Summit Semiconductor

Model No: 444-2196H (Silverton)

Report No. FOCU0094.3

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: October 04, 2010 Summit Semiconductor Model: 444-2196H (Silverton)

Emissions				
Test Description	Specification	Test Method	Pass/Fail	
Emission Bandwidth	FCC 15.407:2010	ANSI C63.10:2009	Pass	
Peak Power Spectral Density	FCC 15.407:2010	ANSI C63.10:2009	Pass	
Peak Excursion of the Modulation Envelope	FCC 15.407:2010	ANSI C63.10:2009	Pass	
Peak Transmit Power	FCC 15.407:2010	ANSI C63.10:2009	Pass	
Frequency Stability	FCC 15.407:2010	ANSI C63.10:2009	Pass	
Spurious Radiated Emissions	FCC 15.209:2010	ANSI C63.10:2009	Pass	
AC Powerline Conducted Emissions	FCC 15.207:2010	ANSI C63.10:2009	Pass	
Burst Duration	FCC 15.407:2010	ANSI C63.10:2009	Pass	

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:

Don Facteau, IS Manager

QAIVN

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Description		Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	Summit Semiconductor
Address:	22867 NW Bennett St, Suite 200
City, State, Zip:	Hillsboro, OR 97124
Test Requested By:	Ken Boehlke
Model:	444-2196H (Silverton) Version 1.02
First Date of Test:	September 23, 2010
Last Date of Test:	October 4, 2010
Receipt Date of Samples:	September 23, 2010
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):
Wireless Audio Slave Board - Radiated

Testing Objective:	
These tests were selected to satisfy the EMC requirements requested by the client.	

Revision 9/21/05

CONFIGURATION 1 FOCU0094

Software/Firmware Running during test	
Description	Version
Hood BIST 13	13

EUT				
Description Manufacturer Model/Part Serial Number Number				
Wireless Audio Slave Board - Direct Connect	Summit Semiconductor	444-2196H (Silverton)	2E	

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
DC Power / RS-232 Serial Interface	Summit Semiconductor	Hermiston	none
AC Adapter	PHIHONG	PSA21R-033	none

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Remote PC	Dell	Latitude D820	2006-00516	

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Multi-pin flex cable	No	0.3m	No	Wireless Audio Slave Board - Direct Connect	DC Power / RS-232 Serial Interface	
Serial	Yes	2.0m	No	DC Power / RS-232 Serial Interface	Remote PC	
DC Lead	PA	1.8m	PA	AC Adapter	DC Power / RS-232 Serial Interface	
PA = Ca	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 FOCU0094

Software/Firmware Running during test	
Description	Version
Hood BIST 13	13

EUT				
Description Manufacturer Model/Part Number Serial Number				
Wireless Audio Slave Board - Radiated	Summit Semiconductor	444-2196H (Silverton)	2C	

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
DC Power / RS-232 Serial Interface	Summit Semiconductor	Hermiston	none			
DC Block	MCL	BLK-89	15542			
DC Power Supply	Topward	6303D	743645			

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Remote PC	IBM	Thnkpad A21m	IS108		

Cables	Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Multi-pin flex cable	No	0.3m	No	Wireless Audio Slave Board - Direct Connect	DC Power / RS-232 Serial Interface	
Serial	Yes	2.0m	No	DC Power / RS-232 Serial Interface	Remote PC	
DC Lead	PA	1.8m	PA	AC Adapter	DC Power / RS-232 Serial Interface	
PA = Ca	able is perm	nanently attacl	ned to the d	levice. Shielding and/or presence of fe	errite may be unknown.	

CONFIGURATION 3 FOCU0094

Software/Firmware Running during test	
Description	Version
Hood BIST 13	13

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Wireless Audio Slave Board - Radiated	Summit Semiconductor	444-2196H (Silverton)	2E	

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
DC Power / RS-232 Serial Interface	Summit Semiconductor	Hermiston	none		

Remote Equipment Outside of Test Setup Boundary						
Description	Description Manufacturer Model/Part Number Serial Number					
Remote PC	Dell	Latitude D820	2006-00516			

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Multi-pin flex cable	No	0.3m	No	Wireless Audio Slave Board - Direct Connect	DC Power / RS-232 Serial Interface	
AC Power	No	1.8m	No	AC Mains	DC Power Supply	
PA = Ca	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 4/28/03

	Equipment modifications							
Item	Date	Test	Modification	Note	Disposition of EUT			
1	9/23/2010	Burst Duration	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
2	9/23/2010	Emission Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
3	9/27/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
4	9/28/2010	Peak Transmit Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
5	9/28/2010	Peak Excursion of the Modulation Envelope	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
6	9/28/2010	Peak Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
7	10/1/2010	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
8	10/4/2010	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.			

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

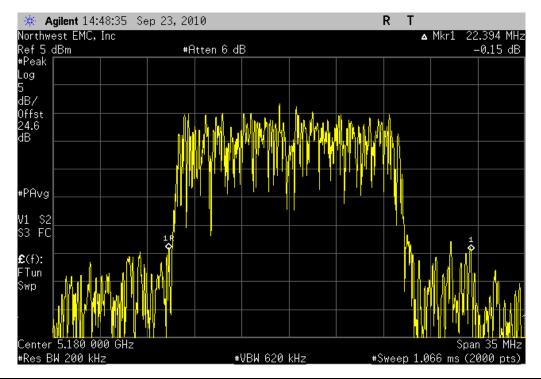
TEST DESCRIPTION

The transmit frequency was set to the lowest, a medium, and the highest channels in 5470-5725 MHz band, lowest and highest for 5150-5250 MHz band and 5250-5350 MHz band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

Due to the short pulse duration of the transmitter, RF gating was used on the analyzer to ensure the sweep was only operating during the highest portion of the emission.

The spectrum analyzer settings were as follows:

- > Span = approximately 1.5 to 2 times the emission bandwidth, centered on the transmit channel.
- RBW = Approx. 1% of the emission bandwidth (B). This was an iterative process where an exact match of 1% may not be achieved. The largest value of RBW that came close to 1% of the emission bandwidth was used.
- A peak detector was used.

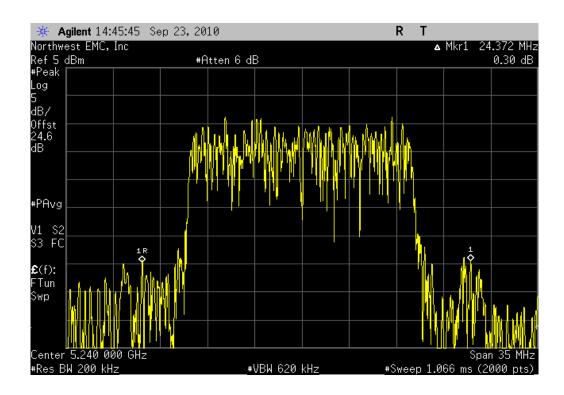

The marker-delta function was then used to measure 26 dB emission bandwidth

NORTHWEST		EMICOLON DANIDA	UDTU		XMit 2010.07.29
EMC		EMISSION BANDW	IDIH		
EUT:	Silverton			Work Order:	FOCU0094
Serial Number:					09/23/10
Customer:	Summit Semiconductor			Temperature:	22°C
Attendees	None			Humidity:	45%
Project:				Barometric Pres.:	30.10 in
	Rod Peloquin	Power: 3		Job Site:	EV06
TEST SPECIFICAT	TONS	٦	Test Method		
FCC 15.407:2010		A	NSI C63.10:2009		
COMMENTS					
2.06 dB loss added	d for adapter cable and DC block.				
DEVIATIONS FROM	M TEST STANDARD				
None					
		10 1 P.			
Configuration #	2	Rocky be Felings			
		Signature			
			Val	uo Li	mit Results
6 Mbps			Vai	ue <u>L</u> i	ilit iteauta
o mopo	5150 - 5250 MHz Band				
	Channel 36, Low Channel		22.394	MHz N	I/A N/A
	Channel 48, High Channel		24.372		I/A N/A
	5250 - 5350 MHz Band		-		
	Channel 52, Low Channel		18.559	MHz N	I/A N/A
	Channel 64, High Channel		18.594	MHz N	I/A N/A
	5470 - 5725 MHz Band				
	Channel 100, Low Channel	·I	18.612	MHz	I/A N/A
	Channel 116, Mid Channel		18.017	MHz N	I/A N/A
	Channel 140, High Channel	el	18.332	MHz N	I/A N/A

N/A

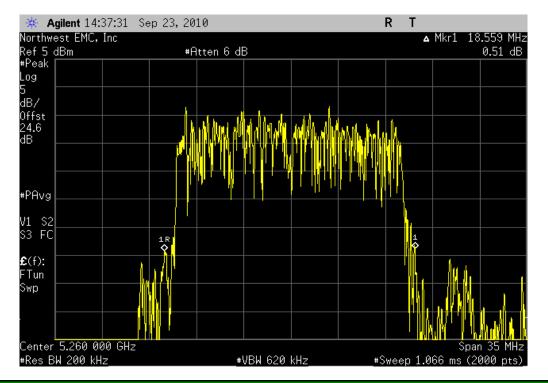
EMISSION BANDWIDTH

6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel Result: N/A Value: 22.394 MHz Limit:



6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

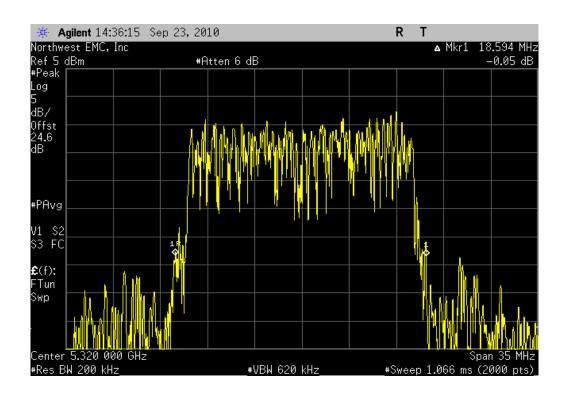
Result: N/A


Value: 24.372 MHz

Limit: N/A

6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

Result: N/A Value: 18.559 MHz Limit: N/A

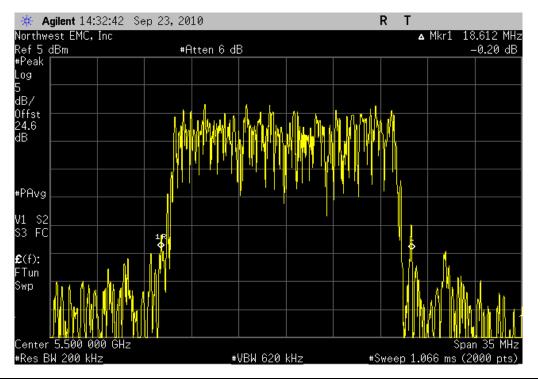


6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel

Result: N/A

Value: 18.594 MHz

Limit: N/A

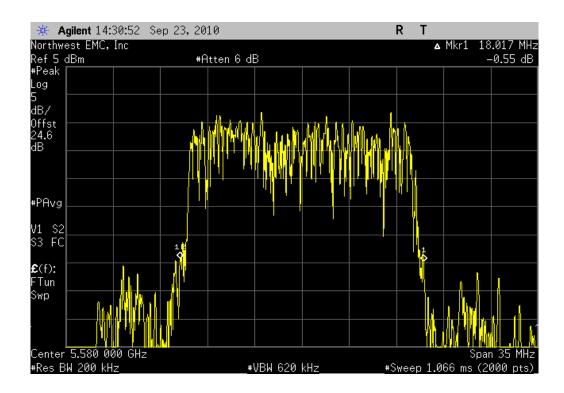


6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel

Result: N/A

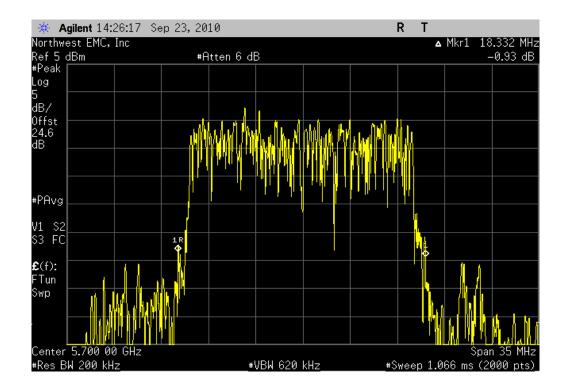
Value: 18.612 MHz

Limit: N/A



6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel

Result: N/A


Value: 18.017 MHz

Limit: N/A

6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel

Result: N/A Value: 18.332 MHz Limit: N/A

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

ANSI C63.10 was followed. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. The lowest data rate was measured as it provided the highest output power. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

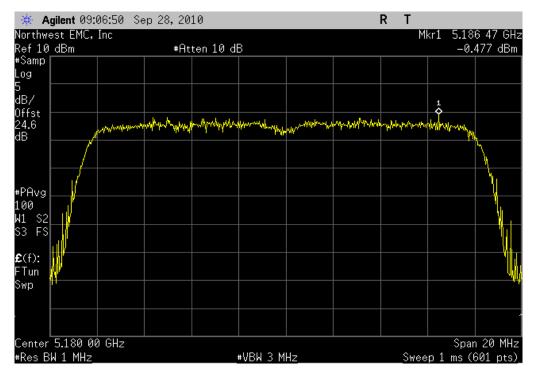
Prior to measuring peak power spectral density, the transmission pulse duration (T) were measured. The transmission pulse duration and the associated data are found elsewhere in this test report.

Method #2 was used because while the pulse duration was short, RF Gating was used on the analyzer to measure only during the transmission.

The spectrum analyzer settings were as follows:

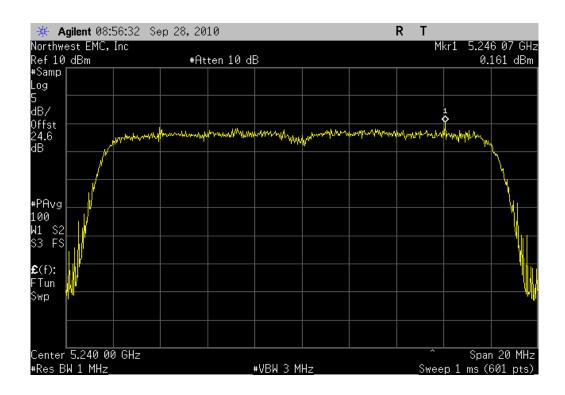
- > The span was set to encompass entire emission bandwidth (B), centered on the transmit channel.
- > RBW = 1 MHz, VBW >= 3 MHz because the emission bandwidth (B) is greater than 1 MHz
- > Sample detector mode because the bin width (span / number of spectral points) < 0.5 RBW.
- Trace average 100 traces in power averaging mode (not video averaging).

The peak power spectral density (PPSD) was determined to be the highest level found across the emission in any 1 MHz band after 100 sweeps of power averaging (not video averaging).

