

TEST REPORT

No. I19D00091-SRD04

For

Client : Datalogic S.r.l.

Production : Smartphone

Model Name : MEMOR 10

Brand Name : Datalogic

FCC ID : U4GDL35US

Hardware Version : V00 (US)

Software Version : 2.00.05.20190726

Issued date : 2019-08-06

NOTE

1. The test results in this test report relate only to the devices specified in this report.
2. This report shall not be reproduced except in full without the written approval of East China Institute of Telecommunications.
3. KDB 971168 D01 has not been accredited by A2LA.
4. For the test results, the uncertainty of measurement is not taken into account when judging the compliance with specification, and the results of measurement or the average value of measurement results are taken as the criterion of the compliance with specification directly.

Test Laboratory:

East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: +86 21 63843300

FAX: +86 21 63843301

E-Mail: welcome@ecit.org.cn

Revision Version

Report Number	Revision	Date	Memo
I19D00091-SRD04	00	2019-08-06	Initial creation of test report

CONTENTS

1. TEST LABORATORY.....	6
1.1. TESTING LOCATION.....	6
1.2. TESTING ENVIRONMENT.....	6
1.3. PROJECT DATA.....	6
1.4. SIGNATURE	6
2. CLIENT INFORMATION.....	7
2.1.APPLICANT INFORMATION	7
2.2.MANUFACTURER INFORMATION	7
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE).....	8
3.1.ABOUT EUT	8
3.2.INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST.....	8
3.3.INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	8
4. REFERENCE DOCUMENTS	9
4.1.DOCUMENTS SUPPLIED BY APPLICANT	9
4.2.REFERENCE DOCUMENTS FOR TESTING	9
5. TEST RESULTS	10
5.1.SUMMARY OF TEST RESULTS.....	10
5.2.STATEMENTS.....	10
6. TEST EQUIPMENTS UTILIZED	11
6.1.CONDUCTED TEST SYSTEM	11
6.2.RADIATED EMISSION TEST SYSTEM	11
7. MEASUREMENT UNCERTAINTY.....	13
8. TEST ENVIRONMENT.....	14
ANNEX A. MEASUREMENT RESULTS.....	15
ANNEX A.1.RADIATED	15

ANNEX B. ACCREDITATION CERTIFICATE **27**

1. Test Laboratory

1.1. Testing Location

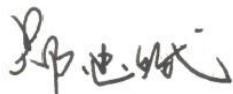
Company Name:	ECIT Shanghai, East China Institute of Telecommunications
Address:	7-8/F., Area G, No.668, Beijing East Road, Shanghai, China
Postal Code:	200001
Telephone:	(+86)-021-63843300
Fax:	(+86)-021-63843301
FCC registration No	958356

1.2. Testing Environment

Normal Temperature:	15°C-35°C
Relative Humidity:	25%-75%

1.3. Project data

Project Leader:	Yu Anlu
Testing Start Date:	2019-06-22
Testing End Date:	2019-06-24


1.4. Signature

Wang Liang
(Prepared this test report)

Fan Songyan
(Reviewed this test report)

Zheng Zhongbin
(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name	Datalogic S.r.l.
Address	Via San Vitalino no. 13, Calderara di Reno – 40012 (BO) - Italy
Telephone	+39 051 314 72 16
Postcode	/

2.2. Manufacturer Information

Company Name	Datalogic S.r.l.
Address	Via San Vitalino no. 13, Calderara di Reno – 40012 (BO) - Italy
Telephone	+39 051 314 72 16
Postcode	/

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Production	Smartphone
Model name	MEMOR 10
GSM Frequency Band	GSM850/GSM900/GSM1800/GSM1900
UMTS Frequency Band	Band I /Band II /Band IV/Band V /Band VIII
CDMA Frequency Band	BC0/BC1
LTE Frequency Band	LTE2/4/5/7/12/13/17/25/26
Extreme Temperature	-30/+50°C
Nominal Voltage	3.8V
Extreme High Voltage	4.35V
Extreme Low Voltage	3.6V

Note:

- Photographs of EUT are shown in ANNEX A of this test report.
- The value of the antenna gain is provided by the customer. For specific antenna information, please check the antenna specifications of the customer.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N01	359737090067954	V00 (US)	2.00.05.20190726	2019-06-18
N03	359737090067947	V00 (US)	2.00.05.20190726	2019-06-18

