

FCC ID: U9AWTPIWLAN-V200

EMI -- TEST REPORT

- FCC Part 15.407 -

Test Report No. :	T33962-00-10AA	02. July 2010
<hr/>		Date of issue

Type / Model Name : Toyota Wireless Teach Pendant

Product Description : Mobile Human Machine Interface

Applicant : Siemens AG, I IA AS RD ST TT

Address : Werner-von-Siemens-Str. 50
92224 AMBERG, GERMANY

Manufacturer : Siemens AG, I IA AS

Address : Gleiwitzer Str. 555
90475 NUERNBERG, GERMANY

Licence holder : Siemens AG, I IA AS RD ST TT

Address : Werner-von-Siemens-Str. 50
92224 AMBERG, GERMANY

Test Result according to the standards listed in clause 1 test standards:	Positive
--	-----------------

The test report merely corresponds to the test sample.
It is not permitted to copy extracts of these test results without the written permission of the test laboratory.

FCC ID: U9AWTPIWLAN-V200

Contents

1 TEST STANDARDS	3
2 SUMMARY	4
3 EQUIPMENT UNDER TEST	7
3.1 PHOTO DOCUMENTATION OF THE EUT – DETAILED PHOTOS SEE ATTACHMENT A	7
3.2 POWER SUPPLY SYSTEM UTILISED	7
3.3 TEST SETUP	7
3.4 SHORT DESCRIPTION OF THE EQUIPMENT UNDER TEST (EuT)	8
4 TEST ENVIRONMENT	9
4.1 ADDRESS OF THE TEST LABORATORY	9
4.2 ENVIRONMENTAL CONDITIONS	9
4.3 STATEMENT OF THE MEASUREMENT UNCERTAINTY	9
4.4 MEASUREMENT PROTOCOL FOR FCC, VCCI AND AUSTEL	10
5 TEST CONDITIONS AND RESULTS	11
5.1 CONDUCTED EMISSIONS	11
5.2 26 dB EMISSION BANDWIDTH	15
5.3 MAXIMUM CONDUCTED OUTPUT POWER	19
5.4 MAXIMUM PERMISSIBLE EXPOSURE (MPE)	21
5.5 PEAK POWER SPECTRAL DENSITY	24
5.6 UNDISERABLE EMISSIONS	27
5.7 PEAK EXCURSION	40
5.8 FREQUENCY STABILITY MEASUREMENT	44
5.9 ANTENNA APPLICATION	46
5.10 RECEIVER SPURIOUS EMISSIONS	47
6 USED TEST EQUIPMENT AND ACCESSORIES	51

FCC ID: U9AWTPIWLAN-V200

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15 Subpart C - Intentional Radiators (October, 2008)

Part 15, Subpart C, Section 15.35(c)	Correction for Pulse Operation (Duty Cycle)
Part 15, Subpart C, Section 15.203	Antenna requirement
Part 15, Subpart C, Section 15.204	External radio frequency power amplifiers and antenna modifications
Part 15, Subpart C, Section 15.207(a)	AC Line conducted emissions
Part 15, Subpart C, Section 15.209(a)	Radiated emissions, general requirements
Part 15, Subpart C, Section 15.407	Operation within the bands 5.15-5.25 GHz, 5.25-5.35 GHz, 5.47-5.725 GHz and 5.725-5.825 GHz

FCC Rules and Regulations Part 15 Subpart B - Unintentional Radiators (October, 2008)

Part 15, Subpart B, Section 15.107(a)	AC Line conducted emissions
Part 15, Subpart B, Section 15.109(a)	Radiated emissions, general requirements

FCC Rules and Regulations Part 1 Subpart I - Procedures Implementing the National Environmental Policy Act of 1969

Part 1, Subpart I, Section 1.1310	Radiofrequency radiation exposure limits.
-----------------------------------	---

OET Bulletin 65, 65A, 65B, 65C Edition 97-01, August 1997 – Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.

FCC ID: U9AWTPIWLAN-V200

2 SUMMARY

GENERAL REMARKS:

The EUT consists of one WLAN Module working in 2.4 and 5 GHz frequency band and one RFID Module working at 13.56 MHz. The EUT has an input voltage stabilisation and a voltage stabilisation directly in the RF Module. Therefore no influence will be expected by voltage variations. For this reason the tests have been performed with nominal voltage only.

The EuT is equipped with 2 internal WLAN antennas (gain=2 dBi) and 1 RFID antenna.

This test report describes only the assessment of the WLAN Module in the 5 GHz frequency band.
The EuT is configured as client.

For the RFID Module please refer to test report T33962-00-02AA by mikes-testingpartners gmbh.

Available Features:

The WLAN client module is compatible with 802.11a, 802.11b, 802.11g technology. It is able to operate in the 2.4 GHz and 5 GHz frequency band.

- 802.11a Mode 5.15 GHz – 5.25 GHz and 5.725 GHz – 5.850 GHz
- 802.11b/g Mode 2400 – 2483.5 MHz

The module uses DSSS or OFDM modulation and is capable to provide following data rates:

- 802.11b Mode 11, 5.5, 2, 1 Mbps, auto-fallback
- 802.11g Mode 54, 48, 36, 24, 18, 12, 9, 6 Mbps, auto-fallback
- 802.11a 54, 48, 36, 24, 18, 12, 9, 6 Mbps, auto-fallback

FCC ID: U9AWTPIWLAN-V200

Note: The US version will be firmware limited to operate only in the 5150-5250 MHz band.

The tests have been carried out in the frequency band from 5150 to 5250 MHz.

Conducted measurements have been performed using an Access point (LAP). The EuT (WLAN module) was mounted in the AP and controlled via LAN by a Laptop.

Radiated measurements have been performed with normal configuration of the WTP (WLAN Module inside). Pre-scan has been performed to determine the worst-case mode from all possible combinations between available modulations and data rates. The maximum output power depends on used data rate.

As worst case the following data rate was used:

- 802.11a: 6 Mbits

The EuT has been adjusted to transmit data during the tests with a duty cycle (X) of about X=1.

4 channels are provided to this EuT in 802.11a mode:

Channel	Frequency
36	5180
40	5200
44	5220
48	5240

Following channels were selected for the final test as listed below:

Technology	Available Channel	Tested Channel	Modulation	Modulation Type	Data Rate (Mbps)
802.11a	36 to 48	36 and 48	OFDM	BPSK	6

FCC ID: U9AWTPIWLAN-V200

FINAL ASSESSMENT:

The equipment under test **fulfills** the EMI requirements cited in clause 1 test standards.

Date of receipt of test sample : acc. to storage records

Testing commenced on : 21. December 2009

Testing concluded on : 09. March 2010

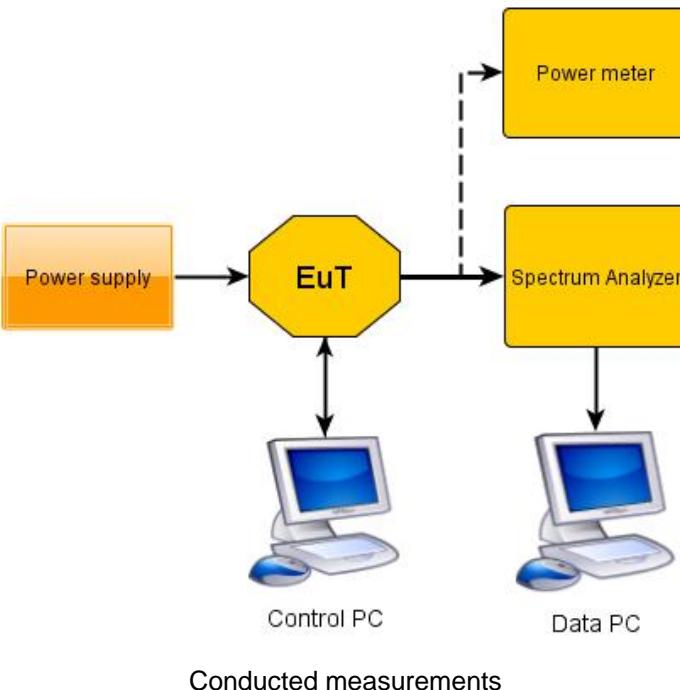
Checked by:

Tested by:

Klaus Gegenfurther
Dipl.-Ing.(FH)
Manager: Radio Group

Anton Altmann
Dipl.-Ing.(FH)

FCC ID: U9AWTPIWLAN-V200


3 EQUIPMENT UNDER TEST

3.1 Photo documentation of the EuT – Detailed photos see Attachment A

3.2 Power supply system utilised

Power supply voltage : 8.4 VDC (battery)
Power supply voltage (alternate) : Input: 100-240 V / 50-60 Hz / 1φ, Output: +24 V DC

3.3 Test setup

FCC ID: U9AWTPIWLAN-V200

3.4 Short description of the Equipment under Test (EuT)

The WLAN Module is a part of the Wireless Termination Point (WTP). It consists of an additional RFID Module. The WTP permits mobile operation at any point in the system. The HMI device communicates with the PLC via WLAN. The HMI device is equipped with a zone recognition function (RFID). The simple battery-powered operation and ergonomic design of the HMI device permit safe working with the WTP over extended periods. The operator can operate the system wireless at almost any location on the machine or system.

Number of tested samples: 1
Serial number: Prototype

EuT operation mode:

The equipment under test was operated during the measurement under the following conditions:

- Data transmission (Client mode)

- Continuous transmit mode (test mode only)

EuT configuration:

(The CDF filled by the applicant can be viewed at the test laboratory.)

The following peripheral devices and interface cables were connected during the measurements:

- AC/DC power supply Model : FAIRWAY Model: VEG65C-250FAA
- Power supply 24 V Model : LNG32-3 (mikes-testingpartners gmbh)
- _____ Model : _____

FCC ID: U9AWTPIWLAN-V200

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

mikes-testingpartners gmbh
Ohmstrasse 2-4
94342 Strasskirchen
Germany

4.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16-4-2 /11.2003 „Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements“ and is documented in the quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

FCC ID: U9AWTPIWLAN-V200

4.4 Measurement Protocol for FCC, VCCI and AUSTEL

4.4.1 GENERAL INFORMATION

4.4.1.1 Test Methodology

Conducted and radiated disturbance testing is performed according to the procedures in International Special Committee on Radio Interference (CISPR) Publication 22, European Standard EN 55022 as shown under section 1 of this report.

In compliance with 47 CFR Part 15 Subpart A Section 15.38 testing for FCC compliance may be done following the ANSI C63.4-2003 procedures and using the CISPR 22 Limits.

4.4.1.2 Measurement Error

The data and results referenced in this document are true and accurate. The reader is cautioned that there is some measurement variability due to the tolerances of the test equipment that can contribute to a nominal product measurement uncertainty. The measurement uncertainty was calculated for all measurements listed in this test report according to NIS 81/5.1994 "The treatment of uncertainty in EMC measurements" and is documented in the mikes-testingpartners gmbh quality system according to DIN EN ISO/IEC 17025. Furthermore, component differences and manufacturing process variability of production units similar to that tested may result in additional product uncertainty. If necessary, refer to the test lab for the actual measurement uncertainty for specific tests. The manufacturer has the sole responsibility of continued compliance of the device.

4.4.1.3 Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral using the appropriate impedance characteristic or left unterminated. Where appropriate, cables are manually manipulated with respect to each other thus obtaining maximum disturbances from the unit.

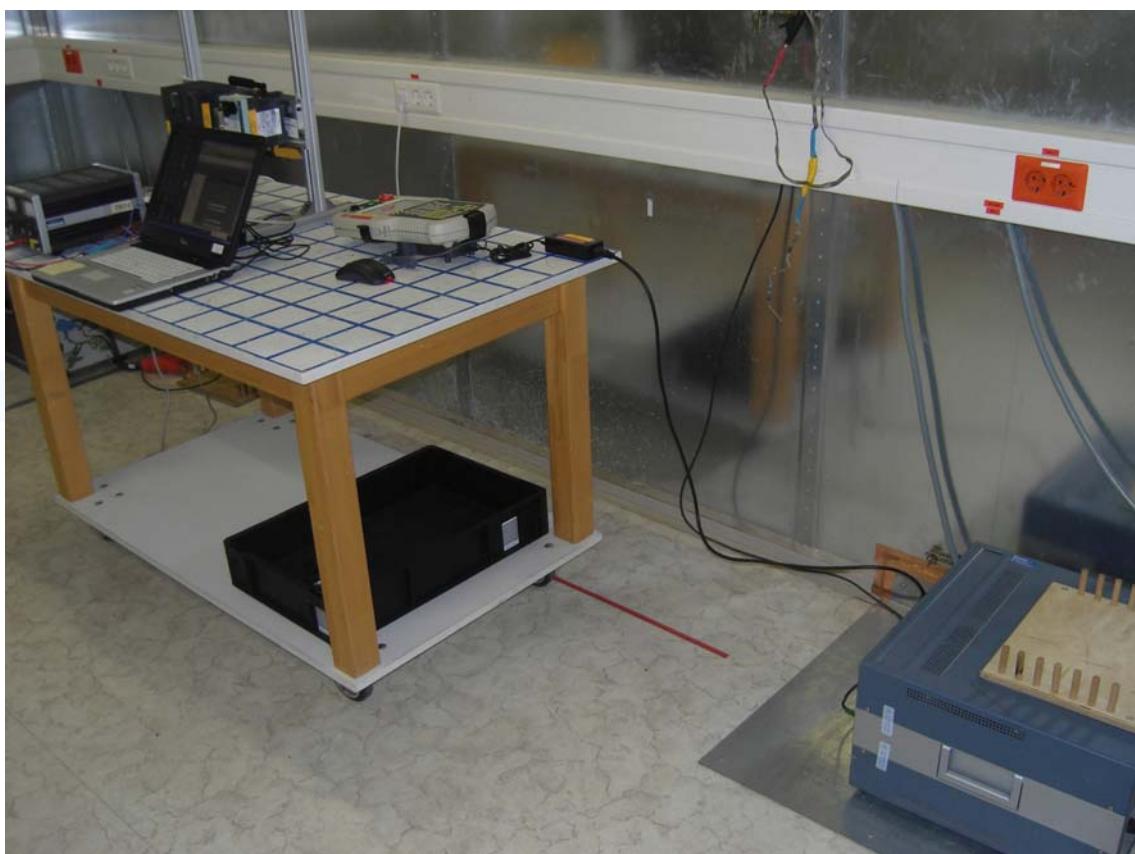
4.4.2 DETAILS OF TEST PROCEDURES

4.4.2.1 General Standard Information

The test methods used comply with CISPR Publication 22, EN 55022 - "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement" and with ANSI C63.4-2003 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

FCC ID: U9AWTPIWLAN-V200

5 TEST CONDITIONS AND RESULTS


5.1 Conducted emissions

For test instruments and accessories used see section 6 Part A 4.

