage  
**S** Servizio svizzero di taratura  
**S** Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 108**

The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Client

**RFI**

Certificate No: **D900V2-124 Feb11**

## CALIBRATION CERTIFICATE

Object **D900V2 - SN: 124**

Calibration procedure(s) **QA CAL-05.v8**  
Calibration procedure for dipole validation kits

Calibration date: **February 09, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature ( $22 \pm 3$ )°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 06-Oct-10 (No. 217-01266)         | Oct-11                 |
| Power sensor HP 8481A       | US37292783         | 06-Oct-10 (No. 217-01266)         | Oct-11                 |
| Reference 20 dB Attenuator  | SN: 5086 (20g)     | 30-Mar-10 (No. 217-01158)         | Mar-11                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 30-Mar-10 (No. 217-01162)         | Mar-11                 |
| Reference Probe ES3DV3      | SN: 3205           | 30-Apr-10 (No. ES3-3205_Apr10)    | Apr-11                 |
| DAE4                        | SN: 601            | 10-Jun-10 (No. DAE4-601_Jun10)    | Jun-11                 |
| Secondary Standards         | ID #               | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 |
| RF generator R&S SMT-06     | 100005             | 4-Aug-99 (in house check Oct-09)  | In house check: Oct-11 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-10) | In house check: Oct-11 |

Calibrated by: Name **Dimce Iliev** Function **Laboratory Technician**

*D. Iliev*

Approved by: Name **Katja Pokovic** Function **Technical Manager**

*K. Pokovic*

Issued: February 9, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 108**

The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

### **Glossary:**

|       |                                 |
|-------|---------------------------------|
| TSL   | tissue simulating liquid        |
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

### **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

### **Additional Documentation:**

- d) DASY4/5 System Handbook

### **Methods Applied and Interpretation of Parameters:**

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

## Measurement Conditions

DASY system configuration, as far as not given on page 1.

|                                     |                           |             |
|-------------------------------------|---------------------------|-------------|
| <b>DASY Version</b>                 | DASY5                     | V52.6       |
| <b>Extrapolation</b>                | Advanced Extrapolation    |             |
| <b>Phantom</b>                      | Modular Flat Phantom V4.9 |             |
| <b>Distance Dipole Center - TSL</b> | 15 mm                     | with Spacer |
| <b>Zoom Scan Resolution</b>         | dx, dy, dz = 5 mm         |             |
| <b>Frequency</b>                    | 900 MHz ± 1 MHz           |             |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | <b>Temperature</b> | <b>Permittivity</b> | <b>Conductivity</b> |
|-----------------------------------------|--------------------|---------------------|---------------------|
| <b>Nominal Head TSL parameters</b>      | 22.2 °C            | 41.5                | 0.97 mho/m          |
| <b>Measured Head TSL parameters</b>     | (22.0 ± 0.2) °C    | 40.3 ± 6 %          | 0.95 mho/m ± 6 %    |
| <b>Head TSL temperature during test</b> | (21.5 ± 0.2) °C    | ----                | ----                |

## SAR result with Head TSL

|                                                             |                    |                                  |
|-------------------------------------------------------------|--------------------|----------------------------------|
| <b>SAR averaged over 1 cm<sup>3</sup> (1 g) of Head TSL</b> | <b>Condition</b>   |                                  |
| SAR measured                                                | 250 mW input power | 2.72 mW / g                      |
| SAR normalized                                              | normalized to 1W   | 10.9 mW / g                      |
| SAR for nominal Head TSL parameters                         | normalized to 1W   | <b>11.0 mW /g ± 17.0 % (k=2)</b> |

|                                                               |                    |                                  |
|---------------------------------------------------------------|--------------------|----------------------------------|
| <b>SAR averaged over 10 cm<sup>3</sup> (10 g) of Head TSL</b> | <b>condition</b>   |                                  |
| SAR measured                                                  | 250 mW input power | 1.74 mW / g                      |
| SAR normalized                                                | normalized to 1W   | 6.96 mW / g                      |
| SAR for nominal Head TSL parameters                           | normalized to 1W   | <b>7.01 mW /g ± 16.5 % (k=2)</b> |

## Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| <b>Nominal Body TSL parameters</b>      | 22.0 °C         | 55.0         | 1.05 mho/m       |
| <b>Measured Body TSL parameters</b>     | (22.0 ± 0.2) °C | 53.6 ± 6 %   | 1.05 mho/m ± 6 % |
| <b>Body TSL temperature during test</b> | (21.8 ± 0.2) °C | ----         | ----             |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 2.79 mW / g                |
| SAR normalized                                        | normalized to 1W   | 11.2 mW / g                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 11.1 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 1.79 mW / g                |
| SAR normalized                                          | normalized to 1W   | 7.16 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 7.14 mW / g ± 16.5 % (k=2) |

## Appendix

### Antenna Parameters with Head TSL

|                                      |                               |
|--------------------------------------|-------------------------------|
| Impedance, transformed to feed point | 48.9 $\Omega$ - 8.2 $j\Omega$ |
| Return Loss                          | - 21.6 dB                     |

