

Product Safety Engineering, Inc

12955 Bellamy Brothers Blvd.
Dade City, FL 33525
352-588-2209

Testing Certification # 1367-01

TEST REPORT

07F101
08/02/2007

Applicant:

CowChips, LLC
24 Iron Ore Rd
Manalapan, NJ 07726

Product:
Model - Cowtag
FHSS Transceiver

In Accordance with FCC Part 15.247

Test dates:
02/12/2007 - 02/17/2007

Receive Date:
02/12/2007

Prepared by: Steven E. Hoke - EMC Site Manager

A handwritten signature in black ink that reads "Steven E. Hoke".

This report may only be reproduced in full without written permission from Product Safety Engineering, Inc.

Table of Contents

Table of contents	Page 2
Test procedures	Page 3-4
Test Summary	Page 5
Peak Output Power Test Data	Page 6
Powerline Conducted Emissions	Page 7
20 dB Bandwidth	Page 8
Channel Separation	Page 9
Number of Hopping Frequencies	Page 10
Dwell Time	Page 11
Spurious Emissions & Restricted Band Compliance	Page 12
RF Exposure	Page 13
Antenna Specifications	Page 14
Exhibit 1 - Powerline Conducted Emissions	Page 15
Exhibit 2 - Bandwidth Plots	Page 16
Exhibit 3 - Channel Separation	Page 17
Exhibit 4 - Number of Hopping Frequencies	Page 18
Exhibit 5 - Dwell Time	Page 19 - 20
Exhibit 6 - Output Power & Spurious Emissions	Page 21
Exhibit 7 - Antenna Information	N/A

Test Procedures

Product description: The system utilizes FHSS type transmitters. The Cowchips HWII system is comprised of 4 different RF devices. The first device is the Cow Tag. It is a simple transceiver responsible for monitoring the activities of the cow. The other 3 devices are based on the same hardware platform with build and software variations. They are the Access Point, Base Station, and Repeater. They are collectively referred Common Module.

Powerline conducted interference: The AC powerline conducted emissions measurements were not applicable due to battery operation.

20 dB Bandwidth: The EUT had its hopping function disabled while modulated. The spectrum analyzer span was set to (2-3) times the (20) dB bandwidth. The spectrum analyzer was placed in peak hold mode and the upper and lower points of the waveform were measured at a level that was (20) dB down from the peak amplitude. This was repeated for a low, mid and high frequency channel.

Channel Separation: The EUT had its hopping function enabled. The span on the spectrum analyzer was set wide enough to capture at least (2) adjacent channels. The channel separation was determined by measuring the peak frequency of (2) adjacent channels.

Description of frequency hopping system: The system utilizes 25 channels from 904.296 MHz to 926.250 MHz in the ISM band. The RF Unit hops through each of these channels at a rate of 375ms per channel, for a total hopping loop of 9.375 seconds. The system initiates data transmissions completely asynchronously from the hopping system which creates a random distribution of data for each channel. All messages are also acknowledged, which provides significant bandwidth throttling (i.e. messages can not be sent continuously) which limits duty cycle per transmitter about 50%. Due to system limitations such as a maximum payload size of 32bytes, 5khz bit rate, and a fixed 7 bytes packet overhead, the longest time a RF transmitter can be active is 78ms. All channels are used all of the time. There are not any facilities to detect jammed or undesirable channels and remove them from the hopping system.

Receiver bandwidth: The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Number of hopping frequencies: With the spectrum analyzer in peak hold, we stored an image of all the channels operating and then produced a plot of the analyzer. We manually counted each channel to determine the number.

Dwell time: The EUT had its hopping function enabled. The average time of occupancy was first determined by measuring the width of a single channel with the spectrum analyzer in a zero span mode and then with the analyzer in a peak hold mode, a (10) second sweep was then performed to determine how many single channels occupied a (10) second period of time.

RF Exposure Compliance Requirements: Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. Computations included in test report.

Peak output power: The EUT has an integrated antenna that prohibited direct connection to the measuring equipment. We performed radiated field strength measurements as an alternative test procedure as defined in FCC DA 00-705.

Conducted output power: Not applicable for integrated antenna.

Operation with directional antenna gains greater than 6 dBi: Not applicable for integrated antenna.

Spurious emissions: All spurious emissions were measured up to the tenth harmonic per ANSI C63.4:2003.

Restricted Band Compliance: All emissions were measured per ANSI C63.4:2003 and compared to the restricted band list.