5.1.1 Description of the test location

Test location: Shielded Room S2

5.1.2 Photo documentation of the test set-up

FCC ID: U9AWTPIWLAN-V200

5.1.3 Applicable standard

According to FCC Part 15 Subpart 15.207 (a): Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection and a Line Impedance Stabilization Network (LISN) with $50\Omega/50\mu\text{H}$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emissions are remeasured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

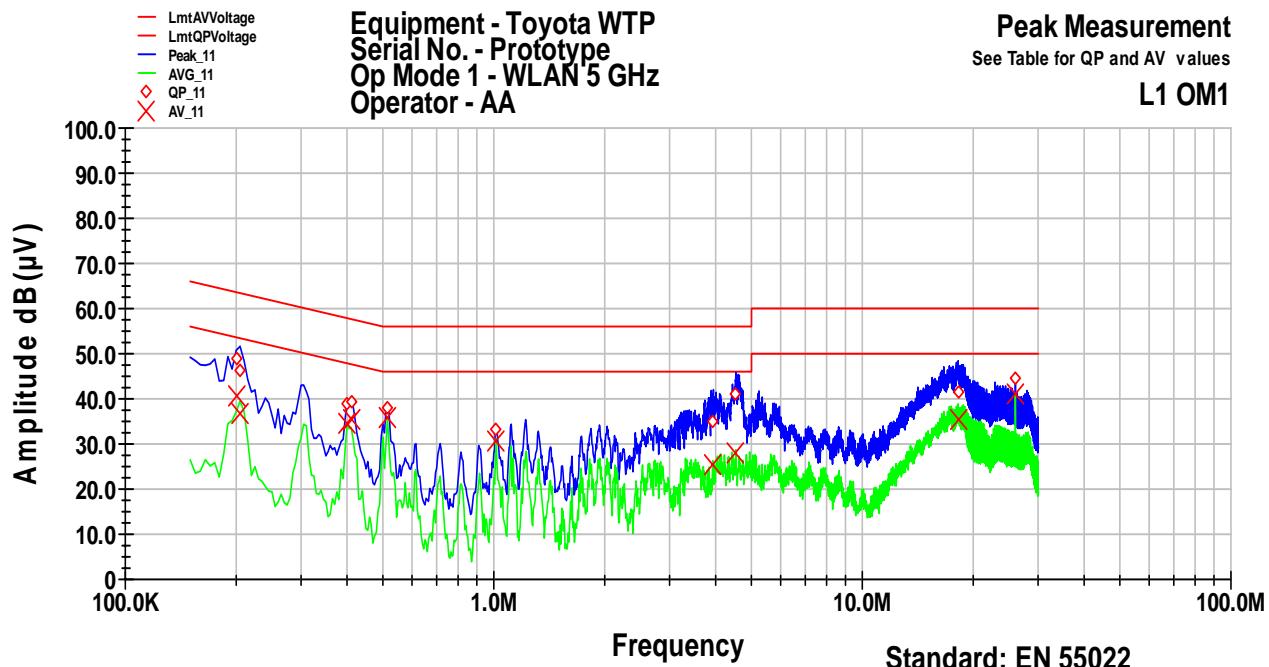
* Decreases with the logarithm of the frequency

5.1.4 Description of Measurement

The final level, expressed in dB μ V, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the FCC Limit or to the CISPR limit.

To convert between dB μ V and μ V, the following conversions apply:

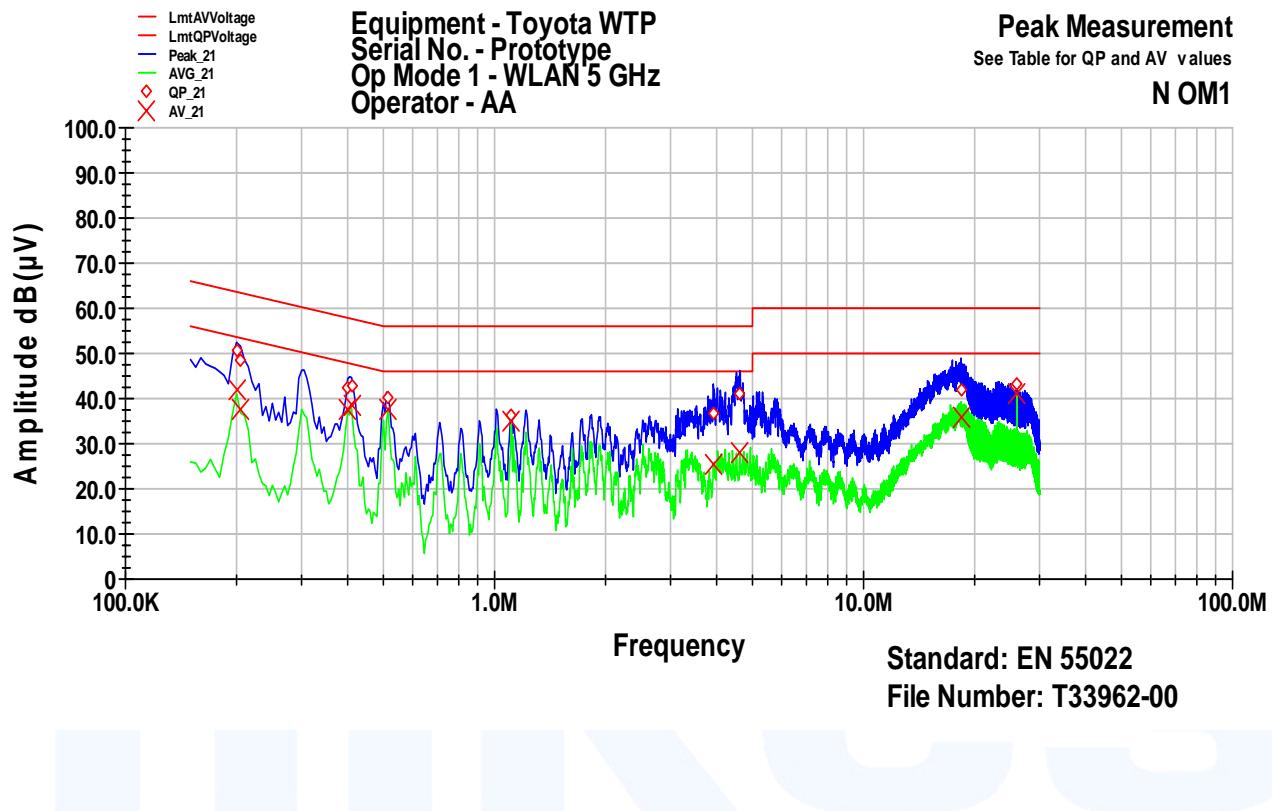
$$\text{dB}\mu\text{V} = 20(\log \mu\text{V})$$


$$\mu\text{V} = \text{Inverse log}(\text{dB}\mu\text{V}/20)$$

The requirements are **FULFILLED**.

Remarks: For detailed results please refer to the following plots.

FCC ID: U9AWTPIWLAN-V200


Conducted emissions at power line L1
WLAN mode: 5 GHz

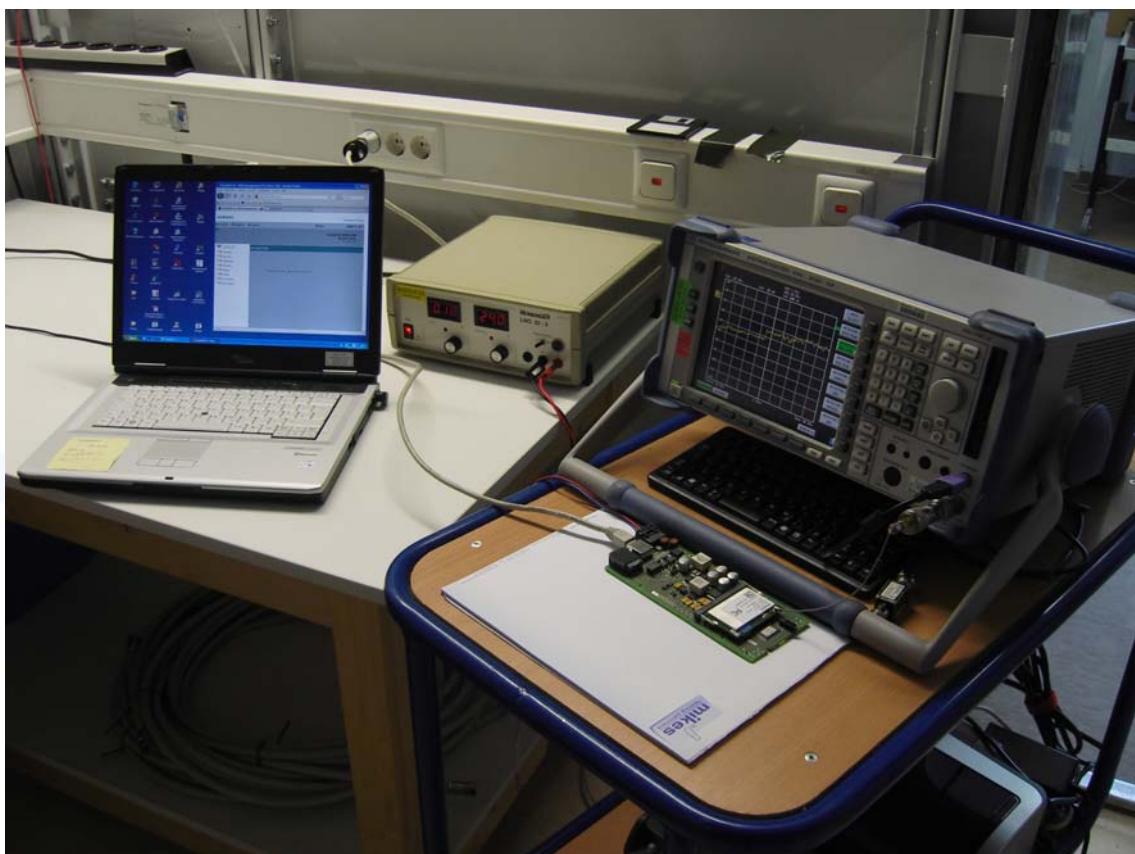
Frequency	QP Level	QP Margin	QP Limit	AV Level	AV Margin	AV Limit
MHz	dB(μV)	dB	dB	dB(μV)	dB	dB
0.2	48.7	-14.9	63.6	40.5	-13.1	53.6
0.205	46.3	-17.2	63.4	36.8	-16.6	53.4
0.4	38.7	-19.1	57.9	34.7	-13.1	47.9
0.41	39.4	-18.3	57.6	35.5	-12.2	47.6
0.515	37.9	-18.1	56.0	36.0	-10.0	46.0
1.015	33.2	-22.8	56.0	30.5	-15.5	46.0
3.94	34.8	-21.2	56.0	25.3	-20.7	46.0
4.535	41.3	-14.7	56.0	28.1	-17.9	46.0
18.195	41.7	-18.3	60.0	35.5	-14.5	50.0
26	44.5	-15.5	60.0	41.0	-9.0	50.0

FCC ID: U9AWTPIWLAN-V200

Conducted emissions at power line N
WLAN mode: 5 GHz

Frequency	QP Level	QP Margin	QP Limit	AV Level	AV Margin	AV Limit
MHz	dB(μ V)	dB	dB	dB(μ V)	dB	dB
0.2	50.5	-13.1	63.6	41.7	-11.9	53.6
0.205	48.4	-15.0	63.4	37.7	-15.7	53.4
0.4	42.6	-15.3	57.9	37.6	-10.3	47.9
0.41	42.8	-14.9	57.6	38.7	-9.0	47.6
0.515	40.0	-16.0	56.0	37.6	-8.4	46.0
1.11	36.5	-19.5	56.0	34.8	-11.2	46.0
3.915	36.6	-19.4	56.0	25.6	-20.4	46.0
4.62	40.9	-15.1	56.0	27.8	-18.2	46.0
18.365	41.9	-18.1	60.0	35.8	-14.2	50.0
26	43.1	-16.9	60.0	41.2	-8.8	50.0

FCC ID: U9AWTPIWLAN-V200


5.2 26 dB Emission Bandwidth

For test instruments and accessories used see section 6 Part **MB**.

5.2.1 Description of the test location

Test location: AREA4

5.2.2 Photo documentation of the test set-up

FCC ID: U9AWTPIWLAN-V200

5.2.3 Applicable standard

According to FCC Part 15 Subpart 15.401 (i): The emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum of the modulated carrier.

5.2.4 Description of Measurement

The bandwidth was measured at an amplitude level reduced from the reference level by a specified ratio of -26 dB. The reference level is the level of the highest amplitude signal observed from the transmitter fundamental frequency. The measurement has been carried out using a spectrum analyzer with the following settings:

RBW=300 kHz

VBW=1 MHz

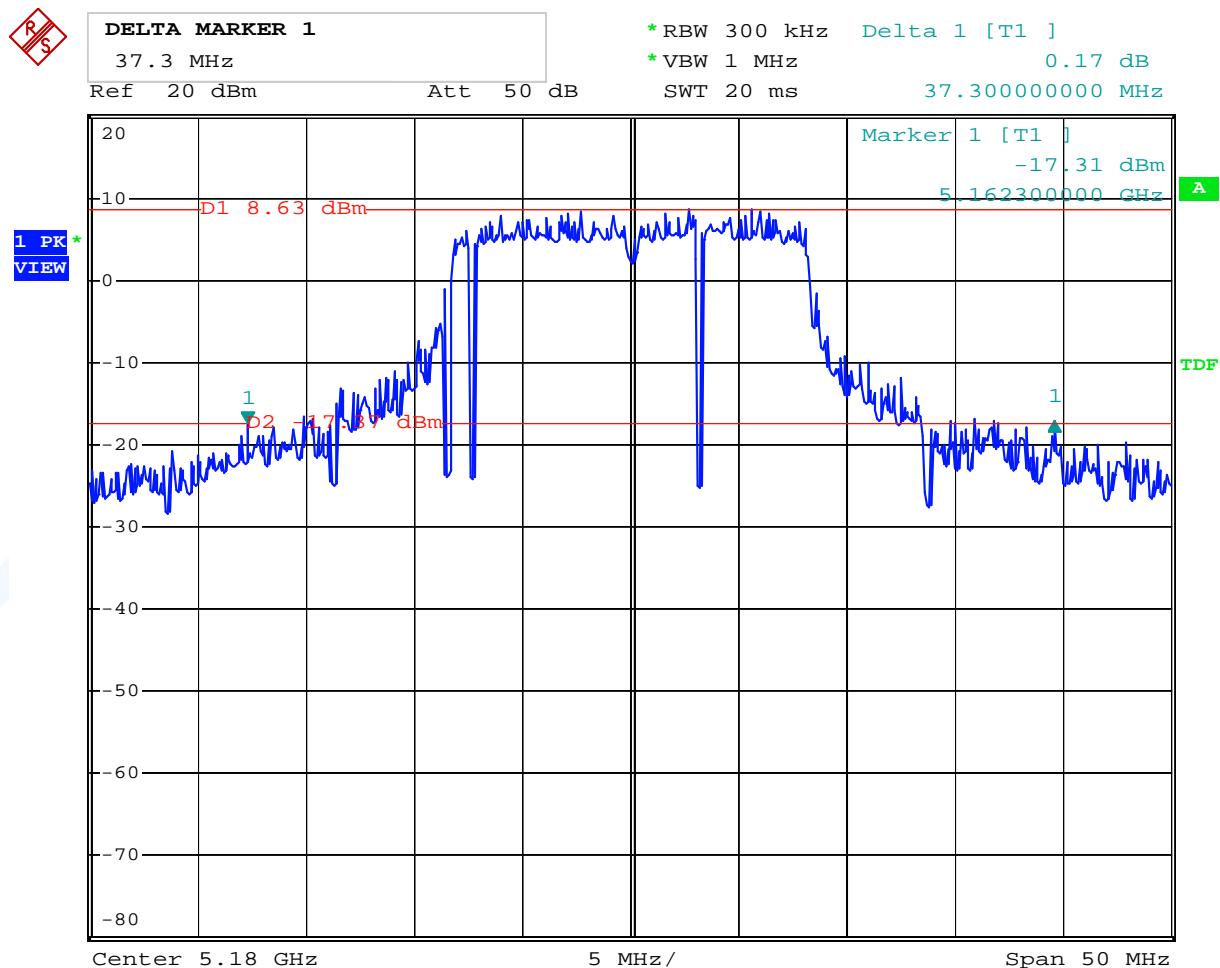
PEAK Detector

The table below shows the settings according to ANSI C63.4-2003.