### Antenna Parameters with Body TSL

|                                      |                               |
|--------------------------------------|-------------------------------|
| Impedance, transformed to feed point | 46.1 $\Omega$ - 8.6 $j\Omega$ |
| Return Loss                          | - 20.2 dB                     |

### General Antenna Parameters and Design

|                                  |          |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.409 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

|                 |               |
|-----------------|---------------|
| Manufactured by | SPEAG         |
| Manufactured on | July 04, 2001 |

# DASY5 Validation Report for Head TSL

Date/Time: 09.02.2011 11:44:15

Test Laboratory: SPEAG, Zurich, Switzerland

**DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:124**

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL900

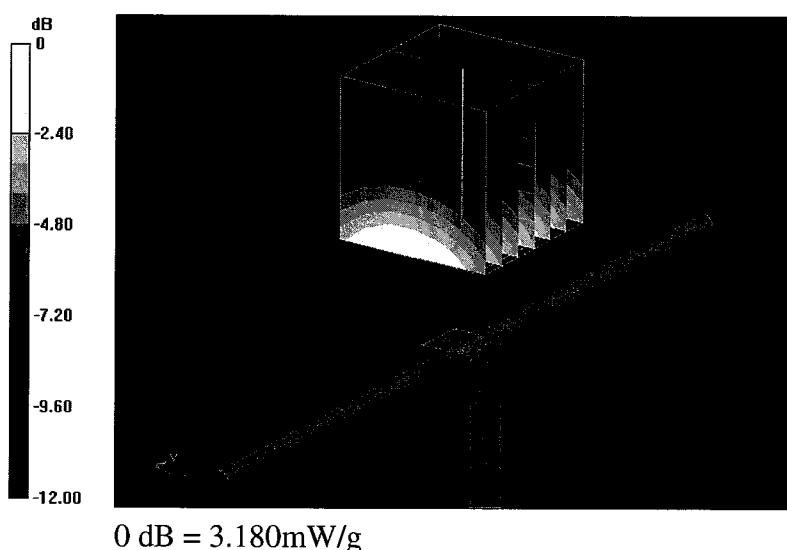
Medium parameters used:  $f = 900$  MHz;  $\sigma = 0.95$  mho/m;  $\epsilon_r = 40.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

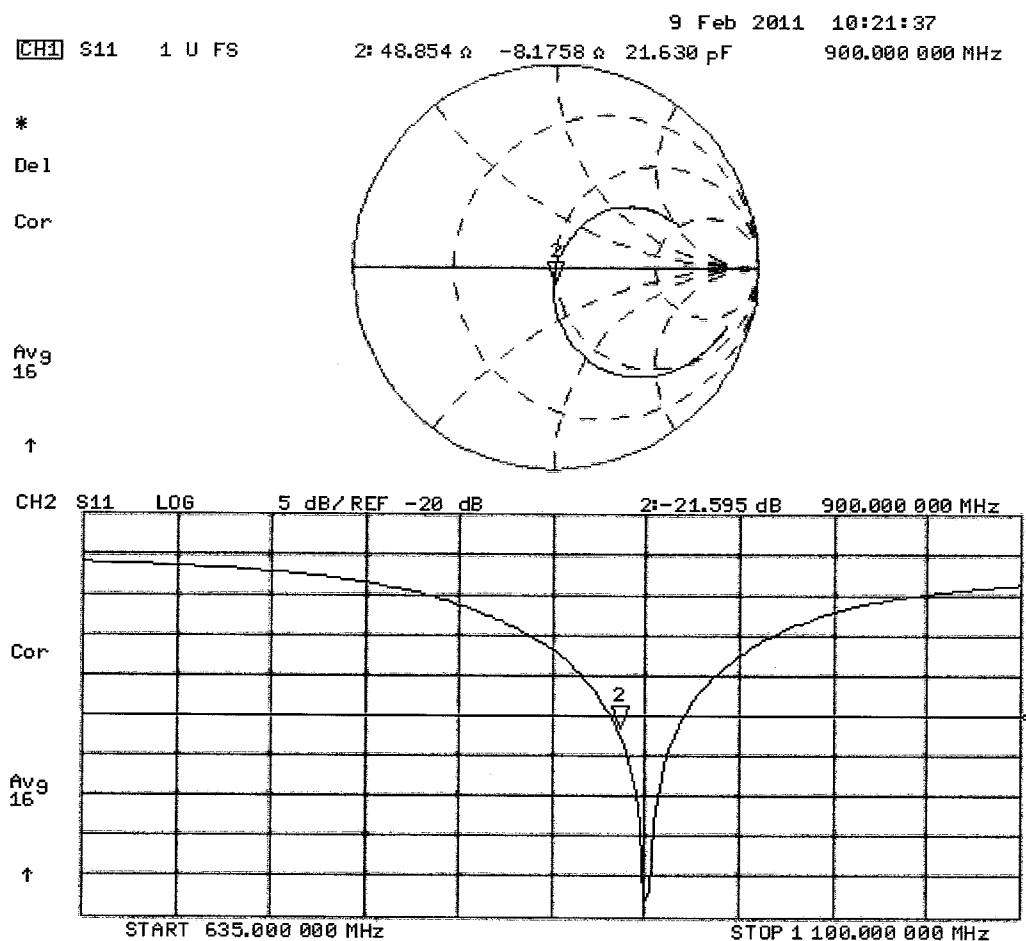
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.88, 5.88, 5.88); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)


**Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.560 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 4.135 W/kg

**SAR(1 g) = 2.72 mW/g; SAR(10 g) = 1.74 mW/g**

Maximum value of SAR (measured) = 3.183 mW/g



## Impedance Measurement Plot for Head TSL



# DASY5 Validation Report for Body TSL

Date/Time: 09.02.2011 14:54:48

Test Laboratory: SPEAG, Zurich, Switzerland

**DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:124**

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: M900

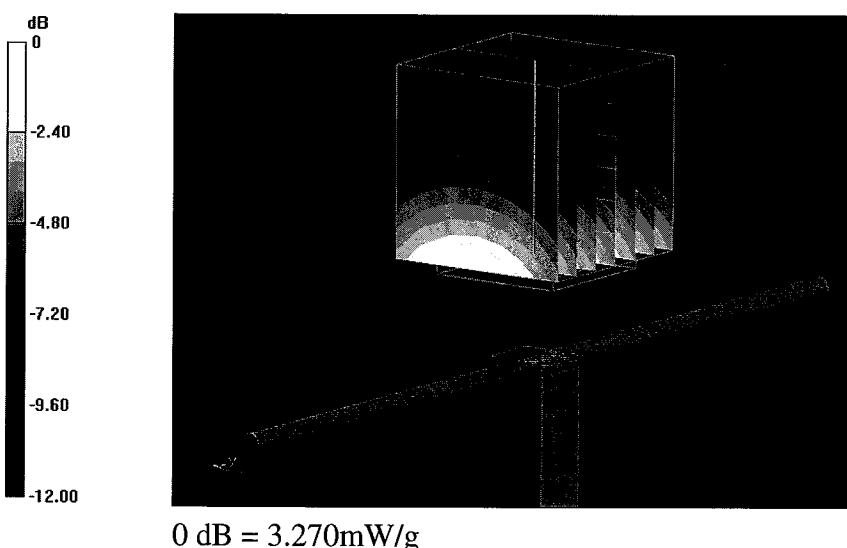
Medium parameters used:  $f = 900$  MHz;  $\sigma = 1.05$  mho/m;  $\epsilon_r = 53.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

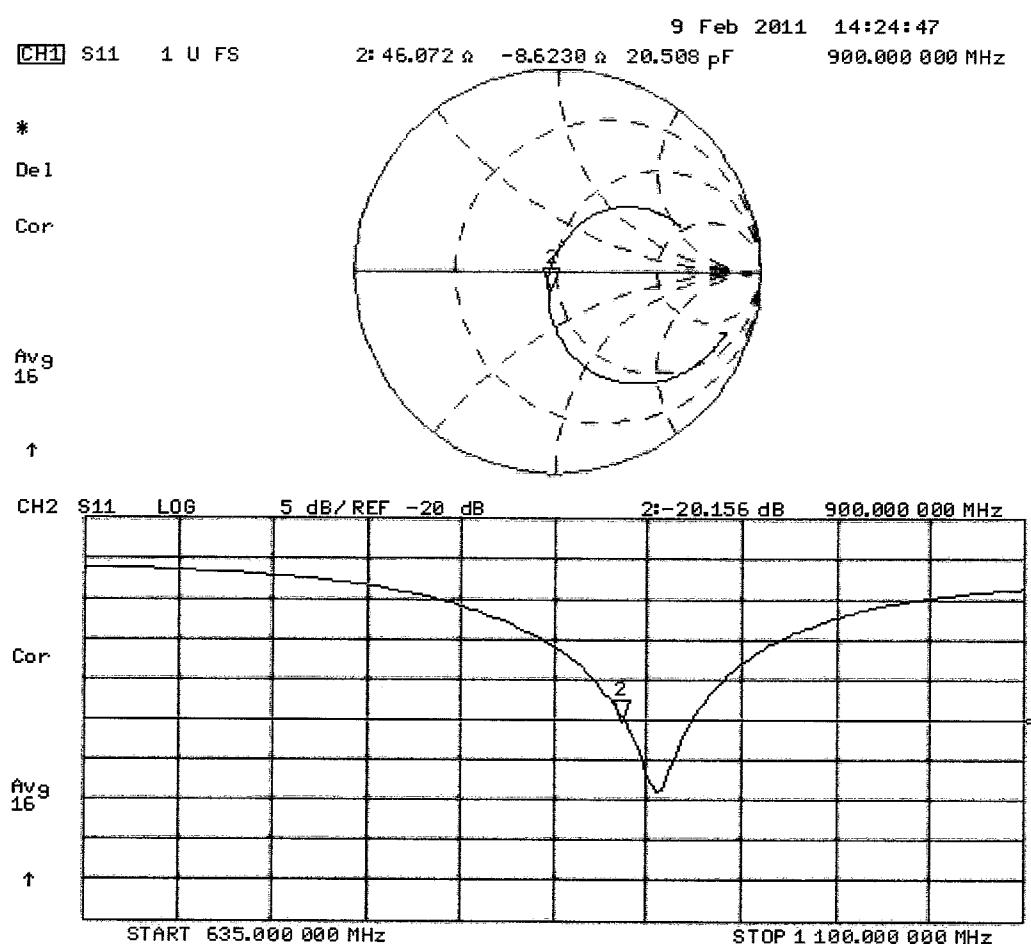
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.81, 5.81, 5.81); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)


**Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.520 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 4.203 W/kg

**SAR(1 g) = 2.79 mW/g; SAR(10 g) = 1.79 mW/g**

Maximum value of SAR (measured) = 3.271 mW/g



## Impedance Measurement Plot for Body TSL



**Calibration Laboratory of**  
**Schmid & Partner**  
**Engineering AG**  
**Zeughausstrasse 43, 8004 Zurich, Switzerland**



**S** Schweizerischer Kalibrierdienst  
**C** Service suisse d'étalonnage  
**S** Servizio svizzero di taratura  
**Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA  
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **Sony Ericsson UK**

Certificate No: **ET3-1611\_May11**

## CALIBRATION CERTIFICATE

Object **ET3DV6 - SN:1611**

Calibration procedure(s) **QA CAL-01.v7, QA CAL-23.v4, QA CAL-25.v3**  
 Calibration procedure for dosimetric E-field probes

Calibration date: **May 12, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).  
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22 \pm 3)^\circ\text{C}$  and humidity  $< 70\%$ .


Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 31-Mar-11 (No. 217-01372)         | Apr-12                 |
| Power sensor E4412A        | MY41498087      | 31-Mar-11 (No. 217-01372)         | Apr-12                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 29-Mar-11 (No. 217-01369)         | Apr-12                 |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-11 (No. 217-01367)         | Apr-12                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 29-Mar-11 (No. 217-01370)         | Apr-12                 |
| Reference Probe ES3DV2     | SN: 3013        | 29-Dec-10 (No. ES3-3013_Dec10)    | Dec-11                 |
| DAE4                       | SN: 654         | 3-May-11 (No. DAE4-654_May11)     | May-12                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Oct-09)  | In house check: Oct-11 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-10) | In house check: Oct-11 |

|                |                              |                                          |             |
|----------------|------------------------------|------------------------------------------|-------------|
| Calibrated by: | Name<br><b>Jeton Kastrai</b> | Function<br><b>Laboratory Technician</b> | Signature   |
| Approved by:   | <b>Katja Pokovic</b>         | Technical Manager                        | <b>Elle</b> |

Issued: May 16, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Accredited by the Swiss Accreditation Service (SAS)

**The Swiss Accreditation Service is one of the signatories to the EA**  
**Multilateral Agreement for the recognition of calibration certificates**

**Accreditation No.: SCS 108**

### **Glossary:**

|                          |                                                                                                                                                      |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSL                      | tissue simulating liquid                                                                                                                             |
| NORM <sub>x,y,z</sub>    | sensitivity in free space                                                                                                                            |
| ConvF                    | sensitivity in TSL / NORM <sub>x,y,z</sub>                                                                                                           |
| DCP                      | diode compression point                                                                                                                              |
| CF                       | crest factor (1/duty_cycle) of the RF signal                                                                                                         |
| A, B, C                  | modulation dependent linearization parameters                                                                                                        |
| Polarization $\varphi$   | $\varphi$ rotation around probe axis                                                                                                                 |
| Polarization $\vartheta$ | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis |

### **Calibration is Performed According to the Following Standards:**

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

### **Methods Applied and Interpretation of Parameters:**

- NORM<sub>x,y,z</sub>**: Assessed for E-field polarization  $\vartheta = 0$  ( $f \leq 900$  MHz in TEM-cell;  $f > 1800$  MHz: R22 waveguide). NORM<sub>x,y,z</sub> are only intermediate values, i.e., the uncertainties of NORM<sub>x,y,z</sub> does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORM<sub>x,y,z</sub> \* frequency\_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx,y,z**: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR**: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z** are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- VR**: VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \leq 800$  MHz) and inside waveguide using analytical field distributions based on power measurements for  $f > 800$  MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORM<sub>x,y,z</sub> \* ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50$  MHz to  $\pm 100$  MHz.
- Spherical isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

# Probe ET3DV6

**SN:1611**

Manufactured: July 27, 2001  
Calibrated: May 12, 2011

**Calibrated for DASY/EASY Systems**  
(Note: non-compatible with DASY2 system!)

## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1611

### Basic Calibration Parameters

|                                                           | Sensor X | Sensor Y | Sensor Z | Unc (k=2)    |
|-----------------------------------------------------------|----------|----------|----------|--------------|
| Norm ( $\mu\text{V}/(\text{V}/\text{m})^2$ ) <sup>A</sup> | 1.74     | 1.95     | 1.77     | $\pm 10.1\%$ |
| DCP (mV) <sup>B</sup>                                     | 96.7     | 99.3     | 98.5     |              |