Test Summary

Name of Test	Paragraph No.	Specification	Measurement	Result
Powerline Conducted Emissions	15.207(a)	Table 15.207(a)	N/A	Complies
Channel Separation	15.247(a)(1)	Greater of 25 kHz or 20 dB bandwidth	928 kHz	Complies
Pseudo-random Hopping Algorithm	15.247(a)(1)			Complies
Hopping Frequencies	15.247(a)(1)(i)	at least 25	25	Complies
Dwell Time	15.247(a)(1)(ii)	<0.4 sec in 10 sec	0.0302 sec in 10 sec	Complies
20 dB Occupied Bandwidth	15.247(a)(1)	>250 kHz <500 kHz	268-294 kHz	Complies
Peak Output Power	15.247(b)	0.25 Watts	0.0134 Watts	Complies
Spurious Emissions (Conducted / Radiated)	15.247(d)	-20 dBc (peak) -30 dBc (avg)	-59.5 dBc	Complies
Spurious Emissions (Radiated)	15.247(d)	54.0 dBuV/m per Table 15.209(a)	43.6 dBuV/m	Complies

Test: Output Power per 15.247(b)(2)

Date: 02/12/2007

Requirement: The maximum peak conducted output power of the intentional radiator shall not exceed 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels

Result: Peak Output Power = (13.4) mW

See exhibit # 6.

RBW: (1) MHz

VBW: (3) MHz

$$P = (ED^2 / 30G)$$

Measuring Antenna Correction Factor = 24.4 dB

Cable loss = 2.5 dB

Preamp Gain = 23.3

Channel	Level Received dBuV	ACF, Cable loss & Preamp Gain	Corrected Level dBuV/m	Level V/m	Distance	Antenna Gain (N)	Watts mW
low	102.9	3.6	106.5	0.211	3 m	1	13.4
Mid	102.4	3.6	106.0	0.200	3 m	1	11.9
high	102.4	3.6	106.0	0.200	3 m	1	11.9

Test Equipment:

Manufacturer	Model	Description		Serial Number	Cal Due
Hewlett Packard	8566B	Spectrum Analyzer		2421A00526	07/18/07
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz		2944A06832	12/04/07
Hewlett Packard	8449B	Preamp 1 - 26.5 GHz		3008A00320	05/11/07
EMC Automation	HLP3003C	Hybrid Log Periodic		017501	05/02/07
Electro-Mechanics	3115	Double Ridge Guide Ant		3810	11/28/07

Test: Powerline conducted interference per 15.207

Date: 02/12/2007

Requirement: An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table:

Freq (MHz)	Quasi-peak dBuV	Average dBuV
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

Result: The EUT is battery powered and therefore exempt from this test.

RBW: (9) kHz

VBW: (10) kHz

See exhibit 1

Test: 20 dB Bandwidth

Date:02/12/2007

Requirement: The 20 dB bandwidth is required to be greater than 250 kHz and less than 500 kHz.

Result: The 20 dB bandwidth was measured at the low, mid and high frequency of operation. The bandwidths are listed below:

Frequency (MHz)	Channel	Measured 20dB bandwidth
902.29	Low	282 kHz
915.30	Mid	294 kHz
926.25	High	268 kHz

See exhibit 2

Span:2 MHz

RBW: (10) kHz

VBW: (1) MHz

Channel: Low, mid and high

Test Equipment:

Manufacturer	Model	Description	Serial Number	Cal Due
Hewlett Packard	8566B	Spectrum Analyzer	2421A00526	07/18/07
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz	2944A06832	12/04/07
Hewlett Packard	8449B	Preamp 1 - 26.5 GHz	3008A00320	05/11/07
EMC Automation	HLP3003C	Hybrid Log Periodic	017501	05/02/07
Electro-Mechanics	3115	Double Ridge Guide Ant	3810	11/28/07

Test: Carrier Frequency Separation per 15.247(a)(1)

Date: 02/12/2007

Requirement: Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Result: The 20 dB bandwidth was measured at the mid frequency of operation. The separation was found to be (928) kHz..

See Exhibit 3

RBW: (100) kHz

VBW: (1) MHz

Test Equipment:

Manufacturer	Model	Description	Serial Number	Cal Due
Hewlett Packard	8566B	Spectrum Analyzer	2421A00526	07/18/07
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz	2944A06832	12/04/07
Hewlett Packard	8449B	Preamp 1 - 26.5 GHz	3008A00320	05/11/07
EMC Automation	HLP3003C	Hybrid Log Periodic	017501	05/02/07
Electro-Mechanics	3115	Double Ridge Guide Ant	3810	11/28/07

Test: Number of hopping frequencies per 15.247(a)(1)(i)

Date: 02/12/2007

Requirement: If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies

Result: The 20 dB bandwidth was measured for low, middle and high frequency operation and the bandwidth was found to be between (268 - 294) kHz. We observed 25 hopping frequencies.

See exhibit 4.

RBW: (300) kHz

VBW: (1) MHz

Test Equipment:

Manufacturer	Model	Description	Serial Number	Cal Due
Hewlett Packard	8566B	Spectrum Analyzer	2421A00526	07/18/07
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz	2944A06832	12/04/07
Hewlett Packard	8449B	Preamp 1 - 26.5 GHz	3008A00320	05/11/07
EMC Automation	HLP3003C	Hybrid Log Periodic	017501	05/02/07
Electro-Mechanics	3115	Double Ridge Guide Ant	3810	11/28/07

Test: Dwell time per 15.247(a)(1)(i)

Date:02/12/2007

Requirement: The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period when the 20 dB bandwidth of the hopping channel is greater than 250 kHz.