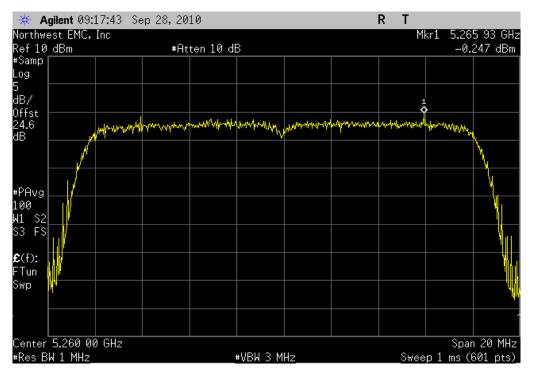

The following registers were set in the customer interface

ser wr 408840 0 ser wr 4080a0 0 ser wr 4080a4 48

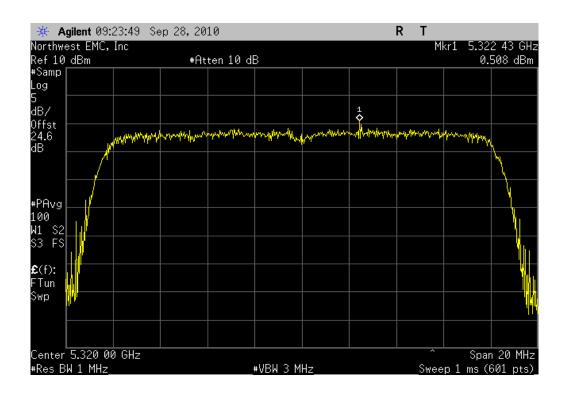
NORTHWEST EMC		PEAK POWER SP	ECTRAL DENSITY		XMit 2	2010.07.29
	Silverton				er: FOCU0094	
Serial Number:					te: 09/28/10	
	Summit Semiconductor			Temperatui		
	Ponnappa Pasura			Humidi		
Project:				Barometric Pre		
	Rod Peloquin		Power: 3.3 VDC	Job Sit	te: EV06	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.407:2010			ANSI C63.10:2009			
COMMENTS						
sweep.	·	C block. Transmitting with duty cycle i	noted elsewhere in report. Scrambler	seed register set to 0. I	RF gating of analyze	·r
	I TEST STANDARD					
None						
Configuration #	2	Signature Rocky le	Reling			
			V	alue	Limit Re	esults
6 Mbps						
	5150 - 5250 MHz Band					
		Low Channel				Pass
		High Channel	0.2	dBm -	4 dBm F	Pass
	5250 - 5350 MHz Band					
	,	Low Channel				Pass
		High Channel	0.5	dBm 1	1 dBm F	Pass
	5470 - 5725 MHz Band			-		
), Low Channel				Pass
		6, Mid Channel				Pass
	Channel 140), High Channel	-0.2	2 dBm 1	1 dBm F	Pass


802.11(a) 6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

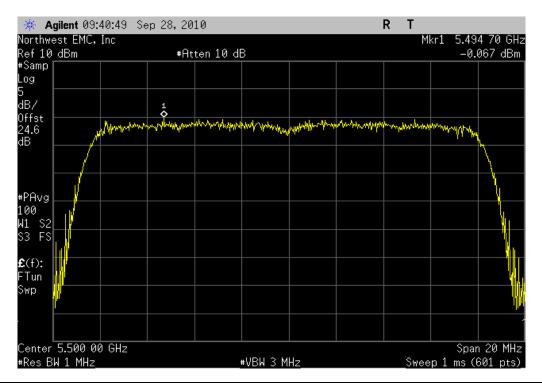
Result: Pass Value: -0.48 dBm Limit: 4 dBm


802.11(a) 6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

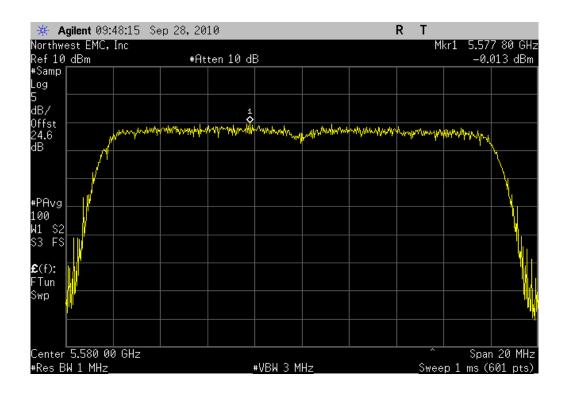
Result: Pass Value: 0.16 dBm Limit: 4 dBm


802.11(a) 6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

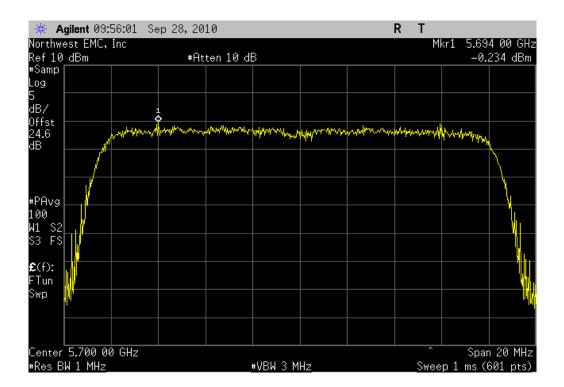
Result: Pass Value: -0.25 dBm Limit: 11 dBm



802.11(a) 6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel


Result: Pass Value: 0.51 dBm Limit: 11 dBm

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel **Result:** Pass **Value:** -0.01 dBm **Limit:** 11 dBm



802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel **Result:** Pass **Value:** -0.01 dBm **Limit:** 11 dBm

802.11(a) 6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel

Result: Pass Value: -0.23 dBm Limit: 11 dBm

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

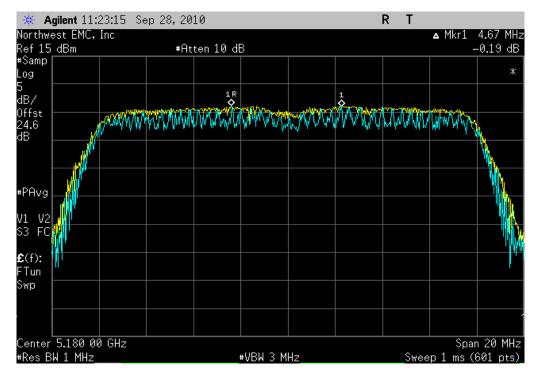
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

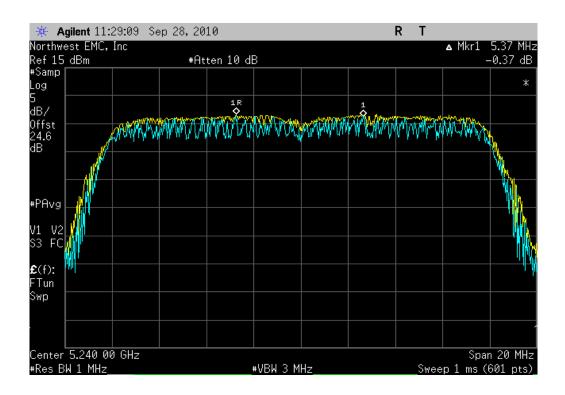
TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. The lowest, a medium, and the highest data rates were measured. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

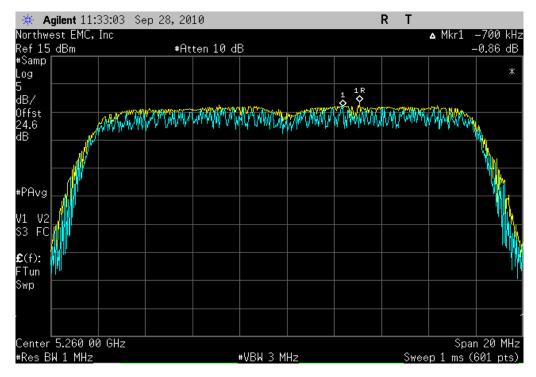

The spectrum analyzer settings were as follows:

- > Span set to encompass the entire emission bandwidth (B), centered on the transmit channel.
- > Using the marker delta function, the largest difference between the following two traces was measured:
 - o 1st Trace: RBW = 1 MHz, VBW >= 3 MHz with peak detector and max-hold settings.
 - o 2nd Trace: Use same settings as were used for peak conducted transmit power. The sample detector was used as well as the VBW being matched to that used on the peak conducted transmit power.

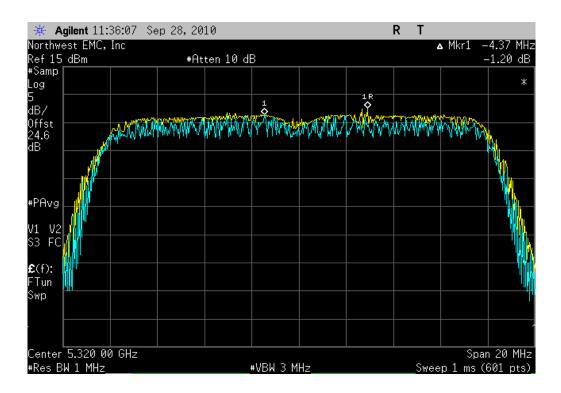
NORTHWEST						XMit 2010.07.29
EMC	PEAK	EXCURSION OF THE	MODULA	TION ENVE	LOPE	
EUT	: Silverton				Work Order:	FOCU0094
Serial Number	: 2E				Date:	09/28/10
Customer	: Summit Semiconductor				Temperature:	22°C
Attendees	: None				Humidity:	45%
Project	:: None				Barometric Pres.:	30.10 in
	: Rod Peloquin		Power: 3.3 V	DC	Job Site:	EV06
TEST SPECIFICAT	TIONS		Test I	Method		
FCC 15.407:2010			ANSI	C63.10:2009		
COMMENTS			•			
2.06 dB loss adde	d for adapter cable and DC	block. Transmitting with duty cycle r	oted elsewhere in	report.		
	a 10. aaapto. sasto ana 20	2.00				
DEVIATIONS FRO	M TEST STANDARD					
None						
Configuration #	2	Rolly le	Releng			
				Valu	ie Lii	mit Results
6 Mbps						
	5150 - 5250 MHz Band					
	Channel 36, I	_ow Channel		0.2 c	IB ≤ 13	dBm Pass
	Channel 48, I	High Channel		0.4 c	IB ≤ 13	dBm Pass
	5250 - 5350 MHz Band					
	Channel 52, I	Low Channel		0.9 c	IB ≤ 13	dBm Pass
	Channel 64, I	High Channel		1.2 0	IB ≤ 13	dBm Pass
	5470 - 5725 MHz Band	·				
	Channel 100.	Low Channel		0.6 c	IB ≤ 13	dBm Pass
		Mid Channel		1.1 0	IB ≤ 13	dBm Pass
		High Channel		0.8 0	IB ≤ 13	dBm Pass


6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

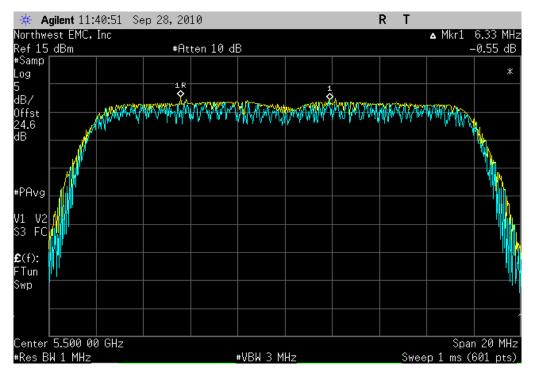
Result: Pass Value: 0.2 dB Limit: ≤ 13 dBm


6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

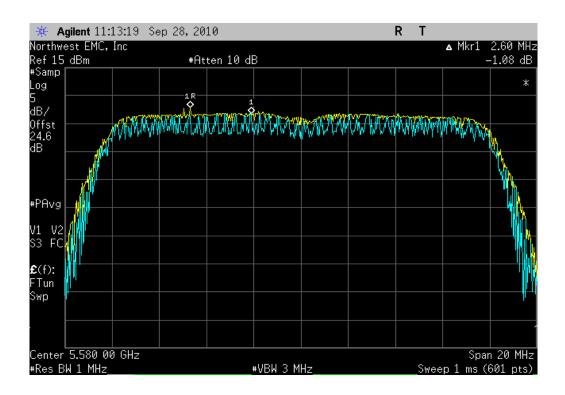
Result: Pass Value: 0.4 dB Limit: ≤ 13 dBm


6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

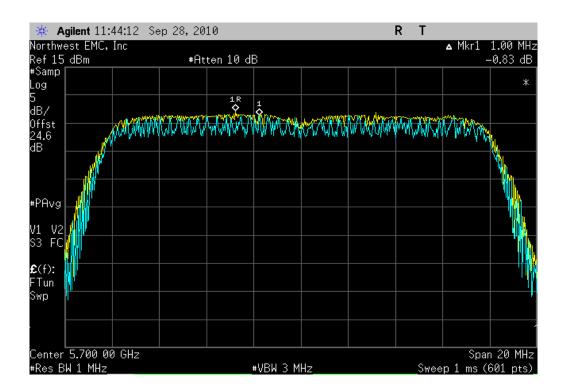
Result: Pass Value: 0.9 dB Limit: ≤ 13 dBm


6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel

Result: Pass Value: 1.2 dB Limit: ≤ 13 dBm


6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel

Result: Pass Value: 0.6 dB Limit: ≤ 13 dBm


6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel

Result: Pass Value: 1.1 dB Limit: ≤ 13 dBm

6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel

Result: Pass Value: 0.8 dB Limit: ≤ 13 dBm

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

ANSI C63.10 was followed. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

Prior to measuring peak transmit power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Peak Transmit Power. The method of measuring the emission bandwidth and the associated data are found elsewhere in this test report. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

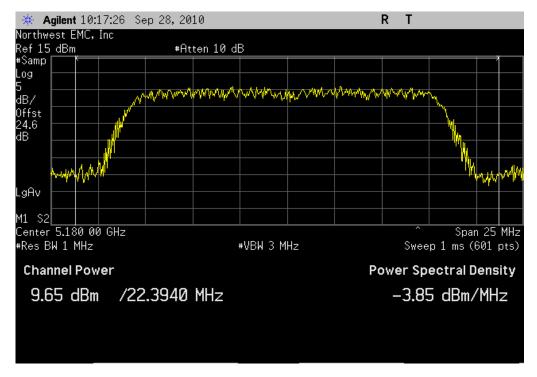
The RF gating function was used on the spectrum analyzer and the gating setup was adjusted to ensure the sweep was only gated during the highest portion of the transmitter pulse duration.

Method #3 was used because the analyzer sweep time was greater than T for the operating mode which has the shortest transmission pulse duration and the Emission Bandwidth was greater than the largest RBW on the analyzer.

The spectrum analyzer settings were as follows:

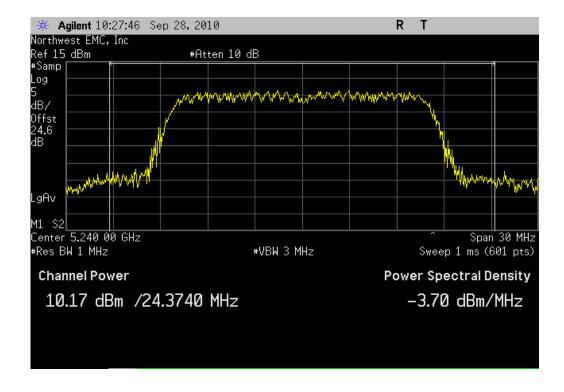
- > The span was set to encompass entire emission bandwidth (B), centered on the transmit channel.
- \rightarrow The RBW = 1 MHz, VBW > / = 1/T
- ➤ Sample detector mode because the bin width (span / number of spectral points) < 0.5 RBW.
- Power was integrated across "B", by using the channel power function of the analyzer.

The power limits are based on the following formulas:

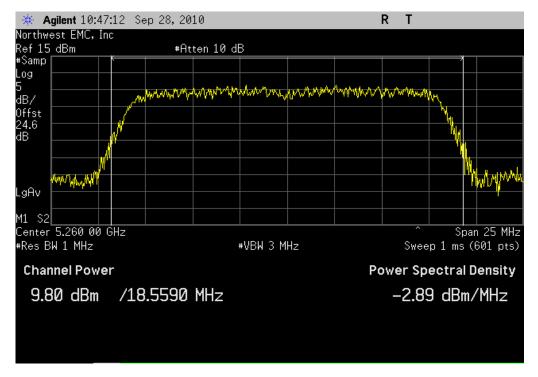

- 5.15 MHz 5.25 MHz band The lesser of 50 mW or 4 dBm + 10 log B, where B is the -26dB emission bandwidth in MHz.
- $5.25~\mathrm{MHz} 5.35~\mathrm{MHz}$ band The lesser of 250 mW or 11 dBm + 10 log B, where B is the -26dB emission bandwidth in MHz.
- 5.47 MHz 5.725 MHz band The lesser of 250 mW or 11 dBm + 10 log B, where B is the -26dB emission bandwidth in MHz.

In each case the allowable output power is lower if the -26dB emission bandwidth is less than 20 MHz.