### Modulation Calibration Parameters

| UID   | Communication System Name | PAR  |   | A<br>dB | B<br>dB | C<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-------|---------------------------|------|---|---------|---------|---------|----------|---------------------------|
| 10000 | CW                        | 0.00 | X | 0.00    | 0.00    | 1.00    | 105.3    | $\pm 2.7\%$               |
|       |                           |      | Y | 0.00    | 0.00    | 1.00    | 109.8    |                           |
|       |                           |      | Z | 0.00    | 0.00    | 1.00    | 104.6    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

<sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1611

### Calibration Parameter Determined in Head Tissue Simulating Media

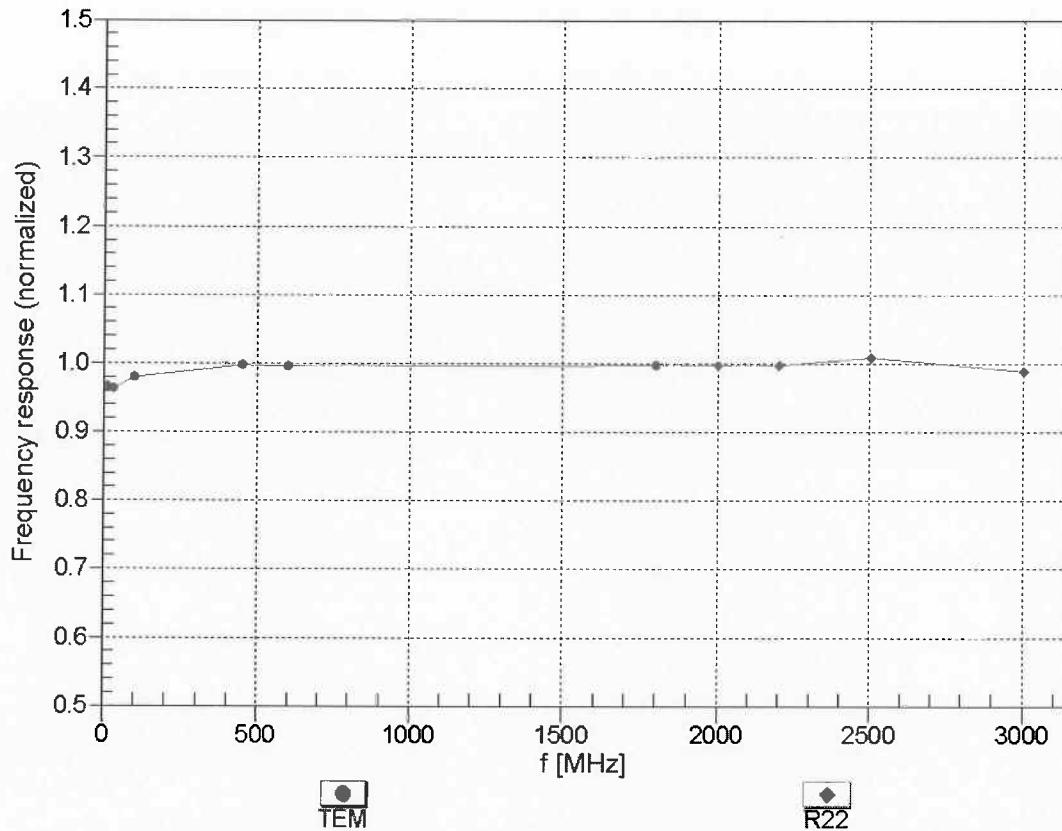
| f (MHz) <sup>c</sup> | Relative Permittivity <sup>f</sup> | Conductivity (S/m) <sup>f</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth (mm) | Unct. (k=2) |
|----------------------|------------------------------------|---------------------------------|---------|---------|---------|-------|------------|-------------|
| 835                  | 41.5                               | 0.90                            | 6.51    | 6.51    | 6.51    | 0.64  | 2.00       | ± 12.0 %    |
| 900                  | 41.5                               | 0.97                            | 6.41    | 6.41    | 6.41    | 0.66  | 1.94       | ± 12.0 %    |
| 1750                 | 40.1                               | 1.37                            | 5.43    | 5.43    | 5.43    | 0.54  | 2.47       | ± 12.0 %    |
| 1900                 | 40.0                               | 1.40                            | 5.23    | 5.23    | 5.23    | 0.55  | 2.40       | ± 12.0 %    |
| 2450                 | 39.2                               | 1.80                            | 4.55    | 4.55    | 4.55    | 0.69  | 1.91       | ± 12.0 %    |

<sup>c</sup> Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<sup>f</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

