

FCC Part 15.231 Test Data

EUT: 56-0005-03 Rev F00 433.92 MHz Wrist Panic

for

**Resolution Engineering, Inc.
226 Locust Street, Suite 4
Hudson, WI 54016
Contact: Josh Gathje**

**Testing Conducted By
Rhein Tech Laboratories, Inc.
360 Herndon Parkway, Suite 1400
Herndon, VA 20170**

RTL Test Engineer: Jon Wilson

RTL Project/Report Number: 2013187

August 28, 2013

This report may not be reproduced, except in full, without the full written approval of Rhein Tech Laboratories, Inc. and Resolution Engineering. Test results relate only to the item tested.

These tests are accredited and meet the requirements of ISO/IEC 17025 as verified by ANSI-ASQ National Accreditation Board/ACCLASS. Refer to certificate and scope of accreditation AT-1445.

Testing Represented in Report

The data and limits presented in this report are for peak emissions limiting per 15.231(b)(2) which references 15.35(b), and peak limiting for restricted bands per 15.209(e), which again references 15.35(b)(2), as procured by Resolution Engineering. No average data is presented in this report. The Equipment Under Test (EUT) was the **56-0005-03 Rev F00 (RTL Bar Code 21092)**.

15.231 Radiated Emissions Test Data – FCC Limits / 3m Distance

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail
433.920	Peak	V	69.4	29.6	99.0	100.8	-1.8	Pass
867.840	Peak	V	56.7	-4.4	52.3	80.8	-28.5	Pass
1301.763	Peak	V	40.4	0.9	41.3	74.0	-32.7	Pass
1735.688	Peak	H	44.6	2.8	47.4	80.8	-33.4	Pass
2169.590	Peak	V	70.2	-18.7	51.5	80.8	-29.3	Pass
2603.510	Peak	V	65.9	-18.5	47.4	80.8	-33.4	Pass
3037.430	Peak	H	58.8	-18.6	40.2	80.8	-40.6	Pass
3471.350	Peak	H	58.8	-17.2	41.6	80.8	-39.2	Pass
3905.270	Peak	V	61.8	-16.8	45.0	74.0	-29.0	Pass
4339.190	Peak	H	48.2	-11.2	37.0	74.0	-37.0	Pass

** all spurious emissions in the applicable frequency range were investigated, only harmonic emissions were present as noted above*

Test Procedure

Radiated fundamental and spurious emissions were tested at three meters. The EUT was tested in the three orthogonal planes with the receive antenna in both polarities. The emissions were maximized per ANSI C63.4:2003 8.3.1.2; that is, the measurement antenna height was varied between 1 and 4 m, and the EUT was rotated through 360° on a rotating turntable until the maximum emissions were found. Both horizontal and vertical measurement antenna polarizations were used. A resolution bandwidth of 100 kHz was used for frequencies less than 1000 MHz, and a resolution bandwidth of 1 MHz was used for frequencies greater than or equal to 1000 MHz. The video bandwidth was set to a value at least three times greater than the resolution bandwidth.

EUT Disposition

The EUT was adapted to continuously transmit for testing purposes.

Rhein Tech Laboratories, Inc.
360 Herndon Parkway, Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Resolution Engineering
EUT: 56-0005-03 Rev F00
Standards: FCC Parts 2, 15
Report #: 2013187

Radiated Emissions Test Equipment

Part	Manufacturer	Model	Serial Number	RTL Bar Code	Calibration Due Date
Amplifier (20 MHz-2 GHz)	Rhein Tech Laboratories, Inc.	PR-1040	900905	900905	8/20/14
Bilog Periodic Antenna (25 MHz-2 GHz)	Schaffner Chase	CBL6112	2099	900791	2/2/14
EMI Receiver RF Section (9 kHz-6.5 GHz)	Hewlett Packard	85462A	3325A00159	900913	9/20/13
RF Filter Section (100 kHz-6.5 GHz)	Hewlett Packard	85460A	3330A00107	900914	9/20/13
Spectrum Analyzer	Hewlett Packard	8596EM	3826A00144	901215	3/15/14
Amplifier (1 GHz-26.0 GHz)	Rhein Tech Laboratories, Inc.	PR-1042	N/A	901364	9/28/13
Horn Antenna (2.0-4.0 GHz)	EMCO	3161-02	9804-1044	900772	4/20/15
Emissions Testing Software	Rhein Tech Laboratories, Inc.	Automated Emission Tester	Rev. 14.0.2	N/A	N/A

