

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

47 CFR FCC Part 15, Subpart E (Section 15.407)

47 CFR FCC Part 90

47 CFR FCC Part 2

Report No.: RFBCIC-WTW-P24080108

FCC ID: U8G-P1MT03A

Product: Peplink Pepwave Wireless Product

Brand: **PEPWAVE**

Model No.: MAX BR2

Series Model: BR2, MAX-BR2-LTEA-US-T-PRM (refer to item 3.1 for more details)

Received Date: 2024/8/7

Test Date: 2024/11/28

Issued Date: 2025/1/3

Applicant: PISMO LABS TECHNOLOGY LIMITED

Address: A8, 5/F, HK Spinners Industrial Building, Phase 6, 481 Castle Peak Road, Cheung Sha Wan, Hong Kong

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan

FCC Registration / 788550 / TW0003

Designation Number:

Approved by:

Date:

2025/1/3

Jeremy Lin / Project Engineer

This test report consists of 39 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by : Vera Huang / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Release Control Record	3
1 Certificate.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Supplementary Information	5
3 General Information	6
3.1 General Description of EUT	6
3.2 Antenna Description of EUT	7
3.3 Test Mode Applicability and Tested Channel Detail.....	8
3.4 Test Program Used and Operation Descriptions.....	9
3.5 Connection Diagram of EUT and Peripheral Devices	9
3.6 Configuration of Peripheral Devices and Cable Connections	10
4 Test Instruments	11
4.1 Unwanted Emissions below 1 GHz	11
4.2 Radiated Spurious Emissions below 1GHz.....	11
4.3 Unwanted Emissions above 1 GHz.....	12
4.4 Radiated Spurious Emissions above 1GHz	13
5 Limits of Test Items.....	14
5.1 Unwanted Emissions below 1 GHz	14
5.2 Radiated Spurious Emissions below 1GHz.....	14
5.3 Unwanted Emissions above 1 GHz.....	15
5.4 Radiated Spurious Emissions above 1GHz	16
6 Test Arrangements.....	17
6.1 Unwanted Emissions below 1 GHz	17
6.1.1 Test Setup	17
6.1.2 Test Procedure.....	18
6.2 Radiated Spurious Emissions below 1GHz.....	19
6.2.1 Test Setup	19
6.2.2 Test Procedure.....	20
6.3 Unwanted Emissions above 1 GHz.....	21
6.3.1 Test Setup	21
6.3.2 Test Procedure.....	21
6.4 Radiated Spurious Emissions above 1GHz	22
6.4.1 Test Setup	22
6.4.2 Test Procedure.....	22
7 Test Results of Test Item	23
7.1 Unwanted Emissions below 1 GHz	23
7.2 Radiated Spurious Emissions below 1GHz.....	25
7.3 Unwanted Emissions above 1 GHz.....	29
7.4 Radiated Spurious Emissions above 1GHz	34
8 Pictures of Test Arrangements	38
9 Information of the Testing Laboratories	39

Release Control Record

Issue No.	Description	Date Issued
RFBCIC-WTW-P24080108	Original Release	2025/1/3

1 Certificate

Product: Peplink Pepwave Wireless Product

Brand: PEPWAVE

Test Model: MAX BR2

Series Model: BR2, MAX-BR2-LTEA-US-T-PRM (refer to item 3.1 for more details)

Sample Status: Prototype

Applicant: PISMO LABS TECHNOLOGY LIMITED

Test Date: 2024/11/28

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

47 CFR FCC Part 15, Subpart E (Section 15.407)

47 CFR FCC Part 90

47 CFR FCC Part 2

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

Standard / Clause	Test Item	Result	Remark
15.205 /15.209 /15.247(d) 15.407(b)(9)	Unwanted Emissions below 1 GHz	Pass	Meet the requirement of limit.
Part 2.1053 Part 90.543(e)(f)	Radiated Spurious Emissions below 1GHz	Pass	Meet the requirement of limit.
15.205 /15.209 /15.247(d) 15.407(b) (1/2/3/4(i)/10)	Unwanted Emissions above 1 GHz	Pass	Meet the requirement of limit.
Part 2.1053 Part 90.543(e)(f)	Radiated Spurious Emissions above 1GHz	Pass	Meet the requirement of limit.

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Parameter	Specification	Uncertainty (\pm)
Radiated Spurious Emissions below 1GHz	9 kHz ~ 30 MHz	3.59 dB
	30 MHz ~ 1 GHz	3.6 dB
Radiated Spurious Emissions above 1GHz	1 GHz ~ 18 GHz	2.29 dB
	18 GHz ~ 40 GHz	2.29 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Peplink Pepwave Wireless Product	
Brand	peplink PEPWAVE	
Test Model	MAX BR2	
Series Model	BR2, MAX-BR2-LTEA-US-T-PRM	
Model Difference	For marketing purpose.	
Modulation Technology	WLAN	DSSS, OFDM, OFDMA
Operating Frequency	WLAN	2412 ~ 2462 MHz, 5180~5240MHz, 5745~5825MHz

Note:

1. The EUT contains a certified WWAN module (Brand: Sierra, Model: EM7411). For detail information about WWAN, please refer to FCC ID: N7NEM74B.
2. The EUT uses following accessory.

Adapter		
Brand	Model	Specification
LEI	MU36B3120300-A1	AC Input : 100-240Vac, 50/60Hz, 1.0A DC Output : 12V, 3.0A Signal Line : 1.5m, non-shielded

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

Antenna No.	RF Chain No.	Brand	Model	Antenna Net Gain(dBi)	Frequency range	Antenna Type	Connector Type
WWAN_2-1 / WWAN_2-2 (Newly)	0/1	PEPWAVE	04-410188-00	1.65	1850~1910MHz	Omni-directional	SMA
				1.71	1710~1755MHz		
				1.62	824~849MHz		
				3.12	2500~2570MHz		
				0.65	699~716MHz		
				0.11	777~787MHz		
				0.64	788~798MHz		
				1.65	1850~1915MHz		
				1.62	814~849MHz		
				-4.5	2305~2315MHz		
				1.5	2570~2620MHz		
				1.5	2496~2690MHz		
				-8.5	3400~3600MHz		
				-1.5	3600~3980MHz		
				-5.5	3550~3700MHz		
				1.71	1710~1780 MHz		
				1.49	663~698MHz		
WiFi_2-1 / WiFi_2-2 (Newly)	0/1	WIESON	ARY121-1976-001-00	2.25	2400~2483.5MHz	Omni-directional	RP-SMA
				2.55	5150~5250MHz		
				3.36	5725~5850MHz		
WWAN_1-1 / WWAN_1-2 (Original)	0/1	INPAQ	DAM-D13-S1-N0-000-08-20	2.39	1850~1910MHz	Omni-directional	SMA
				1.98	1710~1755MHz		
				2.92	824~849MHz		
				-0.39	2500~2570 MHz		
				3.58	698~716MHz		
				3.66	777~787MHz		
				3.78	788~798MHz		
				2.39	1850~1915MHz		
				2.92	814~849MHz		
				-0.37	2496~ 2690 MHz		
				-8.11	3400~3600MHz		
				-8.11	3600~3980MHz		
				-8.11	3550~3700MHz		
				1.98	1710 ~1780MHz		
				3.44	663~698MHz		
WiFi_1-1 / WiFi_1-2 (Original)	0/1	YUAN CHEN	ACA-0040-6G1A1-A10	3.15	2400~2483.5MHz	Omni-directional	RP-SMA
				3.29	5150~5250MHz		
				4.76	5725~5850MHz		

* The antenna which has the maximum antenna gain was chosen for final test.

* Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan:	1. EUT has the following operations/ usages: 10Vdc from Terminal Block / 30Vdc from Terminal Block / 12Vdc from Adapter / POE / 10Vdc from Molex Power Port / 30Vdc from Molex Power Port. Pre-scan these operations/ usages and find the worst case as a representative test condition. 2. EUT has the following operations/ usages: eSIM 1 (WP68-M002c-MFOCMW) / eSIM 2 (MFXS-M006b-MFOCMW). Pre-scan these operations/ usages and find the worst case as a representative test condition. 3. EUT can be used in the following ways: X-axis / Y-axis / Z-axis. Pre-scan these ways and find the worst case as a representative test condition. 4. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
Worst Case:	1. Worst Condition: 12Vdc from Adapter 2. Worst Condition: eSIM 1 (WP68-M002c-MFOCMW) 3. Worst Condition: X-axis

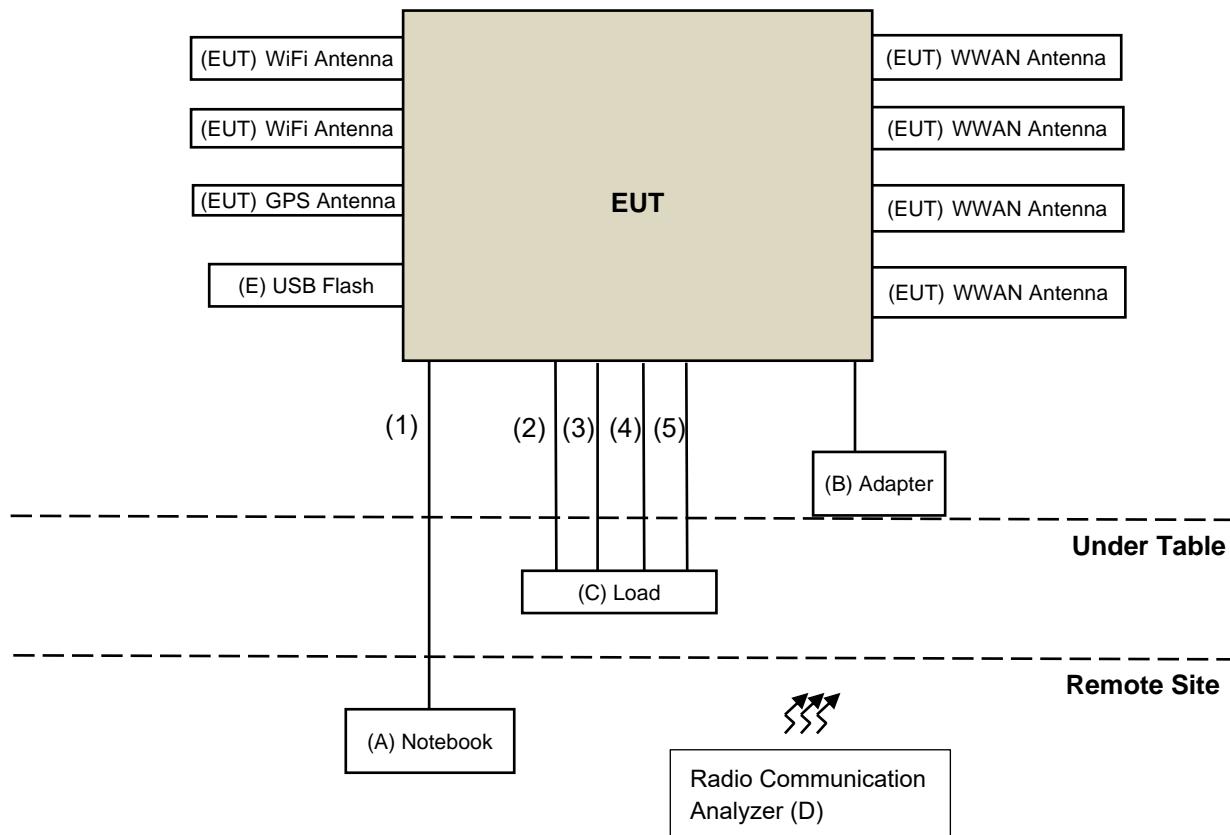
Following channel(s) was (were) selected for the final test as listed below:

Test Item	Combination	Mode	Tested Channel
Unwanted Emissions below 1 GHz	1	802.11b 2.4G	3
		802.11ax (HE40)	159
		LTE B14 BW10MHz QPSK	23330 (793MHz)
		WCDMA B5	4233 (846.6MHz)
Radiated Spurious Emissions below 1GHz	1	802.11b 2.4G	3
		802.11ax (HE40)	159
		LTE B14 BW10MHz QPSK	23330 (793MHz)
		WCDMA B5	4233 (846.6MHz)
Unwanted Emissions above 1 GHz	1	802.11b 2.4G	3
		802.11ax (HE40)	159
		LTE B14 BW10MHz QPSK	23330 (793MHz)
		WCDMA B5	4233 (846.6MHz)
Radiated Spurious Emissions above 1GHz	1	802.11b 2.4G	3
		802.11ax (HE40)	159
		LTE B14 BW10MHz QPSK	23330 (793MHz)
		WCDMA B5	4233 (846.6MHz)
EUT Configure Mode:	EUT with WWAN antenna_DAM-D13-S1-N0-000-08-20 (original) and WLAN antenna_ACA-0040-6G1A1-A10		

Note:

1. The above evaluation models and related information are based on the original WiFi certification report and the information provided by the manufacturer.
2. The above test combinations were selected after evaluation as representative test patterns.
3. The output power and radiated spurious emission level of the above operating modes has also been evaluated and is not higher than the original power level and spurious emission level.

3.4 Test Program Used and Operation Descriptions


WWAN:

There is no need to controlling software during the test, and the EUT can be paired with the Radio Communication Analyzer to test the connection when it is powered on.

WLAN:

Controlling software iperf has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.5 Connection Diagram of EUT and Peripheral Devices

3.6 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A	Notebook	Lenovo	X250	PC04UZN1	N/A	Provided by Lab
B	Adapter	LEI	MU36B3120300-A1	NA	N/A	Supplied by applicant
C	Load	N/A	N/A	NA	N/A	Provided by Lab
D	Radio Communication Analyzer	Anritsu	MT8821C	6272278310	N/A	Provided by Lab
E	USB Flash	SanDisk	SDDDC3-032G	N/A	N/A	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	LAN Cable	1	6	No	0	Provided by Lab
2	LAN Cable	1	1.5	No	0	Provided by Lab
3	LAN Cable	1	1.5	No	0	Provided by Lab
4	LAN Cable	1	1.5	No	0	Provided by Lab
5	LAN Cable	1	1.5	No	0	Provided by Lab

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower &Turn BV ADT	AT100	AT93021705	N/A	N/A
Bi_Log Antenna Schwarzbeck	VULB 9168	9168-160	2024/10/9	2025/10/8
Loop Antenna TESEQ	HLA 6121	45745	2024/8/21	2025/8/20
MXE EMI Receiver Keysight	N9038B	MY60180018	2024/3/13	2025/3/12
Preamplifier Agilent	8447D	2944A10638	2024/5/1	2025/4/30
Preamplifier EMCI	EMC001340	980201	2024/9/24	2025/9/23
RF Coaxial Cable Woken	8D-FB	Cable-CH9-01	2024/5/1	2025/4/30
Signal & Spectrum Analyzer R&S	FSW43	101867	2023/12/29	2024/12/28
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table BV ADT	TT100	TT93021705	N/A	N/A
Turn Table Controller BV ADT	SC100	SC93021705	N/A	N/A

Notes:

1. The test was performed in HY - 966 chamber 4.
2. Tested Date: 2024/11/28

4.2 Radiated Spurious Emissions below 1GHz

Refer to section 4.1 to get the tested date and information of the instruments.