## DASY/EASY - Parameters of Probe: ET3DV6- SN:1611

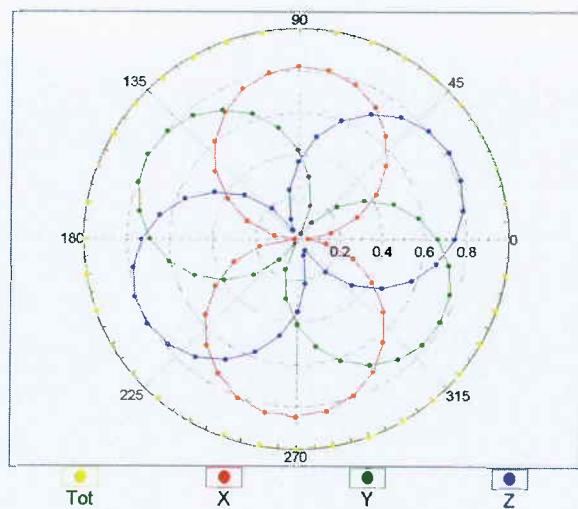
### Calibration Parameter Determined in Body Tissue Simulating Media


| f (MHz) <sup>c</sup> | Relative Permittivity <sup>f</sup> | Conductivity (S/m) <sup>f</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth (mm) | Unct. (k=2) |
|----------------------|------------------------------------|---------------------------------|---------|---------|---------|-------|------------|-------------|
| 835                  | 55.2                               | 0.97                            | 6.40    | 6.40    | 6.40    | 0.72  | 1.90       | ± 12.0 %    |
| 900                  | 55.0                               | 1.05                            | 6.32    | 6.32    | 6.32    | 0.75  | 1.85       | ± 12.0 %    |
| 1750                 | 53.4                               | 1.49                            | 4.80    | 4.80    | 4.80    | 0.57  | 2.77       | ± 12.0 %    |
| 1900                 | 53.3                               | 1.52                            | 4.55    | 4.55    | 4.55    | 0.57  | 2.59       | ± 12.0 %    |
| 2450                 | 52.7                               | 1.95                            | 4.09    | 4.09    | 4.09    | 1.00  | 1.22       | ± 12.0 %    |

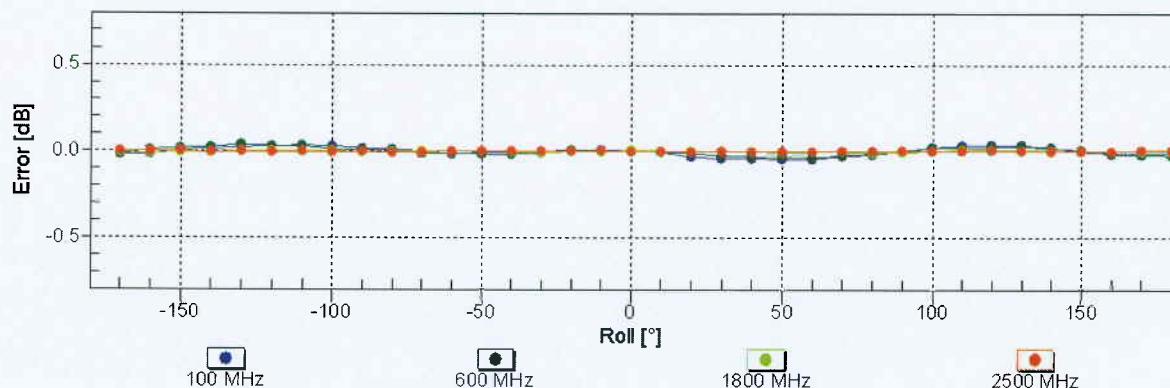
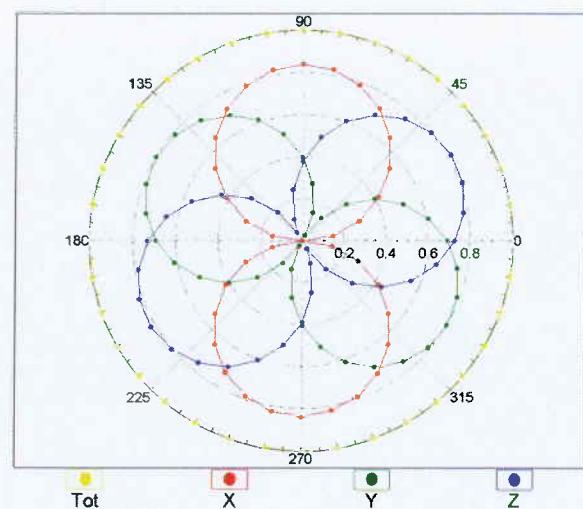
<sup>c</sup> Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<sup>f</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

## Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

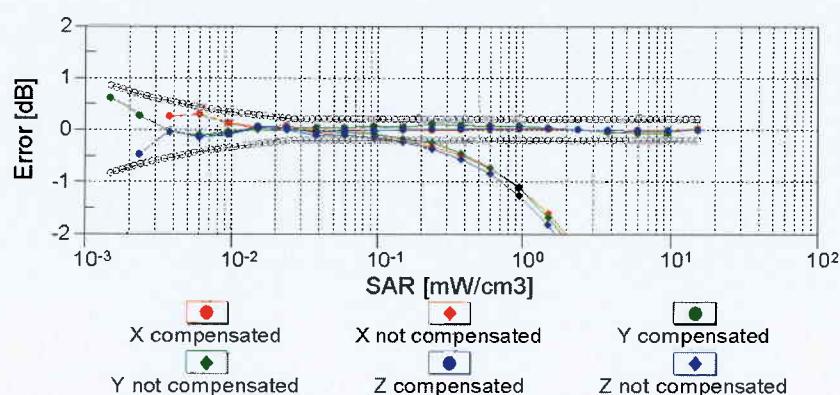
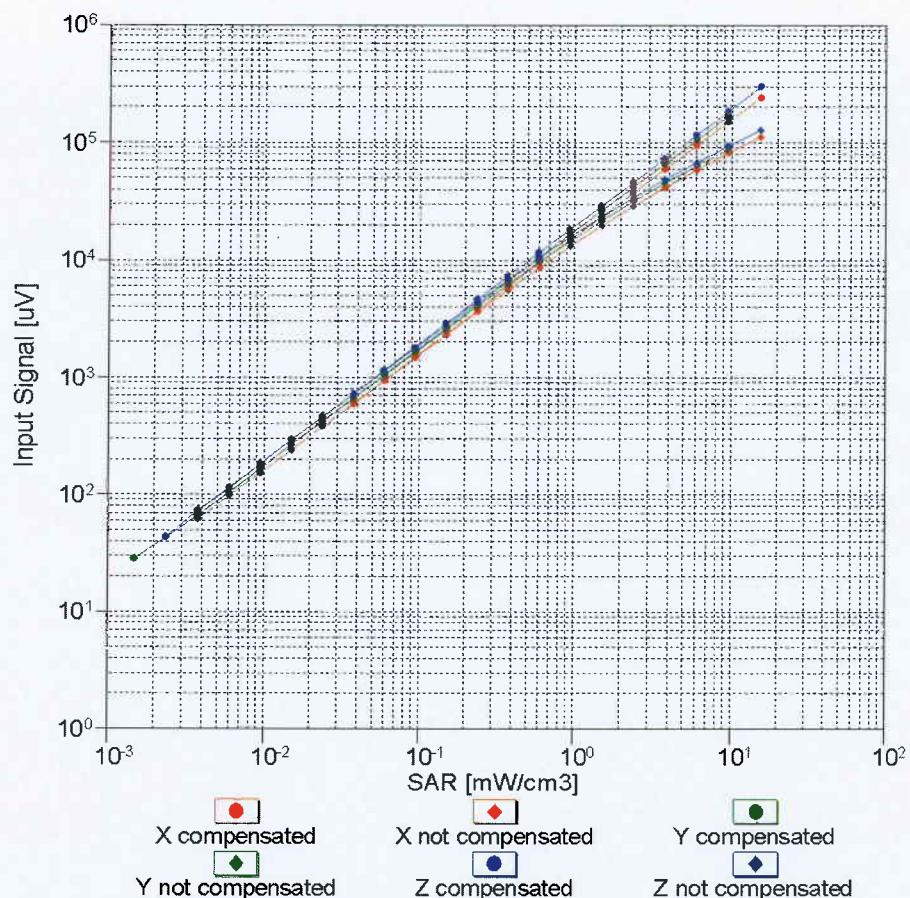