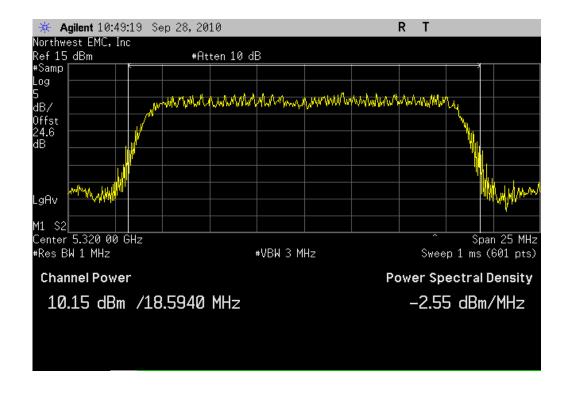
NORTHWEST						XMit 2010.07.29
EMC		PEAK TRANS	MIT POWER			
EUT:	Silverton				Work Order: FOCU0094	1
Serial Number:					Date: 09/28/10	
Customer:	Summit Semiconductor				Temperature: 22°C	
Attendees:	None				Humidity: 45%	
Project:	None			Baro	metric Pres.: 30.10 in	
	Rod Peloquin		Power: 3.3 VDC		Job Site: EV06	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.407:2010			ANSI C63.10:20	09		
COMMENTS						
2.06 dB loss added	for adapter cable and DC	block. Transmitting with duty cycle n	oted elsewhere in report. Se	rambler seed registe	r set to 0. RF gating of a	nalyzer
sweep.	•	• , ,	•	·		,
•						
DEVIATIONS FROM	M TEST STANDARD					
None						
Configuration #	2	Signature Rocky Le	Releng			
		-		Value	Limit	Results
6 Mbps						
	5150 - 5250 MHz Band					
	Channel 36,			9.7 dBm	17 dBm	Pass
	Channel 48,	High Channel		10.2 dBm	17 dBm	Pass
	5250 - 5350 MHz Band					
	Channel 52,			9.8 dBm	23.7 dBm	Pass
	Channel 64,	High Channel		10.2 dBm	23.7 dBm	Pass
	5470 - 5725 MHz Band					
		, Low Channel		10.6 dBm	23.7 dBm	Pass
	Channel 116	, Mid Channel		10.6 dBm	23.6 dBm	Pass
	Channel 140	, High Channel		10.3 dBm	23.6 dBm	Pass


6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

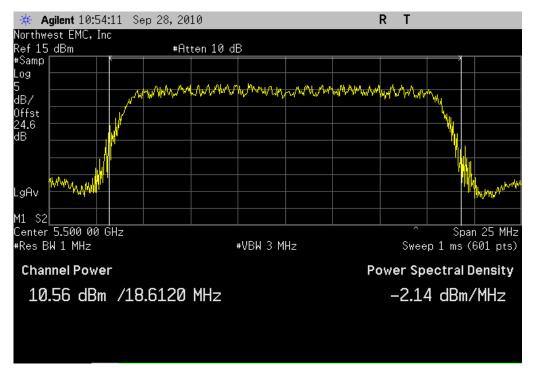
Result: Pass Value: 9.7 dBm Limit: 17 dBm


6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

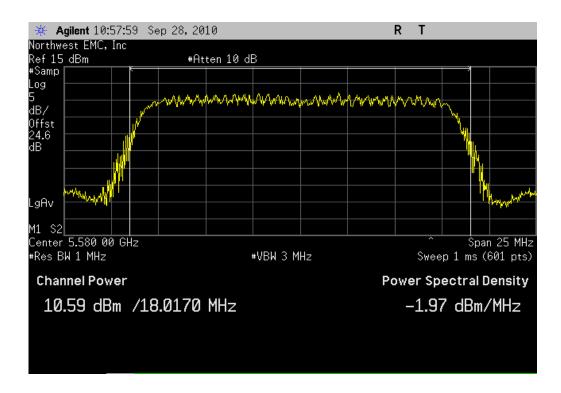
Result: Pass Value: 10.2 dBm Limit: 17 dBm


6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

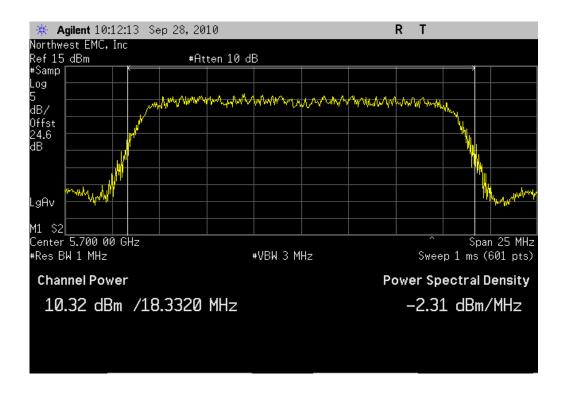
Result: Pass Value: 9.8 dBm Limit: 23.7 dBm


6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel

Result: Pass Value: 10.2 dBm Limit: 23.7 dBm


6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel

Result: Pass Value: 10.6 dBm Limit: 23.7 dBm


6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel

Result: Pass Value: 10.6 dBm Limit: 23.6 dBm

6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel

Result: Pass Value: 10.3 dBm Limit: 23.6 dBm

FREQUENCY STABILITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Chamber, Temp./Humidity Chamber	Cincinnati Sub Zero (CSZ)	ZH-32-2-2-H/AC	TBA	8/20/2010	24
Chamber Temp. & Humidity Controller	ESZ / Eurotherm	Dimension II	TBC	NCR	0
Multimeter	Tektronix	DMM912	MMH	12/10/2008	24
DC Power Supply	Topward	TPS-2000	TPD	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Variation of Supply Voltage

The primary supply voltage was varied over the range specified by the client. Per the client, the chip only works over this voltage range; it will shut off if the voltage is outside the specified range.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 ° to +50° C) and at 10°C intervals.

A direct connect measurement was made between the EUT's antenna cable and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT. Measurements were made at the mid channel of each band to determine frequency stability. If the frequency variation is less than 100 ppm, the EUT will meet the requirement of 15.407(g), that the emissions are maintained within the band of operation.

EMC EUT: Silverton Serial Number: 2E Date: 10/04/10 Customer: Summit Semiconductor Attendees: None Project: None Project: None Tested by: Rod Peloquin Tested by: Rod Peloquin Test Method FCC 15.407:2010 ANSI C63.10:2009 COMMENTS Signal modulated at 6 Mbps PREQUENCY STABILITY Work Order: FOCU0094 Date: 10/04/10 Temperature: 22°C Humidity: 45% Barometric Pres.: 30.10 in Test Method ANSI C63.10:2009 COMMENTS Signal modulated at 6 Mbps	2010.07.29
Serial Number: 2E	
Customer: Summit Semiconductor Attendees: None Project: None Tested by: Rod Peloquin Test Method FCC 15.407:2010 COMMENTS Signal modulated at 6 Mbps Test Summit Semiconductor Temperature: 22°C Humidity: 45% Barometric Pres.: 30.10 in Power: 3.3 VDC Job Site: EV06 & EV09 Test Method ANSI C63.10:2009 COMMENTS Signal modulated at 6 Mbps	
Attendees: None Humidity: 45% Project: None Barometric Pres.: 30.10 in Tested by: Rod Peloquin Power: 3.3 VDC Job Site: EV06 & EV09 TEST SPECIFICATIONS Test Method FCC 15.407:2010 ANSI C63.10:2009 COMMENTS Signal modulated at 6 Mbps DEVIATIONS FROM TEST STANDARD	
Project: None	
Tested by: Rod Peloquin Power: 3.3 VDC Job Site: EV06 & EV09 TEST SPECIFICATIONS Test Method FCC 15.407:2010 ANSI C63.10:2009 COMMENTS Signal modulated at 6 Mbps DEVIATIONS FROM TEST STANDARD	
TEST SPECIFICATIONS Test Method FCC 15.407:2010 ANSI C63.10:2009 COMMENTS Signal modulated at 6 Mbps DEVIATIONS FROM TEST STANDARD	
FCC 15.407:2010 ANSI C63.10:2009 COMMENTS Signal modulated at 6 Mbps DEVIATIONS FROM TEST STANDARD	
COMMENTS Signal modulated at 6 Mbps DEVIATIONS FROM TEST STANDARD	
Signal modulated at 6 Mbps DEVIATIONS FROM TEST STANDARD	
Signal modulated at 6 Mbps DEVIATIONS FROM TEST STANDARD	
DEVIATIONS FROM TEST STANDARD	
None	
Configuration # 2 Rolly be Rolly	
Configuration # 2	
Signature	

Mid Channel 5150 - 5250 MHz Band

Frequency Stability with Variation of AC Voltage (Ambient Temperature = 20°C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
3.6 (110%)	5200.000000	5199.940760	11.39	n/a
3.3 (100%)	5200.000000	5199.933690	12.75	n/a
3.0 (90%)	5200,000000	5199,919860	15.41	n/a

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 3.3 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	5200.000000	5199.922930	14.82	n/a
40	5200.000000	5199.924400	14.54	n/a
30	5200.000000	5199.930360	13.39	n/a
20	5200.000000	5199.933690	12.75	n/a
10	5200.000000	5199.947140	10.17	n/a
0	5200.000000	5199.952500	9.13	n/a
-10	5200.000000	5199.953930	8.86	n/a
-20	5200.000000	5199.947330	10.13	n/a
-30	5200.000000	5199.928300	13.79	n/a

Mid Channel 5250 - 5350 MHz Band

Frequency Stability with Variation of AC Voltage (Ambient Temperature = 20°C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
3.6 (110%)	5300.000000	5299.939100	11.49	n/a
3.3 (100%)	5300.000000	5299.930900	13.04	n/a
3.0 (90%)	5300.000000	5299.919800	15.13	n/a

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 3.3 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	5300.000000	5299.924200	14.30	n/a
40	5300.000000	5299.925890	13.98	n/a
30	5300.000000	5299.932270	12.78	n/a
20	5300.000000	5299.930900	13.04	n/a
10	5300.000000	5299.948770	9.67	n/a
0	5300.000000	5299.954920	8.51	n/a
-10	5300.000000	5299.955770	8.35	n/a
-20	5300.000000	5299.948330	9.75	n/a
-30	5300.000000	5299.925700	14.02	n/a

Mid Channel 5470 - 5725 MHz Band

Frequency Stability with Variation of AC Voltage (Ambient Temperature = 20° C)

Voltage	Assigned Frequency	Measured Frequency	Tolerance	Specification
(VDC)	(MHz)	(MHz)	(ppm)	(ppm)
3.6 (110%)	5600.000000	5599.938850	10.92	n/a
3.3 (100%)	5600.000000	5599.929650	12.56	n/a
3.0 (90%)	5600.000000	5599.917550	14.72	n/a

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 3.3 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	5600.000000	5599.920640	14.17	n/a
40	5600.000000	5599.922640	13.81	n/a
30	5600.000000	5599.929480	12.59	n/a
20	5600.000000	5599.929650	12.56	n/a
10	5600.000000	5599.947500	9.37	n/a
0	5600.000000	5599.953800	8.25	n/a
-10	5600.000000	5599.954430	8.14	n/a
-20	5600.000000	5599.948470	9.20	n/a
-30	5600.000000	5599.922680	13.81	n/a

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting, 6 Mbps

CHANNELS TESTED		
Channel 36 (5180 MHz)		
Channel 48 (5240 MHz)		
Channel 52 (5260 MHz)		
Channel 64 (5320 MHz)		
Channel 100 (5500 MHz)		
Channel 116 (5580 MHz)		
Channel 140 (5700 MHz)		

POWER SETTINGS INVESTIGATED

3.3 VDC

FREQUENCY RANGE IN	/ESTIGATED		
Start Frequency	30 MHz	Stop Frequency	40 GHz

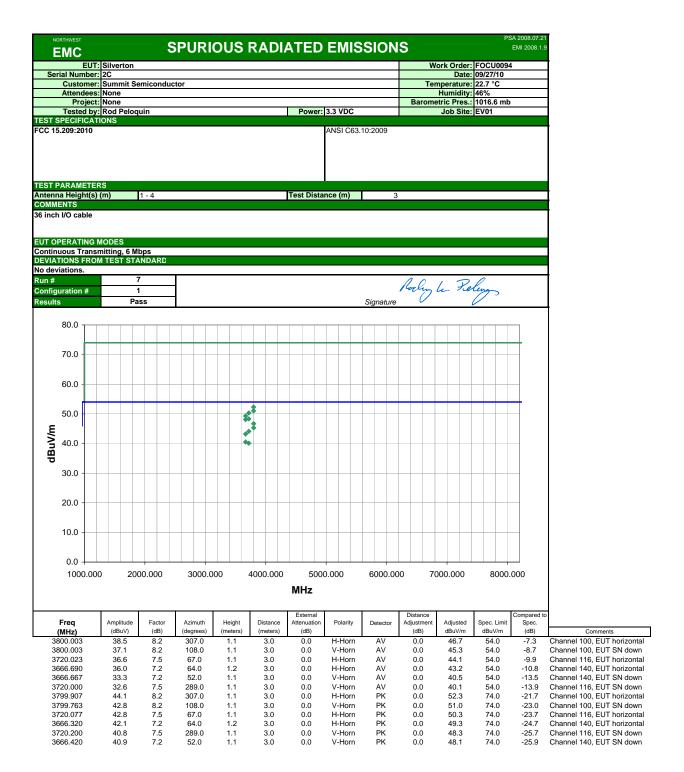
SAMPLE CALCULATIONS

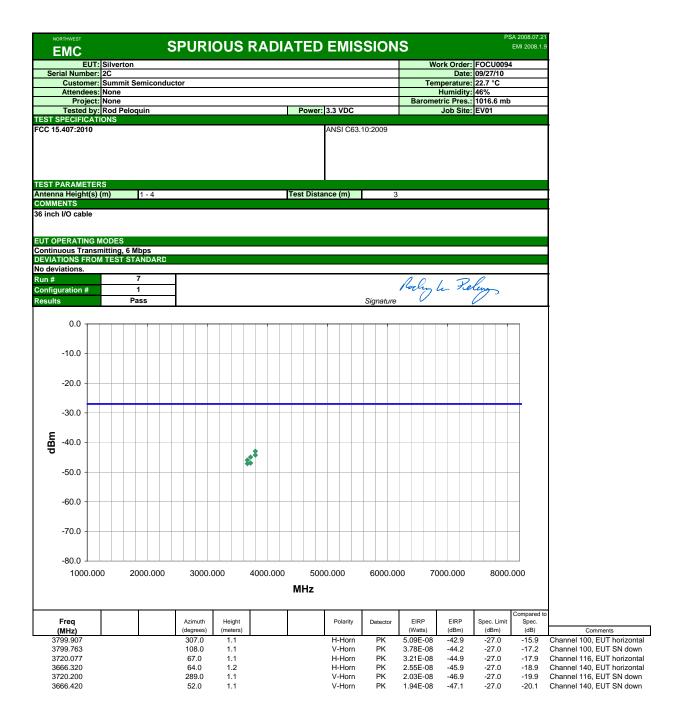
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

