

RF Exposure Report

Report No.: SA150713E08

FCC ID: U8G-P1813

Test Model: MAX Transit

Series Model: MAX transit Duo, MAX transit Quad, Pismo 813

Received Date: July 13, 2015

Test Date: Aug. 06, 2015

Issued Date: Sep. 02, 2015

Applicant: Pismo Labs Technology Limited

Address: FLAT/RM A5, 5/F, HK SPINNERS IND BLDG PHASE 6, 481 CASTLE PEAK

ROAD, CHEUNG SHA WAN, HONG KONG.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin

Chu Hsien 307, Taiwan R.O.C.

Test Location (1): No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin

Chu Hsien 307, Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin

Chu Hsien 307, Taiwan R.O.C.

Test Location (3): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies.

Table of Contents

Re	ease Control Record	. 3
1	Certificate of Conformity	. 4
2	RF Exposure	. 5
2	.1 Limits For Maximum Permissible Exposure (MPE)	. 5
3	Calculation Result Of Maximum Conducted Power	. 6

Release Control Record

Issue No.	Description	Date Issued
SA150713E08	Original release.	Sep. 02, 2015

1 Certificate of Conformity

Product: Upgradable transportation WiFi hotspot

Brand: Pepwave / Peplink / Pismo

Test Model: MAX Transit

Series Model: MAX transit Duo, MAX transit Quad, Pismo 813

Sample Status: MASS-PRODUCTION

Applicant: Pismo Labs Technology Limited

Test Date: Aug. 06, 2015

Standards: FCC Part 2 (Section 2.1091)

KDB 447498 D03

IEEE C95.1

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: ______, Date: ______, Sep. 02, 2015

Lori Chung / Specialist

Approved by: Sep. 02, 2015

May Cher / Manager

Report No.: SA150713E08

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range Electric Field Strength (V/m)		Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (minutes)						
	Limits For General Population / Uncontrolled Exposure									
300-1500 F/1500 30										
1500-100,000			1.0	30						

F = Frequency in MHz

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 24cm away from the body of the user. So, this device is classified as **Mobile Device**.

2.4 Antenna Gain

	For WLAN									
Antenna No.	Brand		Brand		Model	Ant. Gain (dBi)	Frequency range (GHz to GHz)	Antenna Type	Connecter Type	
				3	2.4~2.4835		RP-SMA			
1	SmartAnt		SAA06-220690	4~5.5	5.15~5.25	Dipole				
				5~5-6	5.725~5.85					
	For GPS									
Set	Brand		Model	Ant. Gain (dBi)	Frequency range (MHz)	Antenna Type	Connecter Type			
1	Chang Hong		GPS-01	-1	1575.42 (±1.023MHz)	Magnetic	R-SMA Male			
	·		Fo	r LTE						
Set	Transmiter Circuit Brand		Model	Ant. Gain (dBi)	Frequency range (MHz to MHz)	Antenna Type	Connecter Type			
1	Cellular Main	Dulas	SPDA24700/2700	2	698-960 1710-2170	Dipole	R-SMA Male			
	Cellular Diversity / Aux		3FDA24700/2700	2	2500-2700	Dipole	K-SIVIA IVIAIE			

Report No.: SA150713E08 Page No. 5 / 7 Report Format Version: 6.1.1

3 Calculation Result Of Maximum Conducted Power

For WLAN:

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm²)
2412-2462	379.799	6.01	24	0.20937	1
5180-5240	132.781	8.51	24	0.13017	1
5745-5825	252.981	9.01	24	0.27826	1

NOTE:

2412-2462MHz: Directional gain = 3dBi + 10log(2) = 6.01dB 5180-5240MHz: Directional gain = 5.5dBi + 10log(2) = 8.51dBi 5745-5825MHz: Directional gain = 6dBi + 10log(2) = 9.01dBi

For WWAN (2G/3G) / LTE (4G) - Cellular1 FCC ID: N7NMC7355, Model No.: MC7354:

Frequency Band (MHz)	Max Power (mW)			Source-Based Time-Averaged Power Density (mW/cm²)	Limit (mW/cm²)
824-849	2000	2	24	0.10948	0.5493

Note: 1. Limit of Power Density = F/1500

2. Calculations for RF Exposure compliance in the cellular and PCS bands are base on the maximum source based time-average power obtained from 2-Slot GPRS operation. The resulting duty cycle factor is 2/8, or 6.02dB.