4.3 Unwanted Emissions above 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower & Turn BV ADT	AT100	AT93021705	N/A	N/A
Boresight antenna tower fixture BV	BAF-02	5	N/A	N/A
Horn Antenna Schwarzbeck	BBHA 9120D	9120D-1169	2024/11/10	2025/11/9
	BBHA 9170	9170-480	2024/11/10	2025/11/9
		BBHA9170243	2024/11/10	2025/11/9
MXE EMI Receiver Keysight	N9038B	MY60180018	2024/3/13	2025/3/12
Preamplifier Agilent	8449B	3008A02367	2024/1/6	2025/1/5
Preamplifier EMCI	EMC 184045	980116	2024/9/24	2025/9/23
RF Coaxial Cable EMCI	EMC102-KM-KM-600	150928	2024/7/6	2025/7/5
	EMC102-KM-KM-3000	150929	2024/7/6	2025/7/5
RF Coaxial Cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(250795/4)	2024/1/6	2025/1/5
RF Coaxial Cable HUBER+SUHNER&EMCI	SUCOFLEX 104& EMC104-SM-SM8000	CABLE-CH9-02 (248780+171006)	2024/1/6	2025/1/5
Signal & Spectrum Analyzer R&S	FSW43	101867	2023/12/29	2024/12/28
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table BV ADT	TT100	TT93021705	N/A	N/A
Turn Table Controller BV ADT	SC100	SC93021705	N/A	N/A

Notes:

1. The test was performed in HY - 966 chamber 4.
2. Tested Date: 2024/11/28

4.4 Radiated Spurious Emissions above 1GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower & Turn BV ADT	AT100	AT93021705	N/A	N/A
Boresight antenna tower fixture BV	BAF-02	5	N/A	N/A
Horn Antenna Schwarzbeck	BBHA 9120D	9120D-1169	2024/11/10	2025/11/9
	BBHA 9170	9170-480	2024/11/10	2025/11/9
		BBHA9170243	2024/11/10	2025/11/9
MXE EMI Receiver Keysight	N9038B	MY60180018	2024/3/13	2025/3/12
Preamplifier Agilent	8449B	3008A02367	2024/1/6	2025/1/5
Preamplifier EMCI	EMC 184045	980116	2024/9/24	2025/9/23
RF Coaxial Cable EMCI	EMC102-KM-KM-600	150928	2024/7/6	2025/7/5
	EMC102-KM-KM-3000	150929	2024/7/6	2025/7/5
RF Coaxial Cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(250795/4)	2024/1/6	2025/1/5
RF Coaxial Cable HUBER+SUHNER&EMCI	SUCOFLEX 104& EMC104-SM-SM8000	CABLE-CH9-02 (248780+171006)	2024/1/6	2025/1/5
Signal & Spectrum Analyzer R&S	FSW43	101867	2023/12/29	2024/12/28
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table BV ADT	TT100	TT93021705	N/A	N/A
Turn Table Controller BV ADT	SC100	SC93021705	N/A	N/A

Notes:

1. The test was performed in HY - 966 chamber 4.
2. Tested Date: 2024/11/28

5 Limits of Test Items

5.1 Unwanted Emissions below 1 GHz

For FCC 15.247:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_{uV}/m) = 20 log Emission level (uV/m).

For FCC 15.407:

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_{uV}/m) = 20 log Emission level (uV/m).

5.2 Radiated Spurious Emissions below 1GHz

For WCDMA Band 5:

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13 dBm.

For LTE Band 14:

According to FCC 47 CFR part 90.543 (e), for operations in the 758-768 MHz and the 788-798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log (P)$ dB.

According to FCC 47 CFR part 90.543 (f), for operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.

5.3 Unwanted Emissions above 1 GHz

For FCC 15.247:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
Above 960	500	3

Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB μ V/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

For FCC 15.407 transmitters operating in the 5.150-5.850 GHz band:

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
Above 960	500	3

Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB μ V/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applicable To	Limit	
789033 D02 General UNII Test Procedure New Rules v02r01	Field Strength at 3 m	
	PK: 74 (dB μ V/m)	AV: 54 (dB μ V/m)

Applicable To	EIRP Limit	Equivalent Field Strength at 3 m
15.407(b)(1)	PK: -27 (dBm/MHz)	PK: 68.2 (dB μ V/m) *
15.407(b)(2)	PK: -27 (dBm/MHz)	PK: 68.2 (dB μ V/m) *
15.407(b)(3)	PK: -27 (dBm/MHz)	PK: 68.2 (dB μ V/m) *
15.407(b)(4)(i)	PK: -27 (dBm/MHz) * ¹ PK: 10 (dBm/MHz) * ² PK: 15.6 (dBm/MHz) * ³ PK: 27 (dBm/MHz) * ⁴	PK: 68.2 (dB μ V/m) * ¹ PK: 105.2 (dB μ V/m) * ² PK: 110.8 (dB μ V/m) * ³ PK: 122.2 (dB μ V/m) * ⁴

*¹ beyond 75 MHz or more above of the band edge.

*² below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

*³ below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

*⁴ from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \mu\text{V/m, where } P \text{ is the eirp (Watts).}$$

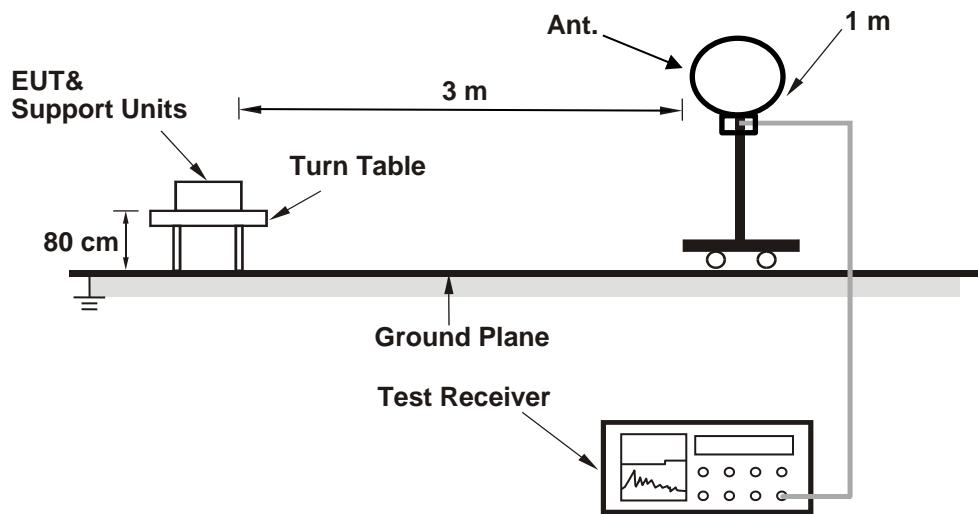
5.4 Radiated Spurious Emissions above 1GHz

For WCDMA Band 5:

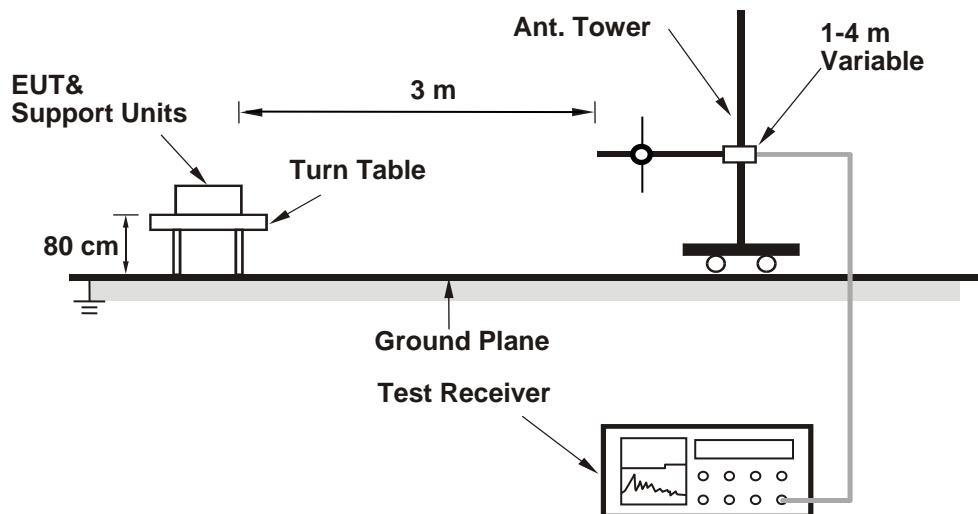
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13 dBm.

