

EMC Bayswater Pty Ltd

18/88 Merrindale Drive Croydon South, Victoria, 3136, Australia

Telephone: +61 3 9761 5888 Facsimile: +61 3 8761 6547

Email: sales@emcbayswater.com.au

ABN: 49 112 221 333

RADIO COMPLIANCE REPORT Certification Test Report In accordance with: CFR47 FCC Part 15, Subpart C, 15.247

Integrated Control Technology Limited

WL-APW

Protege Wireless Access Point

FCC ID: UAU-WLAP

REPORT: E2503-1841-3 Rev1

DATE: May, 2025

This report replaces the previously issued report E2503-1841-3. Please refer to section 2 of this report for details of any previously issued reports.

WORLD RECOGNISED

ACCREDITATION

Accreditation Number: 18553

Accredited for compliance with ISO/IEC 17025 - Testing

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports. This document may not be reproduced except in full without approval from EMC Bayswater, with the exception of the certificate on page 2.

Certificate of Compliance Certification Compliance Report EMC Bayswater Test Report: E2503-1841-3 Rev1 Issue Date: May, 2025

Test Sample(s): Protege Wireless Access Point

Model No: WL-APW

Serial No: 9DCC0773 (Sample 1), 109A8E5E (Sample 2)

FCC ID: UAU-WLAP

Customer Details: Mr. Steven Whitaker

Integrated Control Technology Limited 4 John Glenn Avenue, Rosedale

AUCKLAND 0632

NEW ZEALAND

Phone No: +64 9-870 6646 e-mail: swhitaker@ict.co

Test Specification: CFR47 FCC Part 15, Subpart C, 15.247

Results Summary: 15.203 - Antenna requirement Complied

15.247 (a) (2) - 6dB Bandwidth
Complied
15.247 (b)(3) – Maximum Output Power
15.247 (d) - Out-of-Band Emissions - – 100kHz, -20dBc
15.247 (d) - Emissions on the Band edge
Complied

15.247 (d), 15.209 – Radiated emissions in Restricted bands
15.247 (e) - Power Spectral Density
Complied
15.247 (i) - Radio frequency hazard
15.207 - AC Power line Conducted Emissions
Complied
Complied

Test Date(s): 27th to 31st of March, 2025

Test House (Issued By): EMC Bayswater Pty Ltd
18/88 Merrindale Drive

Croydon South Victoria 3136 Australia

FCC Accredited Test Firm Registration number: 527798 FCC Accredited Test Firm Designation number: AU0004

 Phone No:
 +61 3 9761 5888
 e-mail:
 sales@emcbayswater.com.au

 Fax No:
 +61 3 8761 6547
 Web:
 www.emcbayswater.com.au/

This is to certify that the necessary measurements were made by EMC Bayswater Pty Ltd, and that the Integrated Control Technology Limited, WL-APW, Protege Wireless Access Point, has been tested in accordance with requirements contained in the appropriate commission regulations.

Tested and prepared by: Tested by: Approved by:

Adnan Zaman Jignesh Moody (EMC Test Engineer) (EMC Test Engineer)

09/05/2025 11:55

Neville Liyanapatabendige Date (Manager)

Radio Compliance Report for Integrated Control Technology Limited

Contents

1.	Introduction	5
2.	Test Report Revision History	5
3.	Report Information	5
4.	Summary of Results	6
5.	Product Sample Details 5.1. EUT Description 5.2. Product description 5.3. Support Equipment 5.4. Product operating modes 5.5. Product operating mode for testing 5.6. Configuration 5.7. Modifications	
6.	Test Facility & Equipment 6.1. Test Facility 6.2. Test Equipment	9
7.	Referenced Standards	9
8.	Referenced Documents	9
9.		10
	9.1. Requirements	
10). 6dB Bandwidth – FCC 15.247 (a) (2)	
10.	10.1. Test Procedure	11
	10.2. Limits	11
	10.3. Test Results	
11.	. Occupied Channel Bandwidth (99% Emission Bandwidth)	
	11.1. Test Procedure	
	11.3. Test Results	
12.	. Maximum Peak Output Power – FCC 15.247 (b)(3)	15
	12.1. Test Procedure	
	12.2. Limits	15
	12.3. Test Results	15
13.	Radiated emissions in Restricted bands – 15.247 (d), 15.209	
	13.1. Requirements	
	13.2. Test Procedure	
11	. Out of Band emissions (100kHz, -20dBc) - FCC 15.247 (d)	_
17.	14.1. Test Procedure	
	14.2. Limits	

Accreditation number: 18553. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document may not be reproduced except in full without approval from EMC Bayswater, with the exception of the certificate on page 2.

14.3.	Test Results	.24
15. Emiss 15.1. 15.2. 15.3.	ions on the Band edge – FCC 15.247 (d) Test Procedure Limits Test Results	.25 .25
16. Power 16.1. 16.2. 16.3.	Spectral Density – FCC 15.247 (e) Test Procedure Limits Test Results	.28 .28
17. Condu 17.1. 17.2. 17.3.	Test Results.	.30 .31
18. Concl	usion	.33
Appendix	A – Test Equipment	.34
Appendix	B – Photographs	.36
Appendix	C.1 – Measurement Graphs –6dB Bandwidth - 15.247 (a) (2)	.38
	C.2 – Measurement Graphs – Maximum Peak Conducted Output Power - '(b)(3)	.41
Appendix	C.3 – Measurement Graphs – Band Edge - 15.247 (d)	.44
	C.4 – Measurement Graphs – Transmitter Spurious – FCC 15.247 (d), 15.20	
Appendix	C.5 – Out-of-Band Emissions – 100kHz, -20dBc – FCC 15.247(d)	.75
Appendix	C.6 - Measurement Graphs - Power Spectral Density - FCC 15.247 (e)	.85
Appendix	C.7 – Occupied Bandwidth (99% Emission Bandwidth)	.88
Appendix	C.8 – Conducted Emissions- FCC 15.207	.91

1. Introduction

Electromagnetic Compatibility (EMC) tests were performed on an Integrated Control Technology Limited, WL-APW, Protege Wireless Access Point in accordance with the requirements of Title 47 of the standard CFR47 FCC Part 15, Subpart C, 15.247.

2. Test Report Revision History

ISSUE	DATE	Description	AUTHORISED BY
E2503-1841-3	30-04-2025	Original	Neville Liyanapatabendige (Manager)
E2503-1841-3 Rev1	09-05-2025	 Page 7: EUT transmitter details were updated. Page 8: Block diagram of EUT test configuration – Conducted Method (Figure 2), was updated. Page 11, 19 & 20: EUT test setup block diagrams were added. Page 34: In the test equipment table, the type of two items was changed from 'V' to 'I'. It was a typographical error. 	Neville Liyanapatabendige (Manager)

3. Report Information

EMC Bayswater Pty Ltd reports apply only to the specific samples tested under the stated test conditions. All samples tested were in good operating condition throughout the entire test program unless otherwise stated. EMC Bayswater Pty Ltd does not in any way guarantee the later performance of the product/equipment. It is the manufacturer's responsibility to ensure that additional production units of the tested model are manufactured with identical electrical and mechanical components. EMC Bayswater Pty Ltd shall have no liability for any deductions, inference or generalisations drawn by the clients or others from EMC Bayswater Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Bayswater Pty Ltd. This report shall not be reproduced except in full (with the exception of the certificate on page 2) without the written approval of EMC Bayswater Pty Ltd. This document may be altered or revised by EMC Bayswater Pty Ltd personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by EMC Bayswater Pty Ltd will nullify the document.

4. Summary of Results

The EUT complied with applicable requirements of CFR47 FCC Part 15, Subpart C, 15.247. Worst-case results are tabled as follows:

FCC Part 15C sections	Test	Result
15.203	Antenna Requirement	Complied ^{#1}
15.247 (a) (2)	6dB Bandwidth	723kHz, Complied by 223.0kHz
15.247 (b)(3)	Maximum Peak Output Power	Complied by 17.8dB
15.247 (d)	Out-of-Band Emissions – 100kHz, -20dBc	Complied by at least > 6dB
15.247 (d) Emissions on the Band edge		Complied by 20.3dB
15.247 (d), 15.209 Radiated emissions in Restricted bands		Complied by 20.3dB
15.247 (e) Power Spectral Density		Complied by 9.2dB
	Occupied Bandwidth (99% Emission Bandwidth)	1023kHz
	Conducted Emissions - Estamol POH	Complied by 16.3dB (Quasi-Peak)
45 207	Conducted Emissions – External PSU powered	Complied by 26.9dB (Average)
15.207	Occidents I Francisco - Do Francisco - I	Complied by 11.5dB (Quasi-Peak)
	Conducted Emissions – PoE powered	Complied by 4.8dB (Average)

^{#1}The Antenna is permanently attached, internal to the device

Table 1: Summary of test results

5. Product Sample Details

5.1. EUT Description

The EUT (Equipment Under Test), as supplied by the client, is described as follows:

Product:	Protege Wireless Access Point		
Model No:	WL-APW		
Serial No:	9DCC0773 (Sam	nple 1), 109A8E5E (Sample 2)	
Firmware:	1.00.XXXX		
Software:	N/A		
Power Specifications 1:	PoE		
Power Specifications 2:	12VDC		
Transmitter details:	Description:	Bluetooth transmitter module	
	Type:	Bluetooth 5.3	
	Modulation:	GFSK	
	Channels:	40	
	Max power:	16 dBm	
	Antenna:	PCB Trace Antenna Murata Design Type2EL-Antenna	
	Antenna Gain:	+3.6 dBi	
Dimensions:	Dimensions: 10 cm x 10 cm x 2.5 cm (Length x Width x Height)		
Weight:	150 g		
EUT Type:	EUT Type: Tasted as tabletop.		

(Customer supplied product information)

(Refer to photographs in Annex A for views of the EUT)

5.2. Product description

The EUT (Equipment Under Test) has been described by the customer as follows:

"Wireless locking hub used to connect electronic wireless locks to control unit of an Access Control System."

(Customer supplied product description information)

The highest frequency generated or used in the device or on which the device operates or tunes as specified by the customer is 2.4 GHz (Bluetooth 5.3).

5.3. Support Equipment

Support	Description:	Protege DIN Rail 4A Intelligent Power Supply
Equipment: 1	Manufacturer:	Protege
Equipment. 1	Model:	PRT-PSU-DIN-4A
	Serial number:	Not stated
	Comment:	Representative 12VDC Power supply
Support	Description:	5-Port Gigabit Desktop Switch with 4-Port PoE+
Equipment: 2	Manufacturer:	MERCUSYS
Equipment. 2	Model:	MS105GP
	Serial number:	224A1P7008550
	AC/DC	VASATA I.T.E Power supply
	adapter	Model: P535131-2-DT
		Input: 100-240VAC, 50/60Hz, 1.6A
		Output: 53.5VDC, 1.31A 70W
	Comment:	Representative PoE switch

5.4. Product operating modes

"One mode only (Transmit and No Transmission (Stand By)"

(Customer supplied product operating mode information)

5.5. Product operating mode for testing

"Product operating mode is set operate in a continuous testing mode"

(Customer supplied product operating mode for testing information)

5.6. Configuration

The EUT was either configured by the customer or configured using the customer's instructions.

The device was connected and powered by a PoE switch.

Customer supplied a sample (SN: 109A8E5E) with a temporary SMA connector for the conducted method testing.

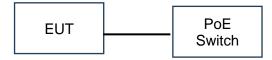


Figure 1: Block diagram of EUT test configuration - Radiated Method

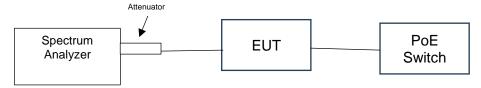


Figure 2: Block diagram of EUT test configuration - Conducted Method

5.7. Modifications

EMC Bayswater Pty Ltd did not modify the EUT.

6. Test Facility & Equipment

6.1. Test Facility

Tests were performed at the indoor Open Area Test Site (iOATS) at EMC Bayswater Pty Ltd, located at 18/88 Merrindale Drive, Croydon South, Victoria, 3136, Australia.

EMC Bayswater Pty Ltd FCC Test Firm registration number is 527798.

EMC Bayswater Pty Ltd FCC Test Firm Designation number is AU0004.

6.2. Test Equipment

Refer to Appendix A for the measurement instrument list.

7. Referenced Standards

CFR47 FCC Part 15, Subpart C, 15.247

CFR47 FCC Part 15, Subpart B

ANSI C63.10 - 2013

American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

ANSI C63.4 - 2014

American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

FCC KDB - 558074 D01 15.247 Meas Guidance v05r02

8. Referenced Documents

Test Plan
None supplied

9. Antenna Requirement - FCC Part 15.203

9.1. Requirements

As per section 15.203 of CFR47 FCC Part 15, Subpart C, 15.247:

An intentional radiator shall be designed to ensure that no antenna other than
that furnished by the responsible party shall be used with the device. The use of
a permanently attached antenna or of an antenna that uses a unique coupling to
the intentional radiator shall be considered sufficient to comply with the provisions
of this section.

9.2. Result

The EUT uses permanent, internally attached antenna which is etched into the PCB. Therefore, the EUT complied with the antenna requirements of CFR47 FCC Part 15, Subpart C, Section 15.203.

10.6dB Bandwidth - FCC 15.247 (a) (2)

10.1.Test Procedure

The 6dB Bandwidth was performed in accordance with the section 11.8 of ANSI C63.10 - 2013.

6dB Bandwidth measurements were performed at the antenna port (Conducted method). The transmitter output was connected to a spectrum analyzer through a suitable attenuator. The spectrum analyser was tuned to the fundamental (transmit frequency) of the transmitter bottom, centre and top channels with 100kHz RBW and 300kHz VBW using the peak detector and a suitable span to allow accurate measurements whilst capturing the full intentional transmission including side lobes. The resultant bandwidth measurement was recorded.

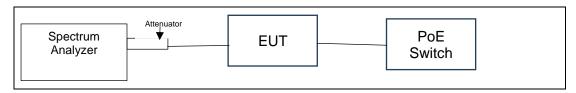


Figure 3: Test setup

(Refer to photographs in Annex C for views of the test configuration)

10.2.Limits

Applicable only to systems using digital modulation techniques:

Transmit operating frequency (MHz)	Minimum 6dB Bandwidth (kHz)	
2400 – 2483.5	500	

Table 2: 6dB Bandwidth

10.3.Test Results

6dB Bandwidth measurements are tabulated below:

(Refer to graphs in Appendix C.1)

Transmit operating frequency (MHz)	Measured 6dB Bandwidth (kHz)	Minimum 6dB Bandwidth (kHz)	Margin (kHz)	Comment
2402 (Bottom)	729.0	500	+229.0	Complied
2426 (Middle)	723.0	500	+223.0	Complied
2480 (Top)	723.0	500	+223.0	Complied

Table 3: Results for 6dB Bandwidth

The measurement uncertainty was calculated as follows:

Measurement Parameter	Calculated measurement uncertainty
Operating Frequency	±10.5kHz
Bandwidth	±14.96kHz

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions		
Temperature:	20.0°C	
Humidity:	49%	
Atmospheric pressure:	1021.0hPa	

Table 4: Climatic conditions

Notes: The minimum required 500kHz 6dB Bandwidth requirements were

satisfied by at least 223kHz.

Assessment: The EUT complied with the 6dB Bandwidth requirements of CFR47

FCC Part 15, Subpart C, 15.247 (a)(2).

11. Occupied Channel Bandwidth (99% Emission Bandwidth)

11.1.Test Procedure

The 99% emission Bandwidth was performed in accordance with the section 6.9.3 of ANSI C63.10 - 2013.

99% Emission Bandwidth measurements were performed at at the antenna port (Conducted method). The transmitter output was connected to a spectrum analyzer through a suitable attenuator. The spectrum analyzer centre frequency was tuned to the fundamental (transmit frequency) of the transmitter with the span of the analyzer was set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth (RBW) was set to 1% to 5% of the occupied bandwidth and video bandwidth (VBW) was set to three times the RBW.

A peak detector, maxhold function (worst case) was used to measure the occupied bandwidth, using the built-in 99% occupied bandwidth measurement function of the receiver. The resultant bandwidth measurement was recorded.

(Refer to photographs in Annex C for views of the test configuration)

11.2.Requirements

No limits are defined in CFR47 FCC Part 15, Subpart C, 15.247.

11.3.Test Results

Occupied Bandwidth measurements are tabulated below:

(Refer to graph in Appendix C.7)

Transmit Operating Frequency (MHz)	99%BW Lower Frequency (MHz)	99%BW Upper Frequency (MHz)	Occupied Channel Bandwidth (kHz)
2402 (Lowest Channel)	2401.478	2402.507	1029
2426 (Middle Channel)	2425.475	2426.498	1023
2480 (Highest Channel)	2479.469	2480.510	1041

Table 5: Occupied Bandwidth

The measurement uncertainty was calculated as follows:

Measurement Parameter	Calculated measurement uncertainty
Operating Frequency	±10.5kHz
Bandwidth	±14.96kHz

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions				
Temperature:	20.0°C			
Humidity:	49%			
Atmospheric pressure:	1021.0hPa			

Table 6: Climatic conditions

Notes: The transmitter was tested with modulation.

Assessment: The measured Occupied bandwidth (99% Emission Bandwidth) is

1041kHz (informative only).