For WWAN (2G/3G) / LTE (4G) - Cellular2_FCC ID: N7NMC7355, Model No.: MC7354:

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Source-Based Time-Averaged Power Density (mW/cm²)	Limit (mW/cm²)
824-849	2000	2	24	0.10948	0.5493

Note: 1. Limit of Power Density = F/1500

2. Calculations for RF Exposure compliance in the cellular and PCS bands are base on the maximum source based time-average power obtained from 2-Slot GPRS operation. The resulting duty cycle factor is 2/8, or 6.02dB.

Conclusion:

All of the WLAN/2G/3G/LTE can transmit simultaneously, the formula of calculated the MPE is

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.20937 / 1 + 0.27826 / 1 + 0.10948 / 0.5493 + 0.10948 / 0.5493 = 0.886, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

Report No.: SA150713E08 Page No. 6 / 7 Report Format Version: 6.1.1

Appendix

MPE Evaluation for FCC ID: N7NMC7355 Radio Module

Mode	Equipment Category	Max Transmitter		mitter nge Hz)	Maxi	mum	Antenna Gain	Distance to Human		Density /cm²)	Ratio
		Duty Cycle	Start	Stop	(dBm)	(W)	(dBi)	Body (cm)	Vaule	Limit	
CDDC	Class 40	25%	824	849	33	2	2	27	0.0865	0.54933	0.15746455
GPRS	Class 10	25%	1850	1910	30	1	3	27	0.05445	1	0.05445
	01 40	25%	824	849	28	0.63	2	27	0.02725	0.54933	0.04960588
	Class 10	25%	1850	1910	27	0.5	3	27	0.02723	1	0.02723
ED0E	01 44	37.50%	824	849	26.2	0.42	2	27	0.02725	0.54933	0.04960588
EDGE	Class 11	37.50%	1850	1910	25.2	0.33	3	27	0.02695	1	0.02695
	Class 12	50%	824	849	25	0.32	2	27	0.02768	0.54933	0.05038866
		50%	1850	1910	24	0.25	3	27	0.02723	1	0.02723
	A EvDo	100%	824	849	25	0.32	2	27	0.05536	0.54933	0.10077731
CDMA		100%	1850	1910	25	0.32	3	27	0.0697	1	0.0697
		100%	817	824	25	0.32	2	27	0.05536	0.54466	0.10164139
	HSDPA HSUPA	100%	824	849	24	0.25	2	27	0.04325	0.54933	0.07873227
UMTS		100%	1710	1755	24	0.25	3	27	0.05445	1	0.05445
		100%	1850	1910	24	0.25	3	27	0.05445	1	0.05445
	Band 17	100%	704	716	24	0.25	2	27	0.04325	0.46933	0.09215264
	Band 13	100%	777	787	24	0.25	2	27	0.04325	0.518	0.08349421
	Band 5	100%	824	849	24	0.25	2	27	0.04325	0.54933	0.07873227
LTE	Band 4	100%	1710	1755	24	0.25	3	27	0.05445	1	0.05445
	Band 2	100%	1850	1910	24	0.25	3	27	0.05445	1	0.05445
	Band 25	100%	1850	1915	24	0.25	3	27	0.05445	1	0.05445

Note:

1. The ratios which were indicated in bold type of the max ratio.

2. 698~960MHz: Antenna gain is 2dBi 3. 1710~2700MHz: Antenna gain is 3dBi

--- END ---