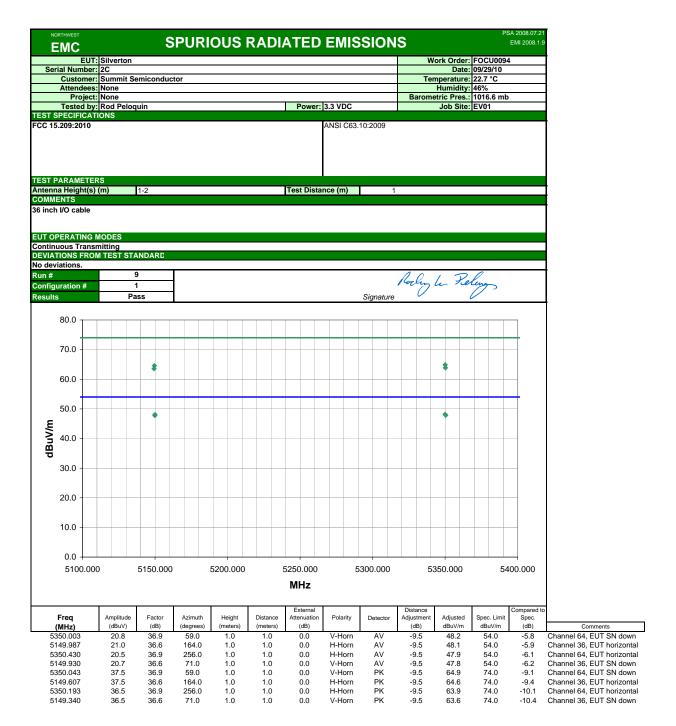
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	1/6/2010	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Antenna, Horn	EMCO	3115	AHE	10/22/2009	24
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/9/2010	13
Antenna, Biconilog	EMCO	3141	AXE	1/14/2010	13
EV01 Cables	N/A	Bilog Cables	EVA	7/9/2010	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/9/2010	13
Antenna, Horn	EMCO	3115	AHC	7/8/2010	24
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	7/9/2010	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	8/25/2010	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	8/25/2010	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	8/25/2010	13
Antenna, Horn	ETS	3160-10	AIC	NCR	0
Cable	ESM Cable Corp.	KMKM-72	EVY	9/15/2010	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	9/15/2010	13
Pre-Amplifier	Miteq	JSW45-26004000-40-5P	AVR	6/22/2010	13
Antenna, Horn	ETS Lindgren	3160-10	AIW	NCR	0
OC Cable	ESM Cable Corp.	KMKM-72	OCV	11/3/2009	13
5.25 GHz Notch Filter	K&L Microwave	8N50-5250/X200-0/0	HFK	4/2/2010	13
5.47-5.725 Notch Filter	Micro-Tronics	BRC50704	HGI	10/1/2009	13
High Pass Filter	Micro-Tronics	HPM50112	HGA	10/1/2009	13

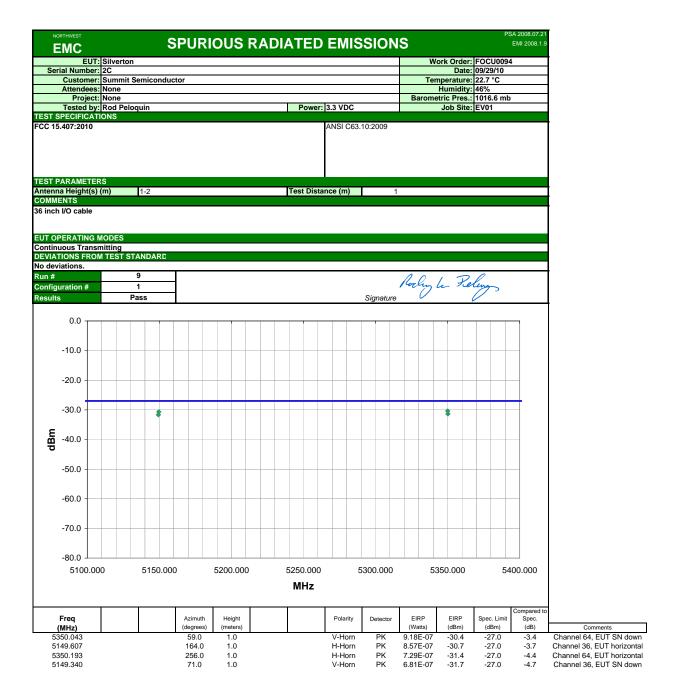
MEASUREMENT BANDWIDTHS									
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data					
	(MHz)	(kHz)	(kHz)	(kHz)					
	0.01 - 0.15	1.0	0.2	0.2					
	0.15 - 30.0	10.0	9.0	9.0					
	30.0 - 1000	100.0	120.0	120.0					
	Above 1000	1000.0	N/A	1000.0					
Measurements were made using the bandwidths and detectors specified. No video filter was used.									

MEASUREMENT UNCERTAINTY

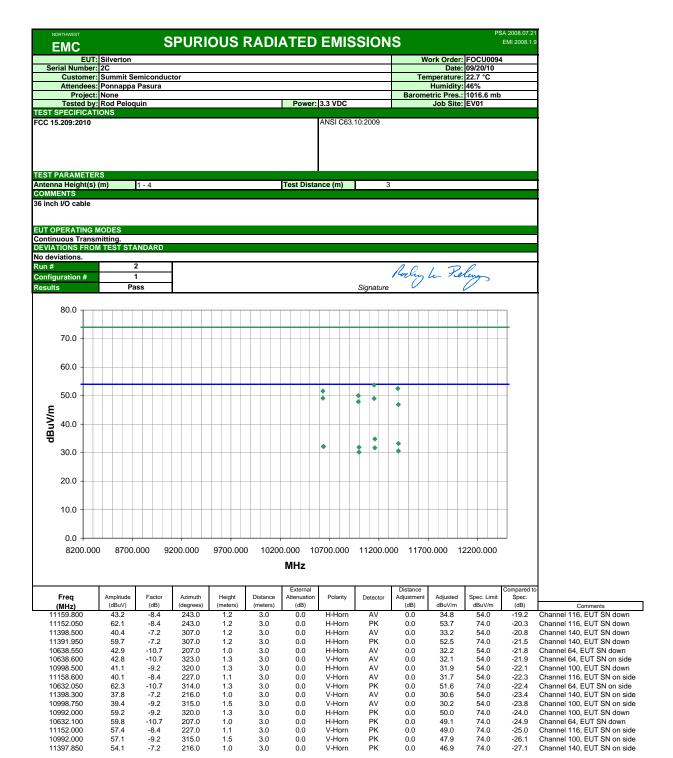

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

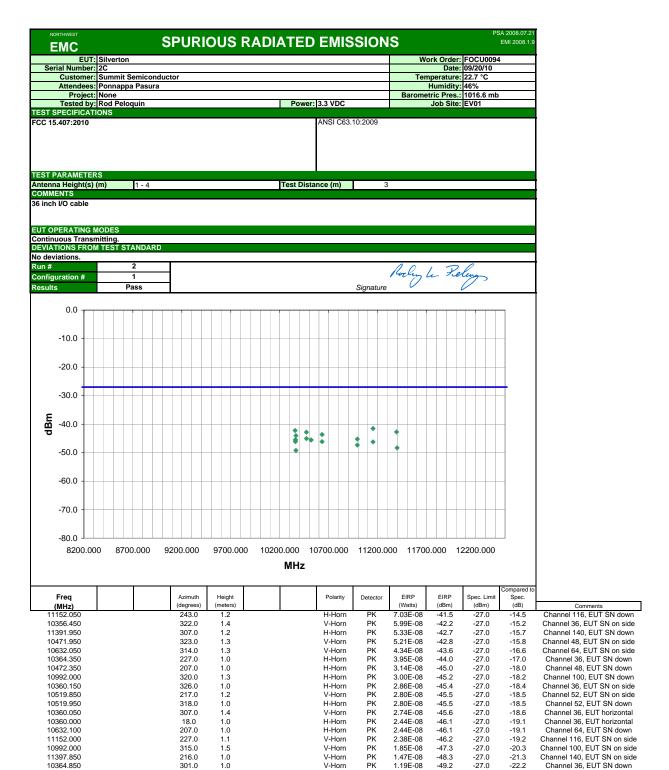

TEST DESCRIPTION


The highest gain antenna of each type to be used with the EUT were tested. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. Measurements were made to satisfy the three requirements of 47 CFR 15.407. Field strength under 1GHz, Restricted Bands of 47 CFR 15.205, and EIRP of 47 CFR 15.407. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2009). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

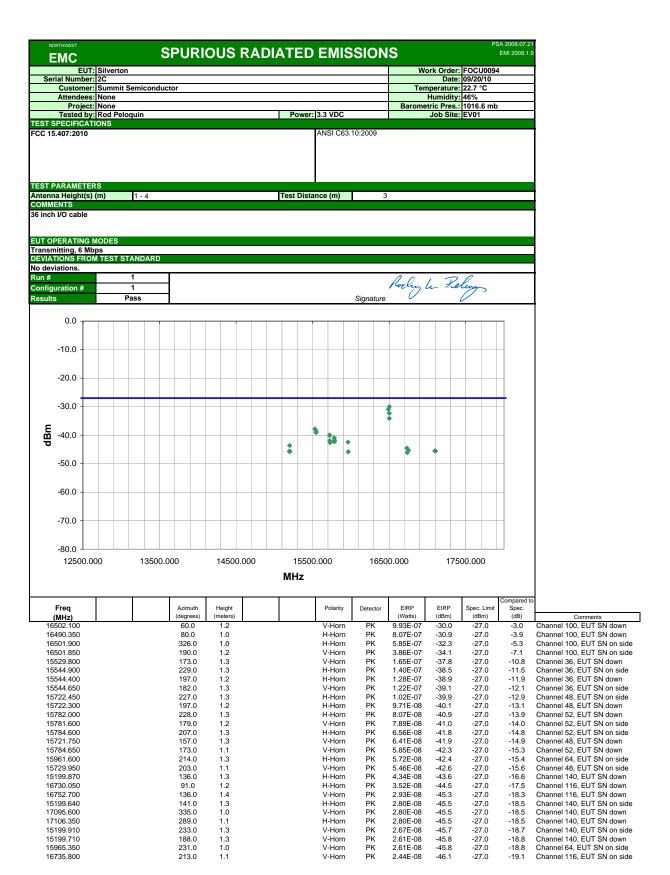

The amplitude and frequency of the highest emissions were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to each of the highest spurious emissions. A signal generator was connected to the dipole (horn antenna for frequencies above 1GHz), and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the dipole antenna (or horn) and its gain (dBi); the effective radiated power for each radiated spurious emission was determined.

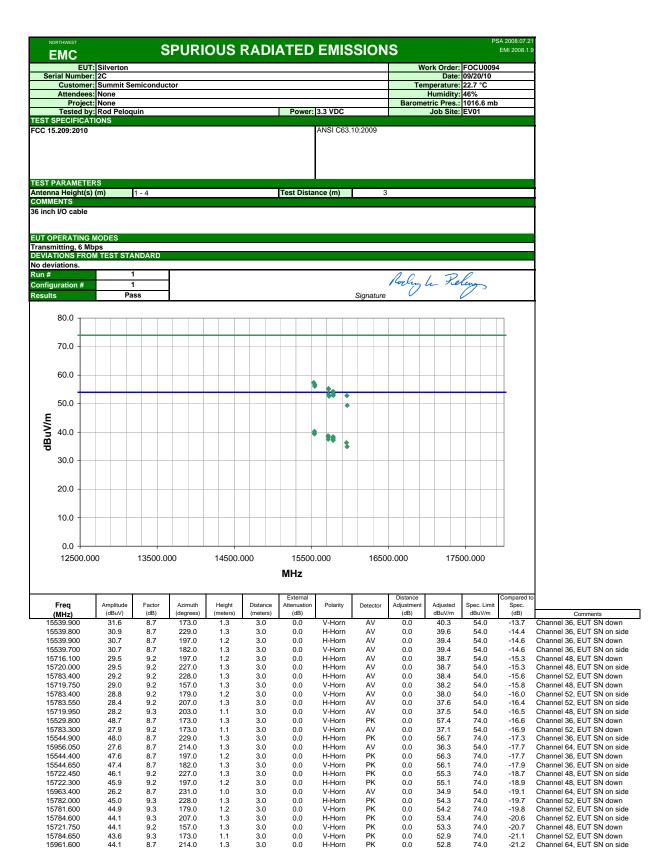
NORTHWEST			PLIDI	OUS	BVDL	ATED	FMIS	SION	9			A 2008.07.: EMI 2008.1
EMC		•	PORI	UU3 I	KADII	AIED	LIVIIS	SION				
Serial Numbe	F: Silverton								W		FOCU0094 09/20/10	
	r: Summit Se	micondu	ctor						Ten	nperature:		
Attendees	s: None									Humidity:		
	t: None y: Rod Peloqu	ılın.				Power:	3 3 VDC		Barome	Job Site:	1016.6 mb	
EST SPECIFICA		um				Power:	3.3 VDC			Job Site:	EVUI	
CC 15.209:2010							ANSI C63.	10:2009				
EST PARAMETE	ERS											
ntenna Height(s	s) (m)	1 - 4				Test Distar	nce (m)	3				
OMMENTS												
inch I/O cable												
UT OPERATING ransmitting 6Mb EVIATIONS FRO	ps, Channel 3	36 (5180 N	MHz)									
o deviations.												
un #	3								Roof.	1. P.	P	
onfiguration #	1		4						Rocky.	u ill	ing	
esults	Pas	ss						Signature				
80.0												
												1
70.0												
70.0												
60.0												-
50.0												Π
50.0												Ī
E												-
40.0 H						_				•		
<u>a</u>											•	
				•							•	
30.0						+						
20.0												
20.0												
10.0												-
0.0												
0.0												⊣
10.000)					100.000					100	00.000
						MHz						
Fron	Amplitude	Easter-	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance	Adinotad	Spec. Limit	Compare
Freq (MHz)	(dBuV)	Factor (dB)	(degrees)	(meters)	(meters)	Attenuation (dB)	Polarity	Detector	Adjustment (dB)	Adjusted dBuV/m	dBuV/m	Spec. (dB)
479.998	34.8	5.9	120.0	1.8	3.0	0.0	H-Bilog	QP	0.0	40.7	46.0	-5.3
399.999	36.5	4.0	50.0	1.0	3.0	0.0	H-Bilog	QP	0.0	40.5	46.0	-5.5
53.468	39.4	-5.4	121.0	1.0	3.0	0.0	V-Bilog	QP OB	0.0	34.0	40.0	-6.0
320.003 51.169	38.0 38.3	1.4 -4.9	104.0 93.0	1.0 1.0	3.0 3.0	0.0 0.0	H-Bilog V-Bilog	QP QP	0.0 0.0	39.4 33.4	46.0 40.0	-6.6 -6.6
	35.8	-4.3	273.0	1.0	3.0	0.0	V-Bilog	QP	0.0	31.5	40.0	-8.5
48.101		8.8	225.0	1.2	3.0	0.0	H-Bilog	QP	0.0	36.0	46.0	-10.0
640.001	27.2											
640.001 160.005	36.2	-4.8	33.0	2.2	3.0	0.0	H-Bilog	QP	0.0	31.4	43.0	-11.6
640.001			33.0 135.0 312.0	2.2 1.5 1.0				QP QP QP	0.0 0.0 0.0	31.4 33.0 29.8	43.0 46.0 43.0	-11.6 -13.0 -13.2