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Type	Manufacturer
AE1	RF cable	---	AE1

*AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

All technical documents are supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS	2018-10-01
FCC Part 22	PUBLIC MOBILE SERVICES	2018-10-01
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	2018-10-01
ANSI-TIA-603-E	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards	2016
ANSI C63.26	American National Standard of Procedures for Compliance Testing of Licensed Transmitters Used in Licensed Radio	2015
KDB 971168 D01	Measurement Guidance for Certification of Licensed Digital Transmitters	v03r01

5. Test Results

5.1. Summary of Test Results

Measurement Items	Sub-clause	Verdict
Emission Limit	2.1051/22.917/24.238/22.913/24.232	P

Note: please refer to Annex A in this test report for the detailed test results.

The following terms are used in the above table.

P	Pass, the EUT complies with the essential requirements in the standard.
NP	Not Perform, the test was not performed by ECIT.
NA	Not Applicable, the test was not applicable.
F	Fail, the EUT does not comply with the essential requirements in the standard.

5.2. Statements

The MEMOR 10, supporting GSM/WCDMA/LTE.etc, manufactured by Datalogic S.r.l. is a variant product for testing. ECIT only performed test cases which identified with Pass/Fail/Inc result in section 5.

ECIT has verified that the compliance of the tested device specified in section 3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 4 of this test report.

Note: This project is a variant of I18D00022-SRD04 original report. We only retest and report the EIRP and radiation test data. For other information, please refer to the original report.

6. Test Equipments Utilized

6.1. Conducted Test System

No.	Equipment	Model	SN	Manufacture	Cal.date	Cal.interval
1	Spectrum Analyzer	FSQ26	101096	R&S	2019-05-10	1 year
2	Universal Radio Communication	CMU200	123124	R&S	2019-05-10	1 year
3	DC Power Supply	ZUP60-14	LOC-220Z 006-0007	TDL-Lambda	2019-05-10	1 year

6.2. Radiated Emission Test System

The test equipment and ancillaries used are as follows.

No.	Equipment	Model	SN	Manufacture	Cal.date	Cal.interval
1	Universal Radio Communication Tester	CMU200	123123	R&S	2019-05-10	1 year
2	EMI Test Receiver	ESU40	100307	R&S	2019-05-10	1 year
3	TRILOG Broadband Antenna	VULB916 3	VULB9163 -515	Schwarzbeck	2017-02-25	3 years
4	Double-ridged Waveguide Antenna	ETS-3117	00135890	ETS	2017-01-11	3 years
5	2-Line V-Network	ENV216	101380	R&S	2019-05-10	1 year
6	Substitution Antenna	ETS-3117	00135890	ETS	2017-01-11	3 years

7	RF Signal Generator	SMF100A	102314	R&S	2019-05-10	1 year
8	Substitution Antenna	VUBA9117	9117-266	Schwarzbeck	2017-11-18	3 years
9	Amplifier	SCU08	10146	R&S	2019-05-10	1 year

Climate chamber

No.	Equipment	Model	SN	Manufacture	Cal.date	Cal.interval
1	Climate chamber	SH-641	92012011	ESPEC	2017-12-25	2 years

7. Measurement Uncertainty

Measurement uncertainty for all the testing in this report are within the limit specified in ECIT documents . The detailed measurement uncertainty is defined in ECIT documents.

Measurement Items	Range	Confidence Level	Calculated Uncertainty
Maximum Peak Output Power	30MHz-3600MHz	95%	±0.544dB
EBW and VBW	30MHz-3600MHz	95%	±62.04Hz
Transmitter Spurious Emission-Conducted	30MHz-2GHz	95%	±0.90dB
Transmitter Spurious Emission-Conducted	2GHz-3.6GHz	95%	±0.88dB
Transmitter Spurious Emission-Conducted	3.6GHz-8GHz	95%	±0.96dB
Transmitter Spurious Emission-Conducted	8GHz-20GHz	95%	±0.94dB
Transmitter Spurious Emission-Radiated	9KHz-30MHz	95%	±5.66dB
Transmitter Spurious Emission-Radiated	30MHz-1000MHz	95%	±4.98dB
Transmitter Spurious Emission-Radiated	1000MHz -18000MHz	95%	±5.06dB
Transmitter Spurious Emission-Radiated	18000MHz -40000MHz	95%	±5.20dB
Frequency stability	1MHz-16GHz	95%	±62.04Hz

8. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Ground system resistance	< 0.5 Ω

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz
Site Attenuation Deviation	Between -4 and 4 dB, 30MHz to 1GHz
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

ANNEX A. MEASUREMENT RESULTS

ANNEX A.1. RADIATED

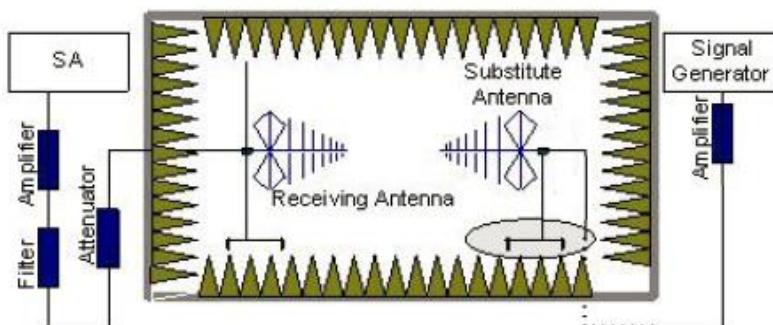
A.1.1. EIRP

A.1.1.1. GSM EIRP

A.1.1.1.1. Description

This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."


A.1.1.1.2. Method of Measurement

The measurements procedures in TIA-603E-2016 are used.

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. A amplifier should be connected to the Signal Source output port. And the cable should be connected between the Amplifier and the Substitution Antenna.

The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

$$\text{Power(EIRP)} = P_{Mea} + P_{Ag} - P_{cl} + G_a$$

5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15dBi) and known input power.

6. ERP can be calculated from EIRP by subtracting the gain of the dipole, $ERP = EIRP - 2.15\text{dBi}$.

A.1.1.3 GSM 850-ERP 22.913(a)

A.1.1.3.1 Limits

Mode	Power Step	Burst Peak ERP (dBm)
GSM	5	$\leq 38.45\text{dBm}$ (7W)
GPRS	3	$\leq 38.45\text{dBm}$ (7W)
EDGE	6	$\leq 38.45\text{dBm}$ (7W)

A.1.1.3.2 Measurement result

GSM(GMSK)

Frequency (MHz)	PMea (dBm)	Pcl (dB)	PAg (dB)	Ga Antenna Gain(dBi)	PeakEIRP (dBm)	Polarization
848.8	-4.86	3.1	37	3.11	32.15	H

GPRS(GMSK)

Frequency (MHz)	PMea (dBm)	Pcl (dB)	PAg (dB)	Ga Antenna Gain(dBi)	PeakEIRP (dBm)	Polarization
848.8	-6.05	3.1	37	3.11	30.96	H

EDGE(8PSK)

Frequency (MHz)	PMea (dBm)	Pcl (dB)	PAg (dB)	Ga Antenna Gain(dBi)	PeakEIRP (dBm)	Polarization
848.8	-13.16	3.1	37	3.11	23.85	H

Frequency: 848.8MHz

$$\text{Peak EIRP(dBm)} = \text{PMea}(-13.16\text{dBm}) - \text{Pcl}(3.1\text{dB}) + \text{PAg}(37\text{dB}) + \text{Ga}(3.11\text{dBd}) \\ = 23.85\text{dBm}$$

Note: ANALYZER SETTINGS: RBW = VBW = 3MHz

A.1.1.1.4 PCS 1900-EIRP 24.232(c)

A.1.1.1.4.1 Limits

Mode	Power Step	Burst Peak EIRP (dBm)
GSM	5	≤33dBm (2W)
GPRS	3	≤33dBm (2W)
EDGE	6	≤33dBm (2W)

A.1.1.1.4.2 Measurement result

GSM(GMSK)

Frequency (MHz)	PMea (dBm)	Pcl (dB)	PAg (dB)	Ga Antenna Gain(dBi)	PeakEIRP (dBm)	Polarization
1850.2	-7.40	4.6	36	4.7	28.70	V