12. Maximum Peak Output Power - FCC 15.247 (b)(3)

12.1.Test Procedure

Conducted Method:

The conducted output power measurements were performed in accordance with the section 11.9.1 of ANSI C63.10 - 2013.

The transmitter output was connected to a spectrum analyzer through a suitable attenuator. The Maximum Peak Conducted Output Power of the fundamental transmit frequency was measured using a spectrum analyzer with 1MHz RBW and 3MHz VBW using the peak detector and a suitable span to allow accurate measurement whilst capturing the full intentional transmission including side lobes. An offset for the measurement path insertion loss (attenuators and cables) was used to get a true measurement.

The EUT was tested on the top, middle and bottom channels.

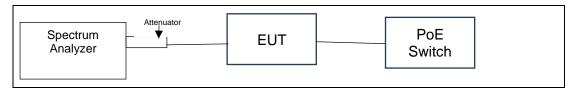


Figure 4: Test setup

(Refer to photographs in Annex C for views of the test configuration)

12.2.Limits

For systems using digital modulation techniques:

Transmit operating frequency (MHz)	Peak Power (W)	Peak Power (dBm)	e.i.r.p (W)	e.i.r.p (dBm)
2400 – 2483.5	1	30	4	36

Table 7: Limits – Transmitter maximum peak output power

12.3.Test Results

The worst-case maximum output power measurements are tabulated below:

(Refer to plots Appendix C.2)

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)	Result
Bottom	2402	+12.2	30.0	-17.8*	Complied
Middle	2426	+12.2	30.0	-17.8*	Complied
Тор	2480	+12.0	30.0	-18.0	Complied

*Worst-case emission

Table 8: Results for Maximum Peak Conducted Output Power - Conducted Method

The measurement uncertainty was calculated at ± 1.4 dB. The reported uncertainty is an expanded uncertainty calculated using a coverage factor of approximately k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions				
Temperature:	20.0°C			
Humidity:	49%			
Atmospheric pressure:	1021.0hPa			

Table 9: Climatic Conditions

Notes: The transmitter maximum output power was below the specified limit

for the specified operating frequency.

The transmitter was continuously transmitting in modulated transmit

mode.

Assessment: The EUT complied with the Transmitter Maximum Peak output power

requirements of CFR47 FCC Part 15, Subpart C, 15.247 (b)(3).

13. Radiated emissions in Restricted bands – 15.247 (d), 15.209

13.1.Requirements

As per section 15.247(d) of 47 CFR Part 15 Subpart C:

 Radiated emissions which fall in the restricted bands, as defined in section 15.205(a) of 47 CFR Part 15 Subpart C, must also comply with the radiated emission limits specified in section15.209(a) of 47 CFR Part 15 Subpart C (see §15.205(c) of 47 CFR Part 15 Subpart C).

As per section 47 CFR Part 15 Subpart C section 15.209 (Radiated emissions, general requirements) the EUT is required to meet the limits that permit the highest field strength of the following table for the radiated emissions which fall in the restricted bands, as defined in section 15.205(a) of 47 CFR Part 15 Subpart C:

Frequency Range (MHz)	Limits at 3m (dBμV/m)
0.009 to 0.490	128.5 to 93.8
0.490 to 1.705	73.8 to 62.9
1.705 to 30.0	69.5
30.0 to 88	40.0
88.0 to 216.0	43.5
216.0 to 960.0	46.0
Above 960	54.0
NOTE: The lower limit shall a	pply at the transition frequency.

Note 1: as per CFR FCC Part 15 section15.209 (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

Note 2: as per CFR FCC Part 15.35 (b) Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz. When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519 of this part, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device, e.g., the total peak power level. Note that the use of a pulse desensitization correction factor may be needed to determine the total peak emission level. The instruction manual or application note for the measurement instrument should be consulted for determining pulse desensitization factors, as necessary.

Table 10: Limits for Radiated Spurious Emissions at distance of 3m - Restricted Bands

13.2.Test Procedure

The Radiated Emissions were performed in accordance with the section 11.12 of ANSI C63.10 - 2013.

Radiated Emissions were measured 3 metres (from 9kHz to 25GHz) away from the EUT in the iOATS (indoor Open Area Test Site) facility, which is an ANSI C63.4 compliant semi-anechoic chamber with ground plane. The EUT was placed on a non-conductive support at a height of 0.8m (9kHz to 1GHz) and 1.5m (1GHz to 25GHz) above the ground plane.

In the frequency range of 9kHz to 30MHz, an Active loop antenna was used. For X (Parallel), Y (Perpendicular) and Z (Ground-Parallel) antenna polarizations, the peak detector was set to MAX-HOLD and the range selected continuously scanned. The measuring antenna was positioned at 1m fixed height, and the turntable slowly rotated. The peak preview measurements were performed with a resolution bandwidth of 200Hz (9kHz to 150kHz), 9kHz (150kHz to 30MHz) and a video bandwidth of 30kHz. Peak emissions that exceeded the limit or were close to the applicable limit were investigated further. The frequency of each emission was then accurately determined. Each emission of interest was then in-turn maximised by using the turntable to rotate the EUT through 360 degrees to find the worst-case emission arrangement. Quasi peak measurements were then performed using a measuring time of no less than 15 seconds. The final quasi-peak measurements were performed using a receiver bandwidth of 6dB and a resolution bandwidth of 200Hz (9kHz to 150kHz) and 9kHz (150kHz to 30MHz).

In the frequency range of 30MHz to 1GHz, a Biconilog antenna was used. For both horizontal and vertical antenna polarizations, the peak detector was set to MAX-HOLD and the range selected continuously scanned. The measuring antenna was positioned at 4 different fixed height positions and the turntable slowly rotated. The peak preview measurements were performed with a resolution bandwidth of 120kHz and a video bandwidth of 300kHz. Peak emissions that exceeded the limit or were close to the applicable limit were investigated further. The frequency of each emission was then accurately determined. Each emission of interest was then in-turn maximised by using the turntable to rotate the EUT through 360 degrees and varying the height of the antenna between 1 and 4 metres to find the worst-case emission arrangement. Quasi peak measurements were then performed using a measuring time of no less than 15 seconds. The final quasi-peak measurements were performed using a receiver bandwidth of 6dB and a resolution bandwidth of 120kHz.

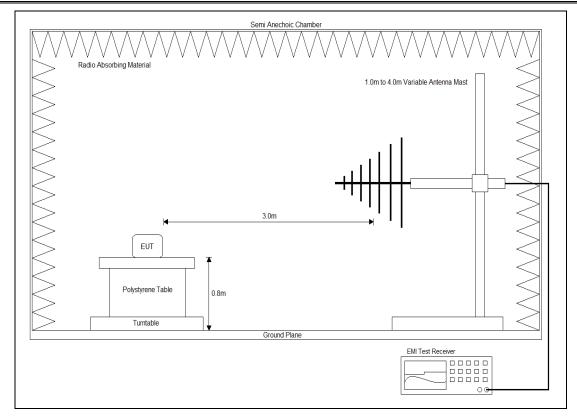


Figure 5: Test setup – 30MHz to 1GHz

In the frequency range 1.0GHz to 25GHz a Horn antenna was used and an area of 3m x 3m was covered between the antenna and the EUT using RF absorbing material with a rated attenuation more than 20dB over the frequency range. The height of the horn antenna was varied using the antenna bore-sighting technique and the turntable slowly rotated to maximise the emissions. For both horizontal and vertical antenna polarizations, the Peak and Average preview measurements were performed with a resolution bandwidth of 1 MHz and a video bandwidth of 3MHz. Peak and average emissions that exceeded the applicable limit or were close to the applicable limit were investigated further. Each emission of interest was then in-turn maximised by using the turntable to rotate the EUT through 360 degrees and the antenna height varied (if applicable, using the antenna bore-sighting technique) to find the worst-case emission arrangement. Peak and CISPR Average measurements were then performed using a measuring time of no less than 15 seconds, the maximum emission level in the observed duration was recorded as the final result. The final peak and CISPR Average measurements were performed using a receiver bandwidth of 6dB and a resolution bandwidth of 1 MHz. Peak and Average measurements were performed at spot frequencies where the peak or average emission was close to, or exceeded the applicable limit line with the EUT rotation and antenna height varied (if applicable, using the antenna bore-sighting technique) to produce the highest emission.

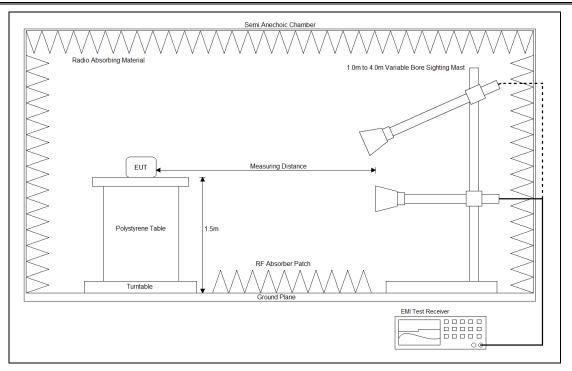


Figure 6: Test setup – above 1GHz

Plots of the accumulated measurement data for both horizontal and vertical antenna polarizations, including all transducer and other measuring system correction factors were produced using commercially available compliant software (as listed in the test equipment list of this report).

(Refer to photographs in Annex C for views of the test configuration)

13.3.Test Results

Transmitter Spurious Emissions measurements are detailed as follows:

(Refer to graphs in Appendix C.4)

Operating Channel: Bottom, Middle and Top						
Measurement Antenna Polarisation	Frequency (MHz)	Result peak (dBμV/m)	Limit Quasi-peak/ Average (dBµV/m)	Delta limit (dB)		
Х	Peak preview emissions >20dB below limit or no significant emissions above the noise floor observed					
Y	Peak preview emissions >20dB below limit or no significant emissions above the noise floor observed					
Z	•		dB below limit or noise floor observ	-		

Table 11: Transmitter Spurious Emissions – 9kHz to 30MHz

Operating Channel: Bottom, Middle and Top					
Measurement Antenna Polarisation	Frequency (MHz) Result Quasi-peak (dB _µ V/m)		Limit Quasi-peak (dBμV/m)	Delta limit (dB)	
Horizontal	Peak preview emissions >10dB below limit or no significant emissions above				
Vertical	the noise floor observed				

Table 12: Transmitter Spurious Emissions – 30MHz to 1GHz

Operating Channel: Bottom (2402MHz)								
Measurement Peak Measurements				Av	erage Meas	urements		
Antenna Polarisation	Frequency (MHz)	Result (dBμV/m)	Limit (dBμV/m)	Delta Limit (dB)	Frequency (MHz)	Result (dBμV/m)	Limit (dBμV/m)	Delta Limit (dB)
Horizontal	4804.080	43.7	74.0	-30.3*	4804.080	30.6	54.0	-23.4*
Vertical	4804.080	43.4	74.0	-30.6	4804.080	30.6	54.0	-23.4*

*Worst-case emissions

Table 13: Transmitter Spurious Emissions – 1GHz to 25GHz

Operating Channel: Middle (2426MHz)								
Measurement Peak Measurements					Av	erage Meas	urements	
Antenna Polarisation	Frequency (MHz)	Result (dBμV/m)	Limit (dBμV/m)	Delta Limit (dB)	Frequency (MHz)	Result (dBμV/m)	Limit (dBμV/m)	Delta Limit (dB)
Horizontal	4852.080	43.4	74.0	-30.6*	4852.080	30.1	54.0	-23.9*
Vertical	4852.080	43.3	74.0	-30.7	4852.080	30.1	54.0	-23.9*

*Worst-case emissions

Table 14: Transmitter Spurious Emissions – 1GHz to 25GHz

Operating Channel: Top (2480MHz)								
Measurement		Peak Measu	rements		A۱	erage Meas	urements	
Antenna Polarisation	Frequency (MHz)	Result (dBμV/m)	Limit (dBμV/m)	Delta Limit (dB)	Frequency (MHz)	Result (dBμV/m)	Limit (dBμV/m)	Delta Limit (dB)
	2483.560	52.4	74.0	-21.6	2483.560	33.6	54.0	-20.4*
Horizontal	2484.080	51.5	74.0	-22.5	2484.080	33.2	54.0	-20.8
	4960.080	44.1	74.0	-29.9	4960.320	30.4	54.0	-23.6
	2483.560	53.7	74.0	-20.3*	2483.560	33.5	54.0	-20.5
Vertical	2484.600	51.4	74.0	-22.6	2484.600	33.6	54.0	-20.4*
	4960.080	44.3	74.0	-29.6	4960.080	30.8	54.0	-23.2

*Worst-case emissions

Table 15: Transmitter Spurious Emissions – 1GHz to 25GHz

The measurement uncertainty was calculated as follows:

Measurement frequency range	Calculated measurement uncertainty
30MHz to 1GHz	±4.65dB
1GHz to 6GHz	±4.83dB
6GHz to 18GHz	±4.49dB
18GHz to 26.5GHz	±4.46dB

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions				
Temperature:	21.0 to 22.5°C			
Humidity:	47 to 50%			
Atmospheric pressure:	1016.4 to 1025.3hPa			

Table 16: Climatic conditions

Calculation: The above results are based upon the following calculation:

 $E = V_{QP/PK/AV} + AF - G_{Amp} + L_{C}$

Where:

E = E-field in $dB\mu V/m$

V_{QP/PK/A} Measured Voltage (Quasi Peak, Peak or Average) in

 $_{
m V}$ $^{-}$ dB $_{
m H}$ V

AF = Antenna Factor in dB(/m)

 L_C = Cable and attenuator Loss in dB G_{Amp} = Pre Amplifier Voltage Gain in dB

Example calculation:

 $E = V_{PK} + AF - G_{Amp} + L_{C}$

 $E = 30dB\mu V + 12dB/m - 0dB + 2.3dB$

 $E = 44.3 dB\mu V/m$

Notes: All Transmitter Radiated spurious emissions in restricted bands

measurements were below the specified limits.

Radiated Emissions measurements were made up to the 10th

harmonic.

Assessment: The EUT complied with the Radiated emissions in Restricted bands

requirements of CFR47 FCC Part 15, Subpart C, 15.247 (d).

14. Out of Band emissions (100kHz, -20dBc) - FCC 15.247 (d)

14.1.Test Procedure

The Out of band emissions in non-restricted bands were performed in accordance with the section 11.11 of ANSI C63.10 – 2013.

Measurements were performed at the antenna port.

The EUT was placed inside a shielded chamber. The transmitter output was connected to a spectrum analyzer through a suitable attenuator (Conducted method). The out of band emissions were measured by spectrum analyzer with 100kHz RBW and 300kHz VBW using the peak detector. All measuring system correction factors (attenuators and cables) were used to get a true measurement.

Reference and emission level measurements were performed as per section 11.11.2 and 11.11.3 of ANSI ANSI C63.10 - 2013.

(Refer to photographs in Annex C for views of the test configuration)

14.2.Limits

As per section 15.247(d) of 47 CFR Part 15 Subpart C:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of section 15.247 of 47 CFR Part 15 Subpart C, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) of 47 CFR Part 15 Subpart C is not required. In addition, radiated emissions which fall in the restricted bands, as defined in section 15.205(a) of 47 CFR Part 15 Subpart C, must also comply with the radiated emission limits specified in section15.209(a) of 47 CFR Part 15 Subpart C (see §15.205(c) of 47 CFR Part 15 Subpart C).

The measured highest fundamental channel PSD in 100kHz was +11.45dBm

Frequency Range	Limits
(MHz)	(dBm)
30MHz and 25GHz	-8.55

Table 17: Limits for Unwanted Emissions - -20dBc (Non-restricted bands)

14.3.Test Results

Unwanted emissions measurements are detailed as follows:

(Refer to graphs in Appendix C.5)

Channel	Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Delta limit (dB)
Bottom	Peak preview emissions >20dB below limit or no significant emissions above the noise floor observed			
Middle	Peak preview emissions >20dB below limit or no significant emissions above the noise floor observed			
Тор	Peak preview emissions >20dB below limit or no significant emissions above the noise floor observed			

*Worst-case emissions

Table 18: Transmitter Out of Band emissions - -20dBc/100kHz

The measurement uncertainty was calculated as follows:

Measurement frequency range	Calculated measurement uncertainty
30MHz to 25GHz	±1.4dB

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%.

Notes: All Transmitter Out of Band emissions measurements were below the

specified limits (-20dBc).

Radiated measurements were made up to the 10th harmonic.

The transmitter was continuously transmitting in modulated transmit

mode.

Assessment: The EUT complied with the Out of Band emissions (100kHz, -20dBc)

requirements of CFR47 FCC Part 15, Subpart C, 15.247 (d).

15. Emissions on the Band edge - FCC 15.247 (d)

15.1.Test Procedure

The Band edge Measurement (100kHz, -20dB from fc & Restricted bands) was performed in accordance with the section 11.11, 11.12 and 11.13 of ANSI C63.10 – 2013.

Conducted measurements were performed within 2 MHz of the authorised lower bandedge.

At the lowest channel, 99% Occupied Band Width of the fundamental channel emission was within 2 MHz of the authorised Lower band edge therefore Marker-delta method was used. Unwanted emission at the lower band-edge were performed as per section 6.10.4 of ANSI C63.10 - 2013. At authorised-band band edge where the requiring band-edge emission attenuation is -20dB in a 100kHz bandwidth relative to the highest fundamental channel PSD in 100kHz. Radiated peak measurements were performed as per as section 6.10.4 of ANSI C63.10 - 2013.