NORTHWEST						- D	116	21/	<u> </u>	6	D /	, D	1 /	ν		_	- '	ALC:		10	NIC	,							A 2008.07
EMC						٥P	Uŀ	ZI (טכ	3	K.	עוּ	T/ ^A	ΔI		ַ		ΛIS	5	TO	M)							EMI 2008
	JT: Sil		n																				W		order:				
Serial Numb			-																		1		_		Date:				
Custome			Sen	nico	nduc	tor															+		Ter		ature:				
Proje						_															-	Ba	rome		Pres.:			mb	
Tested b	y: Ro	d Pe	loqu	in										Р	owe	er: 3	3.3 V	DC							Site				
TEST SPECIFICA		S															A NIC:	000	10.1	2000									
FCC 15.407:2010)															1	ANSI	C63.	10:2	2009									
TEST PARAMET	FRS															_													
Antenna Height(1	- 4									Ŧ	Test	Dis	tan	ce (r	n)			3								
COMMENTS																													
36 inch I/O cable	1																												
EUT OPERATING	3 MOI	DES																											
Continuous Tran	smitti	ing, 6	Mb	ps, C	Chan	nel 3	36 (51	180 I	ИHz)																				
DEVIATIONS FR	ОМ ТЕ	ST S	TAN	IDA	₹D																								
No deviations.	_		8			$\overline{}$																_					,		
Run #	-		1			-																Rock	2m	Le	R	len	·		
Configuration # Results			Pas	s		1													Si	gnatu	ıre		0				7	•	
Results			. 43																ΟĮ	griail	ai G					_			
0.0 —																													_
0.0																													
-10.0			+		+	-	+++	+			+	+	+	+	-	+			+				+			+		+++	
-20.0		Ш																											
-20.0													T										$ \top $						
+						+					\Box		-										\perp	+				1	+
-30.0		+	+		+	+	+	+		\vdash	+	+	+	+	\vdash	+		+	+	\vdash	++	++	+	+	+	+	+	+	-
E 40.0		1																											
40.0		•																											
-50.0							-	+			+		+	-		+			-		-		+			+		-	-
00.0																													
-60.0						\Box					\Box		\top			Ť													
-70.0						4	-	+			\vdash		1	-					-		1	-	+	-	-	\perp	1	+	_
-80.0 ⊥																													
6900.	000	6910	0.00	0	6920	ا00.0	0 6	930	.000	69	940.	000	6	950	.00	0	696	0.00	0	697	0.00	0 6	980.	000	699	90.0	00	700	00.000
														МІ	Hz														
			<u> </u>			$\overline{}$		-1			1		Т			1			T							Т		Ic	Compare
Freq							zimutl		Hei								Pol	arity		Detecto	or	EIR			RP		ec. L	imit	Spec.
(MHz)							egree:		(met	_										P. C		(Wat			Bm)		(dBm		(dB)
6906.560 6906.670							124.0 28.0		1. 1.									lorn Iorn		PK PK		2.17E 2.12E			6.6 6.7		-27.0 -27.0		-9.6 -9.7
6906.587							26.0 168.0		1.									lorn		PK		1.61E			7.9		-27.0		-10.9
6906.684						1	196.0)	1.	0							H-H	lorn		PK		1.28E	-07	-3	8.9		-27.0)	-11.9
6906.854							204.0		1.									lorn		PK		1.19E			9.2		-27.0		-12.2
6906.487						2	203.0	J	1.	U							V-F	lorn		PK		8.46E	:-08	-4	0.7		-27.0	J	-13.7





V-Horn

1.19E-08

Channel 36, EUT SN down

1.1 1.0 3.0

3.0

0.0

0.0

V-Horn

V-Horn

PK

PK

0.0

0.0

52 6

49.4

74 0

-21 4

-24.6

Channel 48 FLIT SN on side

Channel 64, EUT SN on side

203.0

231.0

15729 950

15965.350

43 4

40.7

92

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION
Continuous transmit. 6 Mbps, Channel 140 (5700 MHz)
Continuous transmit. 6 Mbps, Channel 116 (5580 MHz)
Continuous transmit. 6 Mbps, Channel 64 (5320 MHz)
Continuous transmit. 6 Mbps, Channel 100 (5500 MHz)
Continuous transmit. 6 Mbps, Channel 52 (5260 MHz)
Continuous transmit. 6 Mbps, Channel 48 (5240 MHz)
Continuous transmit. 6 Mbps, Channel 36 (5180 MHz)

POWER SETTINGS INVESTIGATED

3.3 VDC

CONFIGURATIONS INVESTIGATED

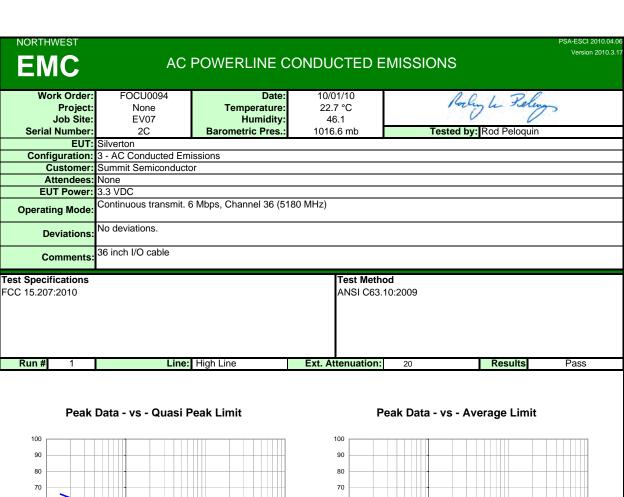
FOCU0094 - 3

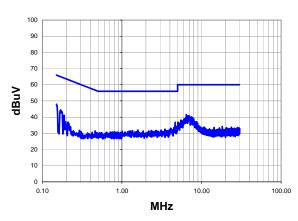
SAMPLE CALCULATIONS

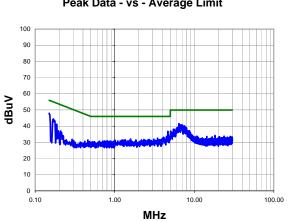
 $\label{eq:conducted_energy} \textbf{Conducted} \ \underline{\textbf{Emissions:}} \ \ \underline{\textbf{Adjusted}} \ \underline{\textbf{Level}} = \underline{\textbf{Measured Level}} + \underline{\textbf{Transducer Factor}} + \underline{\textbf{Cable Attenuation Factor}} + \underline{\textbf{External Attenuator}}$

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESCI	ARE	4/29/2010	12 mo
Attenuator	Coaxicom	66702 2910-20	ATO	8/6/2010	13 mo
High Pass Filter	TTE	H97-100K-50-720B	HFX	2/16/2010	13 mo
LISN	Solar	9252-50-R-24-BNC	LIR	3/2/2010	12 mo
LISN	Solar	9252-50-R-24-BNC	LIN	5/27/2010	12 mo
EV07 Cables	N/A	Conducted Cables	EVG	6/21/2010	13 mo

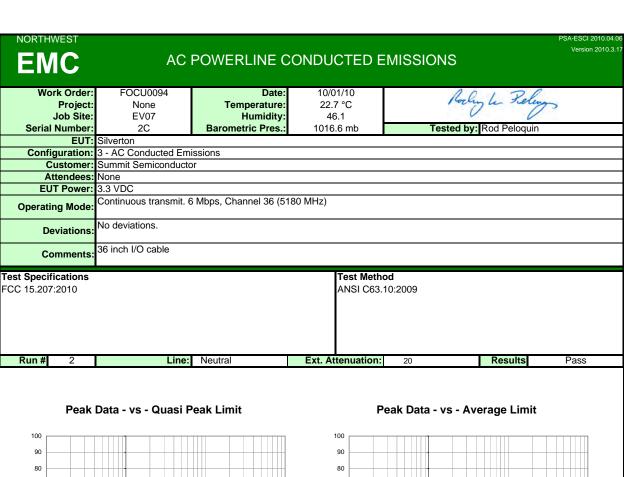
Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made usi	ng the bandwidths and det	ectors specified. No video filter	was used.

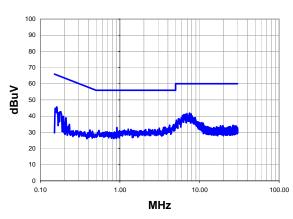

MEASUREMENT UNCERTAINTY

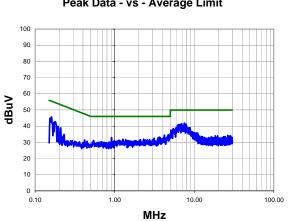

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

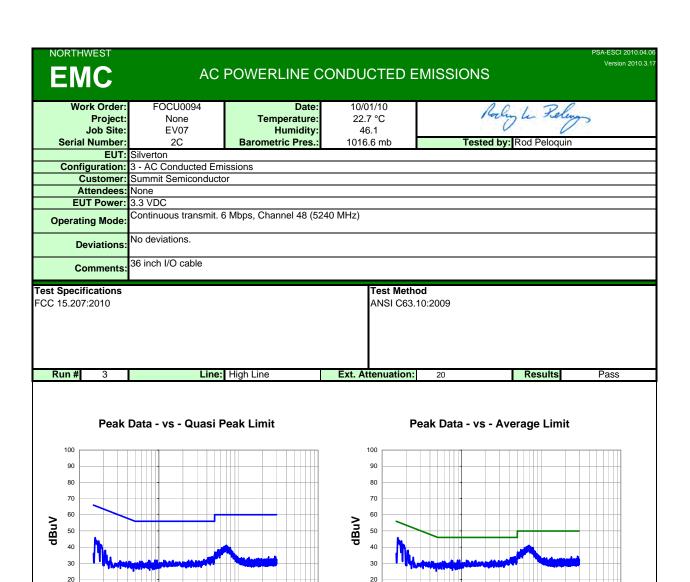

TEST DESCRIPTION

The EUT will be powered indirectly from the AC power line while operating in a host device. Therefore, conducted emissions measurements were made on the DC input of the EUT, or on the DC input of the device used to power the EUT. The AC power line conducted emissions were measured on a linear power supply providing DC power to the module while providing no filtering of the power inputs to the module.


The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band or bands. The EUT was transmitting in the mode which has the highest output power for the band. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2009.






	Pea	ak Data - vs -	Quasi Peak L	imit				P	eak Data - vs	- Average Lin	nit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.150	27.8	20.2	48.0	66.0	-18.0	_	0.150	27.8	20.2	48.0	56.0	-8.0
6.430	21.2	20.3	41.5	60.0	-18.5		6.430	21.2	20.3	41.5	50.0	-8.5
6.890	20.5	20.4	40.9	60.0	-19.1		6.890	20.5	20.4	40.9	50.0	-9.1
4.656	16.5	20.3	36.8	56.0	-19.3		4.656	16.5	20.3	36.8	46.0	-9.3
7.100	20.3	20.4	40.7	60.0	-19.3		7.100	20.3	20.4	40.7	50.0	-9.3
7.510	19.7	20.4	40.1	60.0	-19.9		7.510	19.7	20.4	40.1	50.0	-9.9
0.170	24.3	20.2	44.5	64.9	-20.5		0.170	24.3	20.2	44.5	54.9	-10.5
7.690	19.1	20.4	39.5	60.0	-20.5		7.690	19.1	20.4	39.5	50.0	-10.5
7.810	18.7	20.4	39.1	60.0	-20.9		7.810	18.7	20.4	39.1	50.0	-10.9
7.630	18.5	20.4	38.9	60.0	-21.1		7.630	18.5	20.4	38.9	50.0	-11.1
4.712	14.5	20.3	34.8	56.0	-21.3		4.712	14.5	20.3	34.8	46.0	-11.3
5.490	17.8	20.3	38.1	60.0	-21.9		5.490	17.8	20.3	38.1	50.0	-11.9
5.580	17.7	20.3	38.0	60.0	-22.0		5.580	17.7	20.3	38.0	50.0	-12.0
4.808	13.0	20.3	33.3	56.0	-22.7		4.808	13.0	20.3	33.3	46.0	-12.7
8.620	16.8	20.4	37.2	60.0	-22.8		8.620	16.8	20.4	37.2	50.0	-12.8
4.112	12.9	20.2	33.1	56.0	-22.9		4.112	12.9	20.2	33.1	46.0	-12.9
8.320	16.6	20.4	37.0	60.0	-23.0		8.320	16.6	20.4	37.0	50.0	-13.0
0.186	21.0	20.2	41.2	64.2	-23.1		0.186	21.0	20.2	41.2	54.2	-13.1
5.050	16.6	20.3	36.9	60.0	-23.1		5.050	16.6	20.3	36.9	50.0	-13.1
3.464	12.3	20.2	32.5	56.0	-23.5		3.464	12.3	20.2	32.5	46.0	-13.5

	Pea	ak Data - vs -	Quasi Peak L	imit			F	Peak Data - vs	- Average Lin	nit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Fre (MH		Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
7.480	21.4	20.4	41.8	60.0	-18.2	7.48	0 21.4	20.4	41.8	50.0	-8.2
6.940	21.2	20.4	41.6	60.0	-18.4	6.94	0 21.2	20.4	41.6	50.0	-8.4
7.820	20.9	20.4	41.3	60.0	-18.7	7.82	0 20.9	20.4	41.3	50.0	-8.7
6.610	20.7	20.3	41.0	60.0	-19.0	6.61	0 20.7	20.3	41.0	50.0	-9.0
6.730	20.6	20.4	41.0	60.0	-19.0	6.73	0 20.6	20.4	41.0	50.0	-9.0
6.120	20.2	20.3	40.5	60.0	-19.5	6.12	0 20.2	20.3	40.5	50.0	-9.5
7.700	20.0	20.4	40.4	60.0	-19.6	7.70	0 20.0	20.4	40.4	50.0	-9.6
7.310	19.9	20.4	40.3	60.0	-19.7	7.31	0 19.9	20.4	40.3	50.0	-9.7
8.030	19.8	20.4	40.2	60.0	-19.8	8.03	0 19.8	20.4	40.2	50.0	-9.8
0.160	25.5	20.2	45.7	65.5	-19.8	0.16	0 25.5	20.2	45.7	55.5	-9.8
8.790	18.6	20.4	39.0	60.0	-21.0	8.79	0 18.6	20.4	39.0	50.0	-11.0
5.890	18.7	20.3	39.0	60.0	-21.0	5.89	0 18.7	20.3	39.0	50.0	-11.0
8.580	18.5	20.4	38.9	60.0	-21.1	8.58	0 18.5	20.4	38.9	50.0	-11.1
8.400	18.4	20.4	38.8	60.0	-21.2	8.40	0 18.4	20.4	38.8	50.0	-11.2
4.712	14.5	20.3	34.8	56.0	-21.3	4.71	2 14.5	20.3	34.8	46.0	-11.3
8.740	18.3	20.4	38.7	60.0	-21.3	8.74	0 18.3	20.4	38.7	50.0	-11.3
4.208	14.2	20.2	34.4	56.0	-21.6	4.20	8 14.2	20.2	34.4	46.0	-11.6
5.420	18.0	20.3	38.3	60.0	-21.7	5.42	0 18.0	20.3	38.3	50.0	-11.7
0.179	22.6	20.2	42.8	64.5	-21.8	0.17	9 22.6	20.2	42.8	54.5	-11.8
5.110	17.2	20.3	37.5	60.0	-22.5	5.11	0 17.2	20.3	37.5	50.0	-12.5

Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit

100.00

10.00

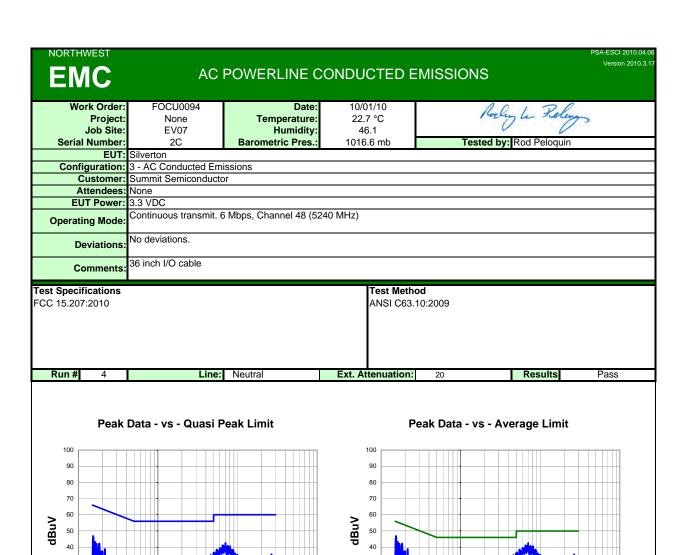
MHz

10

0.10

1.00

10


0.10

1.00

MHz

10.00

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
7.030	20.7	20.4	41.1	60.0	-18.9	-	7.030	20.7	20.4	41.1	50.0	-8.9
7.080	20.6	20.4	41.0	60.0	-19.0		7.080	20.6	20.4	41.0	50.0	-9.0
0.159	25.7	20.2	45.9	65.5	-19.7		0.159	25.7	20.2	45.9	55.5	-9.7
7.240	19.9	20.4	40.3	60.0	-19.7		7.240	19.9	20.4	40.3	50.0	-9.7
6.590	19.9	20.3	40.2	60.0	-19.8		6.590	19.9	20.3	40.2	50.0	-9.8
7.890	19.4	20.4	39.8	60.0	-20.2		7.890	19.4	20.4	39.8	50.0	-10.2
6.380	19.5	20.3	39.8	60.0	-20.2		6.380	19.5	20.3	39.8	50.0	-10.2
6.130	19.2	20.3	39.5	60.0	-20.5		6.130	19.2	20.3	39.5	50.0	-10.5
0.176	23.7	20.2	43.9	64.7	-20.8		0.176	23.7	20.2	43.9	54.7	-10.8
7.720	18.5	20.4	38.9	60.0	-21.1		7.720	18.5	20.4	38.9	50.0	-11.1
5.530	18.2	20.3	38.5	60.0	-21.5		5.530	18.2	20.3	38.5	50.0	-11.5
5.860	18.0	20.3	38.3	60.0	-21.7		5.860	18.0	20.3	38.3	50.0	-11.7
4.656	13.8	20.3	34.1	56.0	-22.0		4.656	13.8	20.3	34.1	46.0	-12.0
4.544	13.6	20.3	33.9	56.0	-22.2		4.544	13.6	20.3	33.9	46.0	-12.2
4.344	13.4	20.2	33.6	56.0	-22.4		4.344	13.4	20.2	33.6	46.0	-12.4
4.200	13.3	20.2	33.5	56.0	-22.5		4.200	13.3	20.2	33.5	46.0	-12.5
0.184	21.5	20.2	41.7	64.3	-22.6		0.184	21.5	20.2	41.7	54.3	-12.6
8.360	16.9	20.4	37.3	60.0	-22.7		8.360	16.9	20.4	37.3	50.0	-12.7
4.264	12.9	20.2	33.1	56.0	-22.9		4.264	12.9	20.2	33.1	46.0	-12.9
5.050	16.7	20.3	37.0	60.0	-23.0		5.050	16.7	20.3	37.0	50.0	-13.0

