

SAR & RF Exposure Exemption Technical Brief

Application Information

APPLICANT	Alula
DATE	12/24/2018
PROD DESC	Wireless Door/Window Sensor
PMN	RE107 Door/Window Sensor
HVIN	RE107
FVIN	75-0082-01, 75-0086-01
IC	8310A-RE107

SAR Evaluation Exemption (RSS-102, Section 2.5.1)

From RSS-102, Section 2.5.1 Exemption Limits for Routine Evaluation – SAR Evaluation

“SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.”

This device is meant to be mounted to the wall or ceiling of a residence. As such, it will always be at least 20cm from the user, and is thus exempt from SAR evaluation.

RF Exposure Exemption (RSS-102, Section 2.5.2)

Field strength measurements were taken at 3 meters. Because of the low duty cycle of this device, the 20dB duty cycle correction is allowed. Using the standard conversion from field strength, EIRP is calculated as follows:

$$\text{EIRP (dBm)} = (E - 20) + 20\log(3) - 104.8$$

From RSS-102, Section 2.5.2 Exemption Limits for Routine Evaluation – RF Exposure Evaluation

“RF exposure evaluation is required if the separation distance between the user and/or bystander and the device’s radiating element is greater than 20 cm, except when the device operates as follows:

- At or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834} \text{ W}$ (adjusted for tune-up tolerance), where f is in MHz.”*

Thus, the EIRP limit for exemption from RF exposure evaluation is calculated as follows:

$$\text{EIRP Limit (dBm)} = 10\log(1.31 \times 10^{-2} f^{0.6834}) + 30$$

The table that follows will show that the device is exempt from RF exposure evaluation.

Frequency (MHz)	Peak Level (dBuV/m)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Test Result
319.5	89.8	-25.5	28.3	-53.7	PASS
639.0	62.3	-53.0	30.3	-83.3	PASS
958.5	39.4	-75.9	31.5	-107.4	PASS
1278.0	55.2	-60.1	32.4	-92.5	PASS
1597.5	49.6	-65.7	33.1	-98.7	PASS
1917.0	48.5	-66.8	33.6	-100.4	PASS
2236.5	63.7	-51.6	34.1	-85.6	PASS
2556.0	46.3	-69.0	34.5	-103.4	PASS
2875.5	53.4	-61.9	34.8	-96.7	PASS
3195.0	53.5	-61.8	35.1	-96.9	PASS

RF Exposure Limits (FCC 1.1310)

From FCC §1.1310, the allowable field strength exposure limits for 300-1500 MHz is calculated as follows:

$$\text{Power Density Limit: } \frac{f}{1500} \text{ (mW/cm}^2\text{) where } f = \text{frequency in MHz}$$

For frequencies above 1500 MHz, the limit is 1mW/cm².

$$\text{Power Density Limit (dBmW/m}^2\text{)}: \frac{dBmW}{m^2} = 10 \log_{10} \left(\frac{f}{1500} * 10000 \right)$$

*where f remains 1500 above frequencies of 1500 MHz

$$\text{Peak Level to Power Conversion: } \frac{dBmW}{m^2} = \frac{dBuV}{m} - 115.8$$

Frequency (MHz)	Peak Level (dBuV/m)	Peak Level (dBmW/m^2)	Power Limit (dBmW/m^2)	Margin (dB)	Test Result
319.5	89.8	-26.0	33.3	-59.3	PASS
639.0	62.3	-53.5	36.3	-89.8	PASS
958.5	39.4	-76.4	38.1	-114.5	PASS
1278.0	55.2	-60.6	39.3	-99.9	PASS
1597.5	49.6	-66.2	40.0	-106.2	PASS
1917.0	48.5	-67.3	40.0	-107.3	PASS
2236.5	63.7	-52.1	40.0	-92.1	PASS
2556.0	46.3	-69.5	40.0	-109.5	PASS
2875.5	53.4	-62.4	40.0	-102.4	PASS
3195.0	53.5	-62.3	40.0	-102.3	PASS

Sincerely,

Paul Saldin
Vice President, Engineering
Alula