The higher end of the band-edge was in restricted-band therefore measurements were performed as per section 6.10.5 of ANSI C63.10 - 2013. The FCC 15.209 limits are applicable to emission in restricted-band band-edge.

(Refer to photographs in Annex C for views of the test configuration)

15.2.Limits

Band edge in Non-restricted Bands

As per CFR47 FCC Part 15, Subpart C, 15.247 (d) the EUT shall meet the requirements that in any given 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The measured highest fundamental channel PSD in 100kHz was +11.45dBm

Band edge	Limits
Frequencies	(dBm)
Lower Edge (2402MHz)	-8.55

Table 19: Limits for Band edge - -20dBc (Non-restricted bands)

Band edge in Restricted Bands

As per CFR47 FCC Part 15, Subpart C, 15.247 (d) and 15.209 (Transmitter emission limits) the EUT is required to meet the limits that permit the highest field strength of the following table for the radiated emissions which fall in the restricted bands, as defined in section 15.205(a) of 47 CFR Part 15 Subpart C:

Band edge Frequencies	Limits at 3m (dBμV/m)
2483.5MHz to 2485.5	54.0

Note 1: as per CFR FCC Part 15.35 (b), The emission limits shown in the above table are based on measurements employing an average detector.

Table 20: Limits for Radiated Spurious Emissions at distance of 3m – Restricted Bands.

15.3.Test Results

Band edge measurements are detailed as follows:

(Refer to graphs in Appendix C.3)

Operating Channel: Bottom (2402MHz)					
Frequency (MHz)	Result Radiated Peak Power Spectral Density (dBm/100kHz)	Limit Radiated Peak Power Spectral Density (dBm/100kHz)	Delta limit (dB)		
2399.705	-42.3	-8.55	-33.8*		
2399.975	-43.7	-8.55	-35.2		

*Worst-case emissions

Table 21: Transmitter Emissions on the Band edge - Low end

Operating Chan	Operating Channel: Top (2480MHz)							
Measurement Peak Measurements			Average Measurements					
Antenna Polarisation	Frequency (MHz)	Result (dBμV/m)	Limit (dBμV/m)	Delta Limit (dB)	Frequency (MHz)	Result (dBμV/m)	Limit (dBμV/m)	Delta Limit (dB)
Horizontal	2483.560	52.4	74.0	-21.6	2483.560	33.6	54.0	-20.4*
Horizoniai	2484.080	51.5	74.0	-22.5	2484.080	33.2	54.0	-20.8
Vertical	2483.560	53.7	74.0	-20.3*	2483.560	33.5	54.0	-20.5
vertical	2484.600	51.4	74.0	-22.6	2484.600	33.6	54.0	-20.4*

^{*}Worst-case emissions

Table 22: Transmitter Emissions on the Band edge - High end

The measurement uncertainty was calculated as follows:

Measurement frequency range	Calculated measurement uncertainty
Radiated (1GHz to 6GHz)	±4.83dB
Conducted (1GHz to 6GHz)	±1.4dB

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions			
Temperature: 20.0 to 21.0°C			
Humidity:	47 to 49%		
Atmospheric pressure:	1021.0 to 1025.3hPa		

Table 23: Climatic conditions

Calculation: The above results are based upon the following calculation:

 $E = V_{QP/PK/AV} + AF - G_{Amp} + L_C$

Where:

E = E-field in $dB\mu V/m$

Measured Voltage (Quasi Peak, Peak or Average)

 $V_{QP/PK/AV} = in dB\mu V$

AF = Antenna Factor in dB(/m)

 L_C = Cable and attenuator Loss in dB G_{Amp} = Pre Amplifier Voltage Gain in dB

Example calculation:

 $E = V_{PK} + AF - G_{Amp} + L_{C}$

 $E = 30dB\mu V + 12dB/m - 0dB + 2.3dB$

 $E = 44.3 dB\mu V/m$

Notes: All Band edge measurements were below the specified limits.

The transmitter was continuously transmitting in modulated

transmit mode.

Assessment: The EUT complied with the Transmitter Emissions on the Band

edge requirements of CFR47 FCC Part 15, Subpart C, 15.247 (d).

16. Power Spectral Density - FCC 15.247 (e)

16.1.Test Procedure

The Power Spectral Density was performed in accordance with the section 11.10 of ANSI C63.10 - 2013.

The transmitter output was connected to a spectrum analyzer through a suitable attenuator (Conducted method). The Power Spectral density was measured in a 3kHz bandwidth of the fundamental frequency by spectrum analyzer with 3kHz RBW and 30kHz VBW using the peak detector and a suitable span to allow accurate measurements whilst capturing the full intentional transmission including side lobes.

(Refer to photographs in Annex C for views of the test configuration)

16.2.Limits

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of CFR47 FCC Part 15, Subpart C, 15.247 (e). The same method of determining the conducted output power shall be used to determine the power spectral density.

Applicable only to systems using digital modulation techniques:

Transmit operating frequency (MHz)	Limit
2400 – 2483.5	8dBm/3kHz

Table 24: Power Spectral Density limits

16.3.Test Results

Power Spectral Density measurements are tabulated below:

(Refer to graphs in Appendix C.6)

Channel	Frequency (MHz)	Measured Power (dBm)	Limit (dBm/3kHz)	Margin (dB)	Result
Bottom	2402.052	-3.0	8.00	-11.0	Complied
Middle	2426.134	-2.5	8.00	-10.5	Complied
Тор	2480.045	-1.2	8.00	-9.2*	Complied

*Worst-case emissions

Table 25: Results for Power Spectral Density

The measurement uncertainty was calculated at ± 1.4 dB. The reported uncertainty is an expanded uncertainty calculated using a coverage factor of approximately k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions			
Temperature: 20.0°C			
Humidity:	49%		
Atmospheric pressure:	1021.0hPa		

Table 26: Climatic conditions

Notes: All Power Spectral Density measurements were below the specified

limits.

Assessment: The EUT complied with the Power Spectral Density requirements of

CFR47 FCC Part 15, Subpart C, 15.247 (e).

17. Conducted Emissions - FCC Part 15.207

17.1.Test Procedure

The Conducted Emissions was performed in accordance with the section 6.2 of ANSI C63.10 - 2013.

The EUT was positioned 0.4m from the vertical ground reference plane (chamber wall) and 0.8m above a horizontal ground reference plane (chamber floor) with the mains cable connected to the power port of a LISN, located 0.8 metres away. The measuring port of the LISN was connected to the measuring receiver. In order to avoid unwanted ambient signals, power to the LISN was supplied via power line filters fitted to the shielded enclosure wall.

The mains flexible cord provided by the manufacturer is required to be 1m long for these measurements. If the manufacturer supplies a non-removable power lead, in excess of 1m, the cable in excess of 1m is folded at the centre into a bundle no longer than 0.4m in length.

Preview scan measurements were performed using a peak and an average detector of the EMI receiver with a resolution bandwidth of 9 kHz. The scan measurements frequency step size of the EMI receiver was set to less than half of the resolution bandwidth. The final quasi-peak and CISPR average measurements were performed at spot frequencies where the preview peak or average emission was close to, or exceeded the applicable limit line with a receiver bandwidth of 6dB and a resolution bandwidth of 9 kHz. The final measurements were performed using a measuring time of no less than 15 seconds.

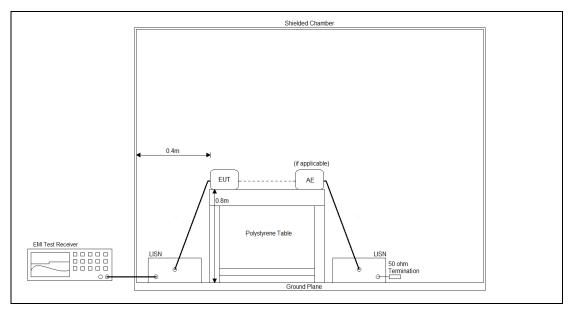


Figure 7: Test setup

Both the active and neutral lines were measured, in turn. Plots of the accumulated measurement data for both active and neutral terminals, including all transducer and other measuring system correction factors were produced using commercially available compliant software (as listed in the test equipment list of this report).

(Refer to photographs in Annex C for views of the test configuration)

17.2.Limits

The EUT shall meet the limits in the following table:

Frequency Range		nits BµV)
(MHz)	Quasi-Peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.5 to 5	56	46
5 to 30	60	50

NOTE 1 The lower limit shall apply at the transition frequencies.

NOTE 2 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.

Table 27: Limits for Conducted Emissions at the mains ports

17.3.Test Results

Conducted Emissions measurements are tabulated below. Quasi-peak or CISPR Average measurements were performed at spot frequencies where the peak or average emission was close to, or exceeded the applicable limit line.

(Refer to graphs 85 to 88 in Appendix C.8)

Quasi - Peak Measurements				Ave	rage Meas	urements	
Frequency (MHz)	Result (dBμV)	Limit (dBμV)	Delta Limit (dB)	Frequency (MHz)	Result (dBμV)	Limit (dBμV)	Delta Limit (dB)
0.154	47.0	65.8	-18.8	0.154	24.8	55.8	-31.0
0.166	46.7	65.2	-18.5*	0.166	26.6	55.2	-28.6
0.178	40.0	64.6	-24.6	0.214	21.8	53.0	-31.2
0.798	35.7	56.0	-20.3	0.798	19.1	46.0	-26.9*
1.326	32.4	56.0	-23.6	9.198	16.8	50.0	-33.2
9.630	32.1	60.0	-27.9	9.702	17.4	50.0	-32.6

^{*} Worst-case emissions

Table 28: Conducted Emissions – Active Line – External PSU powered

Quasi	Quasi - Peak Measurements				rage Meas	urements	
Frequency (MHz)	Result (dBμV)	Limit (dBμV)	Delta Limit (dB)	Frequency (MHz)	Result (dBμV)	Limit (dBμV)	Delta Limit (dB)
0.162	49.1	65.4	-16.3*	0.162	27.2	55.4	-28.2
0.210	38.5	63.2	-24.7	0.222	20.9	52.7	-31.8
0.366	33.4	58.6	-25.2	0.358	21.7	48.8	-27.1
0.858	30.8	56.0	-25.2	0.794	19.0	46.0	-27.0*
9.598	33.6	60.0	-26.4	9.582	18.4	50.0	-31.6
9.758	33.0	60.0	-27.0	9.758	18.1	50.0	-31.9

^{*} Worst-case emissions

Table 29: Conducted Emissions - Neutral Line - External PSU powered

Quasi	Quasi - Peak Measurements				rage Meas	urements	
Frequency (MHz)	Result (dBμV)	Limit (dBμV)	Delta Limit (dB)	Frequency (MHz)	Result (dBμV)	Limit (dBμV)	Delta Limit (dB)
0.166	49.3	65.2	-15.9	0.170	29.3	55.0	-25.7
0.190	46.3	64.0	-17.7	0.574	35.1	46.0	-10.9
0.566	37.5	56.0	-18.5	3.262	33.0	46.0	-13.0
3.262	40.1	56.0	-15.9	24.962	43.2	50.0	-6.8
24.962	44.4	60.0	-15.6	25.694	45.2	50.0	-4.8*
25.694	47.1	60.0	-12.9*	25.878	43.9	50.0	-6.1

^{*} Worst-case emissions

Table 30: Conducted Emissions – Active Line – PoE powered

Quasi	- Peak Me	asuremen	ts	Ave	rage Meas	urements	
Frequency (MHz)	Result (dBμV)	Limit (dBμV)	Delta Limit (dB)	Frequency (MHz)	Result (dBμV)	Limit (dBμV)	Delta Limit (dB)
0.166	48.7	65.2	-16.5	0.174	26.8	54.8	-28.0
0.206	39.4	63.4	-24.0	0.550	32.8	46.0	-13.2
3.254	44.5	56.0	-11.5*	3.254	38.3	46.0	-7.7
24.534	44.3	60.0	-15.7	24.962	43.0	50.0	-7.0
24.962	45.3	60.0	-14.7	25.694	44.8	50.0	-5.2*
25.694	45.5	60.0	-14.5	25.878	43.7	50.0	-6.3

^{*} Worst-case emissions

Table 31: Conducted Emissions – Neutral Line – PoE powered

The measurement uncertainty was calculated as follows:

Measurement frequency range	Calculated measurement uncertainty
0.15MHz to 30MHz	±2.88dB

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%. The referenced uncertainty standard specifies that determination of compliance shall be based on measurements without taking into account measurement uncertainty. However, the measurement uncertainty shall appear in the test report.

Climatic Conditions				
Temperature:	20.6 to 22.8°C			
Humidity:	42%			
Atmospheric pressure:	1017.1 to 1019.0hPa			

Table 32: Climatic conditions

Calculation: The above results are based upon the following calculation:

$$V = V_{QP/AV} + VLISN + L_C + L_T$$
 Where:

V = Corrected Voltage Amplitude in dBμV

 $V_{QP/AV}$ = Measured Voltage (Quasi Peak or Average) in $dB\mu V$ VLISN = Line Impedance Stabilization Network Factor in dB

L_C = Cable/attenuator Loss in dB

L_T = Transient Protection Network Loss in dB

Example calculation:

 $V = V_{QP} + VLISN + L_C + L_T$

 $V = 15 dB\mu V + 10.1dB + 11.5dB + 10.1dB$

 $V = 46.7 \, dB\mu V$

Notes: Conducted Emissions measurements were below the applicable

limit.

The AC mains port of the representative AC/DC PSU unit and the

AC/DC adapter of the representative PoE switch was tested.

Assessment: The EUT complied with the Conducted Emissions requirements of

CFR47 FCC Part 15, Subpart C, section 15.207.

18. Conclusion

The Integrated Control Technology Limited, WL-APW, Protege Wireless Access Point complied with the applicable requirements of CFR47 FCC Part 15, Subpart C, 15.247.

Appendix A – Test Equipment

_		Equipment Make Madel No.			Calibration		
Inv.	Equipment	Make	Model No.	Serial No.	Interval	Due	Туре
	Transmitter Maximum EIRP, Pov	ver Spectral Density	, 6dB Bandwid	th and Band-edge –	Conducted	Method	
0954	ANALYSER, EMI Receiver	Rohde+Schwarz	ESCI 3	100196	1 year	Sep-25	Е
0715	ATTENUATOR, 20dB	JFW	50HF-020N	N/A	3 years	Dec-27	- 1
1154	Hygrometer, Temp, Humidity	DigiTech	QM7312	-	2 years	Jul-25	I
0441	ENCLOSURE, Shielded, No 5	RFI Industries	TC800-20	933	N/A	N/A	V
		Radiated Spu	rious Emission	S			
1217	ANALYSER, EMI Receiver	Rohde & Schwarz	ESU40	100182	1 year	Jul-25	Е
0932	CONTROLLER, Position	Sunol Sciences	SC104V-3	081006-1	N/A	N/A	V
0933	TURNTABLE	Sunol Sciences	SM46C	081006-2	N/A	N/A	V
0934	MAST, Antenna	Sunol Sciences	TLT2	081006-5	N/A	N/A	V
0935	ANTENNA, Biconilog	Sunol Sciences	JB5	A071106	2 years	May-25	Е
0718	ATTENUATOR, 6dB	JFW	50FPE-006	N/A	1 year	Jan-26	I
1145	CABLE, Coax, Sucoflex 104PA	Huber + Suhner	84279564	SN MY056/4PA	1 year	Jan-26	I
1238	CABLE, Coax, Sucoflex 126 E	Huber + Suhner	10422876	SN 8000495/126E	1 year	Jan-26	I
0989	CABLE, Coax, Sucoflex 104A	Huber+Suhner	44454/4A	C357	1 year	Jan-26	I
0559	PRE-AMP, Microwave, 18GHz	Miteq	AFS8	605305	1 year	May-25	I
0633	ANTENNA, Double Ridge Horn	EMCO	3115	9712-5369	3 years	Aug-27	I
1193	Standard Gain Horn Antenna - 5.85GHz to 8.2GHz	A.H. Systems, inc	SAS-584	186	1 year	May-25	E
1194	Standard Gain Horn Antenna - 8.2GHz to 12.4GHz	A.H. Systems, inc	SAS-585	224	1 year	May-25	Е
1195	Standard Gain Horn Antenna - 12.4GHz to 18.0GHz	A.H. Systems, inc	SAS-586	195	1 year	May-25	Е
1196	Standard Gain Horn Antenna - 18.0GHz to 26.5GHz	A.H. Systems, inc	SAS-587	181	1 year	May-25	E
0024	ANTENNA, Active Loop	EMCO	6502	2620	2 years	Feb-26	I
1064	PRE-AMP, Microwave, 26GHz	Miteq	AFS33	1696371	1 year	May-25	I
1010	CABLE, Coax, Sucoflex 104B	Huber+Suhner	00078/4B	C406	2 years	Aug-26	- 1
1009	CABLE, Coax, Sucoflex 104B	Huber+Suhner	00065/4B	C405	2 years	Aug-26	I
0711	ATTENUATOR, 10dB	JFW	50HF-010N	N/A	3 years	Dec-27	I
1259	High Pass filter	Micro-Tronics	HPM50111	G237	1 year	Mar-25	I
1155	Hygrometer, Temp, Humidity	DigiTech	QM7312	-	2 years	Jul-25	I
0666	Enclosure, Semi-Anechoic, No 1	RFI Industries	S800 iOATS	1229	3 years	Aug-25	I
SW007	EMC Measurement Software	Rohde & Schwarz	EMC 32	Version 8.53.0	N/A	N/A	N/A