_					_			
Pea	ak Data - vs -	Quasi Peak L	ımıt		Р	eak Data - vs	 Average Lim 	nıt

100.00

10.00

MHz

30

20 10

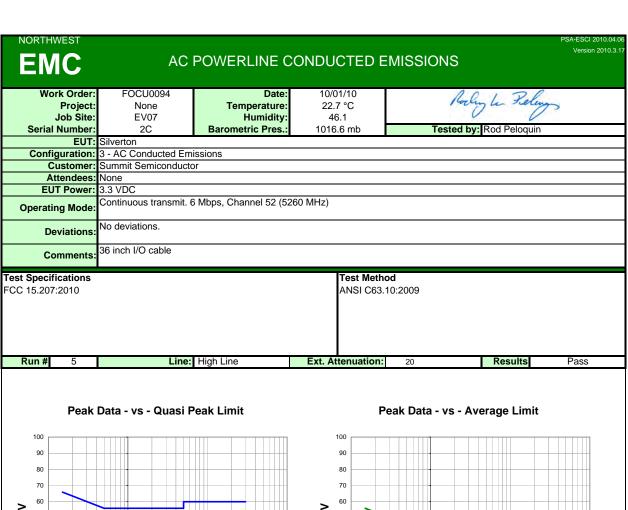
0.10

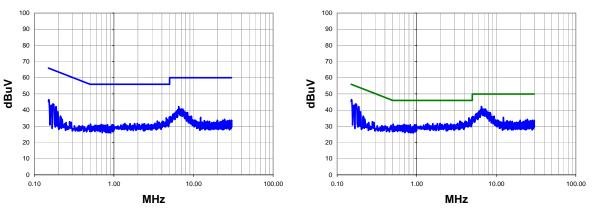
1.00

MHz

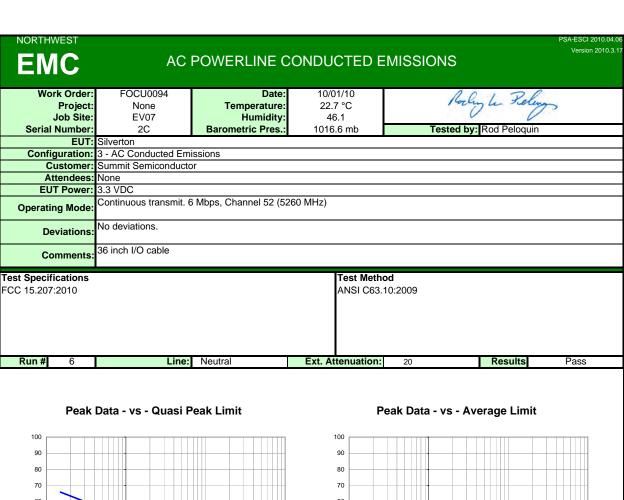
10.00

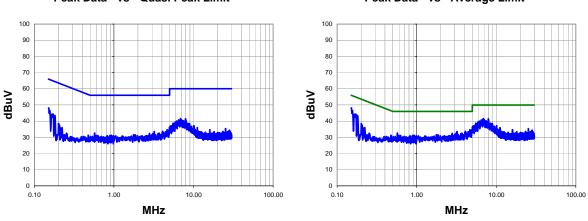
100.00

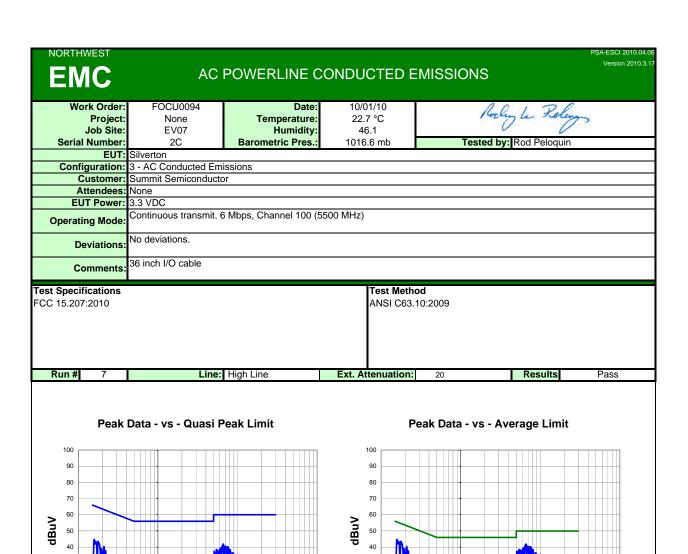

30


20

10


0.10


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
7.040	22.1	20.4	42.5	60.0	-17.5	7.040	22.1	20.4	42.5	50.0	-7.5
0.153	26.8	20.2	47.0	65.8	-18.9	0.153	26.8	20.2	47.0	55.8	-8.9
6.560	20.7	20.3	41.0	60.0	-19.0	6.560	20.7	20.3	41.0	50.0	-9.0
7.580	20.3	20.4	40.7	60.0	-19.3	7.580	20.3	20.4	40.7	50.0	-9.3
8.090	20.1	20.4	40.5	60.0	-19.5	8.090	20.1	20.4	40.5	50.0	-9.5
7.100	20.1	20.4	40.5	60.0	-19.5	7.100	20.1	20.4	40.5	50.0	-9.5
7.280	19.8	20.4	40.2	60.0	-19.8	7.280	19.8	20.4	40.2	50.0	-9.8
4.952	15.8	20.3	36.1	56.0	-19.9	4.952	15.8	20.3	36.1	46.0	-9.9
7.800	19.5	20.4	39.9	60.0	-20.1	7.800	19.5	20.4	39.9	50.0	-10.1
7.630	19.5	20.4	39.9	60.0	-20.1	7.630	19.5	20.4	39.9	50.0	-10.1
5.980	19.2	20.3	39.5	60.0	-20.5	5.980	19.2	20.3	39.5	50.0	-10.5
6.060	19.1	20.3	39.4	60.0	-20.6	6.060	19.1	20.3	39.4	50.0	-10.6
4.608	15.0	20.3	35.3	56.0	-20.8	4.608	15.0	20.3	35.3	46.0	-10.8
5.950	18.5	20.3	38.8	60.0	-21.2	5.950	18.5	20.3	38.8	50.0	-11.2
5.490	18.3	20.3	38.6	60.0	-21.4	5.490	18.3	20.3	38.6	50.0	-11.4
8.740	18.1	20.4	38.5	60.0	-21.5	8.740	18.1	20.4	38.5	50.0	-11.5
4.776	14.2	20.3	34.5	56.0	-21.5	4.776	14.2	20.3	34.5	46.0	-11.5
8.410	18.0	20.4	38.4	60.0	-21.6	8.410	18.0	20.4	38.4	50.0	-11.6
0.162	23.2	20.2	43.4	65.4	-22.0	0.162	23.2	20.2	43.4	55.4	-12.0
0.184	22.1	20.2	42.3	64.3	-22.0	0.184	22.1	20.2	42.3	54.3	-12.0



	Pea	ak Data - vs -	Quasi Peak L	imit				Pe	eak Data - vs	- Average Lim	nit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
6.520	21.9	20.3	42.2	60.0	-17.8	- 6	6.520	21.9	20.3	42.2	50.0	-7.8
7.330	20.3	20.4	40.7	60.0	-19.3	7	7.330	20.3	20.4	40.7	50.0	-9.3
7.000	20.3	20.4	40.7	60.0	-19.3	7	7.000	20.3	20.4	40.7	50.0	-9.3
6.830	20.2	20.4	40.6	60.0	-19.4	6	6.830	20.2	20.4	40.6	50.0	-9.4
0.152	26.3	20.2	46.5	65.9	-19.4	(0.152	26.3	20.2	46.5	55.9	-9.4
4.944	15.4	20.3	35.7	56.0	-20.3	4	4.944	15.4	20.3	35.7	46.0	-10.3
6.180	19.2	20.3	39.5	60.0	-20.5	6	6.180	19.2	20.3	39.5	50.0	-10.5
4.544	15.0	20.3	35.3	56.0	-20.8	4	4.544	15.0	20.3	35.3	46.0	-10.8
0.170	23.7	20.2	43.9	64.9	-21.1	(0.170	23.7	20.2	43.9	54.9	-11.1
7.710	18.5	20.4	38.9	60.0	-21.1	7	7.710	18.5	20.4	38.9	50.0	-11.1
7.970	18.3	20.4	38.7	60.0	-21.3	7	7.970	18.3	20.4	38.7	50.0	-11.3
8.380	18.1	20.4	38.5	60.0	-21.5	3	8.380	18.1	20.4	38.5	50.0	-11.5
5.940	18.2	20.3	38.5	60.0	-21.5		5.940	18.2	20.3	38.5	50.0	-11.5
7.830	17.8	20.4	38.2	60.0	-21.8	7	7.830	17.8	20.4	38.2	50.0	-11.8
4.600	13.9	20.3	34.2	56.0	-21.9	4	4.600	13.9	20.3	34.2	46.0	-11.9
4.664	13.9	20.3	34.2	56.0	-21.9	4	4.664	13.9	20.3	34.2	46.0	-11.9
0.187	22.0	20.2	42.2	64.2	-22.0	(0.187	22.0	20.2	42.2	54.2	-12.0
5.750	17.7	20.3	38.0	60.0	-22.0		5.750	17.7	20.3	38.0	50.0	-12.0
0.164	22.9	20.2	43.1	65.3	-22.2	(0.164	22.9	20.2	43.1	55.3	-12.2
3.496	13.0	20.2	33.2	56.0	-22.8	3	3.496	13.0	20.2	33.2	46.0	-12.8

	Pea	ık Data - vs -	Quasi Peak L	.imit				Peak Data - vs	s - Average Lir	nit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Fre (MH		e Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.152	28.0	20.2	48.2	65.9	-17.7	0.15	52 28.0	20.2	48.2	55.9	-7.7
6.880	21.2	20.4	41.6	60.0	-18.4	6.88	30 21.2	20.4	41.6	50.0	-8.4
7.940	20.9	20.4	41.3	60.0	-18.7	7.94	10 20.9	20.4	41.3	50.0	-8.7
6.490	20.4	20.3	40.7	60.0	-19.3	6.49	90 20.4	20.3	40.7	50.0	-9.3
6.720	20.1	20.4	40.5	60.0	-19.5	6.72	20 20.1	20.4	40.5	50.0	-9.5
8.010	20.0	20.4	40.4	60.0	-19.6	8.0	0 20.0	20.4	40.4	50.0	-9.6
7.490	19.8	20.4	40.2	60.0	-19.8	7.49	90 19.8	20.4	40.2	50.0	-9.8
5.000	15.9	20.3	36.2	56.0	-19.8	5.00	00 15.9	20.3	36.2	46.0	-9.8
6.110	19.8	20.3	40.1	60.0	-19.9	6.11	19.8	20.3	40.1	50.0	-9.9
7.190	19.3	20.4	39.7	60.0	-20.3	7.19	90 19.3	20.4	39.7	50.0	-10.3
0.172	24.3	20.2	44.5	64.9	-20.4	0.17	72 24.3	20.2	44.5	54.9	-10.4
5.900	19.1	20.3	39.4	60.0	-20.6	5.90	00 19.1	20.3	39.4	50.0	-10.6
0.181	23.4	20.2	43.6	64.5	-20.9	0.18	31 23.4	20.2	43.6	54.5	-10.9
5.550	18.5	20.3	38.8	60.0	-21.2	5.55	50 18.5	20.3	38.8	50.0	-11.2
4.656	14.5	20.3	34.8	56.0	-21.3	4.65	56 14.5	20.3	34.8	46.0	-11.3
8.440	18.2	20.4	38.6	60.0	-21.4	8.44	10 18.2	20.4	38.6	50.0	-11.4
8.870	18.1	20.4	38.5	60.0	-21.5	8.87	70 18.1	20.4	38.5	50.0	-11.5
5.770	18.0	20.3	38.3	60.0	-21.7	5.77	70 18.0	20.3	38.3	50.0	-11.7
8.910	17.6	20.4	38.0	60.0	-22.0	8.9	17.6	20.4	38.0	50.0	-12.0
4.104	13.5	20.2	33.7	56.0	-22.3	4.10	13.5	20.2	33.7	46.0	-12.3