For LTE Band 14:

According to FCC 47 CFR part 90.543 (e), for operations in the 758-768 MHz and the 788-798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log (P)$ dB.


According to FCC 47 CFR part 90.543 (f), for operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.

6 Test Arrangements


6.1 Unwanted Emissions below 1 GHz

6.1.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.1.2 Test Procedure

For Radiated emission below 30 MHz

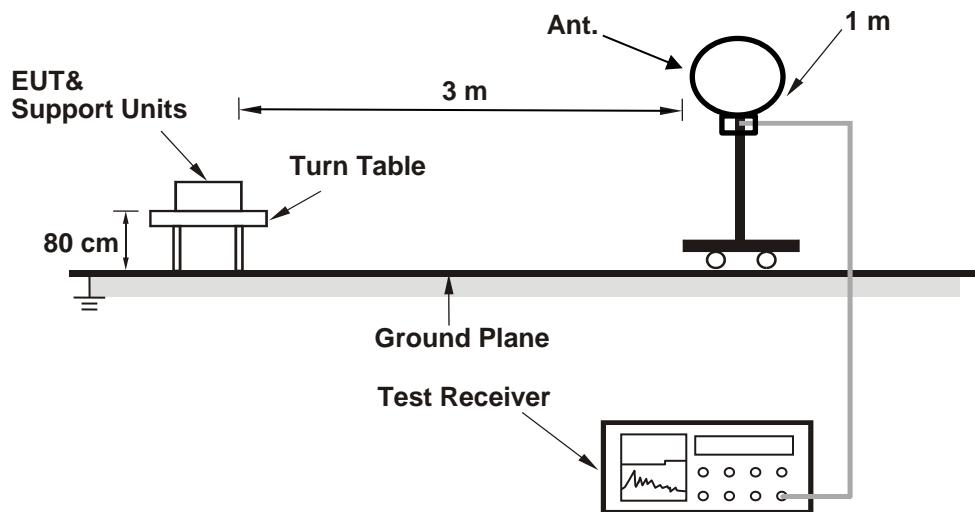
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.


Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
2. All modes of operation were investigated and the worst-case emissions are reported.

6.2 Radiated Spurious Emissions below 1GHz

6.2.1 Test Setup

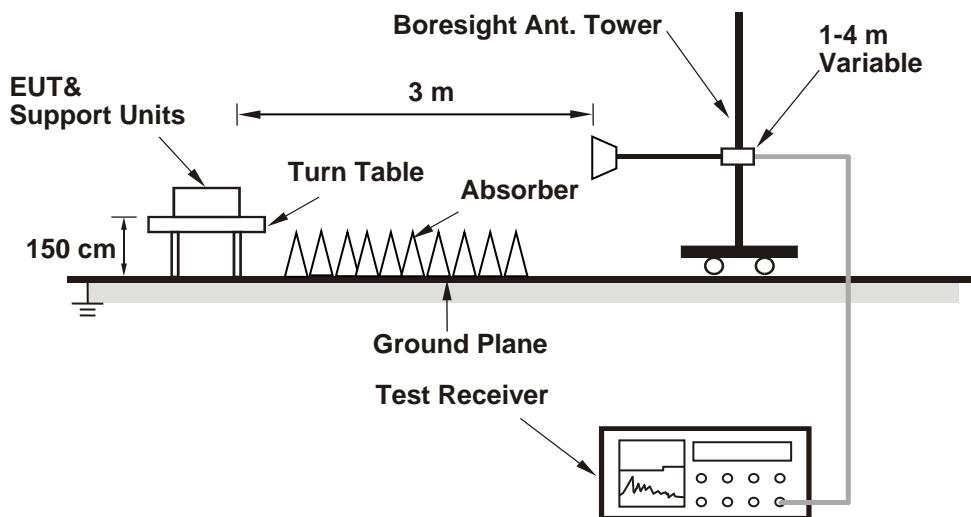
For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.2.2 Test Procedure

The EUT is configured to set data modulation and maximum power using WWAN technology.


- a. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) height of turn table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP/ERP level.
- d. Following ANSI C63.26 section 5.5 and 5.2.7
- e. $EIRP (dBm) = E (dB\mu V/m) + 20\log(D) - 104.8$; where D is the measurement distance (in the far field region) in m.
- f. $ERP (dBm) = E (dB\mu V/m) + 20\log(D) - 104.8 - 2.15$; where D is the measurement distance (in the far field region) in m.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz/3 MHz. Set detector = average.
2. The amplitude of spurious emissions in the range 9 kHz to 30 MHz which are attenuated more than 20 dB below the permissible value need not be reported.

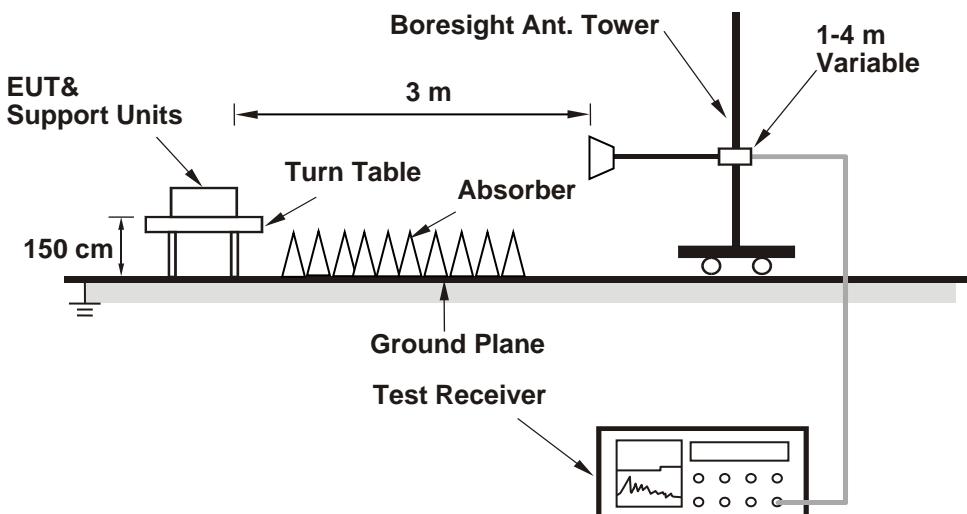
6.3 Unwanted Emissions above 1 GHz

6.3.1 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.3.2 Test Procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.


Notes:

1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
2. All modes of operation were investigated and the worst-case emissions are reported.

6.4 Radiated Spurious Emissions above 1GHz

6.4.1 Test Setup

For radiated emission above 1 GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.4.2 Test Procedure

The EUT is configured to set data modulation and maximum power using WWAN technology.

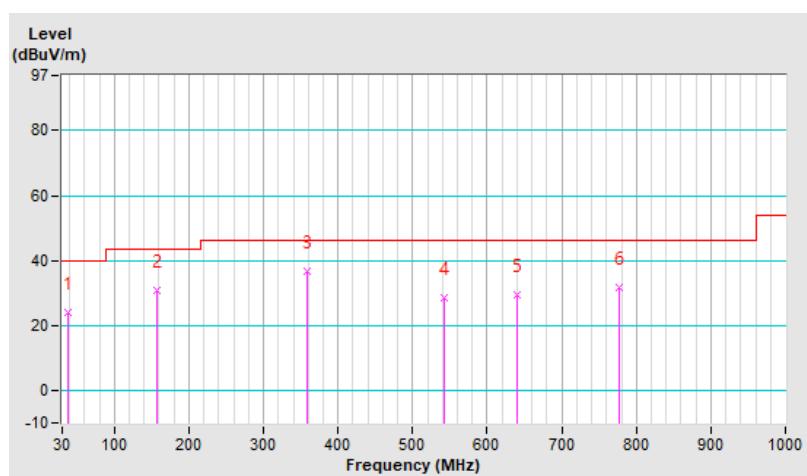
- In the semi-anechoic chamber, EUT placed on the 1.5 m height of turn table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP/ERP level.
- Following ANSI C63.26 section 5.5 and 5.2.7
- $EIRP (dBm) = E (dB\mu V/m) + 20\log(D) - 104.8$; where D is the measurement distance (in the far field region) in m.
- $ERP (dBm) = E (dB\mu V/m) + 20\log(D) - 104.8 - 2.15$; where D is the measurement distance (in the far field region) in m.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz/3 MHz. Set detector = average.