V: Verification of operation against an internal reference I: Internal calibration against a traceable standard E: External calibration by a NATA endorsed facility N/A: Not Applicable

Equipment list continued on the following page

		Mala Madal Na			Calibration		
lnv.	Equipment	Make	Model No.	Serial No.	Interval	Due	Туре
		AC Mains Cond	ducted Emissio	ns			
0954	ANALYSER, EMI Receiver	Rohde+Schwarz	ESCI 3	100196	1 year	Sep-25	E
1244	LISN, Single Phase, 50uH/50 Ohm	AMETEK CTS Europe GmbH (Teseq)	NNB 51	47414	2 years	May-26	I
1148	CABLE, Coax, Sucoflex 104PA	Huber + Suhner	84287047	SN MY059/4PA	1 year	Jan-26	
1149	CABLE, Coax, Sucoflex 104PA	Huber + Suhner	84287049	SN MY053/4PA	1 year	Jan-26	I
0044	LIMITER, Transient, 9k-200M	Hewlett Packard	11947A	2820A00132	3 years	Apr-26	I
1155	Hygrometer, Temp, Humidity	DigiTech	QM7312	-	2 years	Jul-25	I
0441	Enclosure, Shielded, No 5	RFI Industries	TC800-20	933	N/A	N/A	V
SW007	EMC Measurement Software	Rohde & Schwarz	EMC 32	Version 8.54.0	N/A	N/A	N/A

V: Verification of operation against an internal reference
I: Internal calibration against a traceable standard

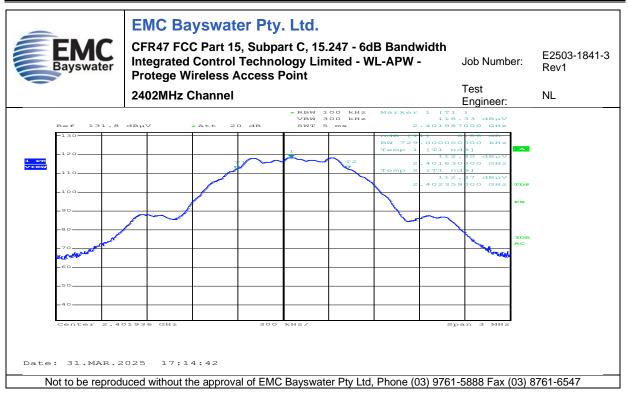
E: External calibration by a NATA endorsed facility N/A: Not Applicable

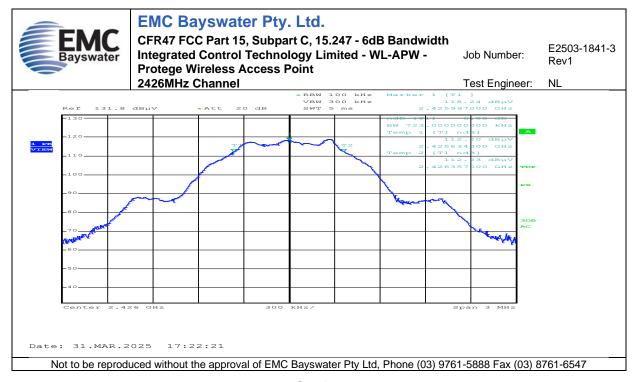
Appendix B - Photographs

Annex	Number	Photograph Description	
	1		
	2		
	3	EUT (sample 1) – External views	
	4		
	5		
Α	6 7		
	8		
	9	EUT (sample 2) – External views – View of the sample with temporary SMA	
	10	antenna port connector for Conducted method testing	
	11		
	12		
	1		
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9	EUT (sample 1) – Internal views	
	10		
	11		
	12		
	13		
	14		
	15		
	16		
В	17		
	18		
	19		
	20		
	21		
	22		
	23		
	24		
	25	EUT (sample 2) - Internal views - View of the sample with temporary SMA	
	26	antenna port connector for Conducted method testing	
	27		
	28		
	29		
	30		
	31		
	32		
	33		

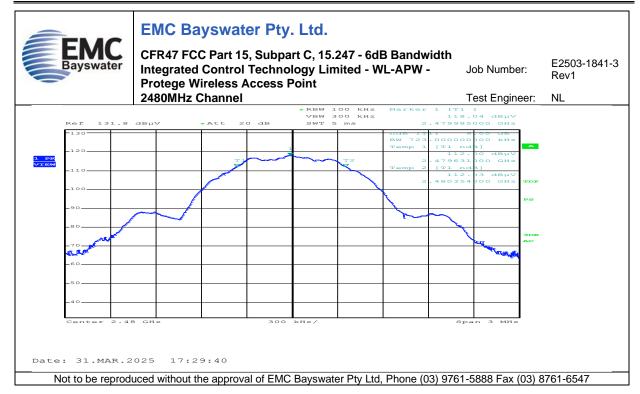
Photographs list continued on the following page

Annex	Number	Photograph Description	
	1	Radiated measurements – EUT X Orientation	
	2	Radiated measurements – EUT Y Orientation	
	3	Radiated measurements – EUT Z Orientation	
	4	Radiated measurements – 9kHz to 30MHz – X Antenna orientation	
	5	Radiated measurements – 9kHz to 30MHz – Y Antenna orientation	
6 Radiated measurements – 9kHz to 30MHz – Z Anteni		Radiated measurements – 9kHz to 30MHz – Z Antenna orientation	
	7	Radiated measurements – below 1GHz	
С	8	Radiated measurements – above 1GHz	
	9	Conducted measurements	
	10	Conducted Emissions – Test configuration – External PSU powered	
	11	Conducted Emissions – Test configuration – PoE powered	
	12	Support Equipment - Protogo DIN Pail 4A Intelligent Power Supply	
	13	Support Equipment - Protege DIN Rail 4A Intelligent Power Supply	
14 Support Equipment 5 Port Gigabit Dockton		Support Equipment - 5-Port Gigabit Desktop Switch with 4-Port PoE+	
15 Support Equipment - 5-Port Gigabit Desktop Switch		Support Equipment - 5-Fort Gigabit Desktop Switch with 4-Fort FOE+	

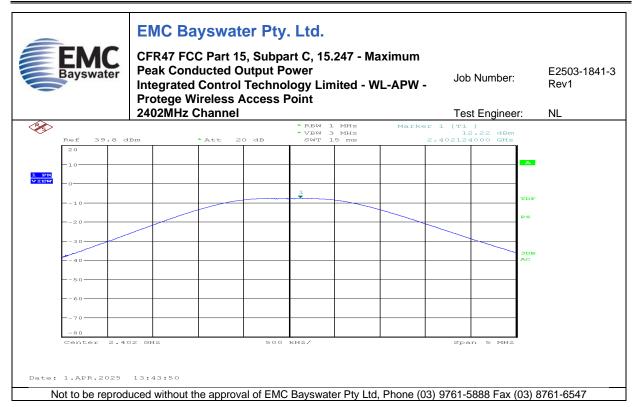

EUT External Photographs	EMC Bayswater Test Report E2503-1841-3 Rev1 Annex A
EUT Internal Photographs	EMC Bayswater Test Report E2503-1841-3 Rev1 Annex B
EUT Orientations & Test Configurations Photographs	EMC Bayswater Test Report E2503-1841-3 Rev1 Annex C

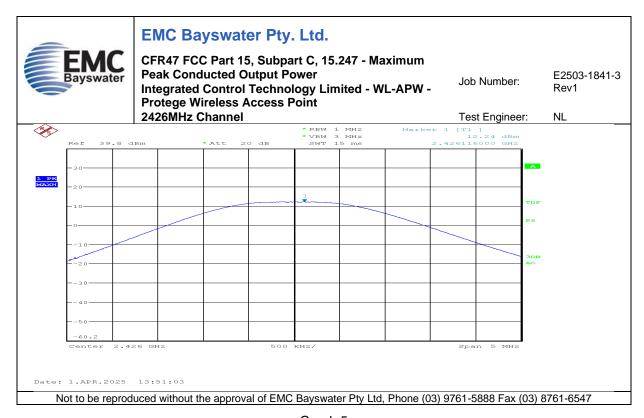

Appendix C.1 - Measurement Graphs -6dB Bandwidth - 15.247 (a) (2)

No.	Test	Graph Description
1		2402MHz Channel
2	6dB Bandwidth	2426MHz Channel
3		2480MHz Channel

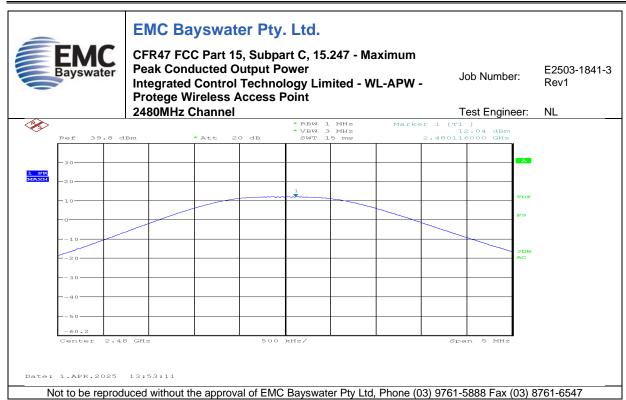

Graph 1

Graph 2

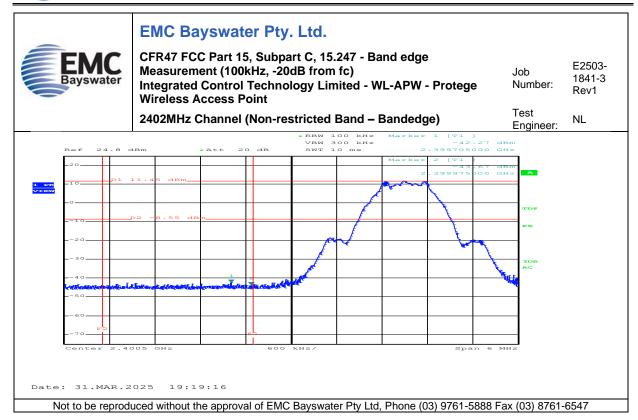

Graph 3

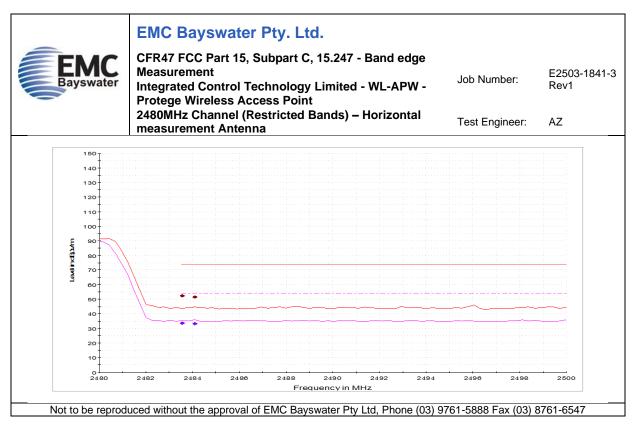

Appendix C.2 – Measurement Graphs – Maximum Peak Conducted Output Power - 15.247 (b)(3)

No.	Test	Graph Description
4		2402MHz Channel
5	Maximum Peak Conducted Output Power	2426MHz Channel
6	•	2480MHz Channel

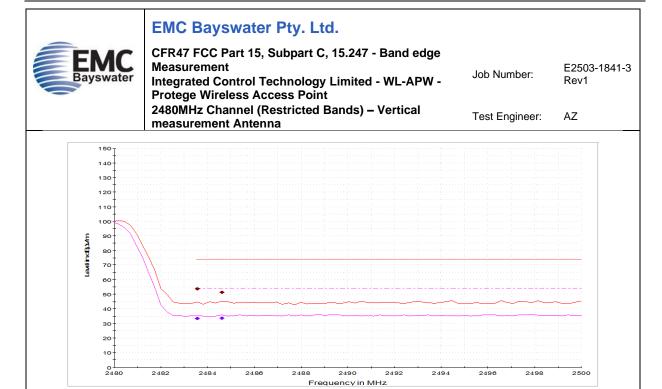

Graph 4

Graph 5


Graph 6


Appendix C.3 - Measurement Graphs - Band Edge - 15.247 (d)

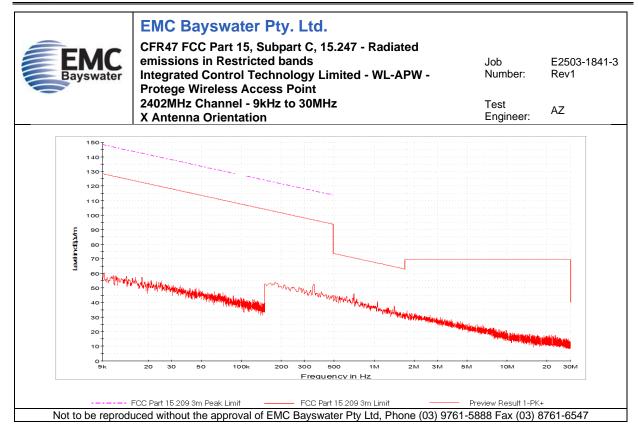
No.	Test	Graph Description
7		2402MHz Channel (Non-restricted Band – Bandedge)
8	Band edge Measurement	2480MHz Channel (Restricted Bands) – Horizontal measurement Antenna
9		2480MHz Channel (Restricted Bands) – Vertical measurement Antenna


Graph 7

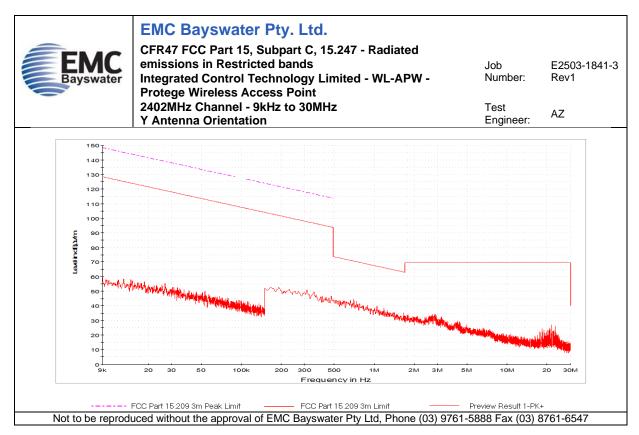
Graph 8

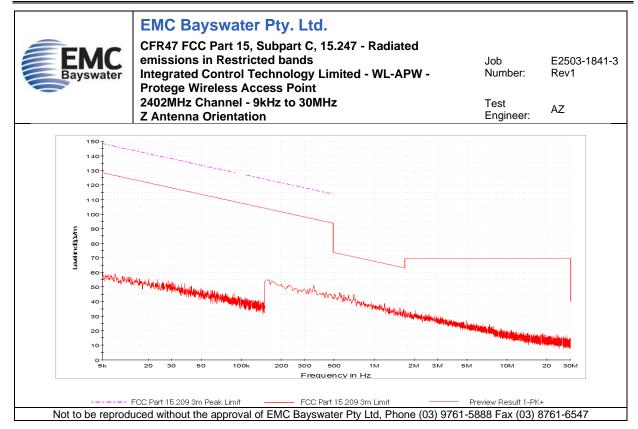
Not to be reproduced without the approval of EMC Bayswater Pty Ltd, Phone (03) 9761-5888 Fax (03) 8761-6547

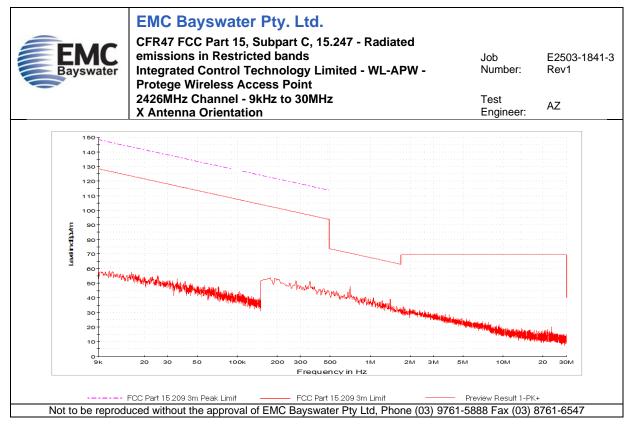
Graph 9

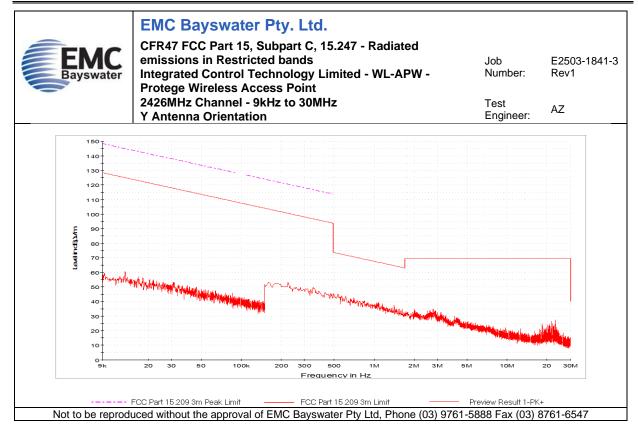


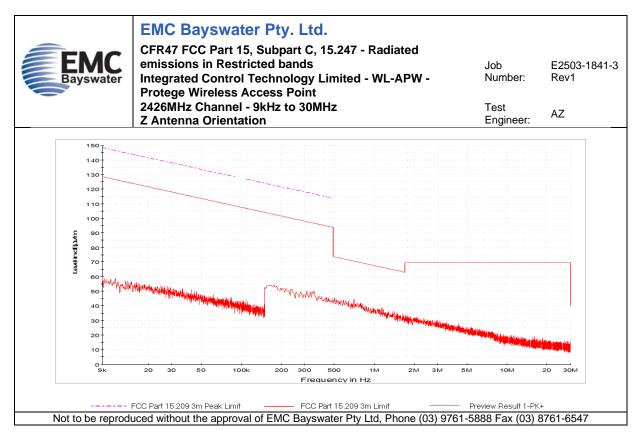
Appendix C.4 – Measurement Graphs – Transmitter Spurious – FCC 15.247 (d), 15.209 – Restricted Bands