			0			
1.00	10.00	100.00	0.10	1.00	10.00	
M	Hz			N	1Hz	

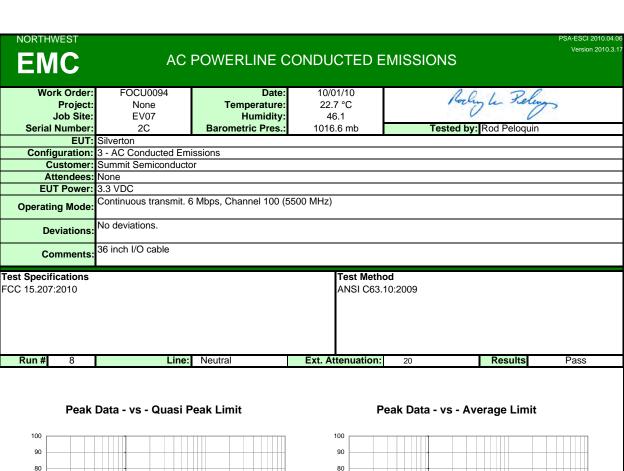
30

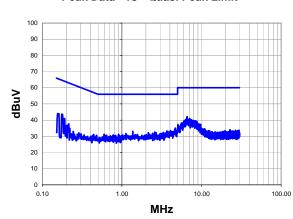
20

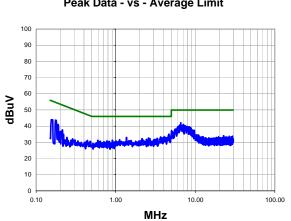
100.00

Peak Data - vs - Average Limit

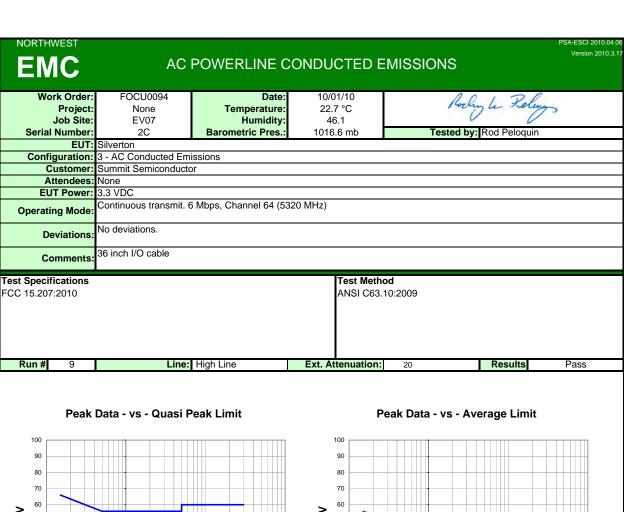
30

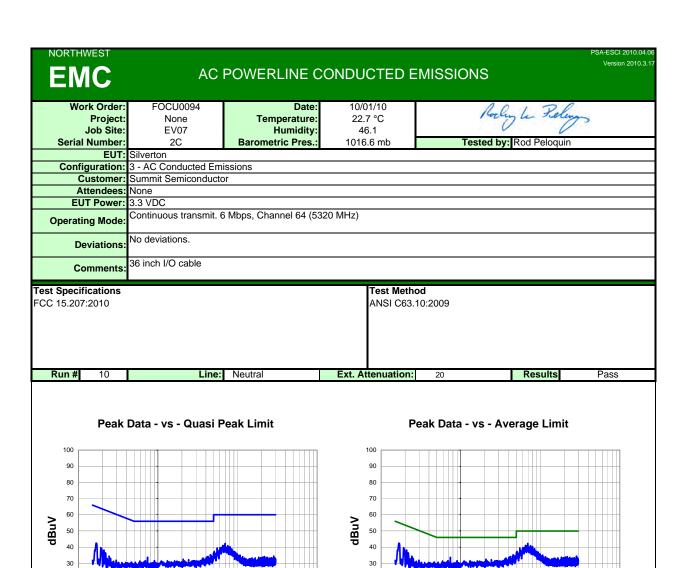

20


10


0.10

Peak Data - vs - Quasi Peak Limit


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
6.620	21.6	20.3	41.9	60.0	-18.1	_	6.620	21.6	20.3	41.9	50.0	-8.1
6.930	20.2	20.4	40.6	60.0	-19.4		6.930	20.2	20.4	40.6	50.0	-9.4
7.500	19.9	20.4	40.3	60.0	-19.7		7.500	19.9	20.4	40.3	50.0	-9.7
7.640	19.5	20.4	39.9	60.0	-20.1		7.640	19.5	20.4	39.9	50.0	-10.1
6.140	19.2	20.3	39.5	60.0	-20.5		6.140	19.2	20.3	39.5	50.0	-10.5
6.740	19.0	20.4	39.4	60.0	-20.6		6.740	19.0	20.4	39.4	50.0	-10.6
7.250	18.9	20.4	39.3	60.0	-20.7		7.250	18.9	20.4	39.3	50.0	-10.7
0.159	24.6	20.2	44.8	65.5	-20.8		0.159	24.6	20.2	44.8	55.5	-10.8
0.177	23.5	20.2	43.7	64.6	-21.0		0.177	23.5	20.2	43.7	54.6	-11.0
7.750	18.3	20.4	38.7	60.0	-21.3		7.750	18.3	20.4	38.7	50.0	-11.3
5.420	18.3	20.3	38.6	60.0	-21.4		5.420	18.3	20.3	38.6	50.0	-11.4
4.928	13.9	20.3	34.2	56.0	-21.8		4.928	13.9	20.3	34.2	46.0	-11.8
5.640	17.8	20.3	38.1	60.0	-21.9		5.640	17.8	20.3	38.1	50.0	-11.9
4.648	13.8	20.3	34.1	56.0	-22.0		4.648	13.8	20.3	34.1	46.0	-12.0
4.696	13.7	20.3	34.0	56.0	-22.1		4.696	13.7	20.3	34.0	46.0	-12.1
4.456	13.7	20.2	33.9	56.0	-22.1		4.456	13.7	20.2	33.9	46.0	-12.1
5.100	17.2	20.3	37.5	60.0	-22.5		5.100	17.2	20.3	37.5	50.0	-12.5
0.210	20.2	20.2	40.4	63.2	-22.9		0.210	20.2	20.2	40.4	53.2	-12.9
4.104	12.8	20.2	33.0	56.0	-23.0		4.104	12.8	20.2	33.0	46.0	-13.0
4.056	12.6	20.2	32.8	56.0	-23.2		4.056	12.6	20.2	32.8	46.0	-13.2


	Peak Data - vs - Quasi Peak Limit					Peak Data - vs - Average Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
6.580	21.8	20.3	42.1	60.0	-17.9		6.580	21.8	20.3	42.1	50.0	-7.9
7.080	20.6	20.4	41.0	60.0	-19.0		7.080	20.6	20.4	41.0	50.0	-9.0
7.030	20.6	20.4	41.0	60.0	-19.0		7.030	20.6	20.4	41.0	50.0	-9.0
6.370	20.2	20.3	40.5	60.0	-19.5		6.370	20.2	20.3	40.5	50.0	-9.5
7.530	19.8	20.4	40.2	60.0	-19.8		7.530	19.8	20.4	40.2	50.0	-9.8
7.310	19.8	20.4	40.2	60.0	-19.8		7.310	19.8	20.4	40.2	50.0	-9.8
7.890	19.4	20.4	39.8	60.0	-20.2		7.890	19.4	20.4	39.8	50.0	-10.2
6.130	19.5	20.3	39.8	60.0	-20.2		6.130	19.5	20.3	39.8	50.0	-10.2
8.400	19.1	20.4	39.5	60.0	-20.5		8.400	19.1	20.4	39.5	50.0	-10.5
8.200	19.0	20.4	39.4	60.0	-20.6		8.200	19.0	20.4	39.4	50.0	-10.6
8.690	18.8	20.4	39.2	60.0	-20.8		8.690	18.8	20.4	39.2	50.0	-10.8
0.176	23.6	20.2	43.8	64.7	-20.9		0.176	23.6	20.2	43.8	54.7	-10.9
4.664	14.8	20.3	35.1	56.0	-21.0		4.664	14.8	20.3	35.1	46.0	-11.0
8.820	18.4	20.4	38.8	60.0	-21.2		8.820	18.4	20.4	38.8	50.0	-11.2
8.770	18.1	20.4	38.5	60.0	-21.5		8.770	18.1	20.4	38.5	50.0	-11.5
0.155	23.9	20.2	44.1	65.7	-21.7		0.155	23.9	20.2	44.1	55.7	-11.7
5.820	18.0	20.3	38.3	60.0	-21.7		5.820	18.0	20.3	38.3	50.0	-11.7
5.590	17.9	20.3	38.2	60.0	-21.8		5.590	17.9	20.3	38.2	50.0	-11.8
4.704	13.7	20.3	34.0	56.0	-22.1		4.704	13.7	20.3	34.0	46.0	-12.1
9.360	17.2	20.4	37.6	60.0	-22.4		9.360	17.2	20.4	37.6	50.0	-12.4

	100				90	
	80				80	
	70				70	
dBuV	50		_		Angp	
ф	40	<u> </u>			40)
	30				30	
	10				10	
	0				0 ├──	
	0.10	1.00 MH	10.00	100.00	0.10	1.00

	100				П									П	П
	90													+	+
	80									Н				+	H
	70				₩.									+	\parallel
>	60								+					+	\parallel
dBuV	50		\		-				_					+	+
ס	40	h			+					۸	<u>. </u>	-		+	+
	30	-'//		4				بالد	4	<u>\</u>			\vdash	+	+
	20													+	+
	10													+	+
	0					-					4			Ш	Ц
	0.	10			1.	00				1	0.00			10	00.00
							M	Hz	<u>.</u>						

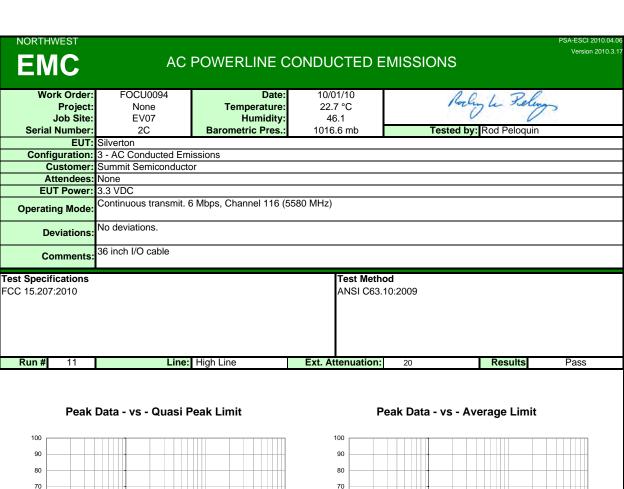
	Peak Data - vs - Quasi Peak Limit						Peak Data - vs - Average Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	
6.970	21.5	20.4	41.9	60.0	-18.1	<u> </u>	6.970	21.5	20.4	41.9	50.0	-8.1	
6.910	21.2	20.4	41.6	60.0	-18.4		6.910	21.2	20.4	41.6	50.0	-8.4	
6.440	20.8	20.3	41.1	60.0	-18.9		6.440	20.8	20.3	41.1	50.0	-8.9	
7.400	20.1	20.4	40.5	60.0	-19.5		7.400	20.1	20.4	40.5	50.0	-9.5	
5.960	19.9	20.3	40.2	60.0	-19.8		5.960	19.9	20.3	40.2	50.0	-9.8	
7.290	19.7	20.4	40.1	60.0	-19.9		7.290	19.7	20.4	40.1	50.0	-9.9	
7.330	19.6	20.4	40.0	60.0	-20.0		7.330	19.6	20.4	40.0	50.0	-10.0	
6.190	19.1	20.3	39.4	60.0	-20.6		6.190	19.1	20.3	39.4	50.0	-10.6	
0.176	23.7	20.2	43.9	64.7	-20.8		0.176	23.7	20.2	43.9	54.7	-10.8	
7.970	18.7	20.4	39.1	60.0	-20.9		7.970	18.7	20.4	39.1	50.0	-10.9	
4.656	14.8	20.3	35.1	56.0	-21.0		4.656	14.8	20.3	35.1	46.0	-11.0	
0.155	24.3	20.2	44.5	65.7	-21.3		0.155	24.3	20.2	44.5	55.7	-11.3	
5.550	18.3	20.3	38.6	60.0	-21.4		5.550	18.3	20.3	38.6	50.0	-11.4	
3.672	14.0	20.2	34.2	56.0	-21.8		3.672	14.0	20.2	34.2	46.0	-11.8	
4.488	13.7	20.2	33.9	56.0	-22.1		4.488	13.7	20.2	33.9	46.0	-12.1	
8.660	17.2	20.4	37.6	60.0	-22.4		8.660	17.2	20.4	37.6	50.0	-12.4	
8.500	16.5	20.4	36.9	60.0	-23.1		8.500	16.5	20.4	36.9	50.0	-13.1	
4.040	12.4	20.2	32.6	56.0	-23.4		4.040	12.4	20.2	32.6	46.0	-13.4	
1.048	12.0	20.2	32.2	56.0	-23.8		1.048	12.0	20.2	32.2	46.0	-13.8	
0.208	19.2	20.2	39.4	63.3	-23.9		0.208	19.2	20.2	39.4	53.3	-13.9	

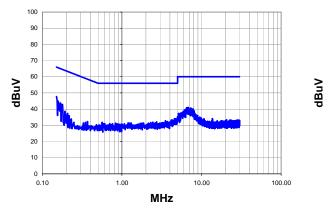
10 0 1.00 10.00 0.10 1.00 10.00 MHz MHz

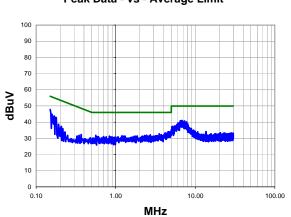
20

100.00

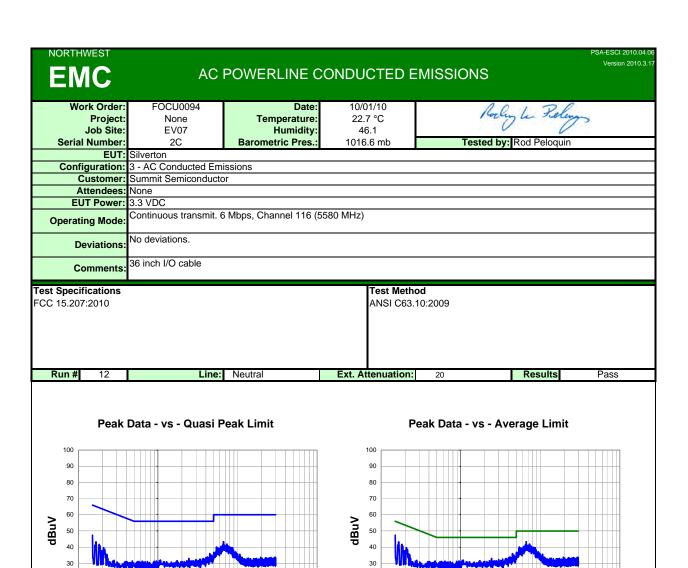
Peak Data - vs - Average Limit


20


10


0.10

Peak Data - vs - Quasi Peak Limit


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
6.980	21.8	20.4	42.2	60.0	-17.8	6.980	21.8	20.4	42.2	50.0	-7.8
6.540	20.6	20.3	40.9	60.0	-19.1	6.540	20.6	20.3	40.9	50.0	-9.1
7.560	20.5	20.4	40.9	60.0	-19.1	7.560	20.5	20.4	40.9	50.0	-9.1
5.000	16.1	20.3	36.4	56.0	-19.6	5.000	16.1	20.3	36.4	46.0	-9.6
6.800	19.9	20.4	40.3	60.0	-19.7	6.800	19.9	20.4	40.3	50.0	-9.7
7.960	19.7	20.4	40.1	60.0	-19.9	7.960	19.7	20.4	40.1	50.0	-9.9
7.640	19.5	20.4	39.9	60.0	-20.1	7.640	19.5	20.4	39.9	50.0	-10.1
6.040	19.5	20.3	39.8	60.0	-20.2	6.040	19.5	20.3	39.8	50.0	-10.2
5.540	19.1	20.3	39.4	60.0	-20.6	5.540	19.1	20.3	39.4	50.0	-10.6
4.552	15.1	20.3	35.4	56.0	-20.7	4.552	15.1	20.3	35.4	46.0	-10.7
8.470	18.5	20.4	38.9	60.0	-21.1	8.470	18.5	20.4	38.9	50.0	-11.1
4.656	14.6	20.3	34.9	56.0	-21.2	4.656	14.6	20.3	34.9	46.0	-11.2
4.608	14.5	20.3	34.8	56.0	-21.3	4.608	14.5	20.3	34.8	46.0	-11.3
8.280	18.2	20.4	38.6	60.0	-21.4	8.280	18.2	20.4	38.6	50.0	-11.4
4.256	14.0	20.2	34.2	56.0	-21.8	4.256	14.0	20.2	34.2	46.0	-11.8
4.872	13.9	20.3	34.2	56.0	-21.8	4.872	13.9	20.3	34.2	46.0	-11.8
4.160	13.7	20.2	33.9	56.0	-22.1	4.160	13.7	20.2	33.9	46.0	-12.1
0.742	13.5	20.2	33.7	56.0	-22.3	0.742	13.5	20.2	33.7	46.0	-12.3
8.770	17.2	20.4	37.6	60.0	-22.4	8.770	17.2	20.4	37.6	50.0	-12.4
0.167	22.4	20.2	42.6	65.1	-22.5	0.167	22.4	20.2	42.6	55.1	-12.5