Fundamental frequency	Minimum resolution bandwidth
9 kHz to 30 MHz	1kHz
30 to 1000 MHz	10 kHz
1000 MHz to 40 GHz	100 kHz

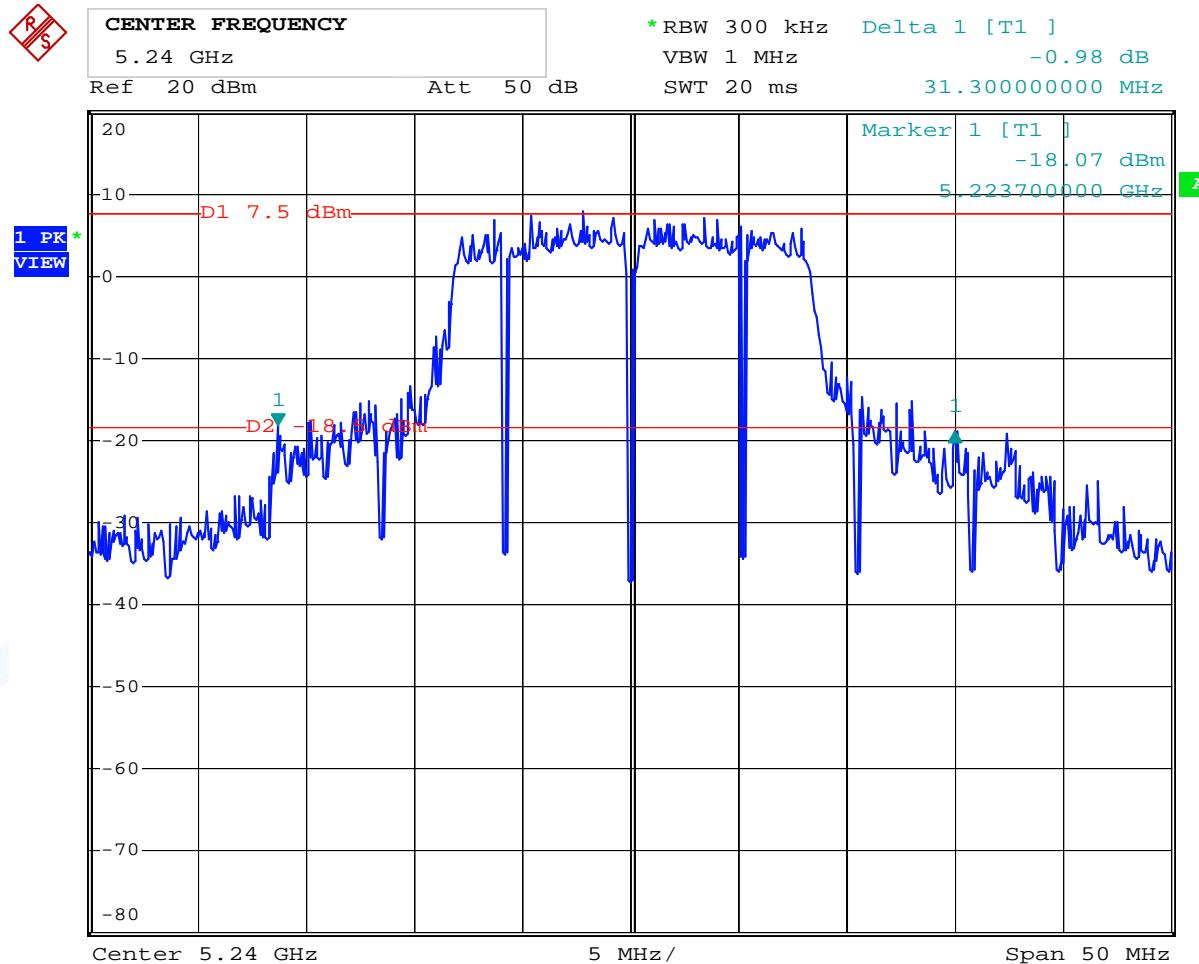
5.2.5 Test result

Channel number	Fundamental Frequency (MHz)	26 dB BANDWIDTH (MHz)
36	5180	37.3
48	5240	31.3


Remarks: For detailed test result please refer to following test protocols.

FCC ID: U9AWTPIWLAN-V200

5.2.6 Test protocol

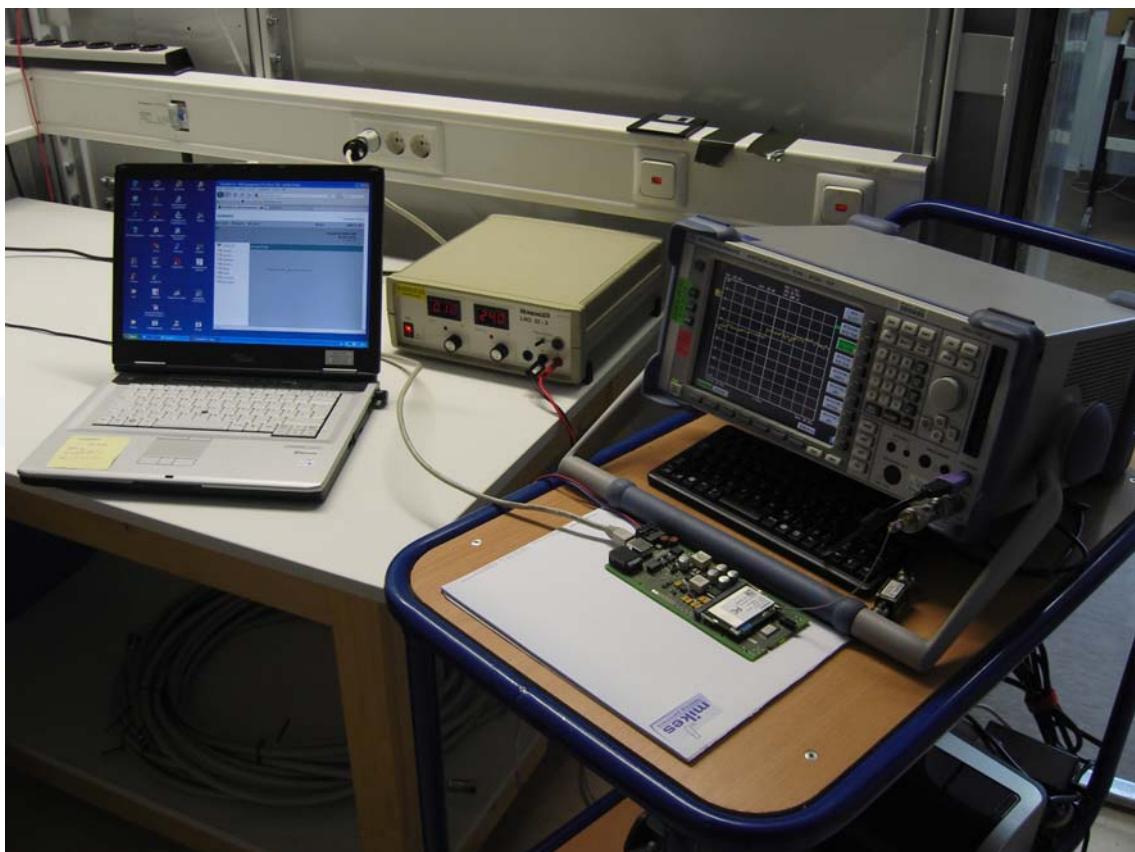

26dB Bandwidth Measurement plots

Channel 36 (5180 MHz)

FCC ID: U9AWTPIWLAN-V200

Channel 48 (5240 MHz)

FCC ID: U9AWTPIWLAN-V200


5.3 Maximum Conducted Output Power

For test instruments and accessories used see section 6 Part **CPC 3**.

5.3.1 Description of the test location

Test location: AREA4

5.3.2 Photo documentation of the test set-up

FCC ID: U9AWTPIWLAN-V200

5.3.3 Applicable standard

According to FCC Part 15 Subpart 15.401 (n): The total transmits power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. The applicable power limits are defined in Part 15.407 (a).

If transmitting antennas of directional gain are greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.3.4 Description of Measurement

The transmitter output was connected to the spectrum analyzer through an attenuator. The center frequency of the spectrum analyzer is set to the fundamental frequency using 1 MHz RBW and 300 kHz VBW. The span of the spectrum analyzer should be larger than the Emission Band Width (EBW). To get the total power of the occupied band width the function "Channel Power Measurement" of the analyzer has been used. The channel band width has been set to EBW. With Peak detector and Power Mode Max Hold the result is the summed maximum output power of the EBW.

According to Public Notice DA 02-2138, method 3, the VBW has been calculated.

5.3.5 Test result

Ch	Frequ. (MHz)	WEB Settings (dB)	Measured Power (dBm)	Correct. (dB)	Power Conducted (dBm)	Antenna Gain (dBi)	EIRP Power (dBm)	EIRP Limit (dBm)	Delta (dB)
36	5180	-3	5.4	10.1	15.4	2.0	17.4	23.0	-5.6
48	5240	-3	5.0	10.1	15.1	2.0	17.1	23.0	-5.9

Remarks: Where Correction means fixed attenuation of 10 dB and cable loss of 0.1 dB.

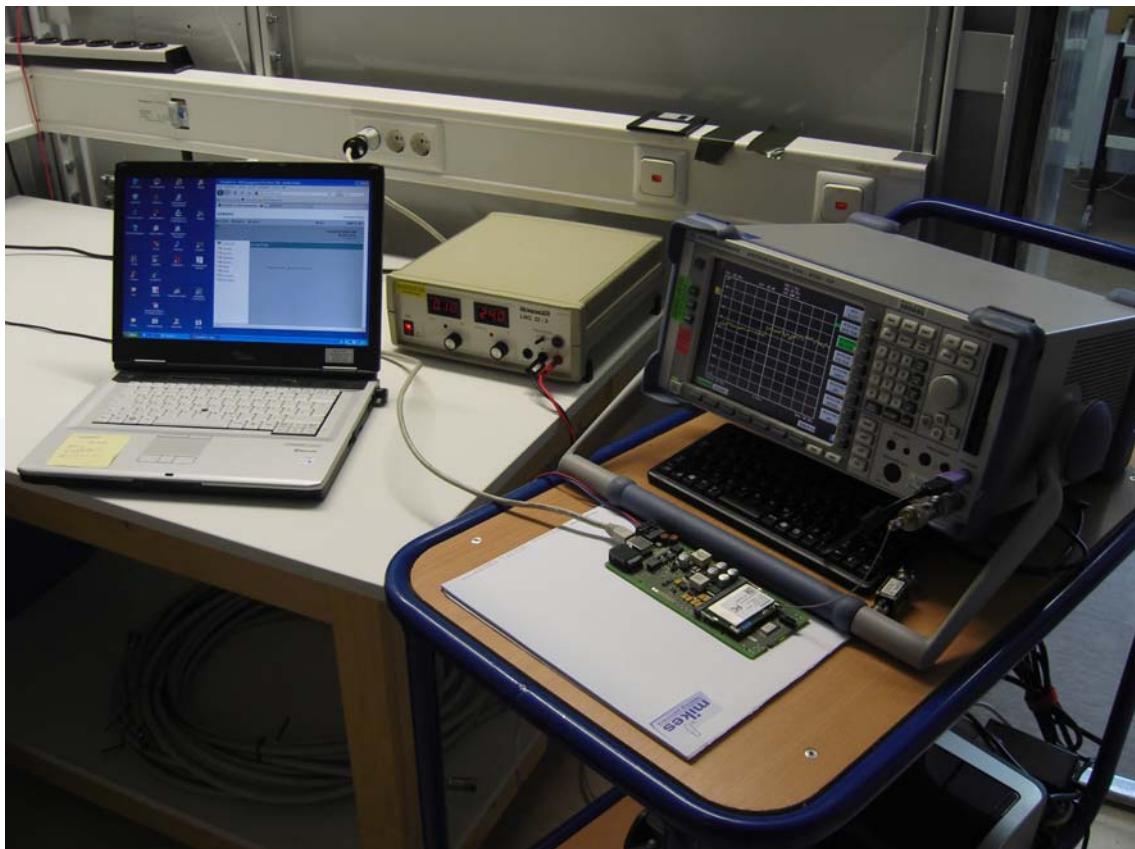
Peak Power Limit according to FCC Subpart 15.407(a)

Frequency (GHz)	Conducted Power Limit		EIRP Limit
	(dBm)	(mW)	(dBm)
5.15-5.25	17	50	23

The requirements are **FULFILLED**.

Remarks: This test has been performed conducted at antenna jack on WLAN module.

FCC ID: U9AWTPIWLAN-V200


5.4 Maximum Permissible Exposure (MPE)

For test instruments and accessories used see section 6 Part **CPC 3**.