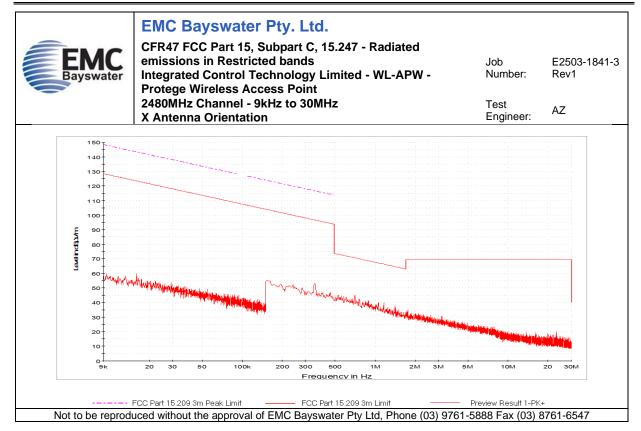

No.	Test	Graph Description
10	-	2402MHz Channel, Antenna X
11		2402MHz Channel, Antenna Y
12		2402MHz Channel, Antenna Z
13		2426MHz Channel, Antenna X
14	9kHz to 30MHz	2426MHz Channel, Antenna Y
15	3Ki 12 to 30Wi 12	2426MHz Channel, Antenna Z
16		2480MHz Channel, Antenna X
17		2480MHz Channel, Antenna Y
18		2480MHz Channel, Antenna Z
19		2402MHz Channel, Antenna Horizontal
20		2402MHz Channel, Antenna Vertical
21	30MHz to 1GHz	2426MHz Channel, Antenna Horizontal
22	0014111210 10112	2426MHz Channel, Antenna Vertical
23		2480MHz Channel, Antenna Horizontal
24		2480MHz Channel, Antenna Vertical
25		2402MHz Channel, Antenna Horizontal
26		2402MHz Channel, Antenna Vertical
27	1GHz to 3.6GHz	2426MHz Channel, Antenna Horizontal
28	10112 to 3.00112	2426MHz Channel, Antenna Vertical
29		2480MHz Channel, Antenna Horizontal
30		2480MHz Channel, Antenna Vertical
31		2400MHz Channel, Antenna Horizontal
32		2402MHz Channel, Antenna Vertical
33		2426MHz Channel, Antenna Horizontal
34	3.6GHz to 6GHz	2426MHz Channel, Antenna Vertical
35		2480MHz Channel, Antenna Horizontal
36		2480MHz Channel, Antenna Vertical
37		2402MHz Channel, Antenna Horizontal
38		2402MHz Channel, Antenna Vertical
39		2426MHz Channel, Antenna Horizontal
40	5.8GHz to 8.2GHz	2426MHz Channel, Antenna Vertical
41		2480MHz Channel, Antenna Horizontal
42		2480MHz Channel, Antenna Vertical
43		2400MHz Channel, Antenna Horizontal
44		2402MHz Channel, Antenna Vertical
45		2426MHz Channel, Antenna Horizontal
46	8.2GHz to 12.4GHz	2426MHz Channel, Antenna Vertical
47		2480MHz Channel, Antenna Horizontal
48		2480MHz Channel, Antenna Vertical
49		2402MHz Channel, Antenna Horizontal
50		2402MHz Channel, Antenna Vertical
51	12.4GHz to 18GHz	2426MHz Channel, Antenna Horizontal
52	12.70112 10 100112	2426MHz Channel, Antenna Vertical
53		2480MHz Channel, Antenna Horizontal
54		2480MHz Channel, Antenna Vertical
55		2400MHz Channel, Antenna Horizontal
56		2402MHz Channel, Antenna Vertical
57	18GHz to 25GHz	2426MHz Channel, Antenna Horizontal
58	100112 10 20002	2426MHz Channel, Antenna Vertical
59		2480MHz Channel, Antenna Horizontal
60		2480MHz Channel, Antenna Horizontal 2480MHz Channel, Antenna Vertical
ΟU		24001VII 12 OHAHHEI, AHLEHHA VERLICAL

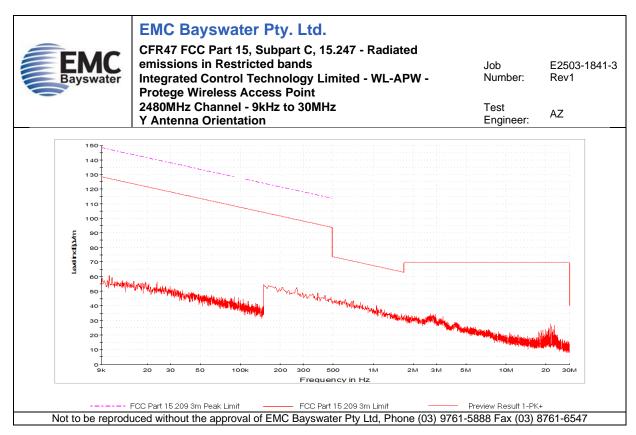

Graph 10

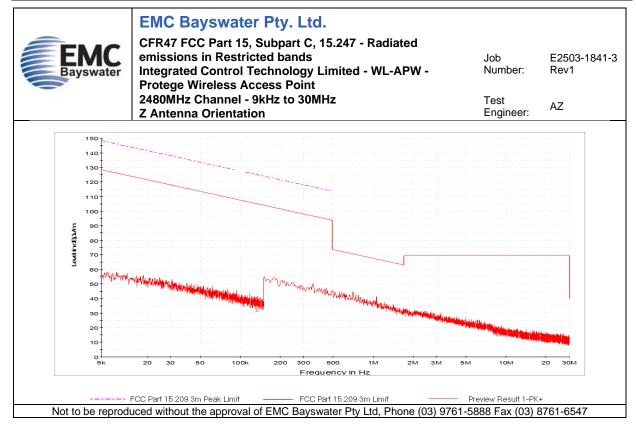


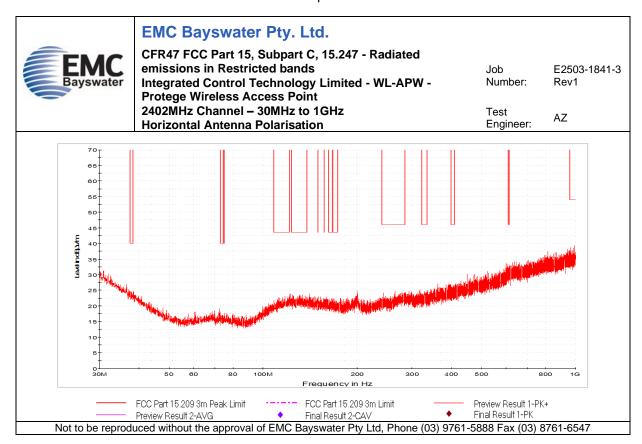

Graph 12

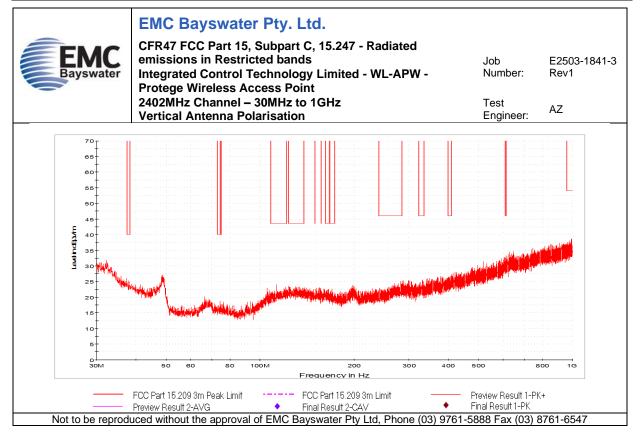



Graph 14

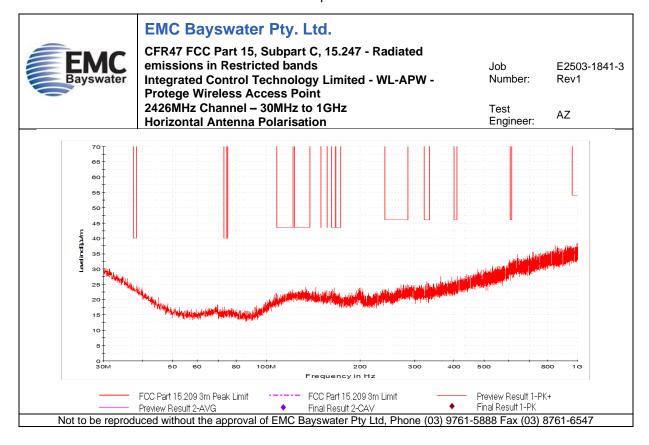



Graph 16

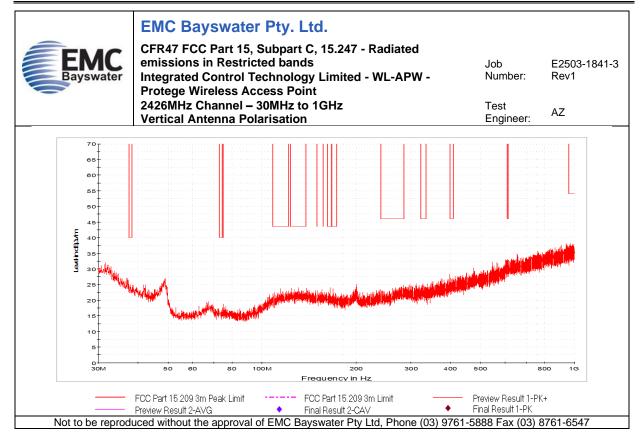


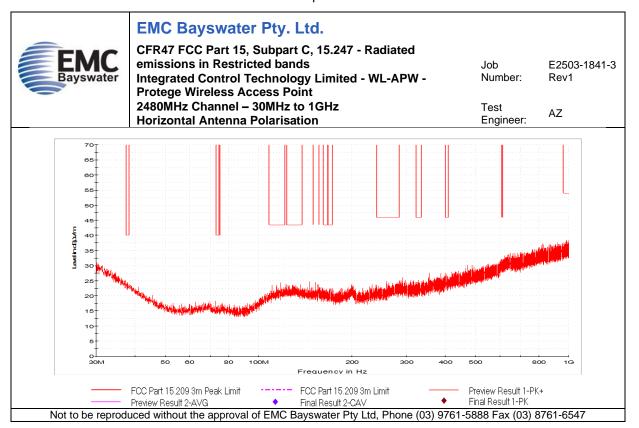


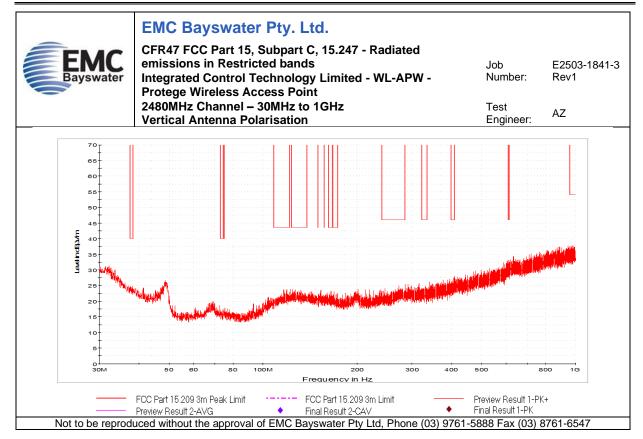
Graph 18

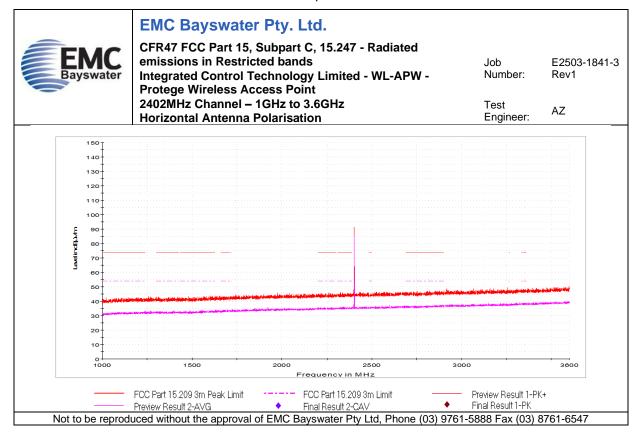


Graph 20

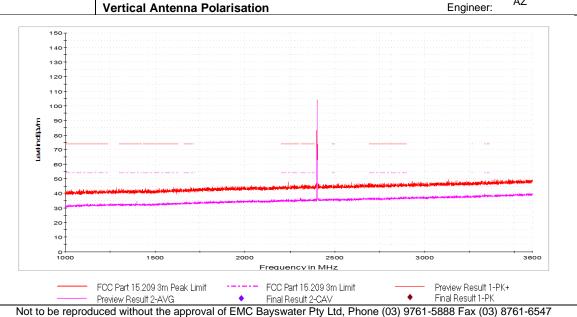




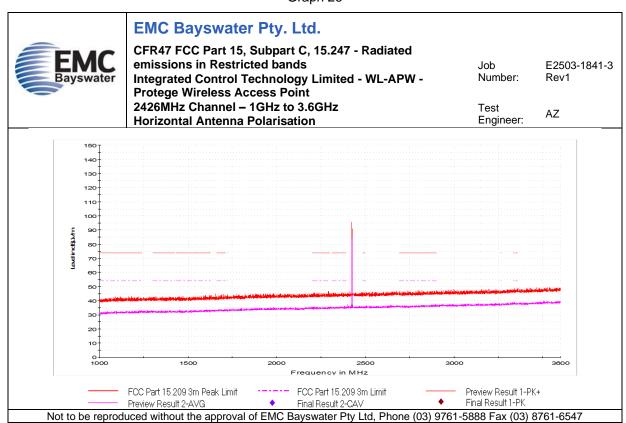

Graph 22



Graph 24


EMC Bayswater Pty. Ltd.

CFR47 FCC Part 15, Subpart C, 15.247 - Radiated emissions in Restricted bands Integrated Control Technology Limited - WL-APW -**Protege Wireless Access Point** 2402MHz Channel - 1GHz to 3.6GHz

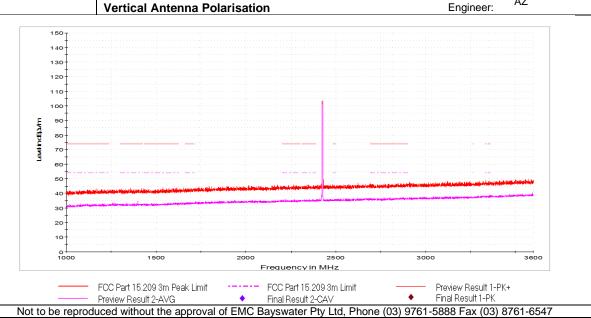

.Ioh F2503-1841-3

Number: Rev1

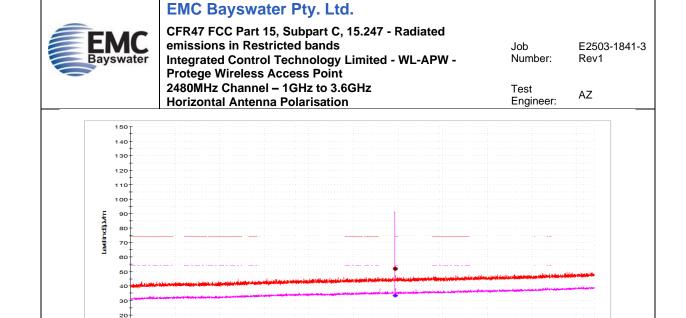
Test ΑZ Engineer:

Graph 26

Graph 27


EMC Bayswater Pty. Ltd.