Result: The analyzer was placed in a peak hold mode for greater than (10) seconds. The dwell time was measured and found to be (30.2) mSec which is less than the (400) mSec allowed..

Note: The 20 dB bandwidth was measured for low, middle and high frequency operation and the maximum bandwidth was found to be (268 - 294) kHz

See exhibit 5.

Span: Zero

RBW: (300) kHz

VBW: (1) MHz

Test Equipment:

Manufacturer	Model	Description	Serial Number	Cal Due
Hewlett Packard	8566B	Spectrum Analyzer	2421A00526	07/18/07
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz	2944A06832	12/04/07
Hewlett Packard	8449B	Preamp 1 - 26.5 GHz	3008A00320	05/11/07
EMC Automation	HLP3003C	Hybrid Log Periodic	017501	05/02/07
Electro-Mechanics	3115	Double Ridge Guide Ant	3810	11/28/07

Test: Spurious emissions per 15.247(d)

Date: 02/12/2007

Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Result: The spurious emissions were measured up to the tenth harmonic. The highest spurious emission was found to be (1.808) Ghz at (-59.5) dBc.

See exhibit 7

RBW: (1) MHz

VBW: (3) MHz

Channel: Low, mid and high.

Additional Requirement: Emissions which fall in the restricted bands, as defined by in 15.205(a), must also comply with the radiated emissions limits specified in 15.209.

Result: Emissions found in restricted bands did not exceed the limit as shown on exhibit 7.

Test Equipment:

Manufacturer	Model	Description	Serial Number	Cal Due
Hewlett Packard	8566B	Spectrum Analyzer	2421A00526	07/18/07
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz	2944A06832	12/04/07
Hewlett Packard	8449B	Preamp 1 - 26.5 GHz	3008A00320	05/11/07
EMC Automation	HLP3003C	Hybrid Log Periodic	017501	05/02/07
Electro-Mechanics	3115	Double Ridge Guide Ant	3810	11/28/07

RF Exposure - Power Density Compliance Calculation

15.247(I) - Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.

Compliance is based upon section CFR 47 section 1.1310, Table (1) Limits for Maximum Permissible Exposure (MPE), (b) Limits for General Population/Uncontrolled Exposure. The stated limit is (1.0) mW/cm² and compliance was calculated using the following formula:

$$S = (P G) / (4 \pi r^2)$$

Where:

S = Power density in mW/cm²

P = Power in mW

G = Numerical antenna gain

r = Distance in cm

Maximum output power = (13.4) mW

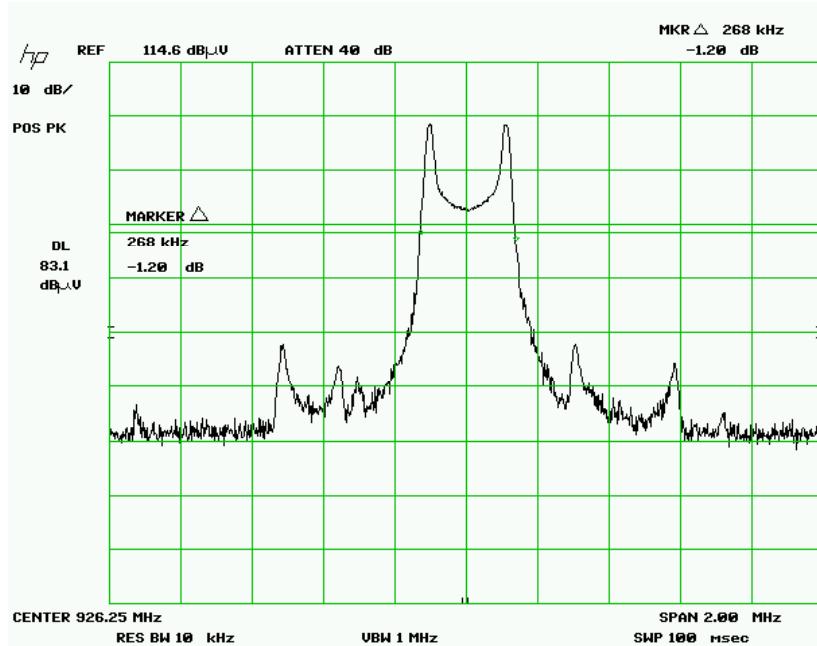
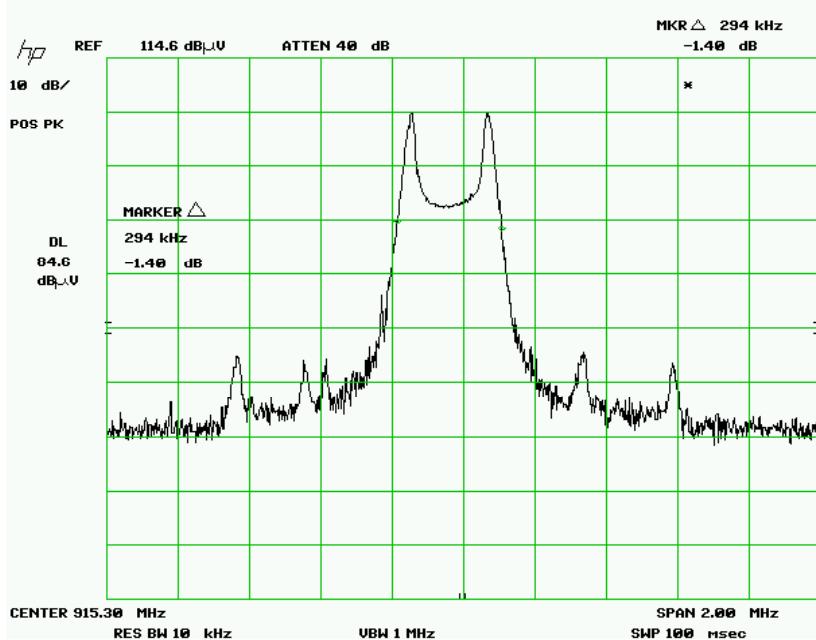
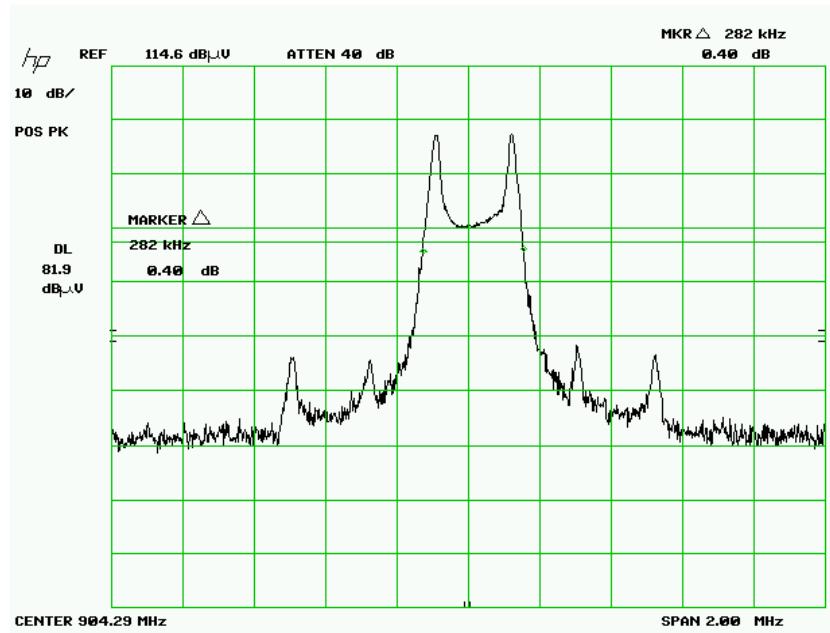
Antenna gain (numeric) = 1.00 dB