Test Personnel:

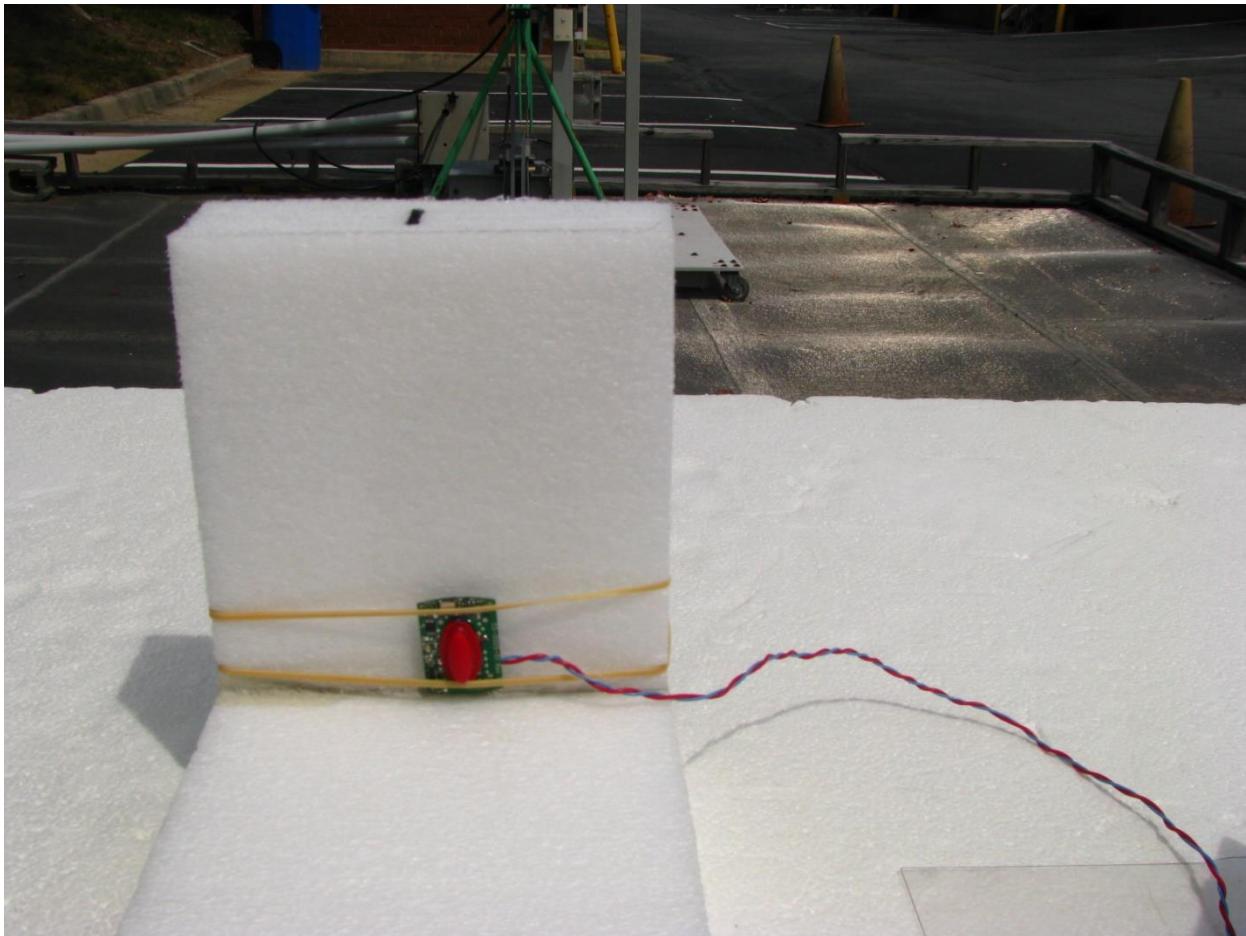
Jon Wilson		August 23, 2013
Test Engineer	Signature	Date of Test

FCC/IC Cross Reference


FCC 15.231(b)(2)	RSS-210 Issue 8 A1.1
FCC 15.35(b)	RSS-Gen Issue 3 7.2.3
FCC 15.205	RSS-Gen Issue 3 7.2.2
FCC 15.209	RSS-Gen Issue 3 7.2.5