5.4.1 Description of the test location

Test location: AREA4

5.4.2 Photo documentation of the test set-up

5.4.3 Applicable standard

According to FCC Part 15 Subpart 15.407 (f): U-NII devices are subject to the radio frequency radiation exposure requirements specified in §§ 1.1307 (b), 2.1091 and 2.1093 of this chapter, as appropriate.

The test methods used comply with ANSI/IEEE C95.1-1992, "IEEE Standard for Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz".

This test report shows the compliance with the limits for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 and the criteria to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in FCC 1.1307(b).

FCC ID: U9AWTPIWLAN-V200

5.4.4 Description of Measurement

The maximum total power input to the antenna has been measured conducted as described in clause 5.3 of this document. Through the Friis transmission formula, which is a far field assumption and the known maximum gain of the antenna, the maximum MPE at a defined distance away from the product, can be calculated.

$$\text{Friis transmission formula: } P_d = \frac{P_{out} * G}{4 * \Pi * r^2}$$

where

P_d = power density in mW/cm^2

P_{out} = output power to antenna in mW

G = gain of antenna (linear scale)

r = distance between antenna and observation point (cm)

5.4.5 Test result

Channel No.	Frequency (MHz)	Max Power Output to Antenna (dBm)	Max Power Output to Antenna (mW)	Antenna gain (dBi)	Power Density (mW/cm ²)	Limit of Power Density (mW/cm ²)
36	5180	15.4	34.7	2	0.011	1.0
48	5240	15.1	32.4	2	0.010	1.0

Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
(A) Limits for Occupational / Controlled Exposure				
0.3 – 3.0	614	1.63	100	6
3.0 – 30	1842/f	4.89/f	900/f ²	6
30 - 300	61.4	0.163	1.0	6
300-1500	---	---	f/300	6
1500-100000	---	---	5.0	6
(B) Limits for General Population / Uncontrolled Exposure				
0.3 – 3.0	614	1.63	100	30
3.0 – 30	824/f	2.19/f	180/f ²	30
30 - 300	27.5	0.073	0.2	30
300-1500	---	---	f/1500	30
1500-100000	---	---	1.0	30

f = Frequency in MHz

FCC ID: U9AWTPIWLAN-V200

5.4.6 Compliance regarding Co-location and Co-transmission

Applicable standard: ANSI/IEEE C95.1-1999, "IEEE Standard for Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", Clause 4.1.1. e):

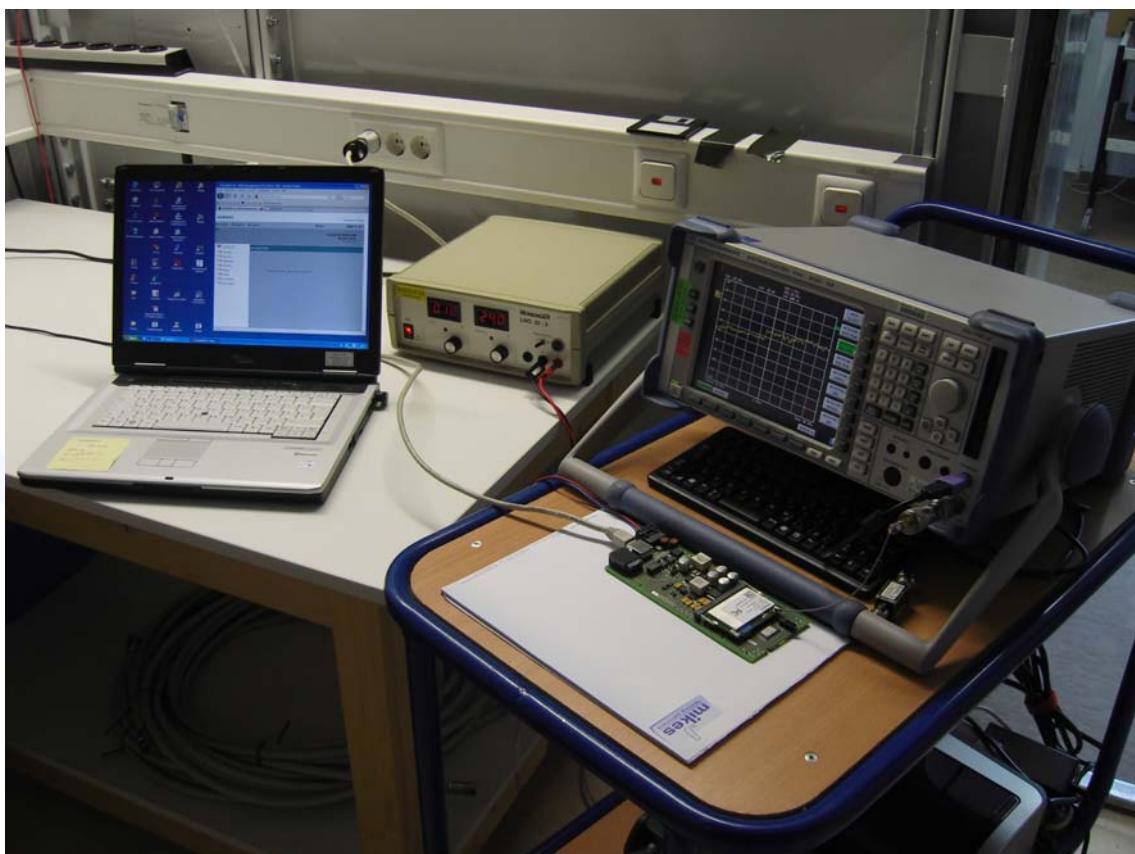
For mixed or broadband fields at a number of frequencies for which there are different values of the MPE, the fraction of the MPE (in terms of E, H, or power density (S)) occurred within each frequency interval should be determined and the sum of all such fractions should not exceed unity (1.0, or 100 % in terms of percentage).

1. MPE of WLAN-Module: $P_d = 0.011 \text{ mW/cm}^2$
Limit: 1 mW/cm^2
Fraction of MPE: 1.1%
2. MPE of RFID Module: The fieldstrength radiated by the RFID Module is too small to be considered.

The requirements are **FULFILLED**.

Remarks: For the test result of RFID Module please refer to Test report T33962-00-02AA
(mikes-testingpartners gmbh)

FCC ID: U9AWTPIWLAN-V200


5.5 Peak Power Spectral Density

For test instruments and accessories used see section 6 Part CPC 3.

5.5.1 Description of the test location

Test location: Area 4

5.5.2 Photo documentation of the test set-up

FCC ID: U9AWTPIWLAN-V200

5.5.3 Applicable standard

According to FCC Part 15 Subpart 15.407 (a):For the band 5.15-5.25 GHz the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 4 dBm in any 1-MHz band during any time interval of continuous transmission.

5.5.4 Description of Measurement

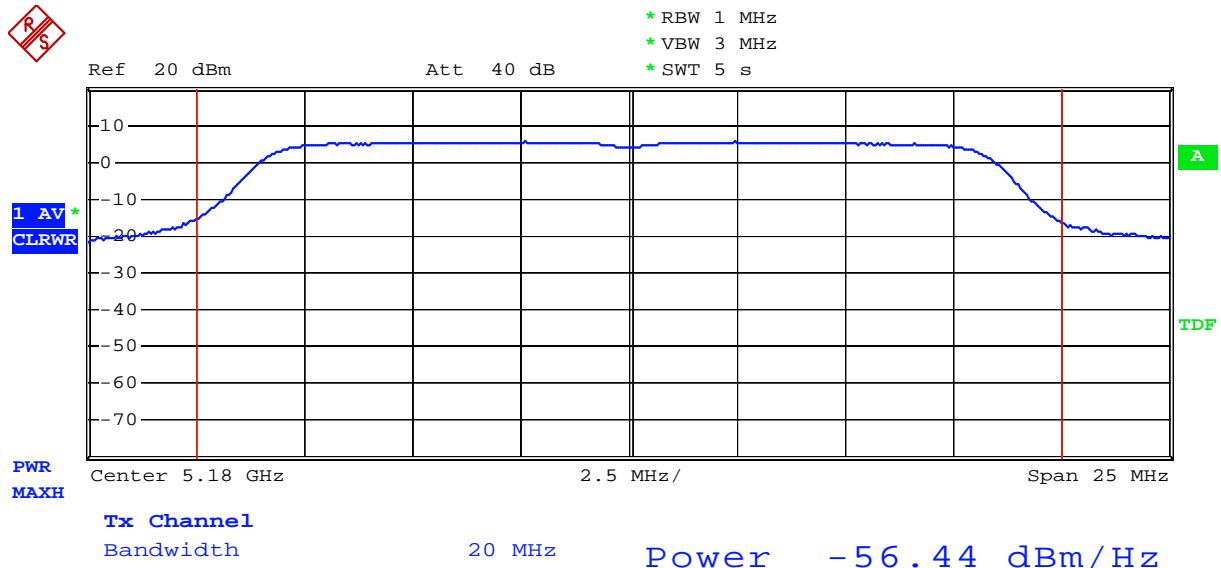
The EuT was connected to the spectrum analyzer with a suitable attenuator. The peak power spectral density was measured using the analyzer function of measuring the band power/Hz and the same settings like the power measuring. The result is calculated by addition of 60 dB (10 log 1 MHz/Hz) to the readings.

Settings on the spectrum analyzer:

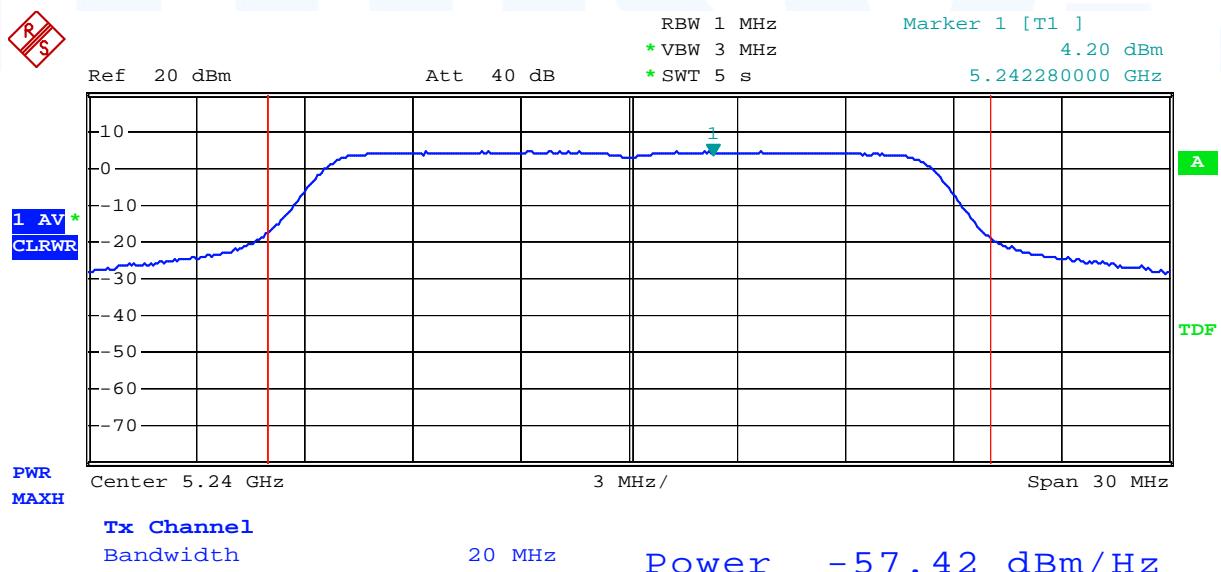
RBW: 1 MHz
 VBW: 3 MHz
 Sweep: auto
 Detector function: AV

5.5.5 Test result

Channel	Fundamental Frequency (MHz)	Reading (dBm/Hz)	Correction to 1 MHz (dB)	PPSD Result (dBm)	Limit (dBm)
36	5180	-56.4	60	3.6	4
48	5240	-57.4	60	2.6	4


The requirements are **FULFILLED**.

Remarks: For detailed test results please refer to following test protocols.


FCC ID: U9AWTPIWLAN-V200

Peak Power spectral density plots

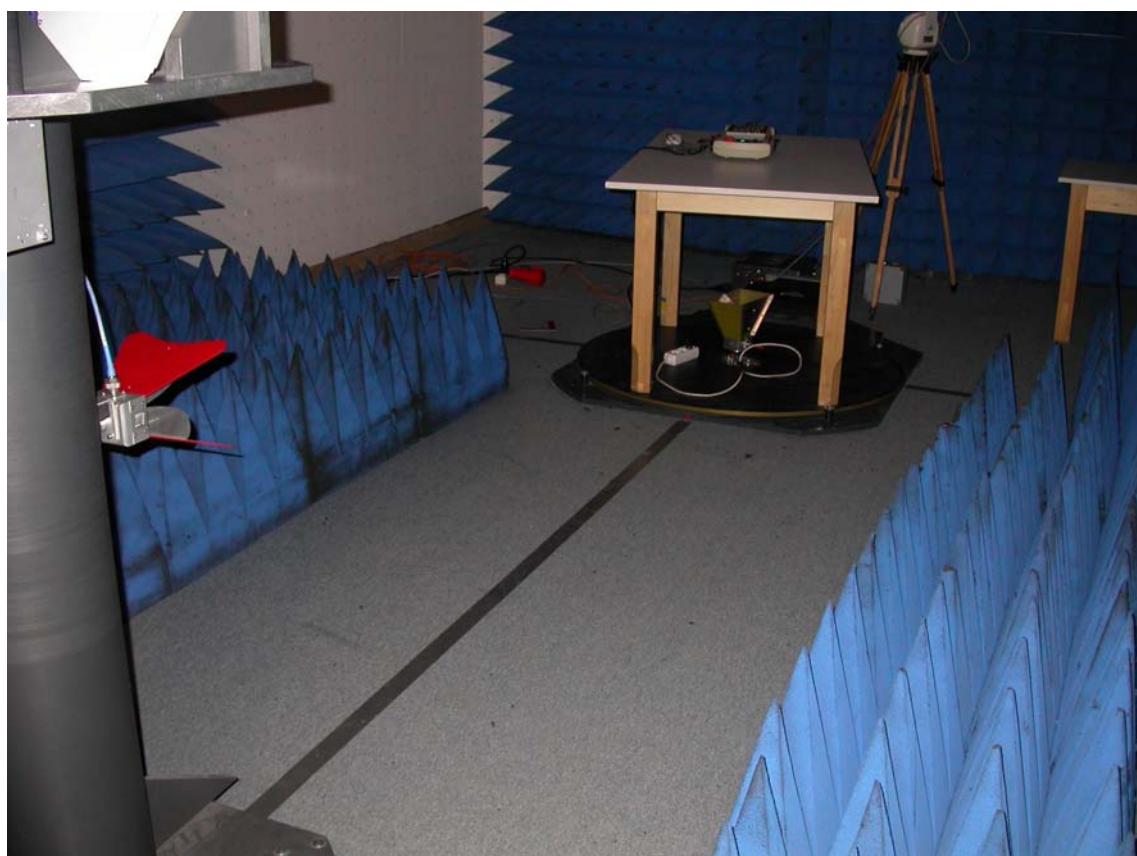
Channel 36 (5180 MHz)

Channel 48 (5240 MHz)

FCC ID: U9AWTPIWLAN-V200

5.6 Undisirable emissions

For test instruments and accessories used see section 6 Part **SEC 1-3, SER 1, SER 2 and SER 3**.