CFR47 FCC Part 15, Subpart C, 15.247 - Radiated emissions in Restricted bands Integrated Control Technology Limited - WL-APW -**Protege Wireless Access Point** 2426MHz Channel - 1GHz to 3.6GHz


.Ioh F2503-1841-3

Number: Rev1

Test ΑZ Engineer:

Graph 28

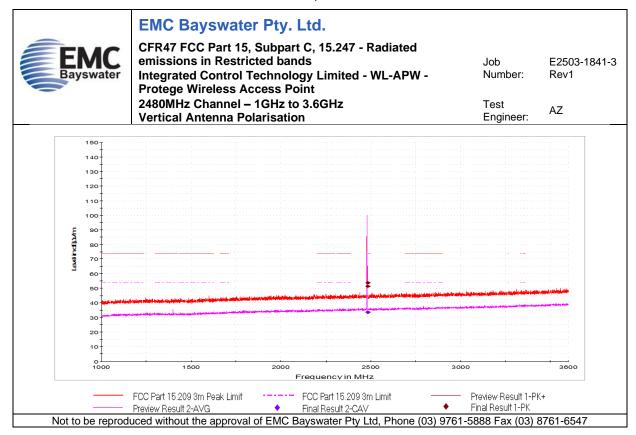
2000

10

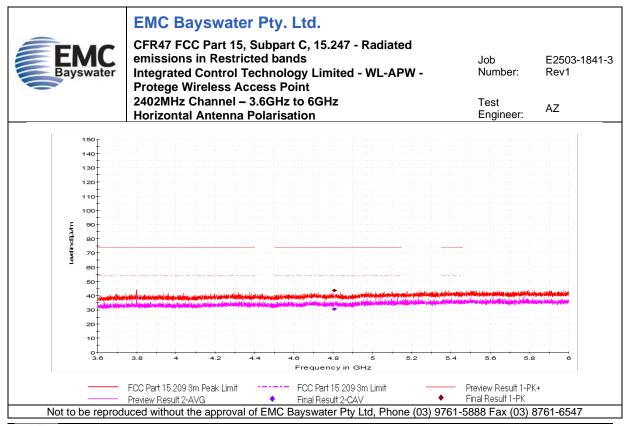
1500

FCC Part 15.209 3m Peak Limit

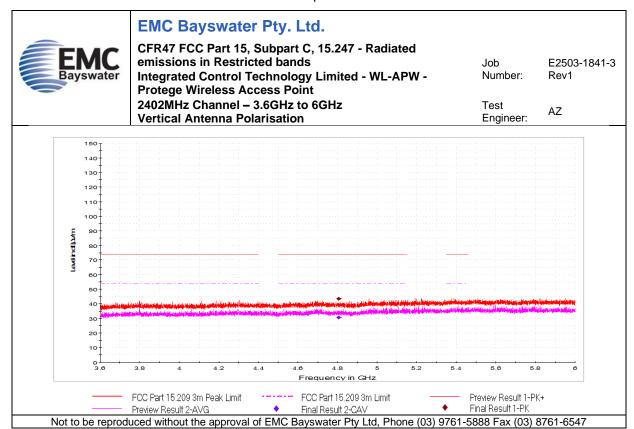
Preview Result 2-AVG


Frequency in MHz FCC Part 15.209 3m Limit

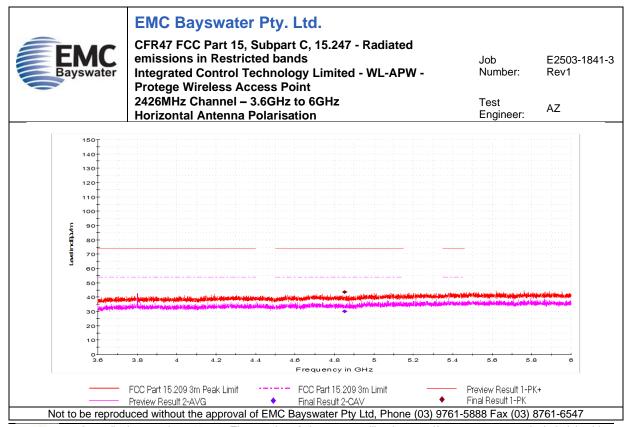
Final Result 2-CAV Not to be reproduced without the approval of EMC Bayswater Pty Ltd, Phone (03) 9761-5888 Fax (03) 8761-6547

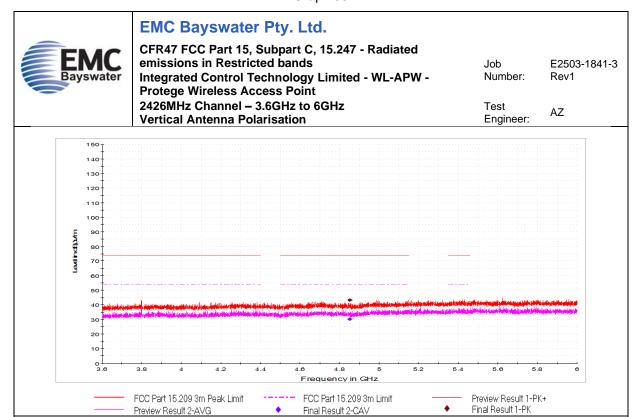

3000

Preview Result 1-PK+ Final Result 1-PK

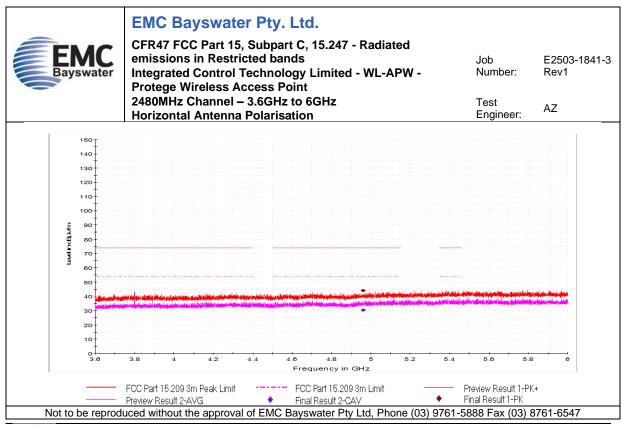


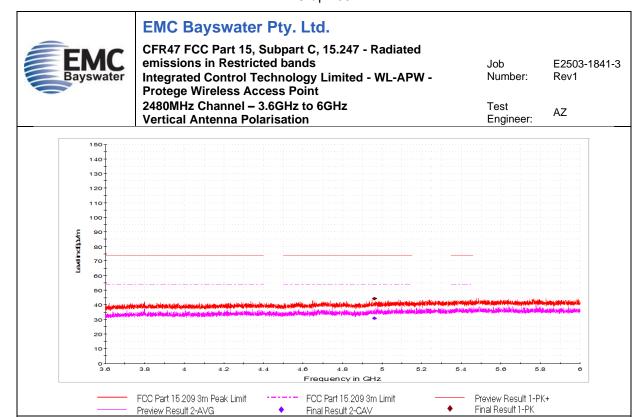
Graph 30



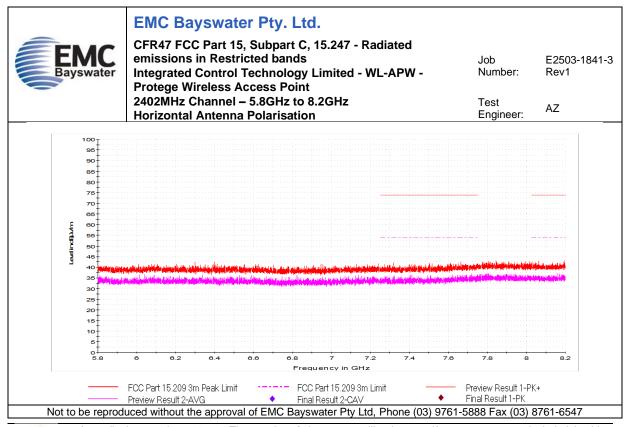


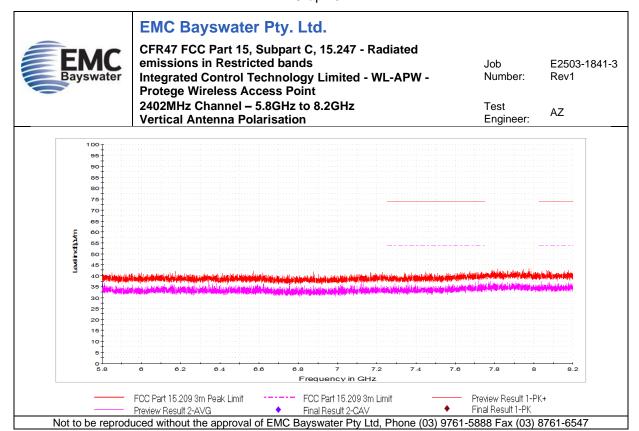
Graph 32



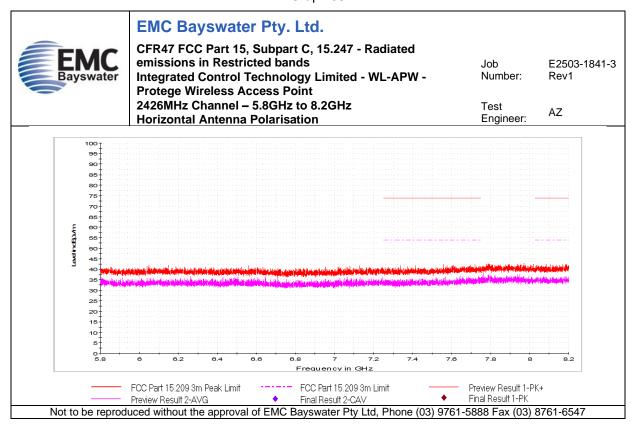

Not to be reproduced without the approval of EMC Bayswater Pty Ltd, Phone (03) 9761-5888 Fax (03) 8761-6547

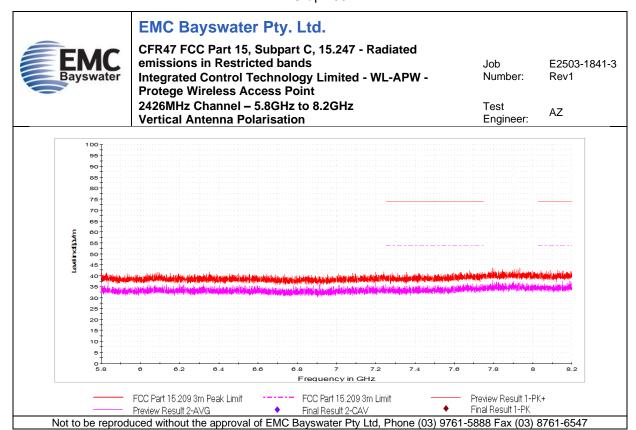
Graph 34



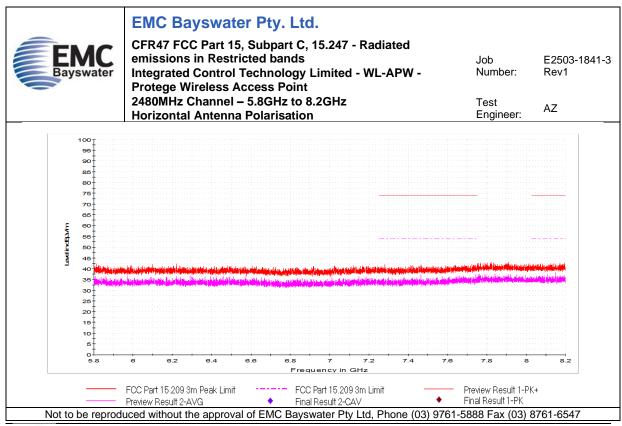

Not to be reproduced without the approval of EMC Bayswater Pty Ltd, Phone (03) 9761-5888 Fax (03) 8761-6547 Graph 36

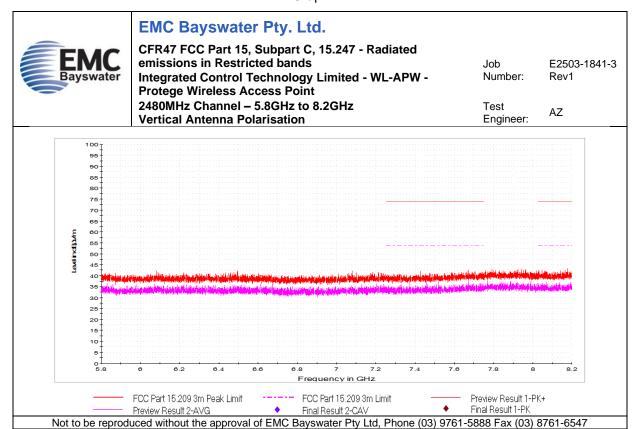
Preview Result 2-AVG



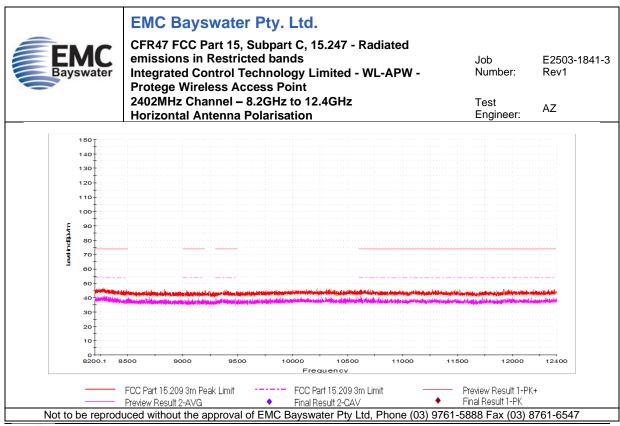


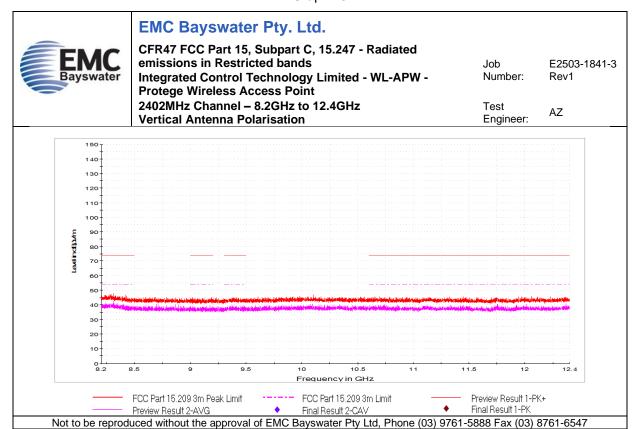
Graph 38



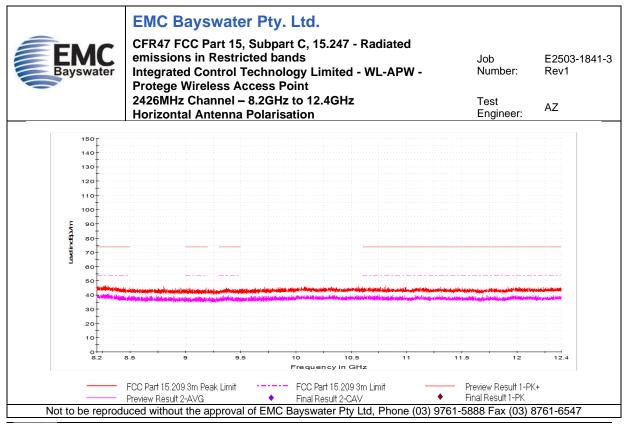


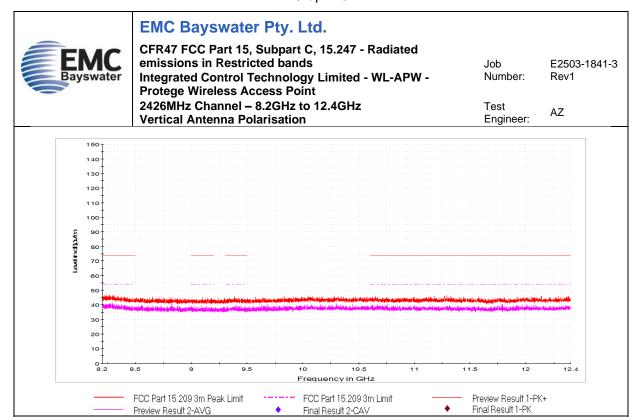
Graph 40



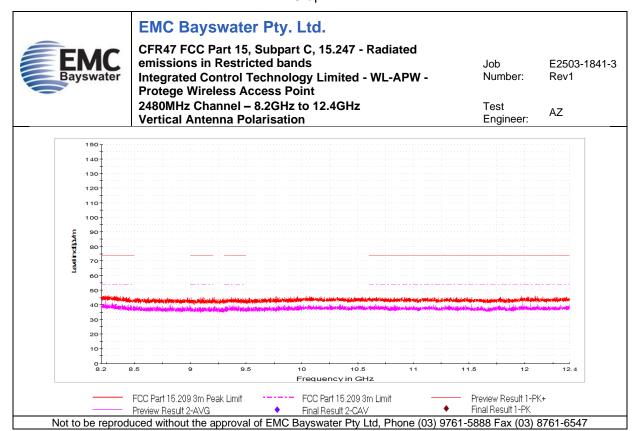


Graph 42

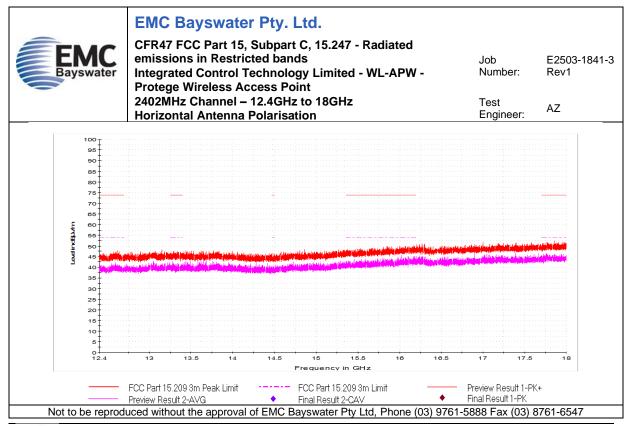


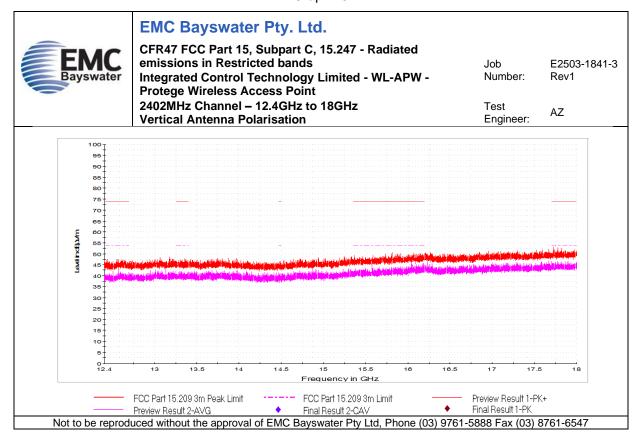


Graph 44

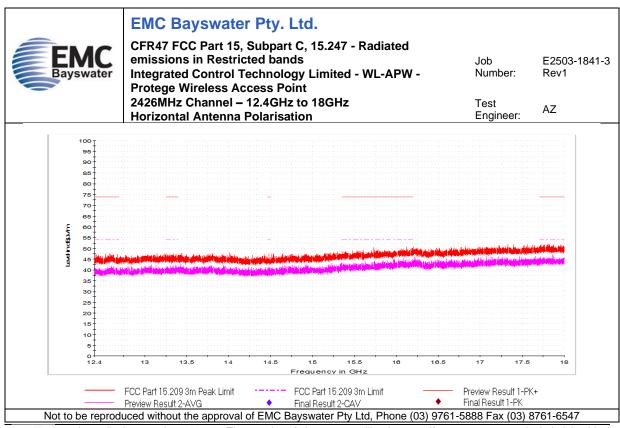

Not to be reproduced without the approval of EMC Bayswater Pty Ltd, Phone (03) 9761-5888 Fax (03) 8761-6547