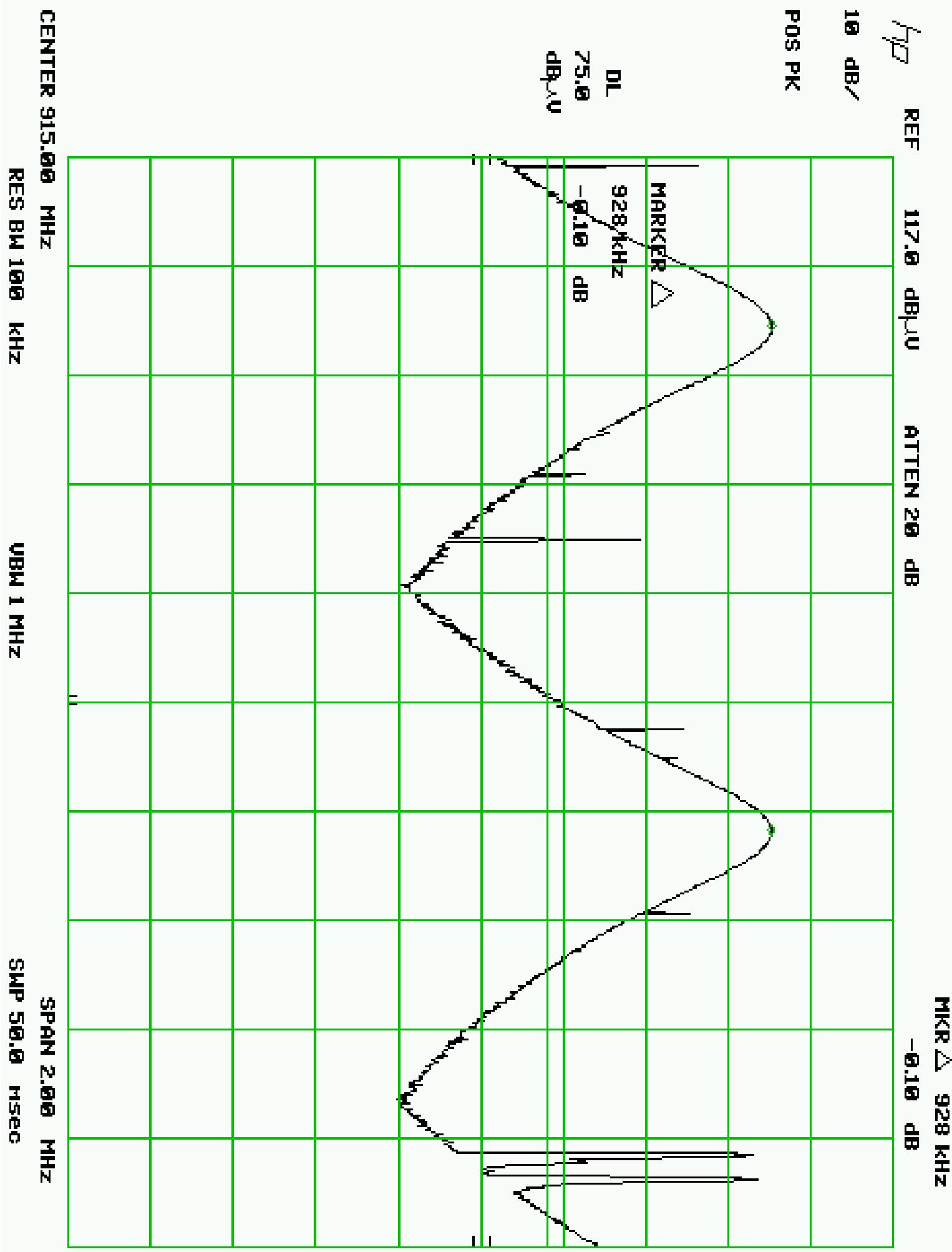
Distance = 20 cm

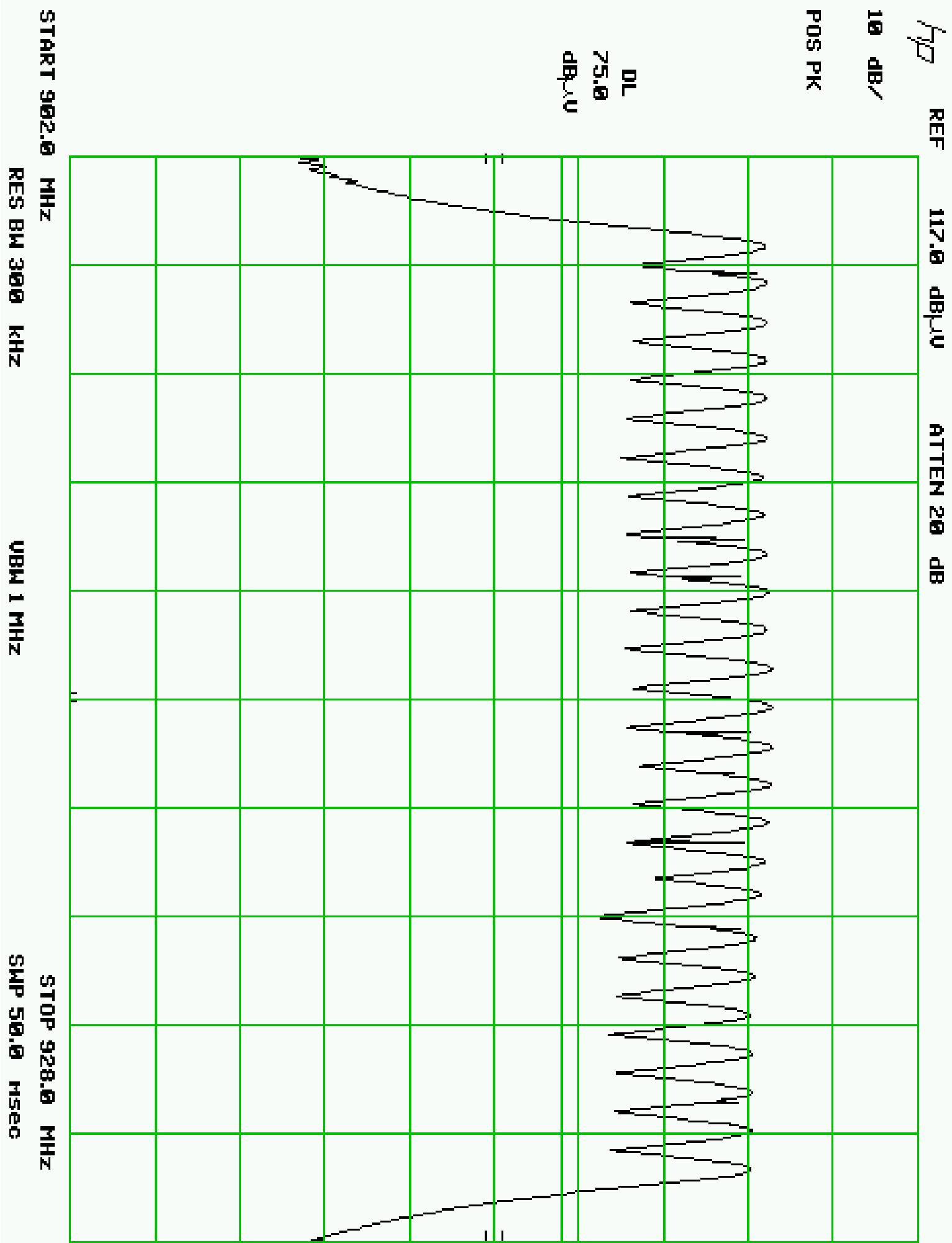
$$S = (13.4 * 1.00) / (12.57 * 400)$$

$$S = (13.4) / (5,028)$$

$$S = (0.00266) \text{ mW / cm}^2$$