7 Test Results of Test Item

7.1 Unwanted Emissions below 1 GHz

FCC 15.247

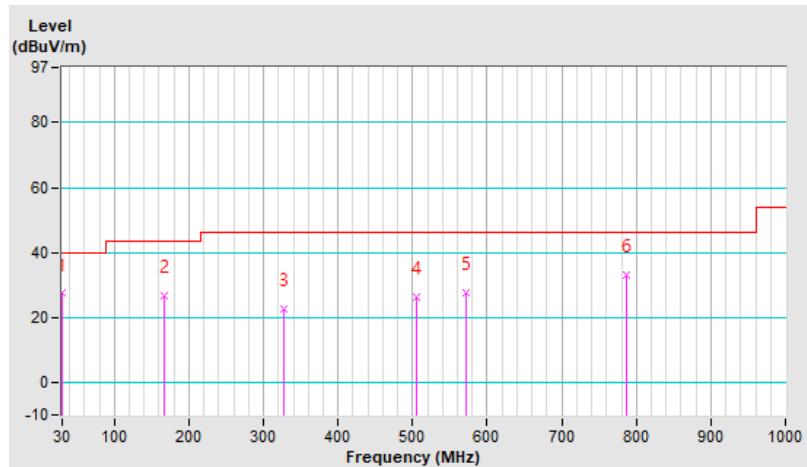

FCC 15.407

Combination	1						
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth		QP: RB=120kHz, DET=Quasi-Peak			
Input Power	120 Vac, 60 Hz	Environmental Conditions		23 °C, 67 % RH			
Tested By	Adair Peng						

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	37.76	24.2 QP	40.0	-15.8	1.00 H	311	33.9	-9.7
2	158.04	30.9 QP	43.5	-12.6	1.49 H	292	39.3	-8.4
3	358.83	36.6 QP	46.0	-9.4	1.00 H	103	42.5	-5.9
4	543.13	28.6 QP	46.0	-17.4	1.00 H	287	31.1	-2.5
5	641.1	29.6 QP	46.0	-16.4	1.49 H	268	29.8	-0.2
6	776.9	31.9 QP	46.0	-14.1	1.00 H	6	29.4	2.5

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



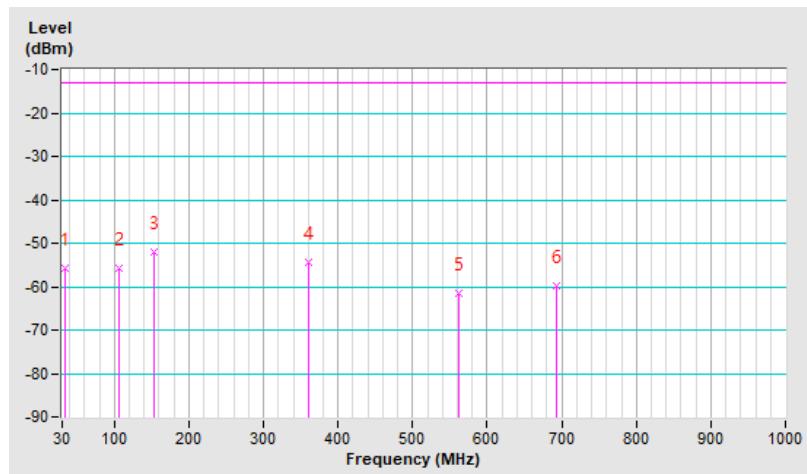
Combination	1						
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth		QP: RB=120kHz, DET=Quasi-Peak			
Input Power	120 Vac, 60 Hz	Environmental Conditions		23 °C, 67 % RH			
Tested By	Adair Peng						

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	30	27.4 QP	40.0	-12.6	1.00 V	45	37.7	-10.3
2	167.74	26.8 QP	43.5	-16.7	2.00 V	279	35.3	-8.5
3	326.82	22.8 QP	46.0	-23.2	1.00 V	6	28.8	-6.0
4	504.33	26.2 QP	46.0	-19.8	1.50 V	279	29.3	-3.1
5	572.23	27.8 QP	46.0	-18.2	1.50 V	85	29.7	-1.9
6	787.57	33.1 QP	46.0	-12.9	1.00 V	27	30.5	2.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

7.2 Radiated Spurious Emissions below 1GHz

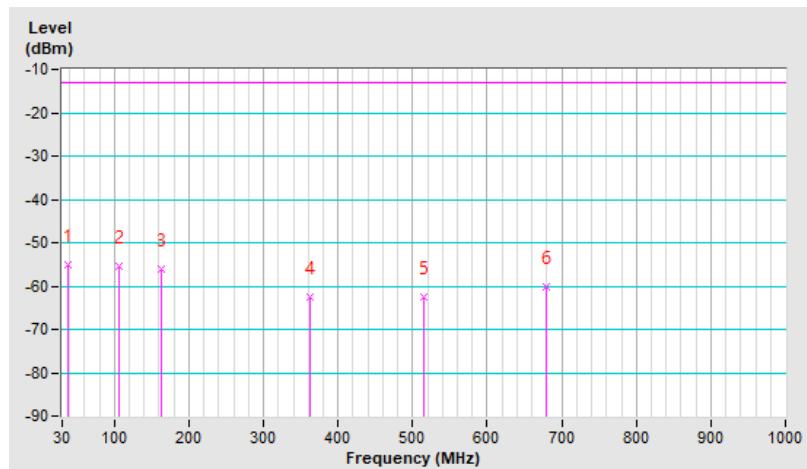

FCC Part 22

Combination	1						
Frequency Range	30 MHz ~ 1 GHz		Detector Function & Bandwidth		1 MHz/3 MHz (RMS)		
Input Power	120 Vac, 60 Hz		Environmental Conditions		23 °C, 67 % RH		
Tested By	Adair Peng						

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	33.88	-55.67	-13.00	-42.67	1.00 H	54	52.08	-107.75
2	105.66	-55.89	-13.00	-42.89	1.50 H	289	53.82	-109.71
3	153.19	-52.11	-13.00	-39.11	2.00 H	88	53.74	-105.85
4	360.77	-54.36	-13.00	-41.36	1.00 H	93	48.86	-103.22
5	561.56	-61.49	-13.00	-48.49	1.50 H	15	38.04	-99.53
6	692.51	-59.88	-13.00	-46.88	1.00 H	35	37.11	-96.99

Remarks:

1. $ERP(dBm) = Raw\ Value(dBuV) + Correction\ Factor(dB/m)$
2. $Correction\ Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) - Pre-Amplifier\ Factor(dB) + 20\log(D) - 104.8 - 2.15$
3. Margin value = ERP – Limit value
4. The other ERP levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