**Uncertainty of Frequency Response of E-field:  $\pm 6.3\%$  ( $k=2$ )**

## Receiving Pattern ( $\phi$ ), $\theta = 0^\circ$

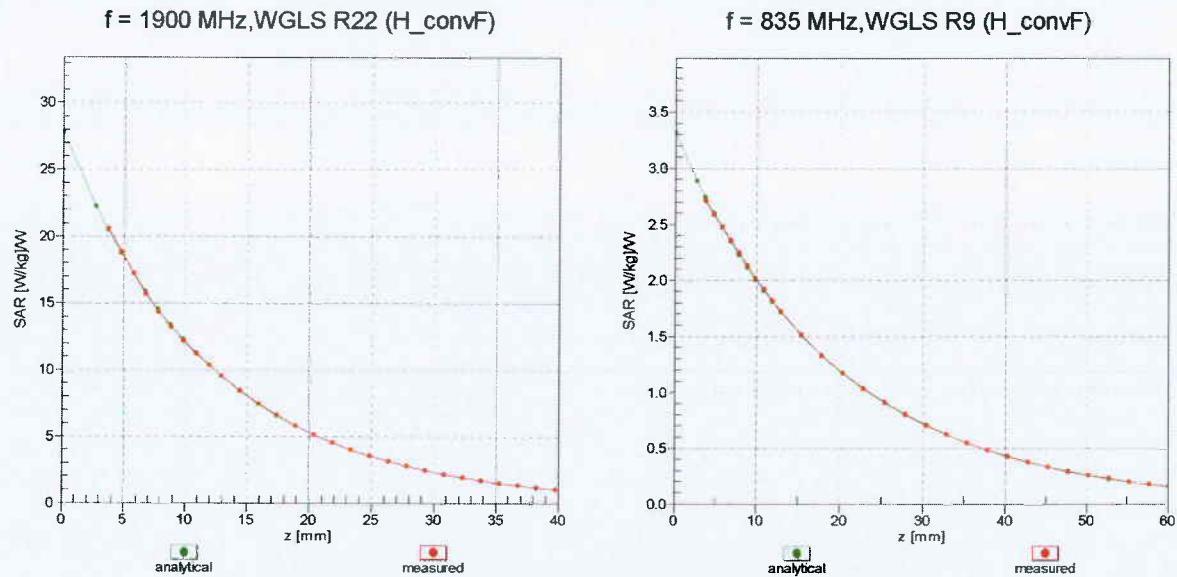
f=600 MHz,TEM





f=1800 MHz,R22

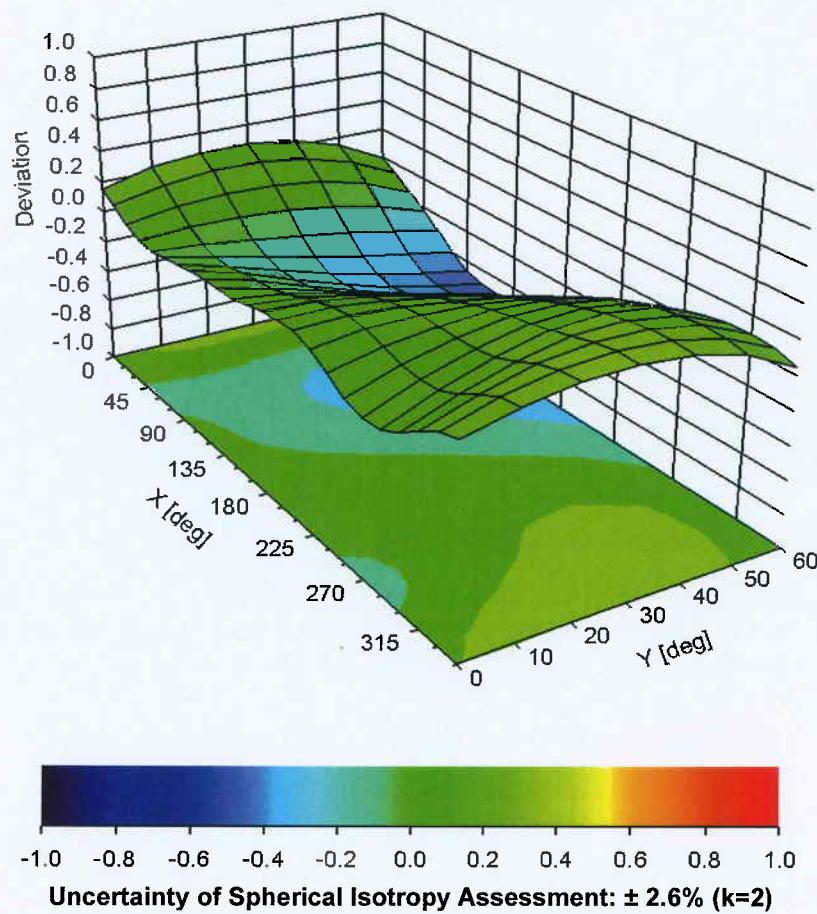


Uncertainty of Axial Isotropy Assessment:  $\pm 0.5\%$  (k=2)


## Dynamic Range f(SAR<sub>head</sub>)

(TEM cell , f = 900 MHz)




**Uncertainty of Linearity Assessment: ± 0.6% (k=2)**

## Conversion Factor Assessment



## Deviation from Isotropy in Liquid

Error ( $\phi, \theta$ ),  $f = 900$  MHz



## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1611

### Other Probe Parameters

|                                               |                |
|-----------------------------------------------|----------------|
| Sensor Arrangement                            | Triangular     |
| Connector Angle (°)                           | Not applicable |
| Mechanical Surface Detection Mode             | enabled        |
| Optical Surface Detection Mode                | disabled       |
| Probe Overall Length                          | 337 mm         |
| Probe Body Diameter                           | 10 mm          |
| Tip Length                                    | 10 mm          |
| Tip Diameter                                  | 6.8 mm         |
| Probe Tip to Sensor X Calibration Point       | 2.7 mm         |
| Probe Tip to Sensor Y Calibration Point       | 2.7 mm         |
| Probe Tip to Sensor Z Calibration Point       | 2.7 mm         |
| Recommended Measurement Distance from Surface | 4 mm           |

## Appendix 2. Measurement Methods

### A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.  
(ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. for bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

### A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, IEEE 1528 and FCC KDB procedures, against appropriate limits for each measurement position in accordance with the standard. In some cases the FCC was contacted using a PBA or KDB process to ensure test is performed correctly.

The test was performed in a shielded enclosure with the temperature controlled to remain between +18.0°C and +25.0°C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of  $\pm 2.0^{\circ}\text{C}$

Prior to any SAR measurements on the EUT, system validation and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system validation and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001 and FCC KDB publication 450824.

Following the successful system validation and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 175 points (5 mm spacing in each axis  $\approx 27\text{g}$ ) will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 10g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.