GPRS(GMSK)

Frequency (MHz)	PMea (dBm)	Pcl (dB)	PAg (dB)	Ga Antenna Gain(dBi)	PeakEIRP (dBm)	Polarization
1850.2	-7.47	4.6	36	4.7	28.63	V

EDGE(8PSK)

Frequency (MHz)	PMea (dBm)	Pcl (dB)	PAg (dB)	Ga Antenna Gain(dBi)	PeakEIRP (dBm)	Polarization
1850.2	-12.60	4.6	36	4.7	26.29	V

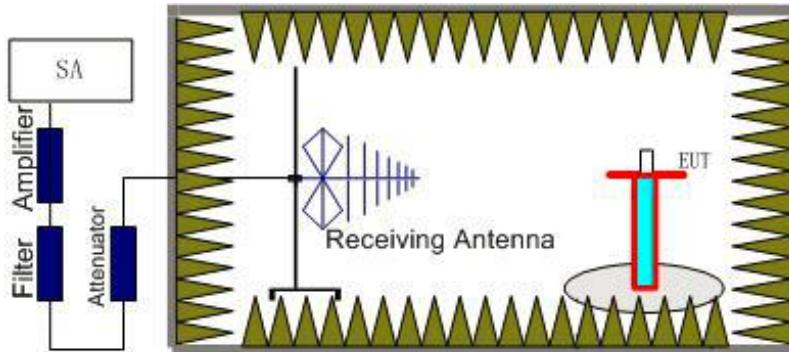
Frequency: 1850.2MHz

$$\text{Peak EIRP(dBm)} = \text{PMea}(-12.60\text{dBm}) - \text{Pcl}(4.6\text{dB}) + \text{PAg}(36\text{dB}) + \text{Ga}(4.7\text{dB}) = 26.29\text{dBm}$$

ANALYZER SETTINGS: RBW = VBW = 3MHz

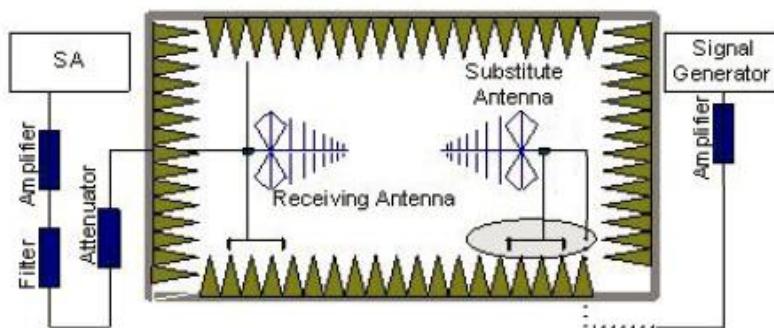
A.1.1.2. WCDMA EIRP

A.1.1.2.1. Description


This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. "Rule Part 22.913(a) specifies " The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

A.1.1.2.2. Method of Measurement


The measurements procedures in TIA-603E-2016 are used.

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (P_r).

3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna

polarization.

4. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna.

The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

$$\text{Power(EIRP)} = P_{Mea} + P_{Ag} - P_{cl} + G_a$$

5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

6. ERP can be calculated from EIRP by subtracting the gain of the dipole, $ERP = EIRP - 2.15\text{dBi}$.

A.1.1.2.3 WCDMA Band II-ERP Limits

Band	Burst Peak EIRP (dBm)
WCDMA Band II	$\leq 33\text{dBm (2W)}$

A.1.1.2.3.1 Measurement result

Frequency (MHz)	PMea (dBm)	Pcl (dB)	PAg (dB)	Ga Antenna Gain(dBi)	PeakEIRP (dBm)	Polarization
1852.4	-21.72	3.54	43.8	2.9	21.44	V

Frequency: 1852.4MHz

$$\text{Peak EIRP(dBm)} = P_{Mea}(-21.72\text{dBm}) - P_{cl}(3.54\text{dB}) + P_{Ag}(43.8\text{dB}) + G_a(2.9\text{dBi}) = 21.44\text{dBm}$$