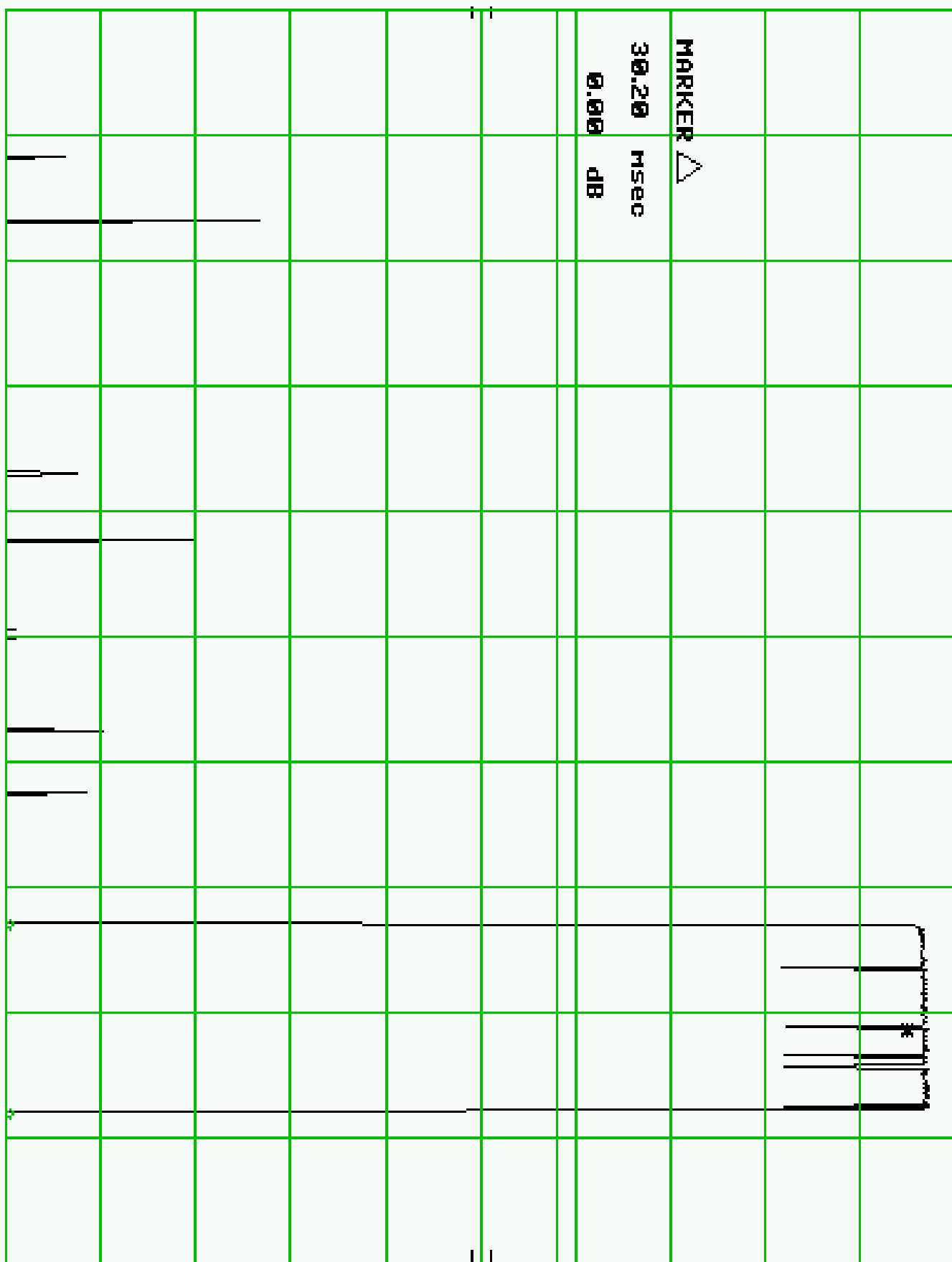



$$\text{Limit} = (1.0) \text{ mW / cm}^2$$


Antenna Specifications


This EUT incorporates an integrated antenna that is part of the PWB.