5.6.1 Description of the test location

Test location: OATS1
Anechoic Chamber A2

Test distance: 3 metres

5.6.2 Photo documentation of the test set-up

Anechoic chamber

FCC ID: U9AWTPIWLAN-V200

Open area test site

FCC ID: U9AWTPIWLAN-V200

5.6.3 Applicable standard

According to FCC Part 15 Subpart 15.407 (b):

- (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limit specified in §15.209(a) (see §15.205(c)).

5.6.4 Description of Measurement

Spurious emissions from the EuT are measured in the frequency range from 9 kHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. The measurements are made with 120 kHz/6 dB bandwidth and quasi-peak detection. The EuT is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003.

The antenna was positioned 3 meters horizontally from the EuT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarization's and the EuT are rotated 360 degrees.

The final level, expressed in dB μ V/m, is arrived by taking the reading from the EMI receiver (Level dB μ V) and adding the correction factors and cable loss factor (Factor dB) to it. This is done automatically in the EMI receiver, where the correction factors are stored.

The radiated emissions from the EuT are measured in the frequency range of 1 GHz to maximum frequency as specified in section 15.33, using a Spectrum Analyzer and appropriate linearly polarized antennas. The EuT is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. The set up of the EuT will be in accordance to ANSI C63.4-2003. The antenna was positioned 3 m horizontally from the EuT.

Measurement are made in both the horizontal and vertical planes of polarization in a fully anechoic room using a spectrum analyzer with the detector function set to peak, RBW 1 MHz and VBW set to 3 MHz for any spurious emission or modulation product that falls in **Restricted bands** as defined in Section 15.205.

All tests are performed at a test-distance of 3 meters. During the tests the EUT measurement scans are made with both horizontal and vertical antenna polarization's and the EuT are rotated 360 degrees.

According to Part 15.407 (b) (5): The emission measurements have been performed using a minimum RBW of 1 MHz. At some measurements it was necessary to use a RBW of 100 kHz near the band edge. The results than have been calculated to show the total power over 1 MHz.

Average values were measured with spectrum analyzer by taking the following Settings

RBW: 1 MHz

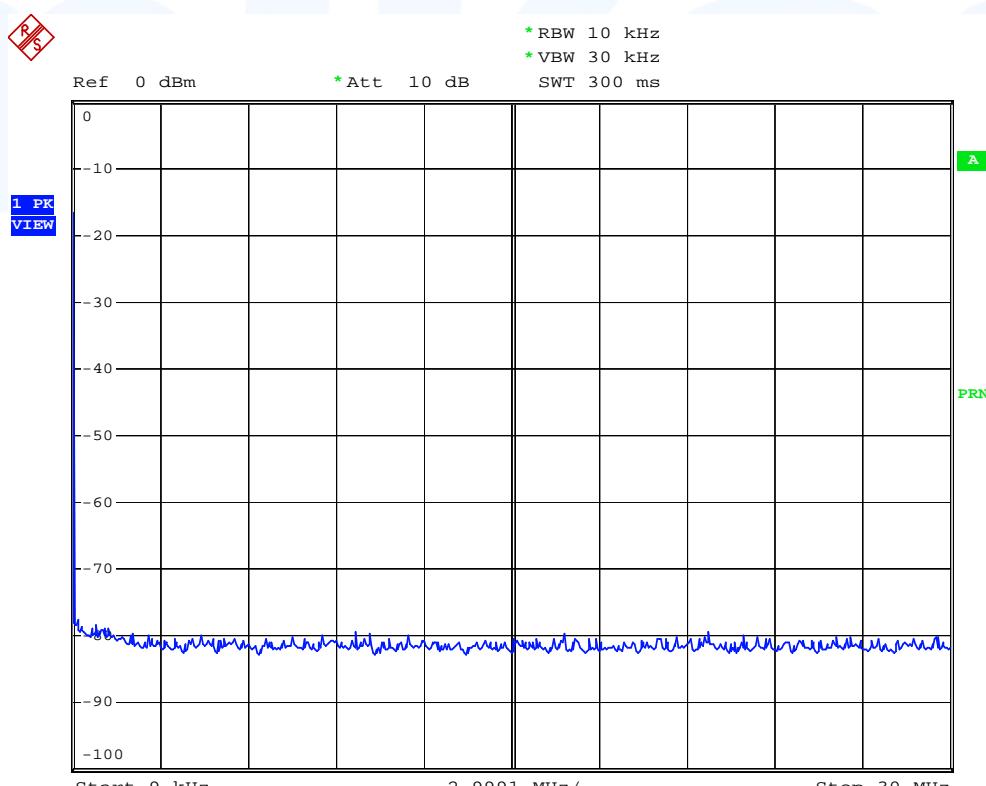
VBW: 10 Hz

Sweep: Auto

FCC ID: U9AWTPIWLAN-V200

5.6.5 Test result

Occupied Frequency band: 5.15 GHz to 5.25 GHz

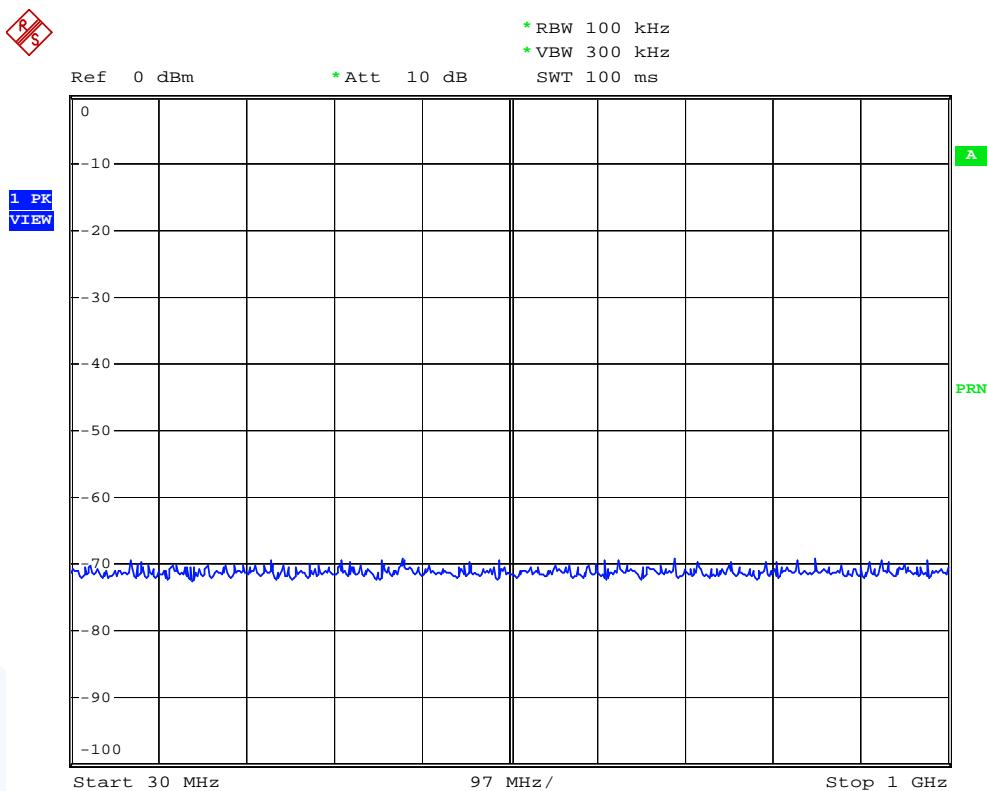

5.6.5.1 Conducted spurious emissions

Channel 36 (5180 MHz)				Channel 48 (5240 MHz)			
Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Delta (dB)	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Delta (dB)
9 kHz-30	<-60	-27	>20	9 kHz-30	<-60	-27	>20
30-1000	<-60	-27	>20	30-1000	<-60	-27	>20
10349	-33.9	-27	-6.9	1-40 GHz	<-47	-27	>20

Remarks: All spurious emissions falling in restricted bands have been measured radiated.

For detailed test results please refer to test plots below.

Worst case measurement from 9 kHz to 30 MHz

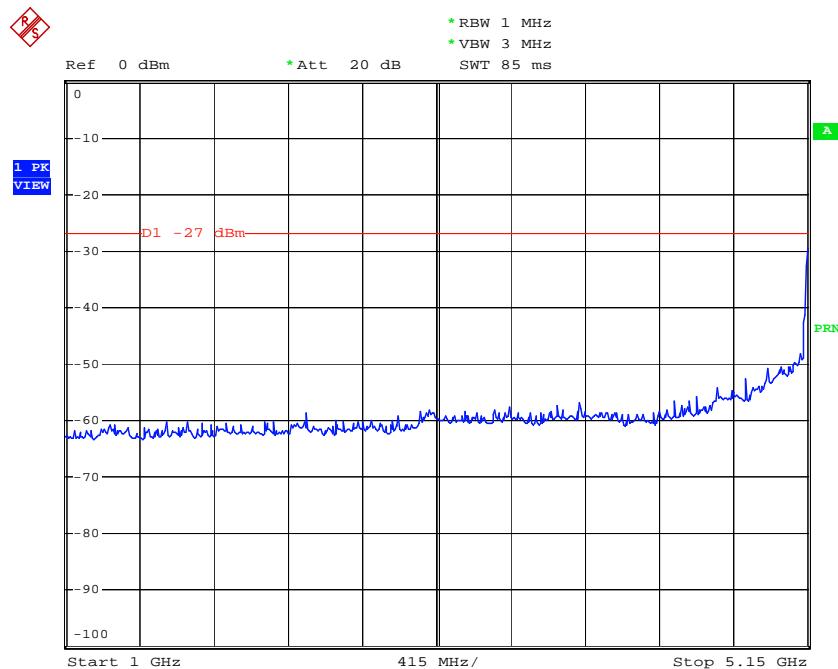


Comment:

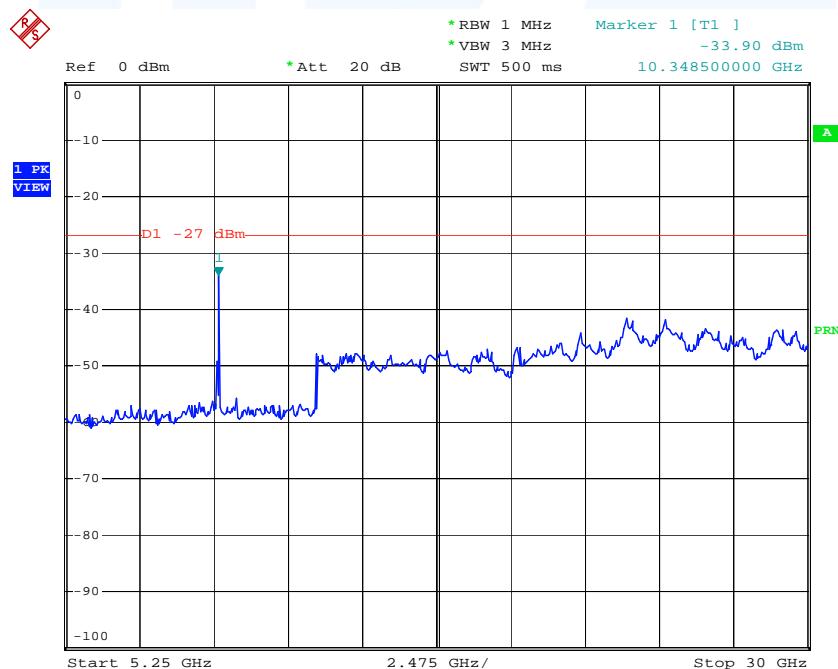
Date: 9.MAR.2010 11:52:16

FCC ID: U9AWTPIWLAN-V200

Worst case measurement from 30 to 1000 MHz

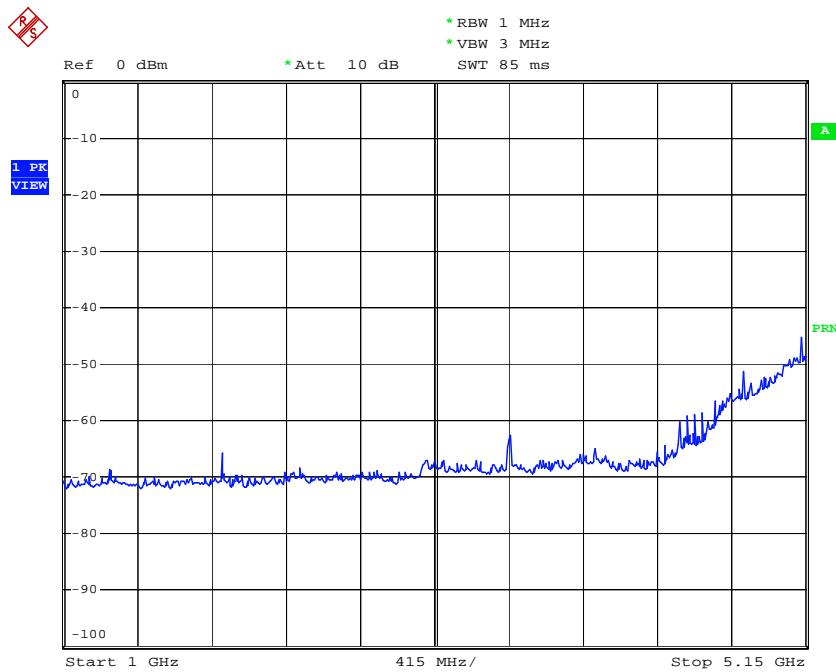


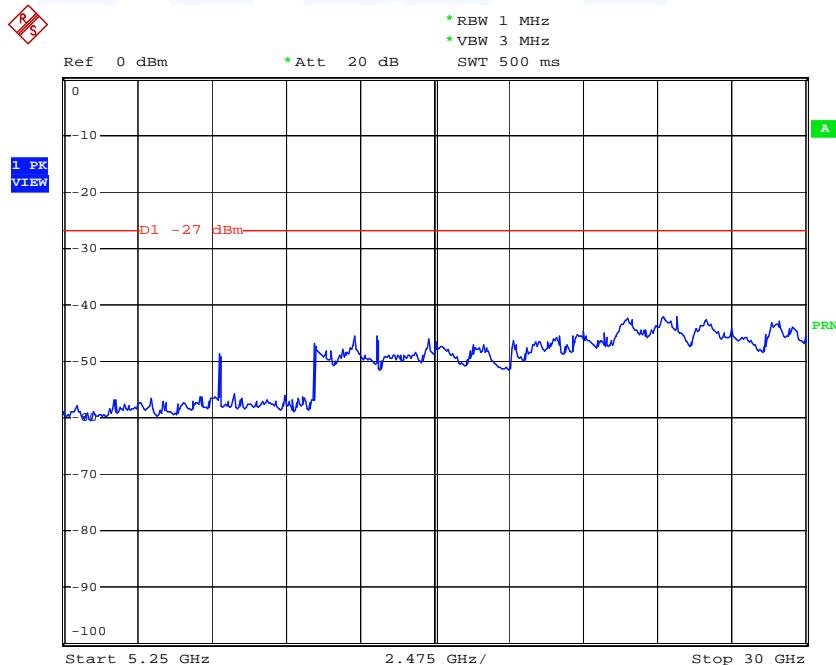
Comment:


Date: 9.MAR.2010 11:53:21

FCC ID: U9AWTPIWLAN-V200

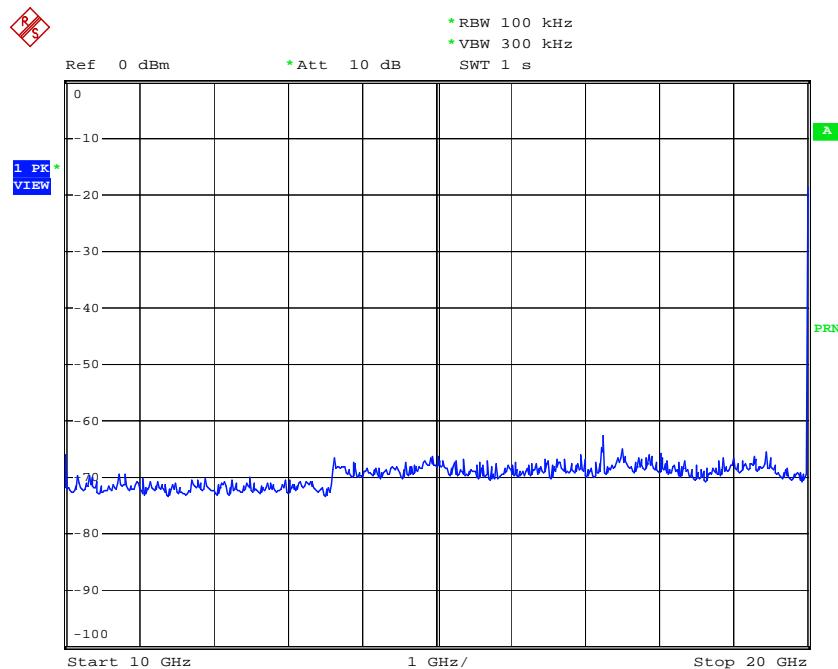
Channel 36 (5180 MHz)


Comment:
Date: 9.MAR.2010 12:08:47


Comment:
Date: 9.MAR.2010 12:06:08

FCC ID: U9AWTPIWLAN-V200

Channel 48 (5240 MHz)


Comment:
Date: 9.MAR.2010 11:57:56

Comment:
Date: 9.MAR.2010 12:02:39

FCC ID: U9AWTPIWLAN-V200

Worst case measurement from 30 to 40 GHz

Notes: The measurement range from 30 – 40 GHz has been transposed by a mixer of 20 GHz to the analyzer range from 10 – 20 GHz.

FCC ID: U9AWTPIWLAN-V200
5.6.5.2 Radiated emissions and Harmonics in restricted bands

Spurious emissions in the frequency range from 9 kHz to 1 GHz

Frequency (MHz)	Detector	Receiver reading		Correction (dB)	Result		Limit (dB μ V/m)	Delta (dB)
		hor (dB μ V/m)	vert (dB μ V/m)		hor (dB μ V/m)	vert (dB μ V/m)		
75.8	QP	21.2	<20	11.2	32.4	<20	40.0	
208.0	QP	29.0	<20	12.8	41.8	<20	43.5	
312.0	QP	22.9	<20	15.9	38.8	<20	46.0	
416.0	QP	13.0	<20	18.6	31.6	<20	46.0	
494.0	QP	11.4	<20	20.5	31.9	<20	46.0	

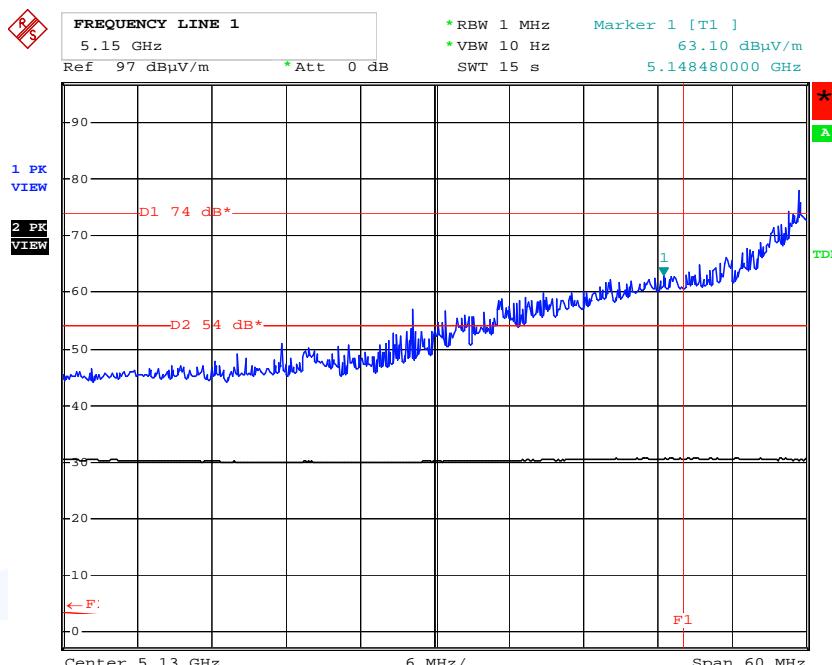
Channel 36 (5180 MHz)

Nearest restricted band: 4500 to 5150 MHz

Frequency (MHz)	Detector	Analyzer reading		Correction (dB)	Result		Limit (dB μ V/m)	Delta (dB)
		hor (dB μ V/m)	vert (dB μ V/m)		hor (dB μ V/m)	vert (dB μ V/m)		
5149	Pk	<54	62.6	0.5	---	63.1	74	-7.1
	AV	---	---	---	---	---	54	-7.6

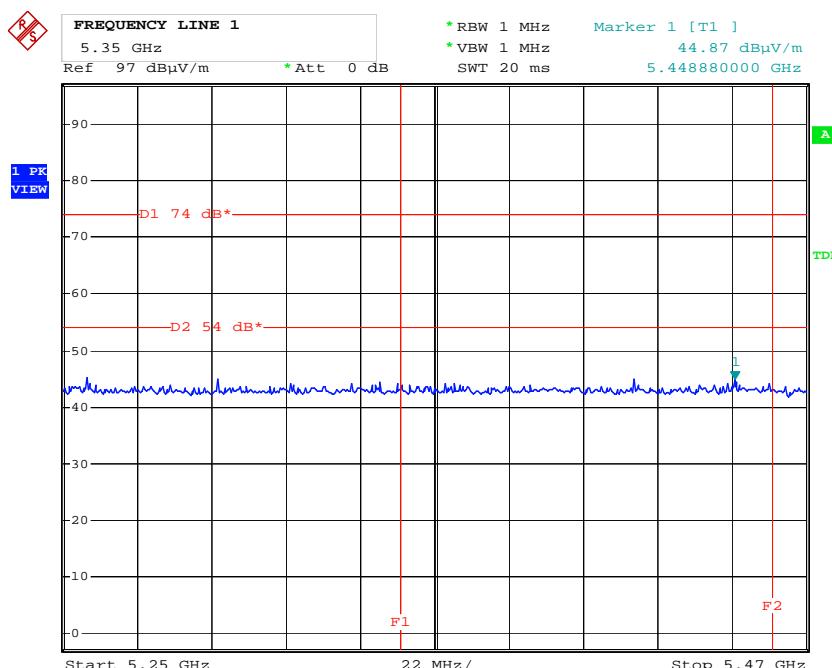
Channel 48 (5240 MHz)

Nearest restricted band: 5350 to 5460 MHz


Frequency (MHz)	Detector	Analyzer reading		Correction (dB)	Result		Limit (dB μ V/m)	Delta (dB)
		hor (dB μ V/m)	vert (dB μ V/m)		hor (dB μ V/m)	vert (dB μ V/m)		
5350- 5460	Pk	<54	<54	---	---	---	74	---
	AV	---	---	---	---	---	54	---

Note: No radiated harmonics in restricted bands could be measured.

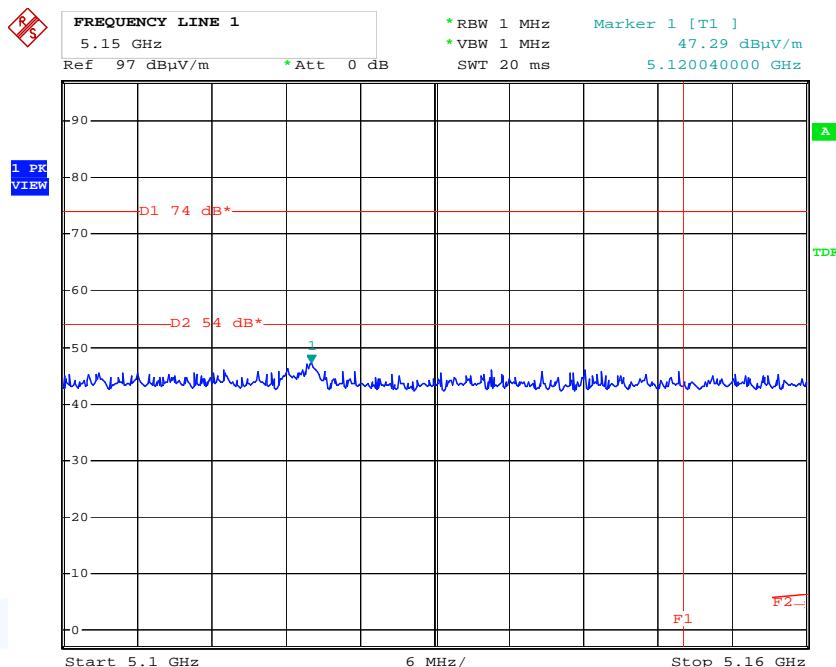
FCC ID: U9AWTPIWLAN-V200


Carrier frequency at channel 36 (5180 MHz)

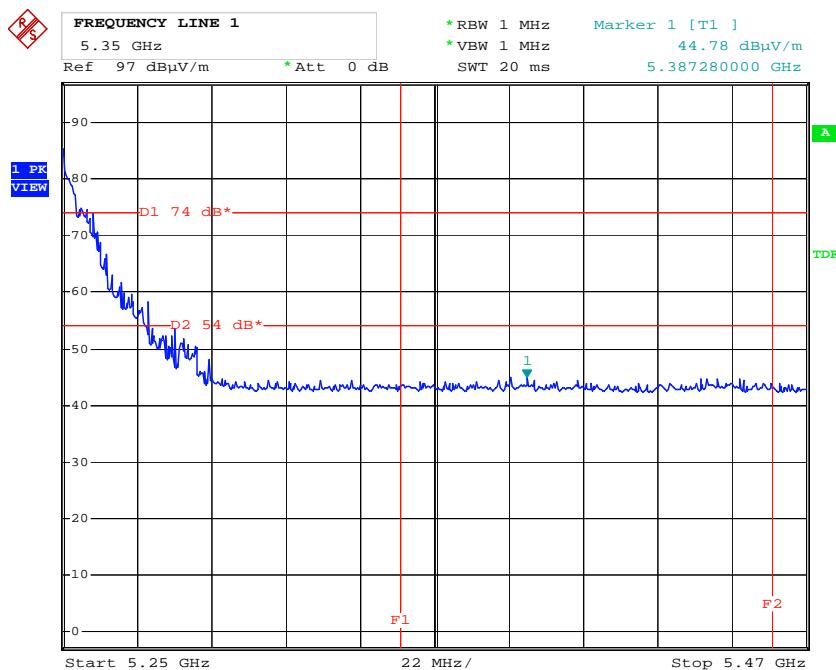
Peak and AV plot has been taken to show the restricted band emission levels near the authorized bandedges.
(Restricted band at lower bandedge from 4500 to 5150 MHz)

Date: 19.FEB.2010 09:32:48

(Restricted band at upper bandedge from 5350 to 5460 MHz)

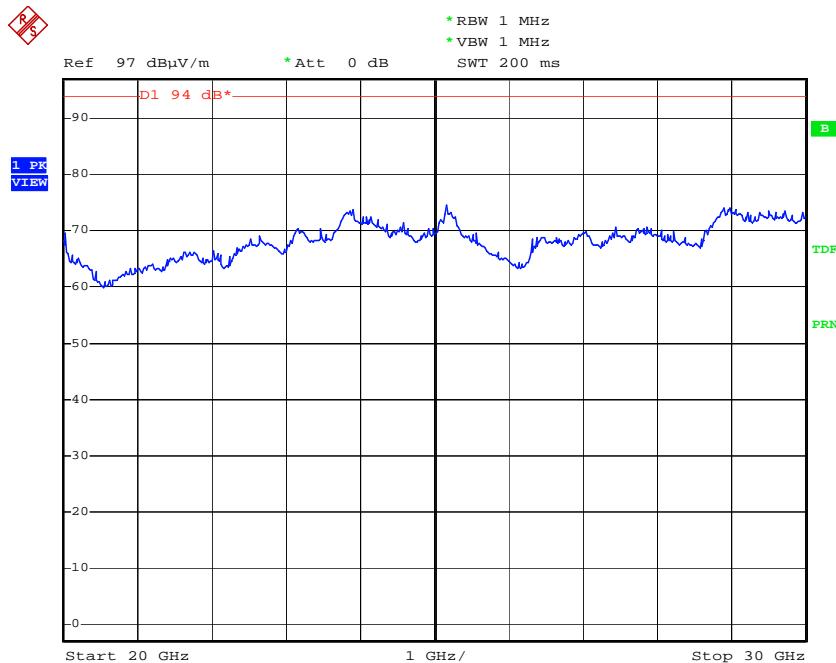


Date: 19.FEB.2010 09:45:07


FCC ID: U9AWTPIWLAN-V200

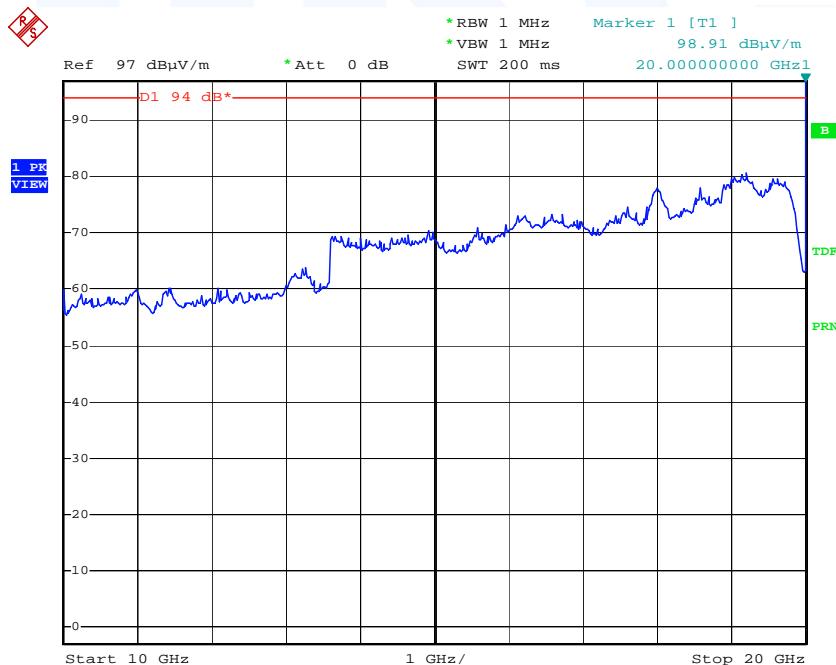
Carrier frequency at channel 48 (5240 MHz)

Peak plot has been taken to show the restricted band emission levels near the authorized bandedges.
(Restricted band at lower bandedge from 4500 to 5150 MHz)



(Restricted band at upper bandedge from 5350 to 5460 MHz)

FCC ID: U9AWTPIWLAN-V200


Worst case radiated spurious emissions from 20 GHz to 40 GHz

Notes: All peak emissions were below the limits of part 15.209.