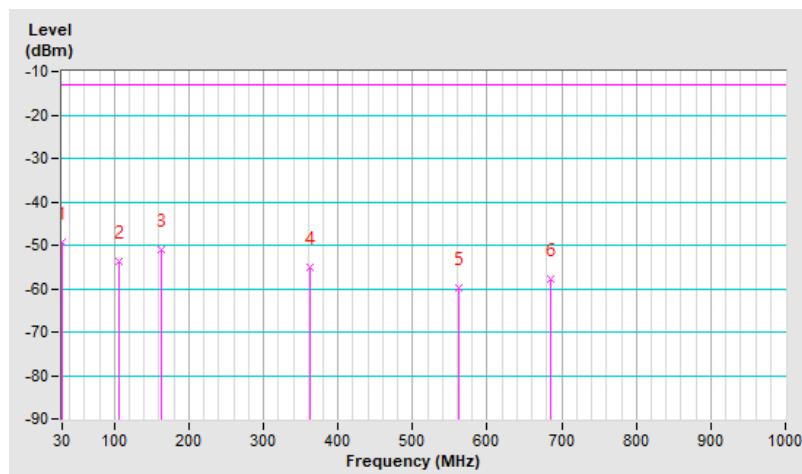
Combination	1						
Frequency Range	30 MHz ~ 1 GHz		Detector Function & Bandwidth		1 MHz/3 MHz (RMS)		
Input Power	120 Vac, 60 Hz		Environmental Conditions		23 °C, 67 % RH		
Tested By	Adair Peng						

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	37.76	-55.07	-13.00	-42.07	1.00 V	221	52.12	-107.19
2	106.63	-55.43	-13.00	-42.43	1.50 V	216	54.14	-109.57
3	163.86	-56.21	-13.00	-43.21	1.00 V	254	49.63	-105.84
4	362.71	-62.46	-13.00	-49.46	2.00 V	232	40.69	-103.15
5	515.97	-62.53	-13.00	-49.53	1.00 V	32	37.75	-100.28
6	679.9	-60.05	-13.00	-47.05	2.00 V	168	37.14	-97.19

Remarks:

1. $ERP(dBm) = Raw\ Value(dBuV) + Correction\ Factor(dB/m)$
2. $Correction\ Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) - Pre-Amplifier\ Factor(dB) + 20\log(D) - 104.8 - 2.15$
3. Margin value = ERP – Limit value
4. The other ERP levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

FCC Part 90

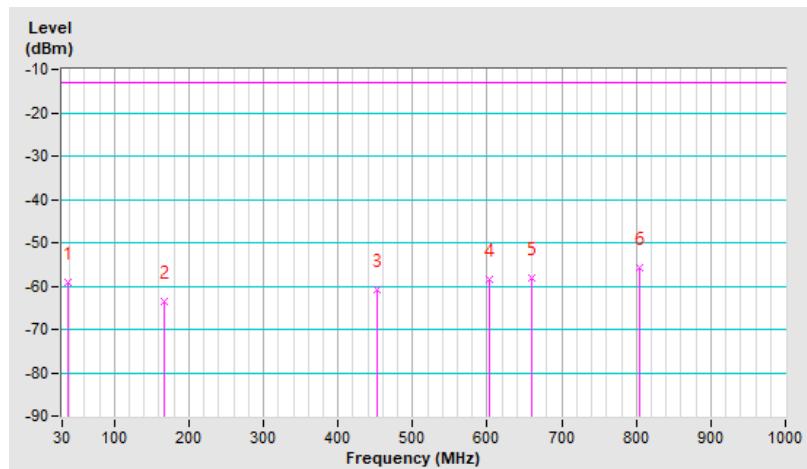

Combination	1						
Frequency Range	30 MHz ~ 1 GHz		Detector Function & Bandwidth		1 MHz/3 MHz (RMS)		
Input Power	120 Vac, 60 Hz		Environmental Conditions		23 °C, 67 % RH		
Tested By	Adair Peng						

Antenna Polarity & Test Distance : Horizontal at 3 m

No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	30.97	-49.40	-13.00	-36.40	1.50 H	46	58.68	-108.08
2	105.66	-53.64	-13.00	-40.64	1.00 H	285	56.07	-109.71
3	163.86	-50.97	-13.00	-37.97	1.50 H	104	54.87	-105.84
4	362.71	-55.25	-13.00	-42.25	1.00 H	96	47.90	-103.15
5	562.53	-59.89	-13.00	-46.89	1.00 H	200	39.62	-99.51
6	684.75	-57.69	-13.00	-44.69	1.00 H	15	39.42	-97.11

Remarks:

1. $ERP(dBm) = Raw\ Value(dBuV) + Correction\ Factor(dB/m)$
2. $Correction\ Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) - Pre-Amplifier\ Factor(dB)$
 $+ 20\log(D) - 104.8 - 2.15$
3. Margin value = $ERP - Limit$ value
4. The other ERP levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



Combination	1						
Frequency Range	30 MHz ~ 1 GHz		Detector Function & Bandwidth		1 MHz/3 MHz (RMS)		
Input Power	120 Vac, 60 Hz		Environmental Conditions		23 °C, 67 % RH		
Tested By	Adair Peng						

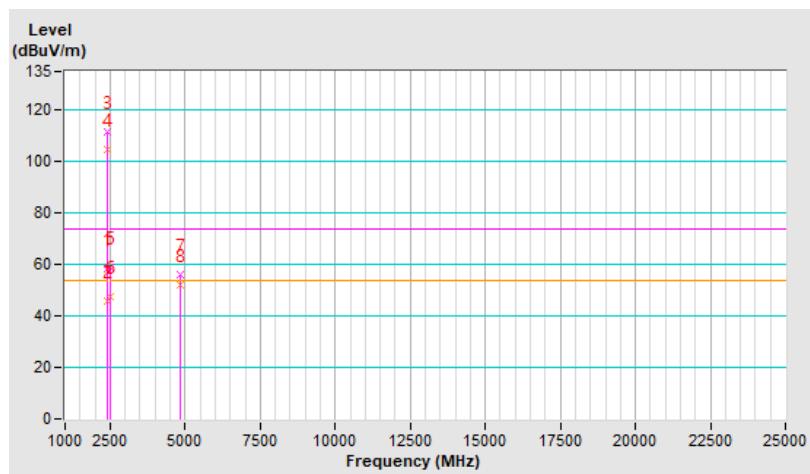
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	38.73	-59.18	-13.00	-46.18	1.50 V	6	48.05	-107.23
2	167.74	-63.61	-13.00	-50.61	1.00 V	288	42.35	-105.96
3	451.95	-60.89	-13.00	-47.89	1.50 V	6	40.31	-101.20
4	603.27	-58.43	-13.00	-45.43	1.00 V	64	39.88	-98.31
5	660.5	-58.19	-13.00	-45.19	1.00 V	177	39.34	-97.53
6	804.06	-55.79	-13.00	-42.79	1.00 V	66	38.75	-94.54

Remarks:

1. $ERP(dBm) = Raw\ Value(dBuV) + Correction\ Factor(dB/m)$
2. $Correction\ Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) - Pre-Amplifier\ Factor(dB) + 20\log(D) - 104.8 - 2.15$
3. Margin value = ERP – Limit value
4. The other ERP levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

7.3 Unwanted Emissions above 1 GHz

FCC 15.247

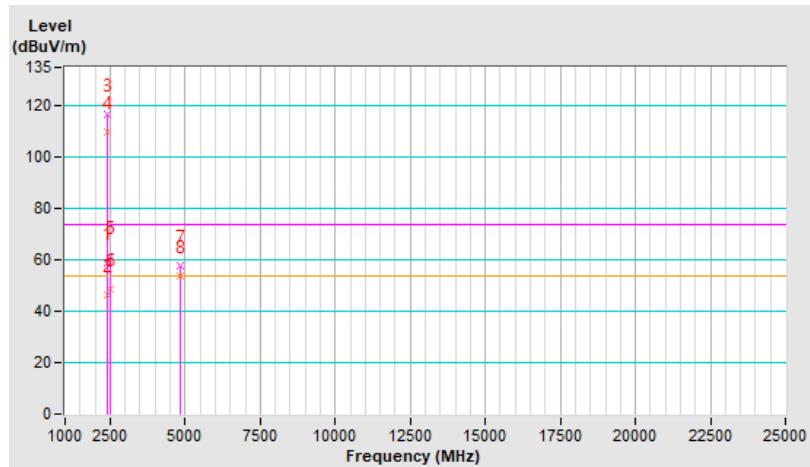

Combination	1						
Frequency Range	1 GHz ~ 25 GHz		Detector Function & Bandwidth		PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 MHz, DET=RMS		
Input Power	120 Vac, 60 Hz		Environmental Conditions		23 °C, 67 % RH		
Tested By	Adair Peng						