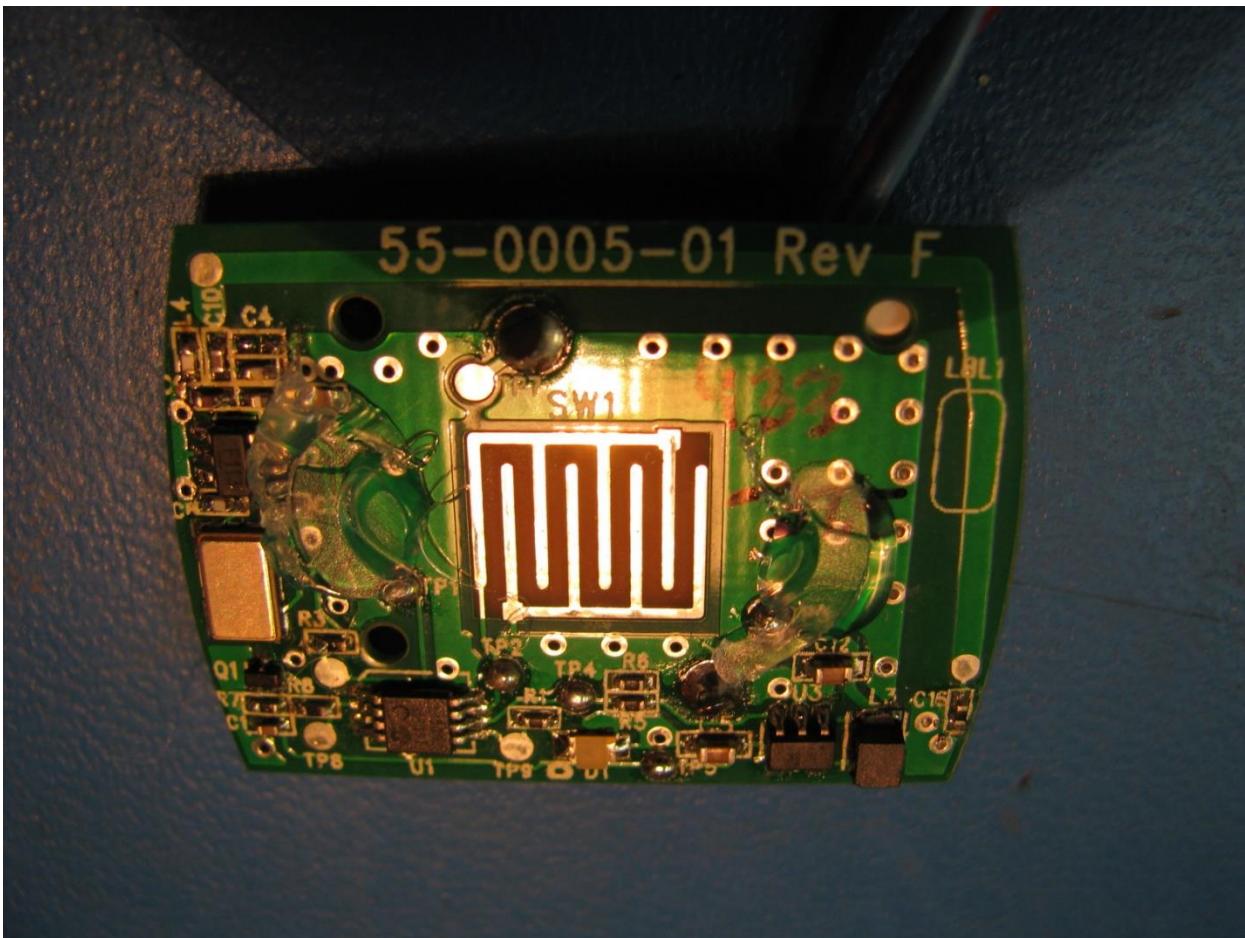
Rhein Tech Laboratories, Inc.
360 Herndon Parkway, Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Resolution Engineering
EUT: 56-0005-03 Rev F00
Standards: FCC Parts 2, 15
Report #: 2013187


Test Configuration Photographs

Radiated Emissions

Rhein Tech Laboratories, Inc.
360 Herndon Parkway, Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>


Client: Resolution Engineering
EUT: 56-0005-03 Rev F00
Standards: FCC Parts 2, 15
Report #: 2013187

Rhein Tech Laboratories, Inc.
360 Herndon Parkway, Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Resolution Engineering
EUT: 56-0005-03 Rev F00
Standards: FCC Parts 2, 15
Report #: 2013187

EUT Photograph