Measurement distance: 0.3 m

Limit is extrapolated by 20 dB/decade

Notes: Limit is extrapolated by 20 dB/decade

The measurement range from 30 – 40 GHz has been transposed by a mixer of 20 GHz to the analyzer range from 10 – 20 GHz.

FCC ID: U9AWTPIWLAN-V200

Radiated limits according to FCC Part 15 Subpart 15.209(a) for spurious emissions which fall in restricted bands:

Frequency (MHz)	Field strength of spurious emissions		Measurement distance (meters)
	(μ V/m)	dB (μ V/m)	
0,009-0,490	2400/F(kHz)		300
0,490-1,705	24000/F(kHz)		30
1,705-30	30	29,5	30
30-88	100	40	3
88-216	150	43,5	3
216-960	200	46	3
Above 960	500	54	3

Restricted bands of operation:

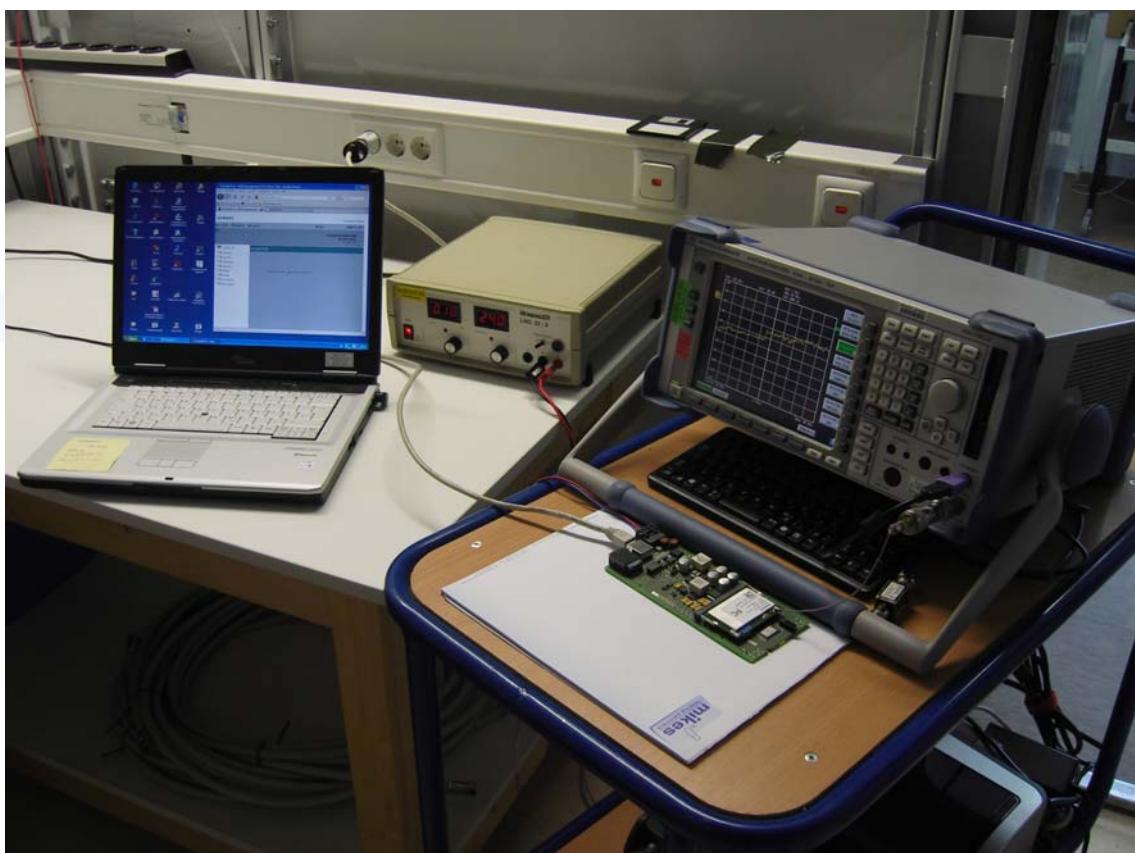
The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209

(MHz)	(MHz)	(GHz)
25.5 – 25.67	960 – 1240	4.5 – 5.15
37.5 – 38.25	1300 – 1427	5.35 – 5.46
73 – 74.6	1435 – 1626.5	7.25 – 7.75
74.8 – 75.2	1645.5 – 1646.5	8.025 – 8.5
108 – 121.94	1660 – 1710	9.0 – 9.2
123 – 138	1718.8 – 1722.2	9.3 – 9.5
149.9 – 150.05	2200 – 2300	10.6 – 12.7
156.52475 – 156.52525	2310 – 2390	13.25 – 13.4
156.7 – 156.9	2483.5 – 2500	14.47 – 14.5
162.0125 – 167.17	2655 – 2900	15.35 – 16.2
167.72 – 173.2	3260 – 3267	17.7 – 21.4
240 – 285	3332 – 3339	22.01 – 23.12
322 – 335.4	3345.8 – 3358	23.6 – 24.0
399.9 – 410	3600 – 4400	31.2 – 31.8
608 – 614		36.43 – 36.5

The requirements are **FULFILLED**.

Remarks: The measurement was performed up to the 10th harmonic.

FCC ID: U9AWTPIWLAN-V200


5.7 Peak Excursion

For test instruments and accessories used see section 6 Part **MB**.

5.7.1 Description of the test location

Test location: AREA4

5.7.2 Photo documentation of the test set-up

FCC ID: U9AWTPIWLAN-V200

5.7.3 Applicable standard

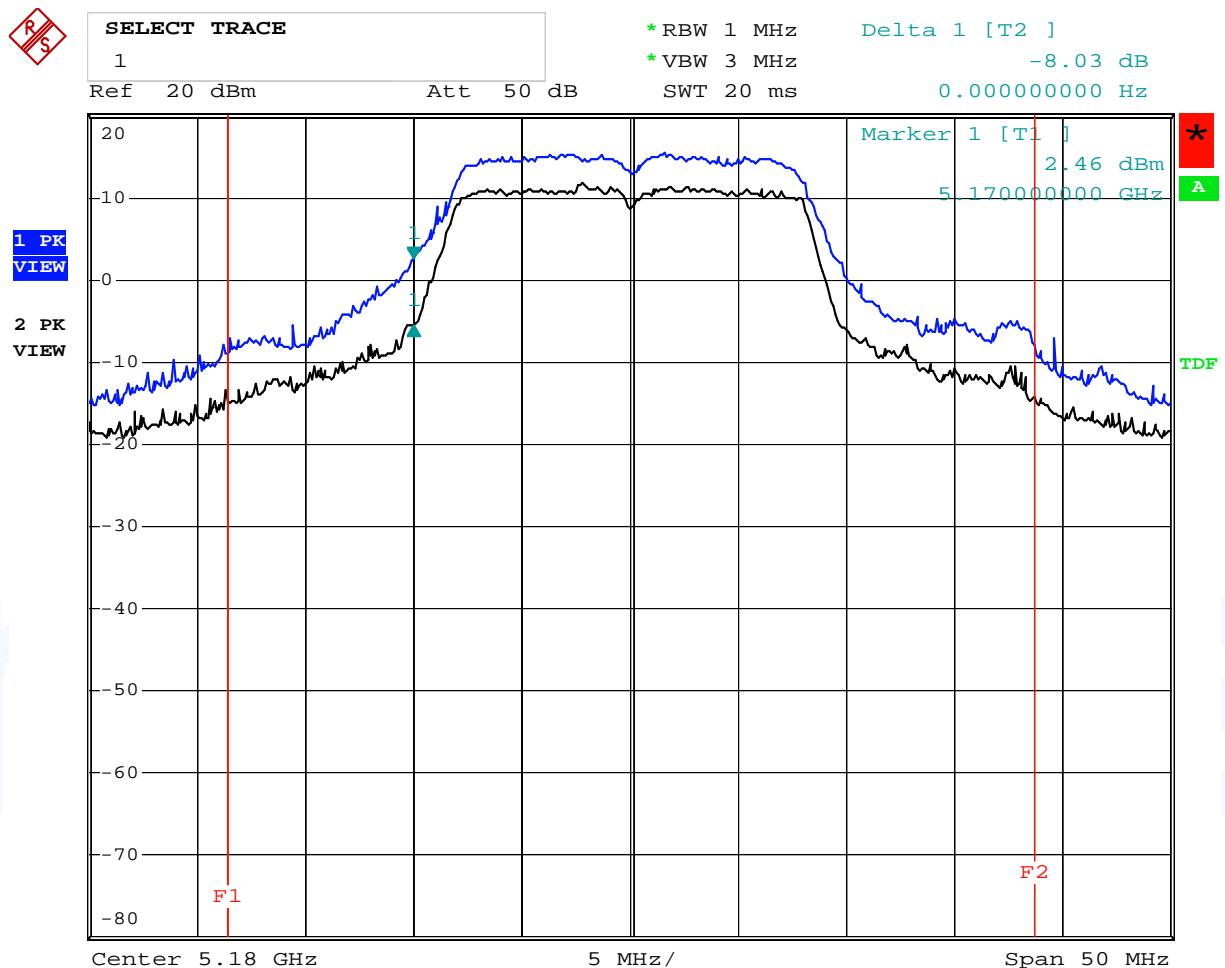
According to FCC Part 15 Subpart 15.407 (a) (6): The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

5.7.4 Description of Measurement

The transmitter output was connected to the spectrum analyzer. Using Peak detector and MAX HOLD-function for Trace 1 with 1 MHz RBW and 3 MHz VBW and Trace 2 with 1 MHz RBW and 300 kHz VBW both traces were recorded. The largest difference between Trace 1 and Trace 2 in any 1 MHz band was noted as maximum Peak Excursion value.

5.7.5 Test result

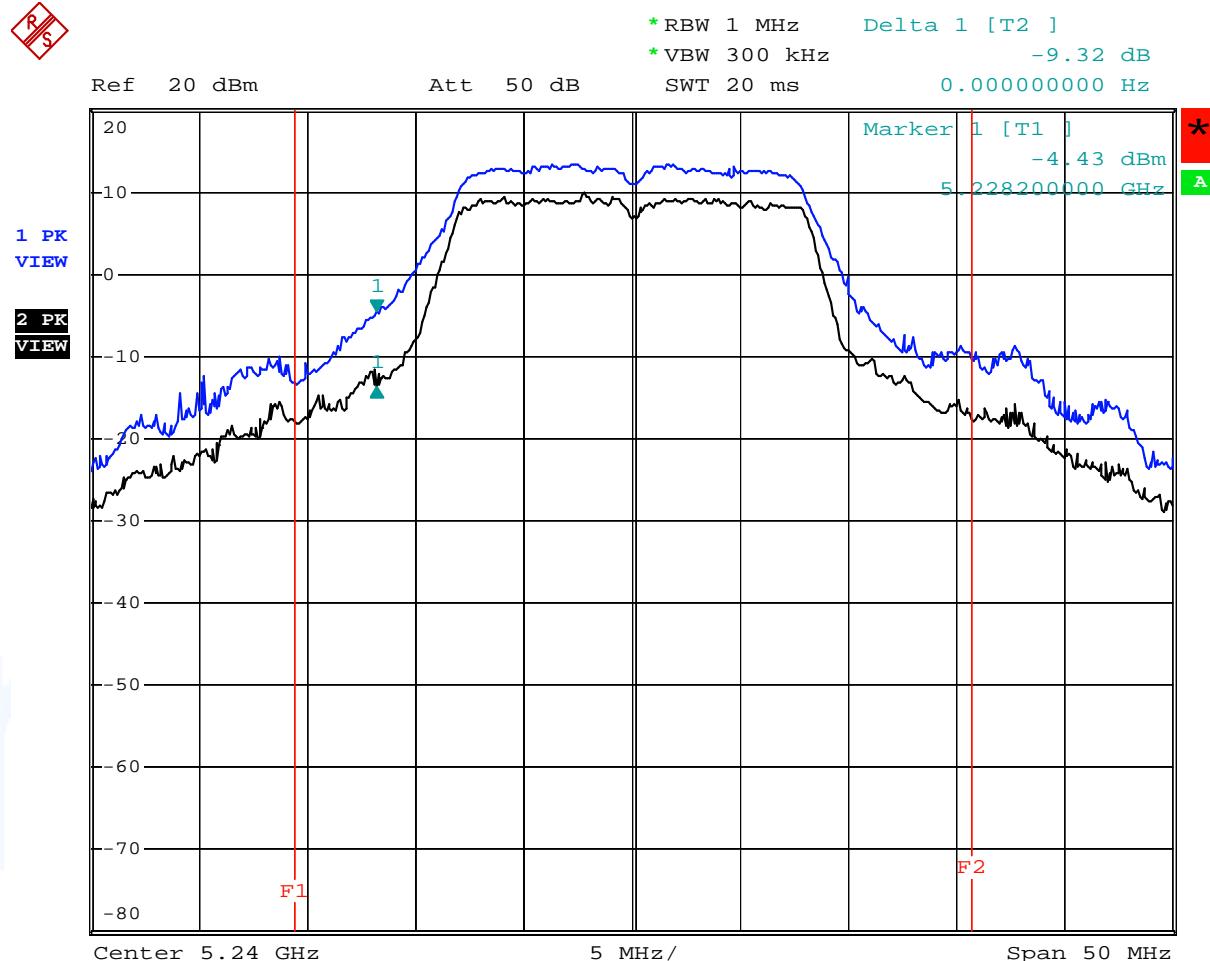
Channel	Frequency (MHz)	Peak Power Excursion (dBm)	Peak to Average Excursion Limit (dBm)	Delta (dB)
36	5180	8.0	13	-5.0
48	5240	9.3	13	-3.7


The requirements are **FULFILLED**.