Antenna Polarity & Test Distance : Horizontal at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390	58.1 PK	74.0	-15.9	1.03 H	142	25.5	32.6
2	2390	45.7 AV	54.0	-8.3	1.03 H	142	13.1	32.6
3	*2422	111.7 PK			1.03 H	142	79.2	32.5
4	*2422	104.9 AV			1.03 H	142	72.4	32.5
5	2483.5	58.9 PK	74.0	-15.1	1.03 H	142	26.4	32.5
6	2483.5	47.3 AV	54.0	-6.7	1.03 H	142	14.8	32.5
7	4844	56.3 PK	74.0	-17.7	1.00 H	158	51.8	4.5
8	4844	51.8 AV	54.0	-2.2	1.00 H	158	47.3	4.5

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

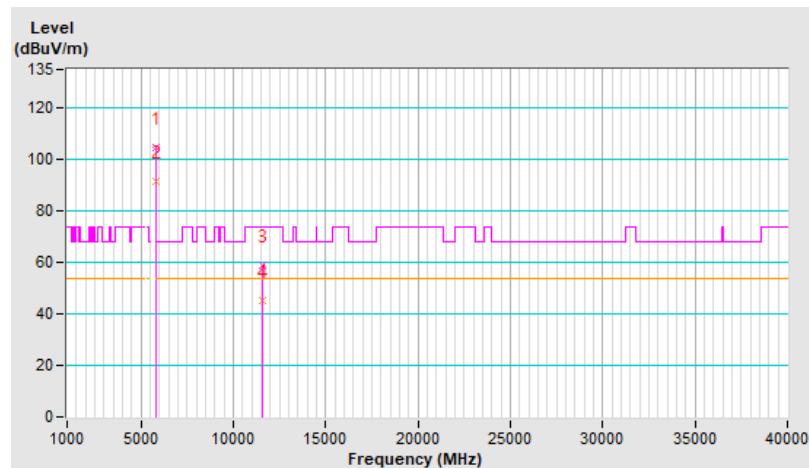

Combination	1						
Frequency Range	1 GHz ~ 25 GHz		Detector Function & Bandwidth		PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 MHz, DET=RMS		
Input Power	120 Vac, 60 Hz		Environmental Conditions		23 °C, 67 % RH		
Tested By	Adair Peng						

Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390	58.7 PK	74.0	-15.3	1.49 V	202	26.1	32.6
2	2390	46.1 AV	54.0	-7.9	1.49 V	202	13.5	32.6
3	*2422	116.7 PK			1.49 V	202	84.2	32.5
4	*2422	109.8 AV			1.49 V	202	77.3	32.5
5	2483.5	61.0 PK	74.0	-13.0	1.49 V	202	28.5	32.5
6	2483.5	48.9 AV	54.0	-5.1	1.49 V	202	16.4	32.5
7	4844	57.6 PK	74.0	-16.4	1.41 V	206	53.1	4.5
8	4844	53.8 AV	54.0	-0.2	1.41 V	206	49.3	4.5

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

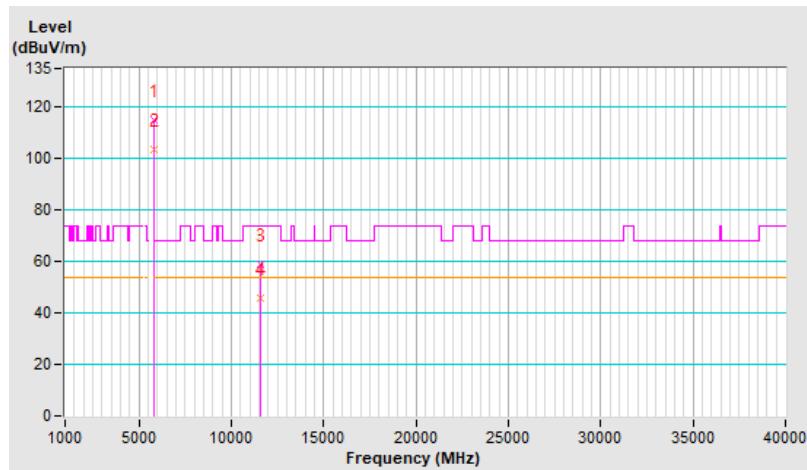

FCC 15.407

Combination	1				
Frequency Range	1 GHz ~ 40 GHz		Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 MHz, DET=RMS	
Input Power	120 Vac, 60 Hz		Environmental Conditions	23 °C, 67 % RH	
Tested By	Adair Peng				

Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)
1	*5795	104.4 PK			1.50 H	226	64.4
2	*5795	91.3 AV			1.50 H	226	51.3
3	11590	58.8 PK	74.0	-15.2	2.23 H	254	42.3
4	11590	45.3 AV	54.0	-8.7	2.23 H	254	28.8

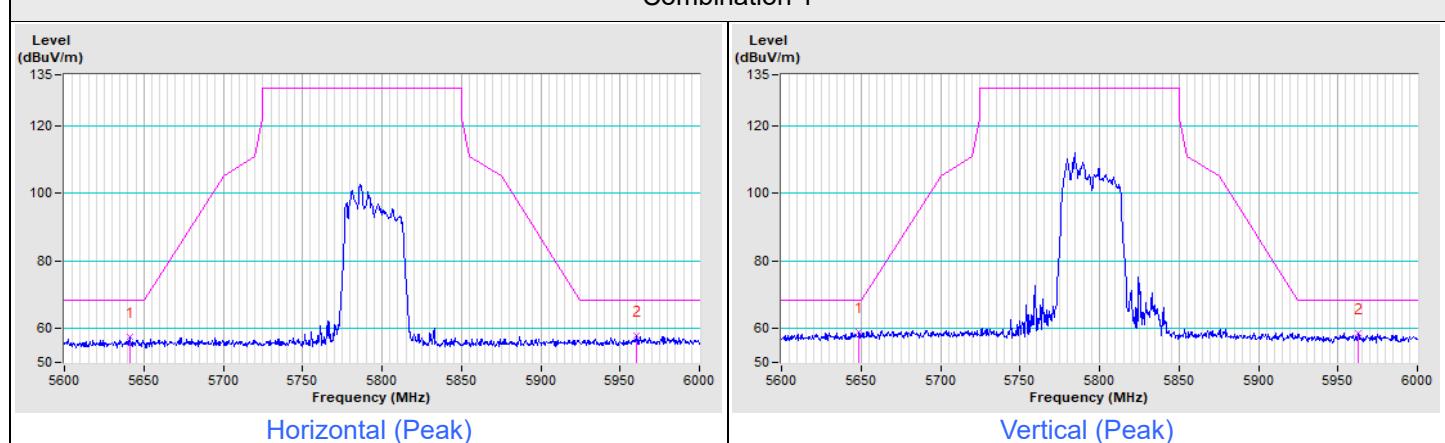
Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.