POWERLINE CONDUCTED

N/A



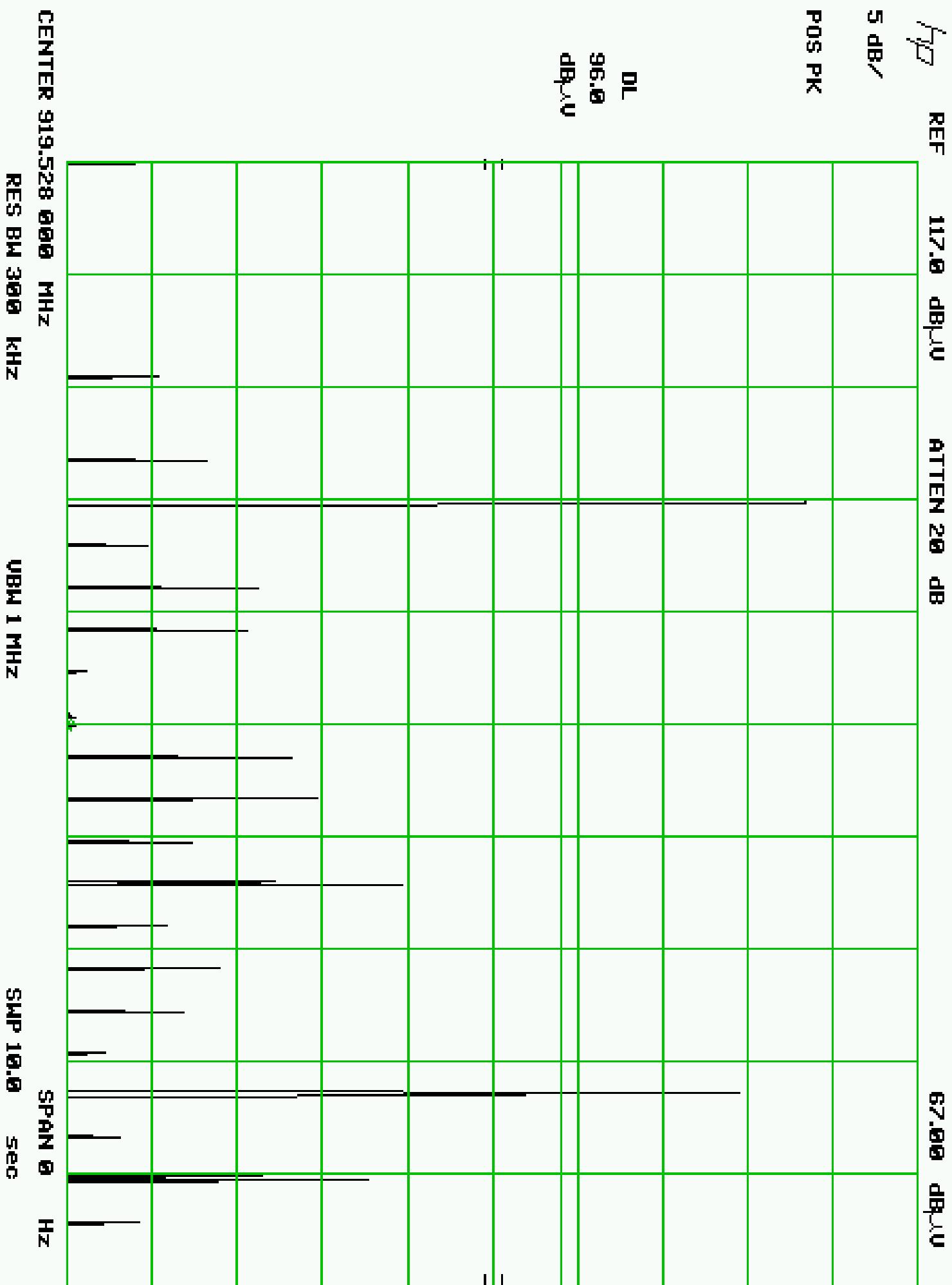
MARKER Δ 30.20 msec

0.00 dB

REF 117.0 dB_{LJU} ATTEN 20 dB

5 dB/
POS PK

MKR 5.000 sec


67.00 dB_{TL}

REF 117.0 dB_{TL} U ATTN 20 dB

5 dB/r

POS PK

DL
96.0
dB_{TL} U

CowTag @ 904.3 MHz											
Frequency (MHz)	904.3	1808.6	2712.9	3617.2	4521.5	5425.8	6330.1	7234.4	8138.7	9043	
Harmonic	1	2	3	4	5	6	7	8	9	10	
Distance (meters)	3	3	3	3	3	3	3	3	3	3	
dBuV	102.9	46.3	27.4	20.8	23	16.2	13.1	18.4	17	17	
Corrected dBuV/m	106.5	47.0	31.8	31.3	34.7	32.3	31.6	40.4	40.7	43.6	
Restricted Bands (Y/N)	N/A	N	N	Y	Y	Y	Y	N	N	Y	
Limit dBuV/m	N/A	54	54	54	54	54	54	54	54	54	
Margin (dB)	N/A	N/A	N/A	-22.7	-19.3	-21.7	-22.4	N/A	N/A	-10.4	
dBV/m	-13.5	-73.0	-88.2	-88.7	-85.3	-87.7	-88.4	-79.6	-79.3	-76.4	
V/m	2.11E-01	2.24E-04	3.89E-05	3.67E-05	5.43E-05	4.12E-05	3.80E-05	1.05E-04	1.08E-04	1.51E-04	
Numeric Gain	1	1	1	1	1	1	1	1	1	1	
Power (Watts)	0.013400508	1.504E-08	4.5407E-10	4.047E-10	8.8536E-10	5.0947E-10	4.33632E-10	3.2894E-09	3.5247E-09	6.8726E-09	
Power (dBm)	11.27	-48.23	-63.43	-63.93	-60.53	-62.93	-63.63	-54.83	-54.53	-51.63	
CowTag @ 915.25 MHz											
Frequency (MHz)	915.25	1830.5	2745.75	3661	4576.25	5491.5	6406.75	7322	8237.25	9152.5	
Harmonic	1	2	3	4	5	6	7	8	9	10	
Distance (meters)	3	3	3	3	3	3	3	3	3	3	
dBuV	102.4	44.8	26.3	22.5	22.3	16.2	13.1	18.4	17	17	
Corrected dBuV/m	106.0	45.5	30.7	33.0	34.0	32.3	31.6	40.4	40.7	43.6	