Remarks: For detailed test results please refer to following test protocols.

FCC ID: U9AWTP1WLAN-V200

Peak Excursion Plots

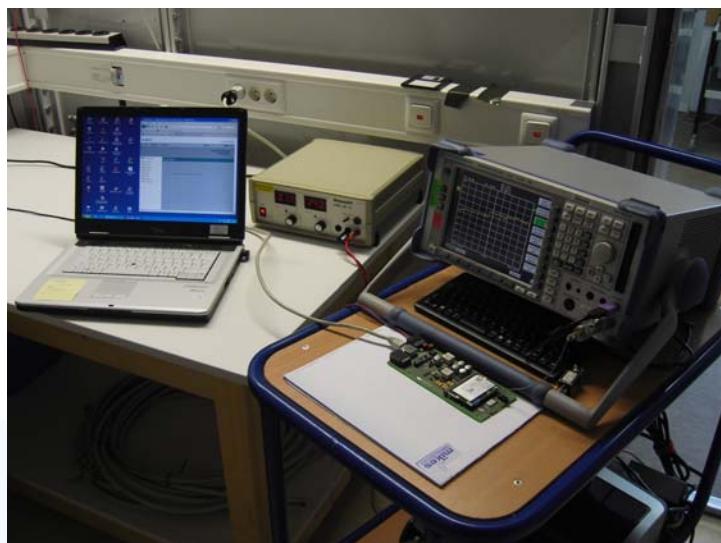

Channel 36 (5180 MHz)

FCC ID: U9AWTPIWLAN-V200

Channel 48 (5240 MHz)

R
S

FCC ID: U9AWTPIWLAN-V200


5.8 Frequency stability Measurement

For test instruments and accessories used see section 6 Part **CPC 3**.

5.8.1 Description of the test location

Test location: AREA4

5.8.2 Photo documentation of the test set-up

5.8.3 Applicable standard

According to FCC Part 15 Subpart 15.407 (g): Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

5.8.4 Description of Measurement

This test has been performed over variations in temperature and voltage. The lowest and the highest channel in the frequency band from 5150 to 5250 MHz have been measured at the 20 dB bandwidth under following conditions:

1. Supply voltage from 85 to 115 % of nominal voltage at normal temperature
2. Extreme temperature from 0 °C to 40 °C at nominal voltage.

5.8.5 Test result

The carrier frequencies (5180 MHz, 5240 MHz) maintain inside the operating frequency band from 5150 to 5250 MHz.

The requirements are **FULFILLED**.

Remarks: This test has been performed conducted at antenna jack on WLAN module.

FCC ID: U9AWTPIWLAN-V200

5.8.6 Compliance regarding Co-location and Co-transmission

Applicable standard: ANSI/IEEE C95.1-1999, "IEEE Standard for Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", Clause 4.1.1. e):

For mixed or broadband fields at a number of frequencies for which there are different values of the MPE, the fraction of the MPE (in terms of E, H, or power density (S)) occurred within each frequency interval should be determined and the sum of all such fractions should not exceed unity (1.0, or 100 % in terms of percentage).

1. MPE of WLAN-Module: $P_d = 0.015 \text{ mW/cm}^2$
Limit: 1 mW/cm²
Fraction of MPE: 1.5%

2. MPE of RFID Module: The fieldstrength radiated by the RFID Module is too small to be considered.

The requirements are **FULFILLED**.

Remarks: For the test result of RFID Module please refer to Test report T33962-00-02AA

(mikes-testingpartners gmbh)

FCC ID: U9AWTPIWLAN-V200

5.9 Antenna application

5.9.1 Applicable standard

According to FCC Part 15 Subpart 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The EUT's antenna meets the requirement of FCC Part 15C, Section 15.203 and 15.204

5.9.2 Result

The requirements are **FULFILLED**.

Remarks: The EuT is equipped with two internal antennas (gain=2.0 dBi).

The EuT don't have any external antenna connectors.

FCC ID: U9AWTPIWLAN-V200

5.10 Receiver Spurious Emissions

For test instruments and accessories used see section 6 Part **SER 2 and SER 3**.

5.10.1 Description of the test location

Test location: OATS1
Anechoic Chamber A2

Test distance: 3 metres

5.10.2 Photo documentation of the test set-up

Anechoic chamber

FCC ID: U9AWTPIWLAN-V200

Open area test site

FCC ID: U9AWTPIWLAN-V200

5.10.3 Applicable standard

According to FCC Part 15 Subpart 15.109: Field strength of radiated emissions from unintentional radiators at 3 m.

5.10.4 Description of Measurement

Radiated spurious emissions from the EuT are measured in the frequency range of 30 MHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. The measurements are made with 120 kHz/6 dB bandwidth and quasi-peak detection. The EuT is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003.

The antenna was positioned 3 meters horizontally from the EuT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarization's and the EuT are rotated 360 degrees.

The final level, expressed in dB μ V/m, is arrived by taking the reading from the EMI receiver (Level dB μ V) and adding the correction factors and cable loss factor (Factor dB) to it. This is done automatically in the EMI receiver, where the correction factors are stored.

The radiated emissions from the EuT are measured in the frequency range of 1 GHz to maximum frequency as specified in section 15.33, using a Spectrum Analyzer and appropriate linearly polarized antennas. The EuT is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. The set up of the EuT will be in accordance to ANSI C63.4-2003. The antenna was positioned 3 m horizontally from the EuT.

Measurement are made in both the horizontal and vertical planes of polarization in a fully anechoic room using a spectrum analyzer with the detector function set to peak, RBW 1 MHz and VBW set to 3 MHz for any spurious emission or modulation product that falls in Restricted bands as defined in Section 15.205.

All tests are performed at a test-distance of 3 meters. During the tests the EUT measurement scans are made with both horizontal and vertical antenna polarization's and the EuT are rotated 360 degrees.

Average values were measured with spectrum analyzer by taking the following Settings

RBW: 1 MHz

VBW: 10 Hz

Sweep: Auto

FCC ID: U9AWTPIWLAN-V200

5.10.5 Test result

Frequency (MHz)	Detector	Analyzer reading		Correction (dB)	Result		Limit (dB μ V/m)	Delta (dB)
		hor (dB μ V/m)	vert (dB μ V/m)		hor (dB μ V/m)	vert (dB μ V/m)		
30-1000	QPk	<30	<30		---	---	---	---
1000- 18000	Pk	<54	<54		---	---	74	---
	AV	---	---		---	---	54	---

Limit according to FCC Subpart 15.109(a)

Frequency of emission (MHz)	Field strength Limits (μ V/m)	Field strength Limits (dB μ V/m)
0,009-0,490	2400/F(kHz)	
0,490-1,705	24000/F(kHz)	
1,705-30	30	
30-88	100	40
88-216	150	44
216-960	200	46
Above 960	500	54

The requirements are **FULFILLED**.

Remarks: The measurement was performed up to the 5th harmonic.

FCC ID: U9AWTPIWLAN-V200

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used, in addition to the test accessories, are calibrated and verified regularly.

Test ID	Model / Type	Kind of Equipment	Manufacturer	Equipment No.
A 4	ESHS 30 NNLK 8129 ESH 2 - Z 5 N-4000-BNC N-1500-N ESH 3 - Z 2 LNG32-3	EMI Test Receiver LISN LISN RF Cable RF Cable Pulse Limiter Power Supply	Rohde & Schwarz München Schwarzbeck Mess-Elektronik Rohde & Schwarz München mikes-testingpartners gmbh mikes-testingpartners gmbh Rohde & Schwarz München Heinzinger electronic GmbH	02-02/03-05-002 02-02/20-05-001 02-02/20-05-004 02-02/50-05-138 02-02/50-05-140 02-02/50-05-155 02-02/50-07-034
CPC 3	FSP 30 THS730A LNG32-3	Spectrum Analyzer Handheld Scope Power Supply	Rohde & Schwarz München Tektronix GmbH Heinzinger electronic GmbH	02-02/11-05-001 02-02/13-05-001 02-02/50-07-034
MB	FSP 30 THS730A LNG32-3	Spectrum Analyzer Handheld Scope Power Supply	Rohde & Schwarz München Tektronix GmbH Heinzinger electronic GmbH	02-02/11-05-001 02-02/13-05-001 02-02/50-07-034
SEC 1-3	FSP 30 WLJS 3500-3EF WHKX 7.5/18G-8SS LNG32-3	Spectrum Analyzer Low Pass Filter High Pass Filter Power Supply	Rohde & Schwarz München Wainwright Instruments GmbH Wainwright Instruments GmbH Heinzinger electronic GmbH	02-02/11-05-001 02-02/50-05-042 02-02/50-07-010 02-02/50-07-034
SER 1	FMZB 1516 ESCI LNG32-3	Magnetic Field Antenna EMI Test Receiver Power Supply	Schwarzbeck Mess-Elektronik Rohde & Schwarz München Heinzinger electronic GmbH	01-02/24-01-018 02-02/03-05-004 02-02/50-07-034
SER 2	ESVS 30 VULB 9168 S10162-B KK-EF393-21N-16 NW-2000-NB LNG32-3	EMI Test Receiver Trilog Broad Band Antenna RF Cable 33 m RF Cable 20 m RF Cable Power Supply	Rohde & Schwarz München Schwarzbeck Mess-Elektronik Huber + Suhner Huber + Suhner Huber + Suhner Heinzinger electronic GmbH	02-02/03-05-006 02-02/24-05-005 02-02/50-05-031 02-02/50-05-033 02-02/50-05-113 02-02/50-07-034
SER 3	FSP 30 AFS4-01000400-10-10P-4 AMF-4F-04001200-15-10P AFS5-12001800-18-10P-6 3117 R2 R1 WLJS 3500-3EF Sucoflex N-1000-SMA Sucoflex N-1600-SMA Sucoflex N-2000-SMA C12-K1K1-157 WHKX 7.5/18G-8SS LNG32-3	Spectrum Analyzer RF Amplifier 1 - 4 GHz RF Amplifier 4 - 12 GHz RF Amplifier 12 - 18 GHz Horn Antenna 1-18 GHz Reception System 30 - 40 Reception System 20 - 30 Low Pass Filter RF Cable RF Cable RF Cable RF Cable until 40 GHz High Pass Filter Power Supply	Rohde & Schwarz München PARZICH GMBH PARZICH GMBH PARZICH GMBH EMCO Elektronik GmbH mikes-testingpartners gmbh mikes-testingpartners gmbh Wainwright Instruments GmbH novotronik Signalverarbeitung novotronik Signalverarbeitung novotronik Signalverarbeitung MegaPhase Wainwright Instruments GmbH Heinzinger electronic GmbH	02-02/11-05-001 02-02/17-05-003 02-02/17-05-004 02-02/17-06-002 02-02/24-05-009 02-02/30-09-001 02-02/30-09-002 02-02/50-05-042 02-02/50-05-072 02-02/50-05-073 02-02/50-05-075 02-02/50-06-001 02-02/50-07-010 02-02/50-07-034

FCC ID: U9AWTPIWLAN-V200

Test ID	Model Type	Equipment No.	Next Calib.	Last Calib.	Next Verif.	Last Verif.
A 4	ESHS 30	02-02/03-05-002	05/06/2010	05/06/2009		
	NNLK 8129	02-02/20-05-001			06/22/2010	12/22/2009
	ESH 2 - Z 5	02-02/20-05-004	03/13/2011	03/13/2008	05/17/2010	11/17/2009
	N-4000-BNC	02-02/50-05-138				
	N-1500-N	02-02/50-05-140				
	ESH 3 - Z 2	02-02/50-05-155			04/06/2010	10/06/2009
	LNG32-3	02-02/50-07-034				
CPC 3	FSP 30	02-02/11-05-001	04/20/2010	04/20/2009		
	THS730A	02-02/13-05-001	09/18/2010	09/18/2009		
	LNG32-3	02-02/50-07-034				
MB	FSP 30	02-02/11-05-001	04/20/2010	04/20/2009		
	THS730A	02-02/13-05-001	09/18/2010	09/18/2009		
	LNG32-3	02-02/50-07-034				
SEC 1-3	FSP 30	02-02/11-05-001	04/20/2010	04/20/2009		
	WLJS 3500-3EF	02-02/50-05-042				
	WHKX 7.5/18G-8SS	02-02/50-07-010				
	LNG32-3	02-02/50-07-034				
SER 1	FMZB 1516	01-02/24-01-018			02/15/2011	02/15/2010
	ESCI	02-02/03-05-004	02/09/2011	02/09/2010		
	LNG32-3	02-02/50-07-034				
SER 2	ESVS 30	02-02/03-05-006	08/05/2010	08/05/2009		
	VULB 9168	02-02/24-05-005	05/06/2011	05/06/2008	04/08/2010	10/08/2009
	S10162-B	02-02/50-05-031				
	KK-EF393-21N-16	02-02/50-05-033				
	NW-2000-NB	02-02/50-05-113				
	LNG32-3	02-02/50-07-034				
SER 3	FSP 30	02-02/11-05-001	04/20/2010	04/20/2009		
	AFS4-01000400-10-10P-4	02-02/17-05-003				
	AMF-4F-04001200-15-10P	02-02/17-05-004				
	AFS5-12001800-18-10P-6	02-02/17-06-002				
	3117	02-02/24-05-009	02/10/2011	02/10/2010		
	R2	02-02/30-09-001			02/22/2011	02/22/2010
	R1	02-02/30-09-002			02/17/2011	02/17/2010
	WLJS 3500-3EF	02-02/50-05-042				
	Sucoflex N-1000-SMA	02-02/50-05-072				
	Sucoflex N-1600-SMA	02-02/50-05-073				
	Sucoflex N-2000-SMA	02-02/50-05-075				
	C12-K1K1-157	02-02/50-06-001				
	WHKX 7.5/18G-8SS	02-02/50-07-010				
	LNG32-3	02-02/50-07-034				