ANALYZER SETTINGS: RBW = VBW = 5MHz

A.1.1.2.4 WCDMA Band IV-ERP Limits

Band	Burst Peak EIRP (dBm)
WCDMA Band IV	$\leq 33\text{dBm (2W)}$

A.1.1.2.4.1 Measurement result

Frequency(MHz)	PMea (dBm)	Pcl (dB)	PAg (dB)	Ga Antenna Gain(dBi)	PeakEIRP (dBm)	Polarization
1752.6	-10.58	4.6	36	2.9	23.72	H

Frequency: 1752.6 MHz

$$\text{Peak EIRP(dBm)} = P_{Mea}(-11.83\text{dBm}) - P_{cl}(4.6\text{dB}) + P_{Ag}(36\text{dB}) + G_a(2.9\text{dBi}) = 24.46\text{dBm}$$

ANALYZER SETTINGS: RBW = VBW = 5MHz

A.1.1.2.5 WCDMA Band V-ERP Limits

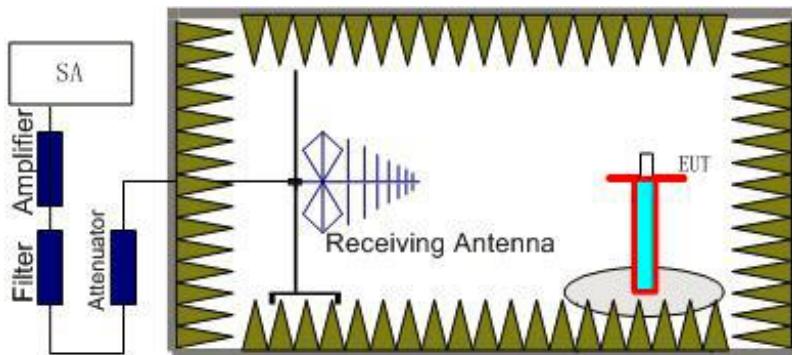
Band	Burst Peak ERP (dBm)
WCDMA Band V	$\leq 38.45\text{dBm (7W)}$

A.1.1.2.5.1 Measurement result

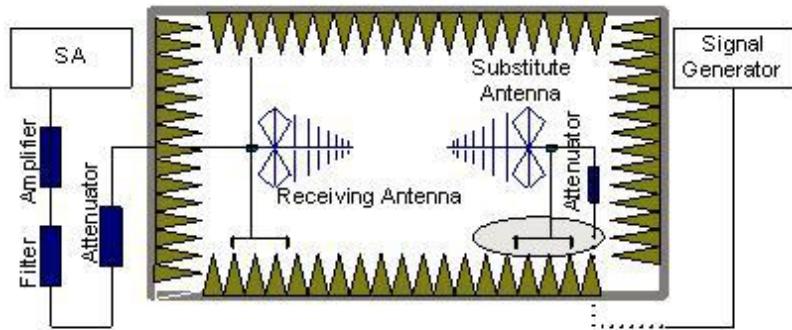
Frequency (MHz)	PMea (dBm)	Pcl (dB)	PAg (dB)	Ga Antenna Gain(dBi)	PeakEIRP (dBm)	Polarization
846.6	-15.62	3.1	37	2.9	21.18	H

Frequency: 846.6MHz**Peak ERP(dBm)= P_{Mea}(-15.62dBm)- P_{cl}(3.1dB)+P_{Ag}(37dB)+G_a(2.9dB)=21.18dBm****ANALYZER SETTINGS: RBW = VBW = 5MHz****Note: the EUT was displayed in several different direction, the worst cases were shown.**

A.1.2 EMISSION LIMIT (§2.1051/§22.917§24.238)


A.1.2.1 GSM Measurement Method

The measurement procedures in TIA-603E-2016 are used.


The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GSM850.

A.1.2.2 The procedure of radiated spurious emissions is as follows:

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the

receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test.

A amplifier should be connected in for the test.

The Path loss (P_{pl}) is the summation of the cable loss .