Restricted Bands (Y/N)	N/A	N	N	Y	Y	Y	Y	N	N	Y	
Limit dBuV/m	N/A	54	54	54	54	54	54	54	54	54	
Margin (dB)	N/A	N/A	N/A	-21.0	-20.0	-21.7	-22.4	N/A	N/A	-10.4	
dBV/m	-14.0	-74.5	-89.3	-87.0	-86.0	-87.7	-88.4	-79.6	-79.3	-76.4	
V/m	2.00E-01	1.88E-04	3.43E-05	4.47E-05	5.01E-05	4.12E-05	3.80E-05	1.05E-04	1.08E-04	1.51E-04	
Numeric Gain	1	1	1	1	1	1	1	1	1	1	
Power (Watts)	0.011943215	1.064E-08	3.5247E-10	5.986E-10	7.5357E-10	5.0947E-10	4.33632E-10	3.2894E-09	3.5247E-09	6.8726E-09	
Power (dBm)	10.77	-49.73	-64.53	-62.23	-61.23	-62.93	-63.63	-54.83	-54.53	-51.63	
CowTag @ 926.3 MHz											
Frequency (MHz)	926.3	1852.6	2778.9	3705.2	4631.5	5557.8	6484.1	7410.4	8336.7	9263	
Harmonic	1	2	3	4	5	6	7	8	9	10	
Distance (meters)	3	3	3	3	3	3	3	3	3	3	
dBuV	102.4	45.6	26.9	22	22.5	16.2	13.1	18.4	17	17	
Corrected dBuV/m	106.0	46.3	31.3	32.5	34.2	32.3	31.6	40.4	40.7	43.6	
Restricted Bands (Y/N)	N/A	N	N	Y	Y	Y	Y	N	N	Y	
Limit dBuV/m	N/A	54	54	54	54	54	54	54	54	54	
Margin (dB)	N/A	N/A	N/A	-21.5	-19.8	-21.7	-22.4	N/A	N/A	-10.4	
dBV/m	-14.0	-73.7	-88.7	-87.5	-85.8	-87.7	-88.4	-79.6	-79.3	-76.4	
V/m	2.00E-01	2.07E-04	3.67E-05	4.22E-05	5.13E-05	4.12E-05	3.80E-05	1.05E-04	1.08E-04	1.51E-04	
Numeric Gain	1	1	1	1	1	1	1	1	1	1	
Power (Watts)	0.011943215	1.28E-08	4.0469E-10	5.335E-10	7.8908E-10	5.0947E-10	4.33632E-10	3.2894E-09	3.5247E-09	6.8726E-09	
Power (dBm)	10.77	-48.93	-63.93	-62.73	-61.03	-62.93	-63.63	-54.83	-54.53	-51.63	