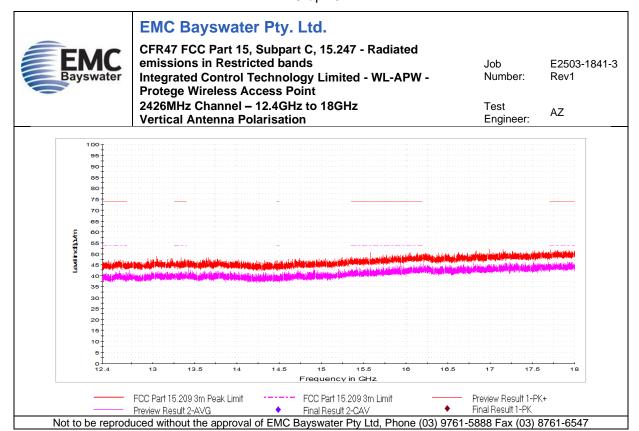
Graph 46



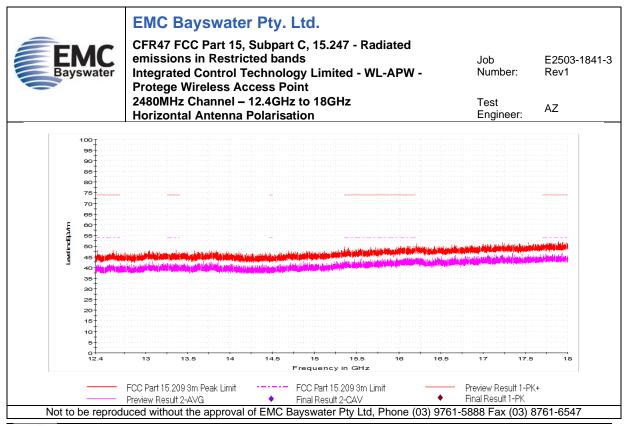


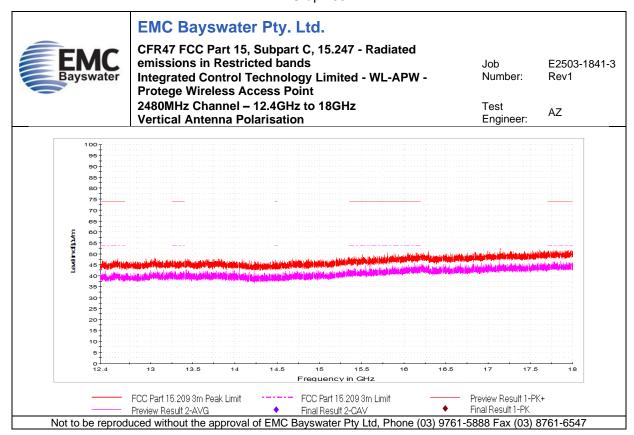
Graph 48



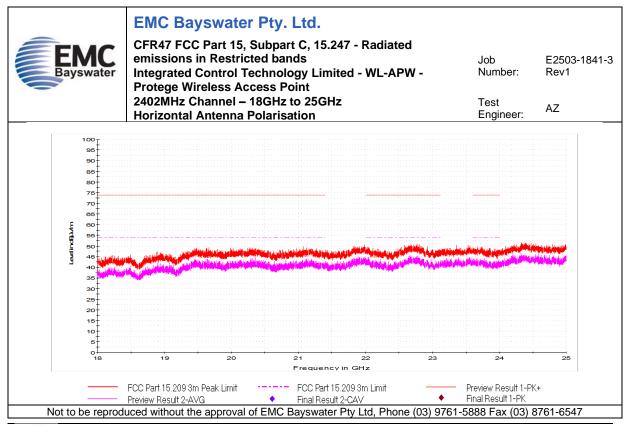


Graph 50



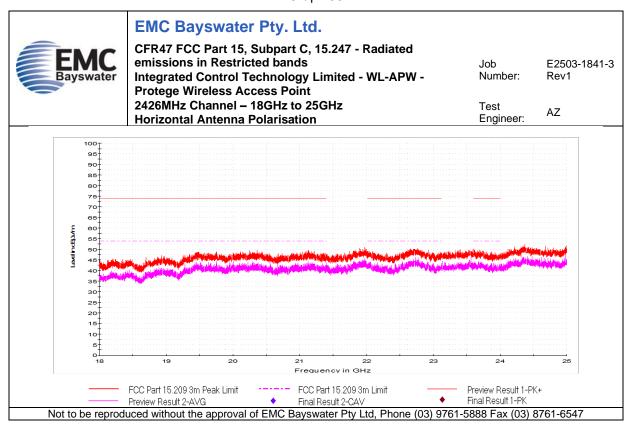


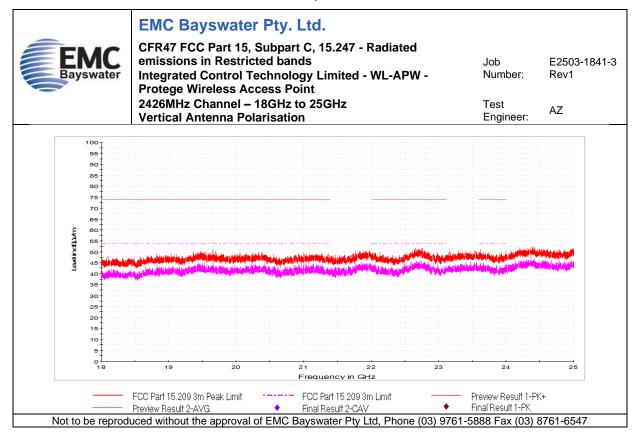
Graph 52

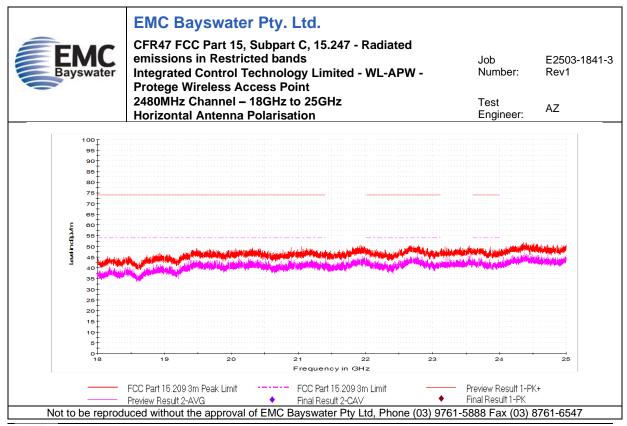




Graph 54

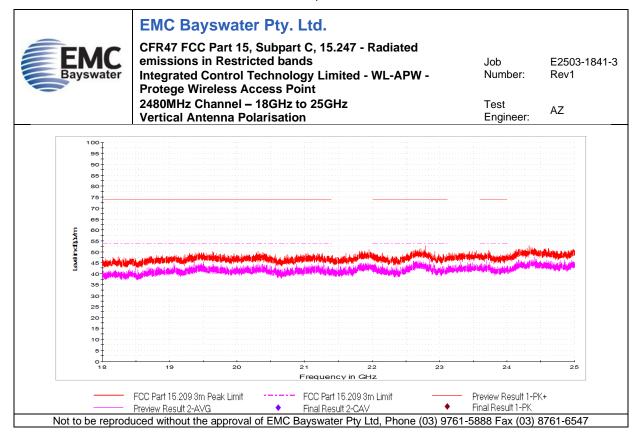



Graph 56



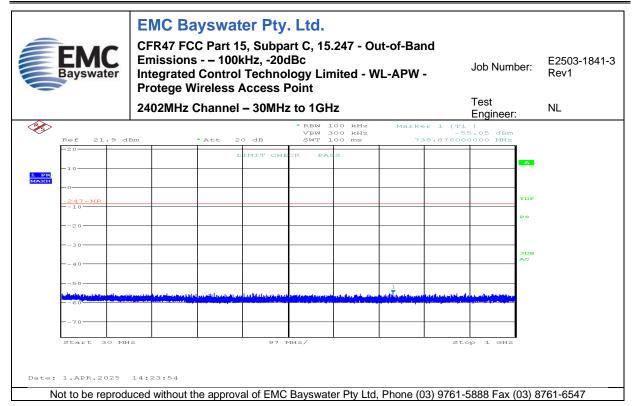
Graph 57

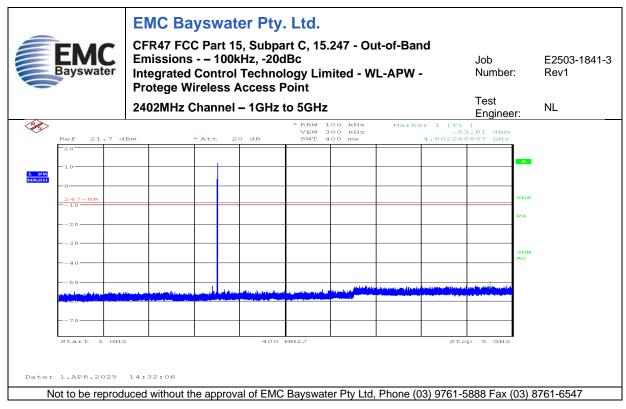
Graph 58



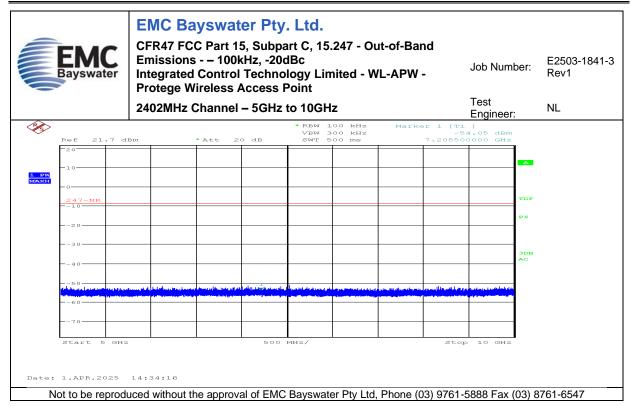
Accreditation number: 18553. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document may not be reproduced except in full without approval from EMC Bayswater, with the exception of the certificate on page 2.

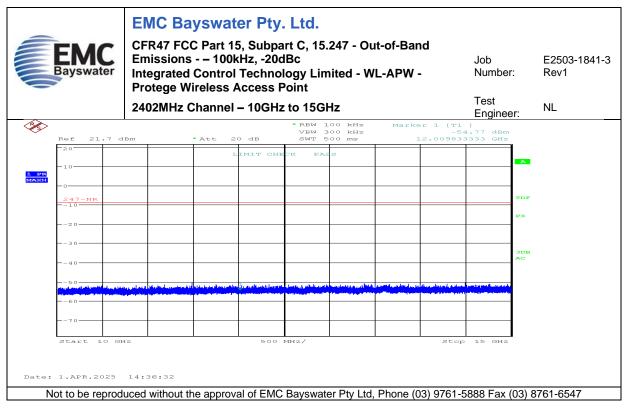
Graph 59

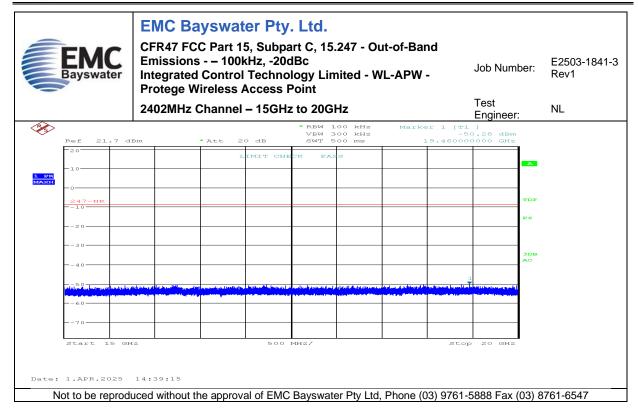

Graph 60

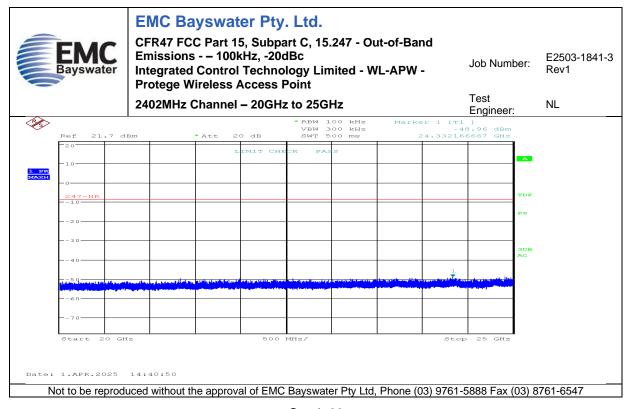

Appendix C.5 - Out-of-Band Emissions - 100kHz, -20dBc - FCC 15.247(d)

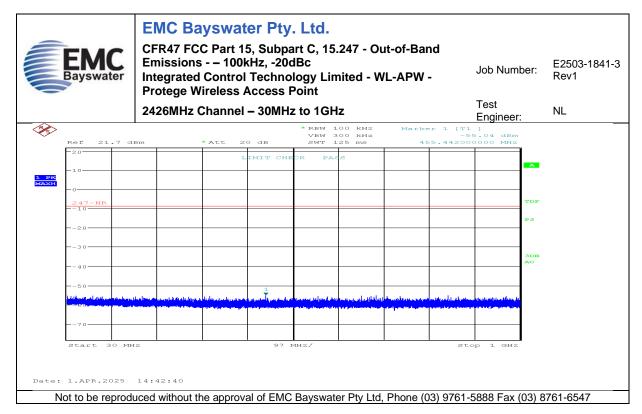
No.	Test	Graph Description
61		30MHz to 1GHz
62	Out-of-Band Emissions	1GHz to 5GHz
63	– 100kHz, -20dBc	5GHz to 10GHz
64		10GHz to 15GHz
65	2402MHz Channel	15GHz to 20GHz
66		20GHz to 25GHz
67		30MHz to 1GHz
68	Out-of-Band Emissions	1GHz to 5GHz
69	– 100kHz, -20dBc	5GHz to 10GHz
70		10GHz to 15GHz
71	2426MHz Channel	15GHz to 20GHz
72		20GHz to 25GHz
73		30MHz to 1GHz
74	Out-of-Band Emissions	1GHz to 5GHz
75	– 100kHz, -20dBc	5GHz to 10GHz
76		10GHz to 15GHz
77	2480MHz Channel	15GHz to 20GHz
78		20GHz to 25GHz