Combination	1						
Frequency Range	1 GHz ~ 40 GHz		Detector Function & Bandwidth		PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 MHz, DET=RMS		
Input Power	120 Vac, 60 Hz		Environmental Conditions		23 °C, 67 % RH		
Tested By	Adair Peng						

Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*5795	114.8 PK			2.36 V	141	74.8	40.0
2	*5795	103.4 AV			2.36 V	141	63.4	40.0
3	11590	59.2 PK	74.0	-14.8	1.93 V	309	42.7	16.5
4	11590	45.5 AV	54.0	-8.5	1.93 V	309	29.0	16.5

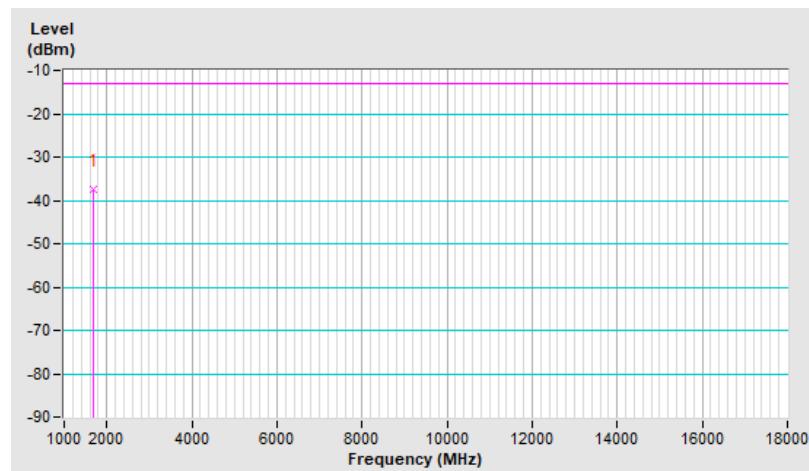

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

Plot of Band Edge

Combination 1

7.4 Radiated Spurious Emissions above 1GHz

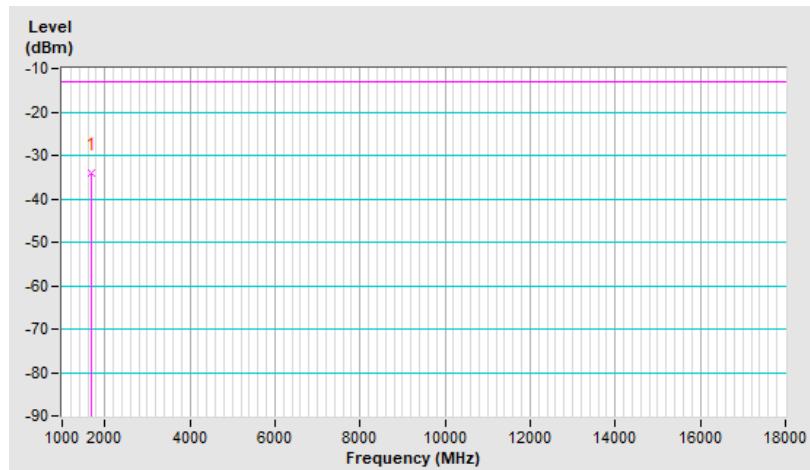

FCC Part 22

Combination	1			
Frequency Range	1 GHz ~ 18 GHz		Detector Function & Bandwidth	1 MHz/3 MHz (RMS)
Input Power	120 Vac, 60 Hz		Environmental Conditions	23 °C, 67 % RH
Tested By	Adair Peng			

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1693.2	-37.61	-13.00	-24.61	3.54 H	89	64.83	-102.44

Remarks:

1. $ERP(dBm) = Raw\ Value(dBuV) + Correction\ Factor(dB/m)$
2. $Correction\ Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) - Pre-Amplifier\ Factor(dB) + 20\log(D) - 104.8 - 2.15$
3. Margin value = ERP – Limit value
4. The other ERP levels were very low against the limit.



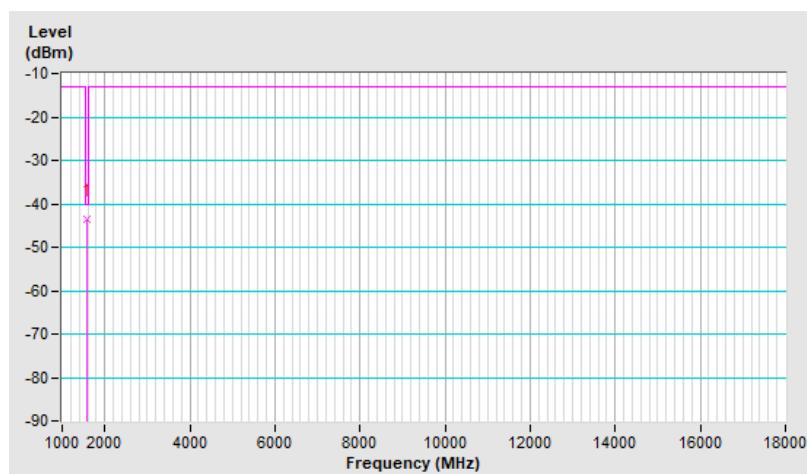
Combination	1						
Frequency Range	1 GHz ~ 18 GHz		Detector Function & Bandwidth		1 MHz/3 MHz (RMS)		
Input Power	120 Vac, 60 Hz		Environmental Conditions		23 °C, 67 % RH		
Tested By	Adair Peng						

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1693.2	-33.98	-13.00	-20.98	1.21 V	166	68.46	-102.44

Remarks:

1. $ERP(dBm) = Raw\ Value(dBuV) + Correction\ Factor(dB/m)$
2. $Correction\ Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) - Pre-Amplifier\ Factor(dB) + 20\log(D) - 104.8 - 2.15$
3. Margin value = ERP – Limit value
4. The other ERP levels were very low against the limit.

FCC Part 90

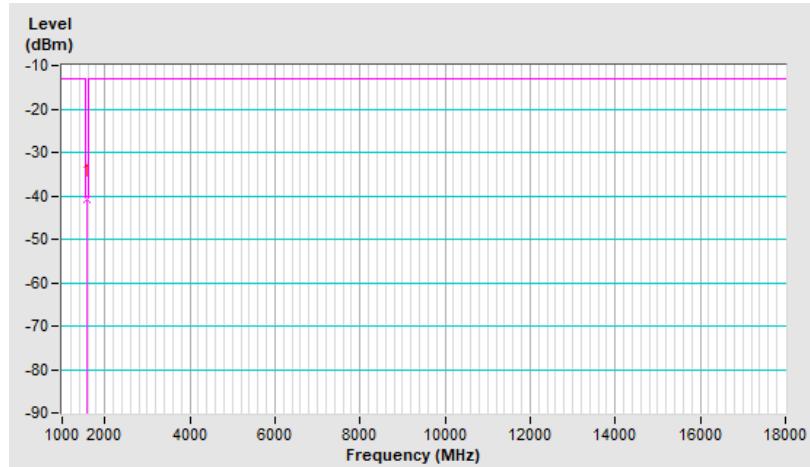

Combination	1						
Frequency Range	1 GHz ~ 18 GHz		Detector Function & Bandwidth		1 MHz/3 MHz (RMS)		
Input Power	120 Vac, 60 Hz		Environmental Conditions		23 °C, 67 % RH		
Tested By	Adair Peng						

Antenna Polarity & Test Distance : Horizontal at 3 m

No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1586	-43.51	-40.00	-3.51	1.83 H	205	56.71	-100.22

Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + $20\log(D) - 104.8$
3. Margin value = EIRP – Limit value
4. The other EIRP levels were very low against the limit.



Combination	1						
Frequency Range	1 GHz ~ 18 GHz	Detector Function & Bandwidth		1 MHz/3 MHz (RMS)			
Input Power	120 Vac, 60 Hz	Environmental Conditions		23 °C, 67 % RH			
Tested By	Adair Peng						

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1586	-40.71	-40.00	-0.71	1.23 V	267	59.51	-100.22

Remarks:

1. $EIRP(dBm) = \text{Raw Value}(dBuV) + \text{Correction Factor}(dB/m)$
2. $\text{Correction Factor}(dB/m) = \text{Antenna Factor}(dB/m) + \text{Cable Factor}(dB) - \text{Pre-Amplifier Factor}(dB) + 20\log(D) - 104.8$
3. Margin value = EIRP – Limit value
4. The other EIRP levels were very low against the limit.

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@bureauveritas.com

Web Site: <http://ee.bureauveritas.com.tw>

The address and road map of all our labs can be found in our web site also.

--- END ---