The measurement results are obtained as described below:

Power(EIRP)= P_{Mea} - P_{pl} + G_a

5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

5. ERP can be calculated from EIRP by subtracting the gain of the dipole, $ERP = EIRP - 2.15\text{dB}$

A.1.2.3 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.1.2.4 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the GSM850 band(824.2MHz, 836.6MHz, 848.8MHz) . It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the GSM850 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.1.2.5 Measurement Results**Measurements results:**

Frequency	Channel	Frequency Range	Result
GSM850	Low	30MHz~10GHz	P
	Middle	30MHz~10GHz	P
	High	30MHz~10GHz	P

GSM Mode Channel 128**Final result:**

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
1860.0	-37.77	4.6	2.9	-39.47	-13	H
2820.0	-33.58	5.7	4.1	-35.18	-13	V
3587.3	-46.18	6.5	4.7	-47.98	-13	H
4487.3	-47.8	7.3	7.3	-47.8	-13	V
5938.8	-49.35	8.5	10.4	-47.45	-13	V
6438.5	-48.45	8.9	11.5	-45.85	-13	V

GSM Mode Channel 189**Final result:**

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
1673.6	-42.02	4.3	2.9	-43.42	-13	H
2544.6	-36.07	5.4	3.7	-37.77	-13	V
3687.7	-49.37	6.6	7.7	-48.27	-13	V
5468.1	-49.37	8.1	9.5	-47.97	-13	V
6269.2	-49.08	8.8	10.8	-47.08	-13	H
6936.9	-50.07	9.3	12.9	-46.47	-13	H

GSM Mode Channel 251**Final result:**

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
1873.9	-38.08	4.6	2.9	-39.78	-13	H
2701.1	-35.31	5.6	4.1	-36.81	-13	H

3565.4	-47.66	6.4	4.7	-49.36	-13	H
4561.2	-47.58	7.4	7.3	-47.68	-13	H
5372.3	-48.48	8.1	8.7	-47.88	-13	V
6401.5	-49.42	8.9	11.5	-46.82	-13	H

A.8.3 WCDMA Measurement Method

The measurements procedures in TIA-603E-2016 are used.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 24.238 and Part 24.917.

The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band V.

The procedure of radiated spurious emissions is the same like GSM.

A.8.3.1 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.8.3.2 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the WCDMA Band II. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Band II into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.8.3.3 Measurement Results Table

Frequency	Channel	Frequency Range	Result
WCDMA Band II	Low	30MHz~20GHz	P
	Middle	30MHz~20GHz	P
	High	30MHz~20GHz	P

WCDMA BAND II Mode Channel 4132

Final result:

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERF (dBm)	Limit (dBm)	Polarization
3972.8	-59.8	6.8	7.7	-58.90	-13	H
4550.0	-58.18	7.4	7.3	-58.28	-13	H
5825.2	-60.32	8.4	10.5	-58.22	-13	V

6418.8	-59.35	8.9	11.5	-56.75	-13	H
8416.4	-63.51	10.2	18.1	-55.61	-13	H
9838.4	-60.41	11.0	18.3	-53.11	-13	V

WCDMA BAND II Mode Channel 4183**Final result:**

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
4780.8	-59.34	7.6	7.9	-59.04	-13	V
6376.8	-59.72	8.9	11.5	-57.12	-13	H
9244.0	-61.29	10.6	18.5	-53.39	-13	H
11224.4	-56.36	12.1	18.5	-49.96	-13	H
14343.9	-56.48	13.6	23.5	-46.58	-13	H
16794.6	-48.52	15.8	20.0	-44.32	-13	V

WCDMA BAND II Mode Channel 4233**Final result:**

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
4536.0	-58.25	7.4	7.3	-58.35	-13	H
5811.2	-60.16	8.4	10.5	-58.06	-13	H
7538.0	-61.44	9.7	14.6	-56.54	-13	V
9221.2	-61.09	10.5	18.5	-53.09	-13	V
10794.0	-57.28	11.7	17.3	-51.68	-13	V
13321.2	-56.3	13.6	21.8	-48.10	-13	H

Conclusion: PASS**Note: the EUT was displayed in several different direction, the worst cases were shown.**

ANNEX B. Accreditation Certificate**Accredited Laboratory**

A2LA has accredited

EAST CHINA INSTITUTE OF TELECOMMUNICATIONS

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017
General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates
technical competence for a defined scope and the operation of a laboratory quality management system
(refer to joint ISO-ILAC-JAF Communiqué dated April 2017).

Presented this 6th day of May 2019.

A handwritten signature in blue ink, appearing to read 'Liu'.

Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 3682.01
Valid to February 28, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

*******End of the Report*******