	Peak Data - vs - Quasi Peak Limit						Peak Data - vs - Average Limit					
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.150	27.6	20.2	47.8	66.0	-18.2		0.150	27.6	20.2	47.8	56.0	-8.2
6.800	20.7	20.4	41.1	60.0	-18.9		6.800	20.7	20.4	41.1	50.0	-8.9
6.910	20.5	20.4	40.9	60.0	-19.1		6.910	20.5	20.4	40.9	50.0	-9.1
6.510	20.5	20.3	40.8	60.0	-19.2		6.510	20.5	20.3	40.8	50.0	-9.2
7.340	20.3	20.4	40.7	60.0	-19.3		7.340	20.3	20.4	40.7	50.0	-9.3
7.800	19.6	20.4	40.0	60.0	-20.0		7.800	19.6	20.4	40.0	50.0	-10.0
6.080	19.2	20.3	39.5	60.0	-20.5		6.080	19.2	20.3	39.5	50.0	-10.5
0.159	24.7	20.2	44.9	65.5	-20.7		0.159	24.7	20.2	44.9	55.5	-10.7
7.970	18.7	20.4	39.1	60.0	-20.9		7.970	18.7	20.4	39.1	50.0	-10.9
0.169	23.7	20.2	43.9	65.0	-21.2		0.169	23.7	20.2	43.9	55.0	-11.2
7.890	18.1	20.4	38.5	60.0	-21.5		7.890	18.1	20.4	38.5	50.0	-11.5
0.176	22.8	20.2	43.0	64.7	-21.7		0.176	22.8	20.2	43.0	54.7	-11.7
4.552	13.9	20.3	34.2	56.0	-21.9		4.552	13.9	20.3	34.2	46.0	-11.9
4.712	13.8	20.3	34.1	56.0	-22.0		4.712	13.8	20.3	34.1	46.0	-12.0
8.150	17.5	20.4	37.9	60.0	-22.1		8.150	17.5	20.4	37.9	50.0	-12.1
5.580	17.4	20.3	37.7	60.0	-22.3		5.580	17.4	20.3	37.7	50.0	-12.3
4.280	13.1	20.2	33.3	56.0	-22.7		4.280	13.1	20.2	33.3	46.0	-12.7
5.120	17.0	20.3	37.3	60.0	-22.7		5.120	17.0	20.3	37.3	50.0	-12.7
4.160	13.0	20.2	33.2	56.0	-22.8		4.160	13.0	20.2	33.2	46.0	-12.8
5.280	16.7	20.3	37.0	60.0	-23.0		5.280	16.7	20.3	37.0	50.0	-13.0

Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit

100.00

10.00

MHz

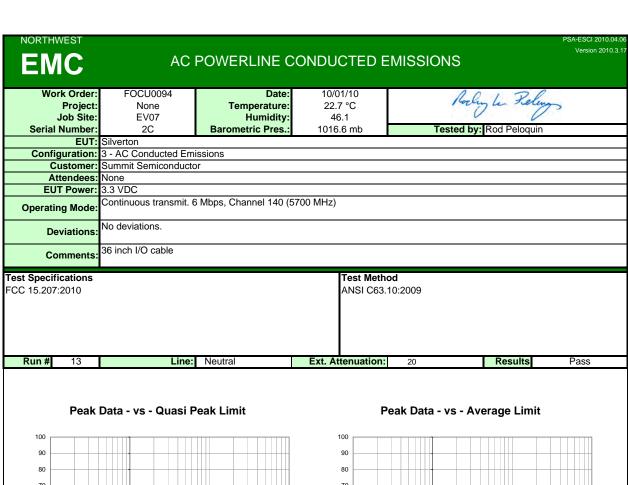
20 10

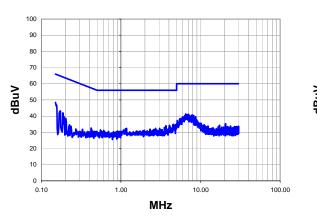
0.10

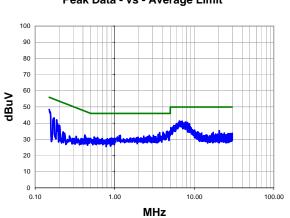
1.00

MHz

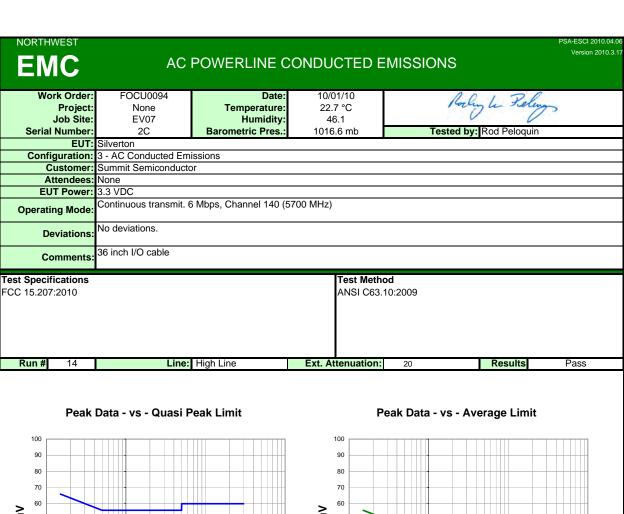
10.00

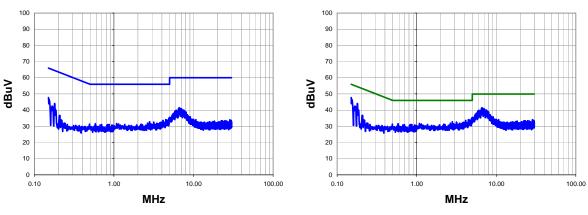

100.00


20


10

0.10


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
6.660	23.0	20.3	43.3	60.0	-16.7	6.660	23.0	20.3	43.3	50.0	-6.7
7.330	21.5	20.4	41.9	60.0	-18.1	7.330	21.5	20.4	41.9	50.0	-8.1
6.530	21.2	20.3	41.5	60.0	-18.5	6.530	21.2	20.3	41.5	50.0	-8.5
6.720	21.1	20.4	41.5	60.0	-18.5	6.720	21.1	20.4	41.5	50.0	-8.5
0.150	27.2	20.2	47.4	66.0	-18.6	0.150	27.2	20.2	47.4	56.0	-8.6
7.280	20.7	20.4	41.1	60.0	-18.9	7.280	20.7	20.4	41.1	50.0	-8.9
7.550	20.4	20.4	40.8	60.0	-19.2	7.550	20.4	20.4	40.8	50.0	-9.2
6.280	20.1	20.3	40.4	60.0	-19.6	6.280	20.1	20.3	40.4	50.0	-9.6
6.150	20.1	20.3	40.4	60.0	-19.6	6.150	20.1	20.3	40.4	50.0	-9.6
7.760	19.8	20.4	40.2	60.0	-19.8	7.760	19.8	20.4	40.2	50.0	-9.8
5.440	19.8	20.3	40.1	60.0	-19.9	5.440	19.8	20.3	40.1	50.0	-9.9
4.480	15.8	20.2	36.0	56.0	-20.0	4.480	15.8	20.2	36.0	46.0	-10.0
8.250	19.4	20.4	39.8	60.0	-20.2	8.250	19.4	20.4	39.8	50.0	-10.2
8.610	19.3	20.4	39.7	60.0	-20.3	8.610	19.3	20.4	39.7	50.0	-10.3
8.650	19.2	20.4	39.6	60.0	-20.4	8.650	19.2	20.4	39.6	50.0	-10.4
4.496	15.2	20.2	35.4	56.0	-20.6	4.496	15.2	20.2	35.4	46.0	-10.6
5.400	19.1	20.3	39.4	60.0	-20.6	5.400	19.1	20.3	39.4	50.0	-10.6
5.720	19.0	20.3	39.3	60.0	-20.7	5.720	19.0	20.3	39.3	50.0	-10.7
4.712	14.6	20.3	34.9	56.0	-21.2	4.712	14.6	20.3	34.9	46.0	-11.2
8.830	17.8	20.4	38.2	60.0	-21.8	8.830	17.8	20.4	38.2	50.0	-11.8



	Peak Data - vs - Quasi Peak Limit							Р	eak Data - vs	- Average Lin	nit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.150	28.3	20.2	48.5	66.0	-17.5	_	0.150	28.3	20.2	48.5	56.0	-7.5
6.500	21.0	20.3	41.3	60.0	-18.7		6.500	21.0	20.3	41.3	50.0	-8.7
7.050	20.8	20.4	41.2	60.0	-18.8		7.050	20.8	20.4	41.2	50.0	-8.8
7.830	20.2	20.4	40.6	60.0	-19.4		7.830	20.2	20.4	40.6	50.0	-9.4
8.220	20.0	20.4	40.4	60.0	-19.6		8.220	20.0	20.4	40.4	50.0	-9.6
7.630	19.9	20.4	40.3	60.0	-19.7		7.630	19.9	20.4	40.3	50.0	-9.7
7.220	19.9	20.4	40.3	60.0	-19.7		7.220	19.9	20.4	40.3	50.0	-9.7
5.990	19.3	20.3	39.6	60.0	-20.4		5.990	19.3	20.3	39.6	50.0	-10.4
8.670	19.1	20.4	39.5	60.0	-20.5		8.670	19.1	20.4	39.5	50.0	-10.5
8.410	18.7	20.4	39.1	60.0	-20.9		8.410	18.7	20.4	39.1	50.0	-10.9
4.592	14.7	20.3	35.0	56.0	-21.1		4.592	14.7	20.3	35.0	46.0	-11.1
4.488	14.6	20.2	34.8	56.0	-21.2		4.488	14.6	20.2	34.8	46.0	-11.2
0.174	23.1	20.2	43.3	64.8	-21.5		0.174	23.1	20.2	43.3	54.8	-11.5
5.540	18.2	20.3	38.5	60.0	-21.5		5.540	18.2	20.3	38.5	50.0	-11.5
4.056	14.1	20.2	34.3	56.0	-21.7		4.056	14.1	20.2	34.3	46.0	-11.7
3.672	13.9	20.2	34.1	56.0	-21.9		3.672	13.9	20.2	34.1	46.0	-11.9
4.080	13.8	20.2	34.0	56.0	-22.0		4.080	13.8	20.2	34.0	46.0	-12.0
0.186	21.9	20.2	42.1	64.2	-22.2		0.186	21.9	20.2	42.1	54.2	-12.2
8.930	17.3	20.4	37.7	60.0	-22.3		8.930	17.3	20.4	37.7	50.0	-12.3
4.168	13.1	20.2	33.3	56.0	-22.7		4.168	13.1	20.2	33.3	46.0	-12.7

	Peak Data - vs - Quasi Peak Limit					Peak Data - vs - Average Limit					
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Fre (MH		Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.150	27.6	20.2	47.8	66.0	-18.2	0.15	50 27.6	20.2	47.8	56.0	-8.2
6.590	21.2	20.3	41.5	60.0	-18.5	6.59	90 21.2	20.3	41.5	50.0	-8.5
6.760	20.7	20.4	41.1	60.0	-18.9	6.76	60 20.7	20.4	41.1	50.0	-8.9
7.040	20.4	20.4	40.8	60.0	-19.2	7.04	10 20.4	20.4	40.8	50.0	-9.2
7.530	19.7	20.4	40.1	60.0	-19.9	7.53	30 19.7	20.4	40.1	50.0	-9.9
6.040	19.7	20.3	40.0	60.0	-20.0	6.04	10 19.7	20.3	40.0	50.0	-10.0
0.179	24.0	20.2	44.2	64.5	-20.4	0.17	79 24.0	20.2	44.2	54.5	-10.4
6.320	19.3	20.3	39.6	60.0	-20.4	6.32	20 19.3	20.3	39.6	50.0	-10.4
5.850	19.1	20.3	39.4	60.0	-20.6	5.89	50 19.1	20.3	39.4	50.0	-10.6
7.790	18.8	20.4	39.2	60.0	-20.8	7.79	90 18.8	20.4	39.2	50.0	-10.8
7.670	18.7	20.4	39.1	60.0	-20.9	7.67	70 18.7	20.4	39.1	50.0	-10.9
4.904	14.8	20.3	35.1	56.0	-20.9	4.90	04 14.8	20.3	35.1	46.0	-10.9
8.030	18.5	20.4	38.9	60.0	-21.1	8.03	30 18.5	20.4	38.9	50.0	-11.1
5.890	18.3	20.3	38.6	60.0	-21.4	5.89	90 18.3	20.3	38.6	50.0	-11.4
4.480	13.9	20.2	34.1	56.0	-21.9	4.48	30 13.9	20.2	34.1	46.0	-11.9
5.610	17.8	20.3	38.1	60.0	-21.9	5.6	10 17.8	20.3	38.1	50.0	-11.9
5.720	17.8	20.3	38.1	60.0	-21.9	5.72	20 17.8	20.3	38.1	50.0	-11.9
4.704	13.6	20.3	33.9	56.0	-22.2	4.70	04 13.6	20.3	33.9	46.0	-12.2
4.128	13.4	20.2	33.6	56.0	-22.4	4.12	28 13.4	20.2	33.6	46.0	-12.4
0.167	22.4	20.2	42.6	65.1	-22.5	0.16	67 22.4	20.2	42.6	55.1	-12.5

BURST DURATION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

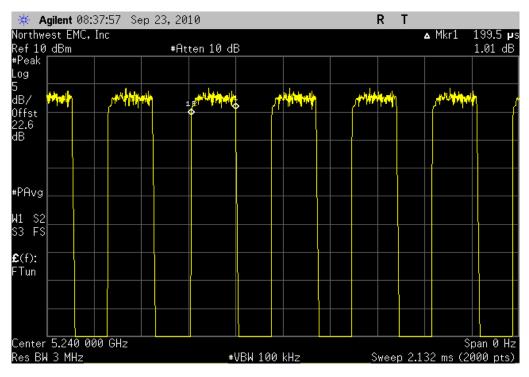
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Per ANSI C63.10, for unlicensed wireless devices unable to be configured for 100 % duty cycle even in test mode, the system should be configured for the longest duration duty cycle supported. The transmission pulse duration is that time over which the unlicensed wireless device is on and transmitting at its maximum output power.

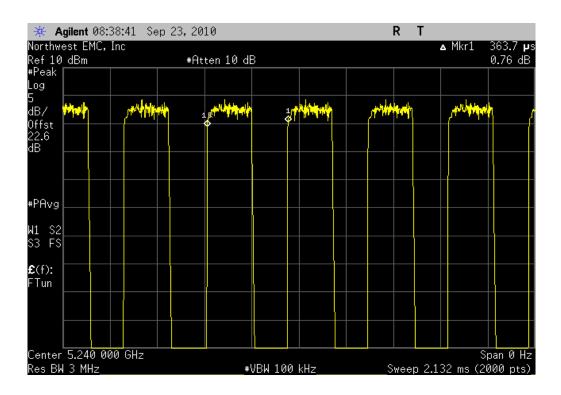
Measurement methods defined in ANSI C63.10 are often based upon the relationship between the EUT transmission pulse duration and the sweep speed of the measurement analyzer.

The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer.


NORTHWEST		DUDGE	LIDATION		XMit 2010.07.29
EMC		BURSID	URATION		
EUT:	: Silverton			Work Order:	FOCU0094
Serial Number:	: 2E			Date:	09/23/10
Customer:	Summit Semiconductor			Temperature:	22°C
Attendees	: Ponnappa Pasura			Humidity:	45%
Project:	None			Barometric Pres.:	30.10 in
Tested by:	: Rod Peloquin		Power: 3.3 VDC	Job Site:	EV06
TEST SPECIFICAT	TIONS		Test Method		
FCC 15.407:2010			ANSI C63.10:2009		
COMMENTS					
Gating graph shov	ws operation with the rando	om data set to 0			
DEVIATIONS FROM	M TEST STANDARD				
None					
Configuration #	2	Signature Rocky Le	- Feling		
				Value	

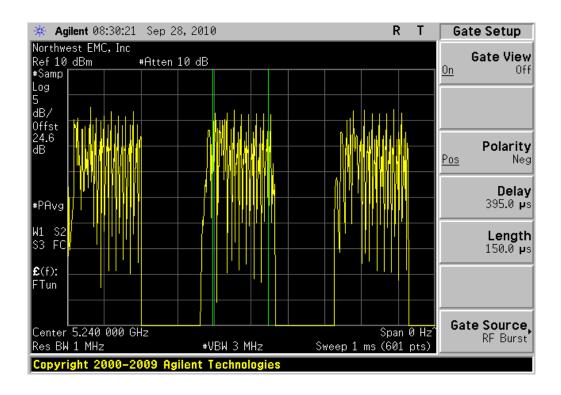
PULSE DURATION PERIOD RF GATING 199.5 µs 363.7 µs See graph

BURST DURATION


PULSE DURATION

Value: 199.5 μs

PERIOD


Value: 363.7 μs

BURST DURATION

RF GATING

Value: See graph