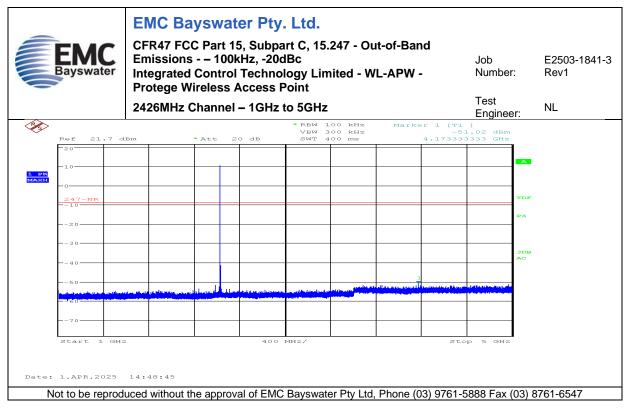

Graph 61

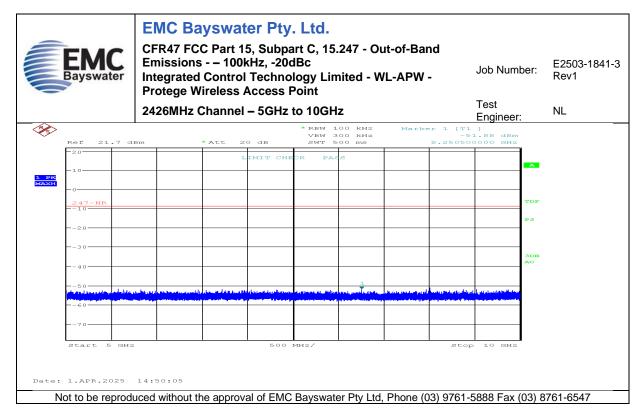

Graph 62

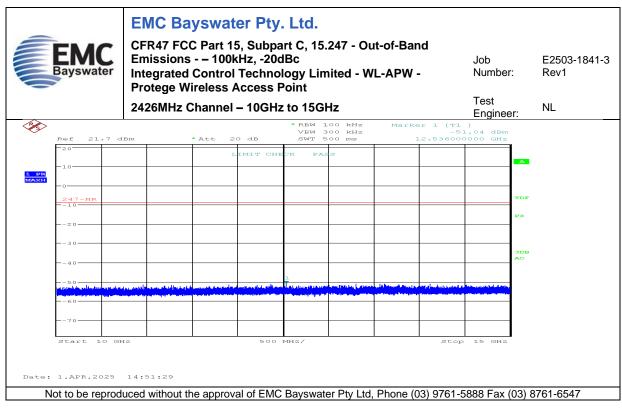

Graph 63

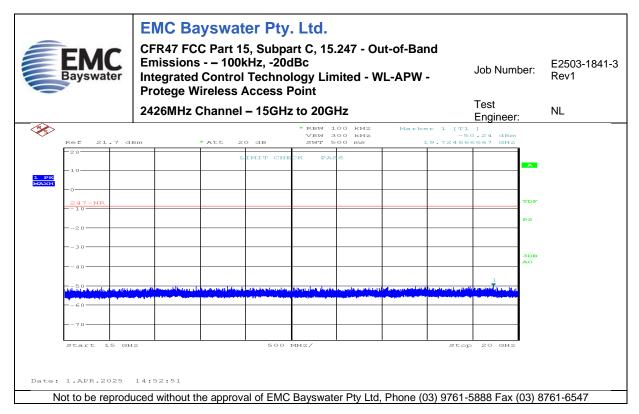

Graph 64

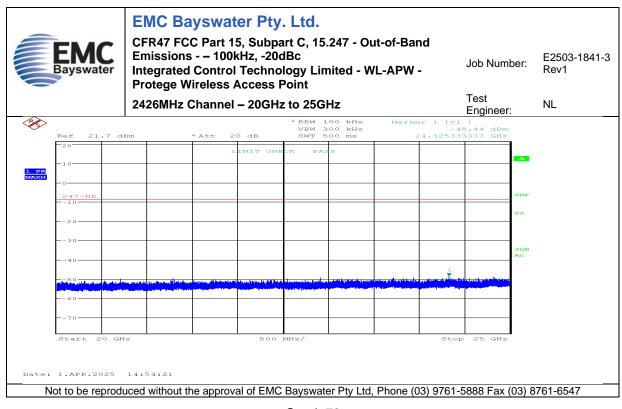

Graph 65

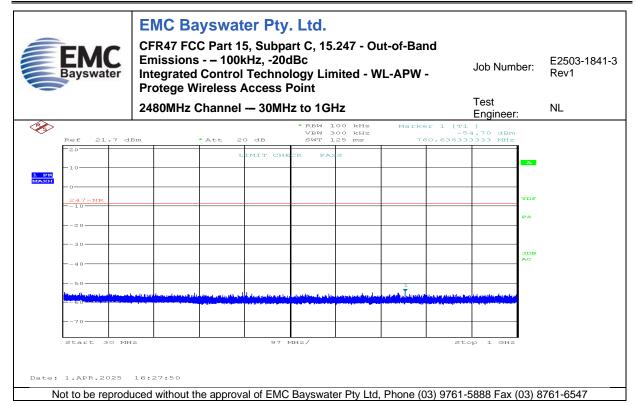

Graph 66

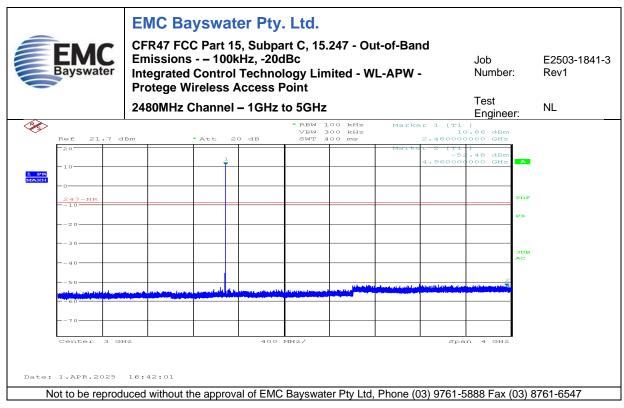

Graph 67

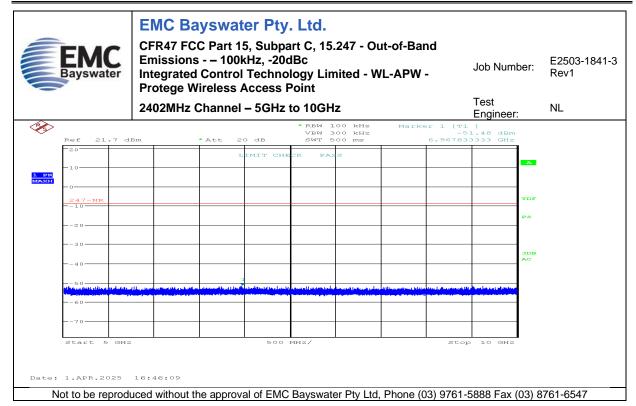

Graph 68

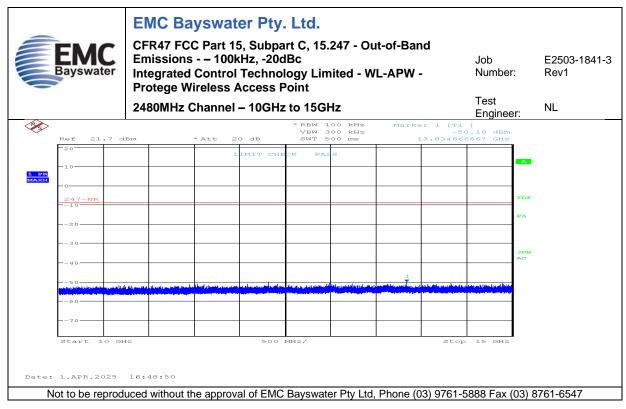

Graph 69

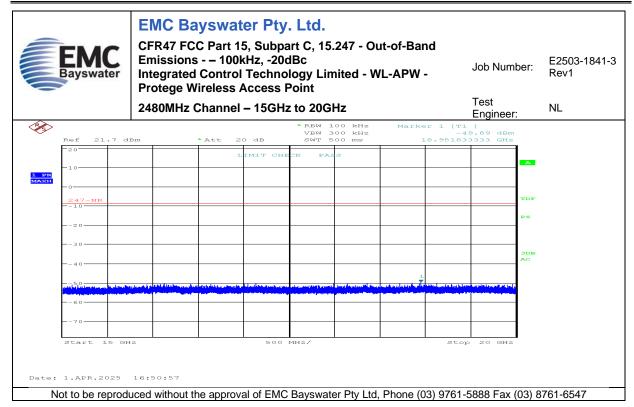

Graph 70

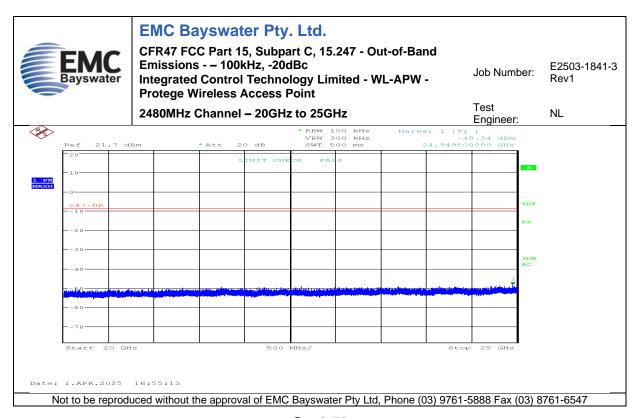

Graph 71


Graph 72


Graph 73

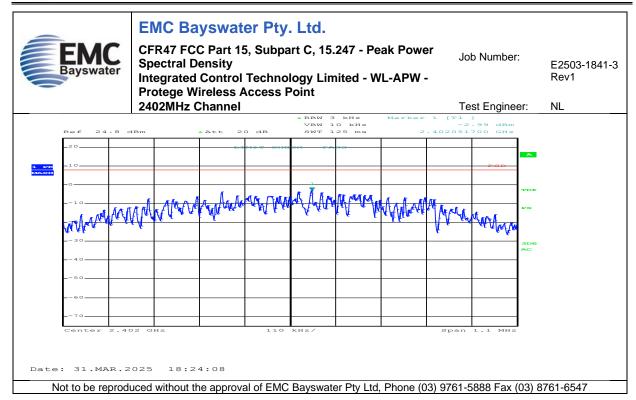

Graph 74

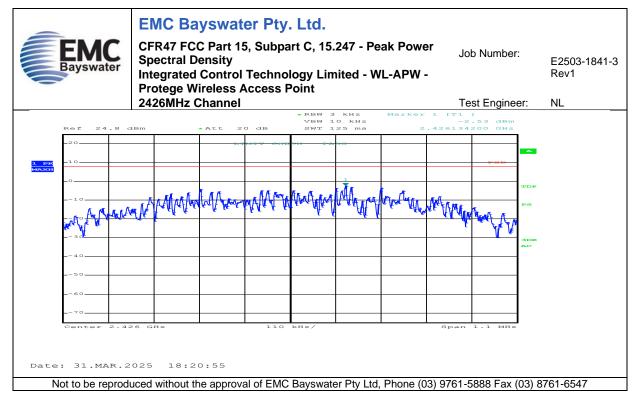

Graph 75


Graph 76

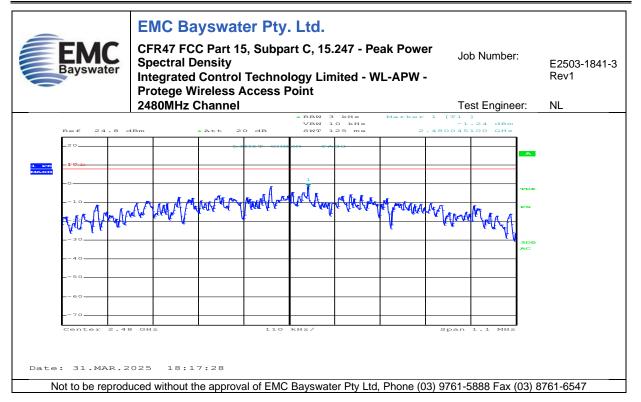
Graph 77

Graph 78

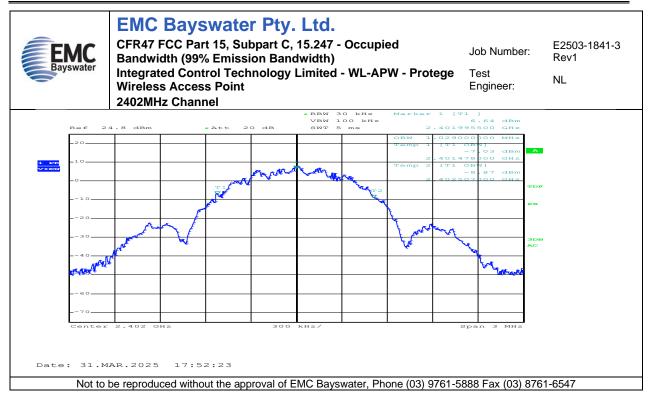



Appendix C.6 - Measurement Graphs - Power Spectral Density - FCC 15.247 (e)

No.	Test	Graph Description
79		2402MHz Channel
80	Power Spectral Density	2426MHz Channel
81		2480MHz Channel

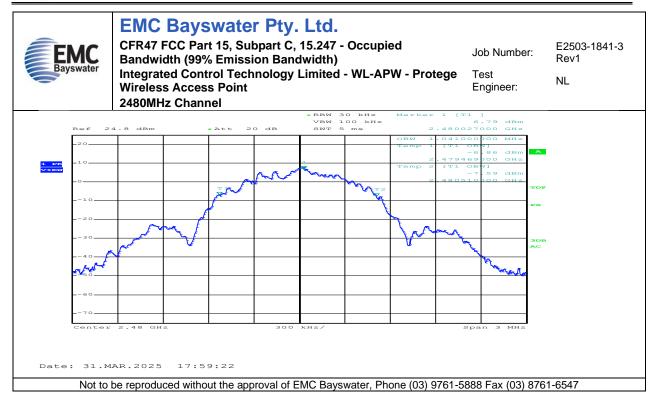

Graph 79

Graph 80

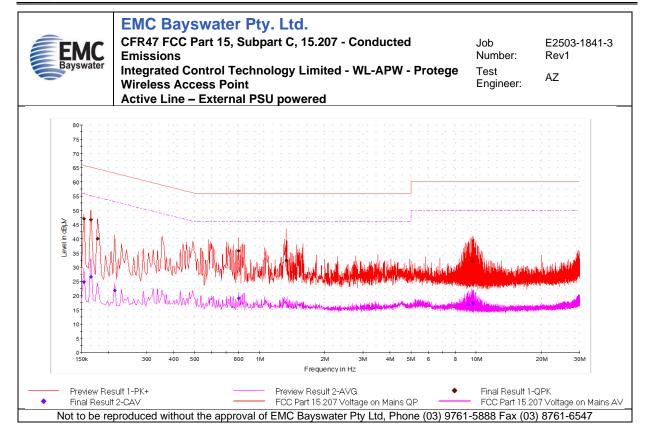

Graph 81

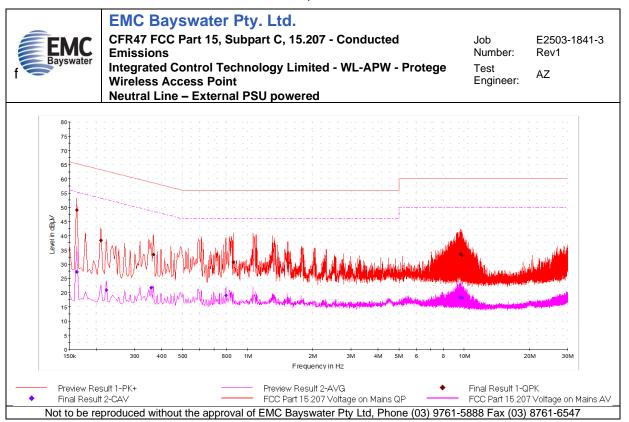

Appendix C.7 - Occupied Bandwidth (99% Emission Bandwidth)

No.	Test	Graph Description
82	0	2402MHz Channel
83	Occupied Bandwidth (99% Emission Bandwidth)	2426MHz Channel
84	(99% EITHSSIOTI BAHGWIGHT)	2480MHz Channel

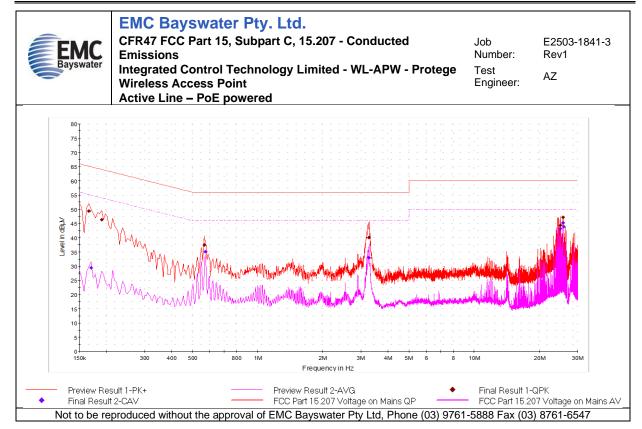

Graph 82

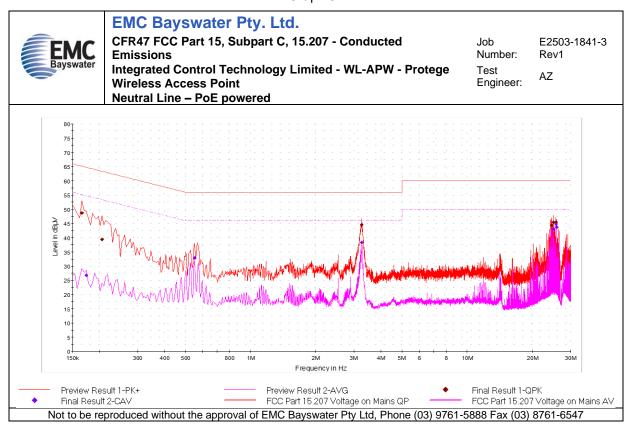
Graph 83


Graph 84


Appendix C.8 - Conducted Emissions- FCC 15.207

No.	Test	Graph Description
85	Conducted Emissions	Active Line – External PSU powered
86		Neutral Line – External PSU powered
87		Active Line – PoE powered
88		Neutral Line – PoE powered


Graph 85


Graph 86

Graph 87

